
Treball final de grau

GRAU DE MATEMÀTIQUES

Facultat de Matemàtiques
Universitat de Barcelona

3D Reconstruction

Autor: Marc Grau Galofré

Directors: Dr. Joan Carles Naranjo i Dr. Oriol Pujol

Realitzat a: Departament de

Matemàtiques i Informàtica

Barcelona, June 27, 2016

Abstract

The capacity of retrieving an object from images taken from different positions,
known as 3D reconstruction, is being used nowadays in fields like medicine and
robotics. In this project, we will give an approach on what are its basis and how is
mathematically grounded. Finally, we will give an implementation for carrying out
calibrated and uncalibrated reconstructions.

i

Acknowledgments

I would like to thank my tutors, for accepting this project a week before the begin-
ning, and my friends, for sharing their time working with me. An special thank to
my sister Anna.

ii

Contents

1 Introduction 1

2 Cameras and Calibration 3

2.1 The Pinhole Model . 3

2.2 Calibration . 6

3 Two Views Geometry 12

3.1 Epipolar Geometry . 12

3.2 The Fundamental Matrix . 13

3.3 Calculating the Fundamental Matrix 18

3.4 The Essential Matrix . 23

4 Reconstruction 26

4.1 Stratified Reconstruction . 26

4.1.1 Projective Reconstruction 27

4.1.2 Affine Reconstruction . 27

4.1.3 Metric Reconstruction . 27

4.2 Epipolar Correction . 29

4.3 The Linear Triangulation Method 32

5 Image Processing in Correspondent Points Location 33

5.1 Image Representation . 33

5.2 Image Filtering . 33

5.2.1 Edges and Corners detection 35

5.2.2 Point Matching . 38

5.3 An Introduction to Feature Extractors, SIFT and BRIEF 39

6 Implementation 42

6.1 General Procedure . 43

6.2 Observations on the Depth Levels 47

7 Conclusions 50

A Additional Algorithms 51

iii

1 Introduction

It’s widely known that, with a camera, one can project points from space to a
plane. But, it is possible the way around? Is there any way to recover the scene
from images? In this project, we will answer this question. We will see how a
camera can be modeled using projective geometry, and how, with only the images,
the original scene can be recovered.

We may find the origin of this idea in the roots of projective geometry. During
the 15th century, the Italian Renaissance brought the idea of capturing perspective
into a plane. Filippo Brunelleschi (1337-1446), an Italian painter, is thought to
be the first one to achieve scientific accuracy in representing linear perspective
in paintings. This eagerness of giving a representation, as close as possible, of a
real scene evolved for about 450 years later. On 1908, a German mathematician
called Von Sanden, used in his PhD, which was focused on studying photometry,
a matrix that related points between different views. This matrix is thought to
be the precursor of the Essential matrix, from which we will talk in this project.
On 1913, an algorithm for computing this matrix was given by Kruppa, a German
mathematician. This algorithm needed 5 points to proceed, and involved finding the
intersection of two sextic curves. In a time where computers didn’t exist, this was
a really hard task to do. On 1981, the Essential matrix, as we know nowadays, was
introduced by Longuet-Higgins to the recent created computer vision community,
with a linear method for computing it. This method used 8 correspondences and
gave a single solution. Thirteen years later, on 1994, the Fundamental matrix was
finally introduced by Luong and Faugeras. From this point, many algorithms have
been given in order to compute it, either minimizing error or computational cost.

In this project, we will center on the deduction of the Fundamental matrix, and
the Essential matrix from it. We will see how these matrices can be used in order
to obtain points in space from its projection in two images and will take it into
practice.

This is an interdisciplinary project, we will need tools from matrix algebra, linear
algebra, numerical methods, geometry... This but, has a downside, since we won’t
deepen much in any of them; too many times we will have to end a section with
only a little introduction of it. On the other side, we will be able to give an
implementation of the theoretical results in computer. This implementation will
be done in Python, and will introduce ourselves into digital image processing and
computer vision.

Project Structure

This project is mainly divided in two sections. The first section, formed by the first
three chapters, is focused on setting the mathematical background that we need to
perform the reconstruction.

We begin by introducing the camera model, seeing how it can be expressed in
terms of the camera matrix P from the extrinsic parameters of the camera (its

1

situation in terms of the coordinate frame) and its intrinsic parameters of the cam-
era, represented through the calibration matrix K. This introduction is ended by
relating the calibration matrix with metric properties, a relation that will allow us
to compute K from images, without the need of knowing technical details of the
camera.
On the following chapter, we will work on the geometry involving two images, known
as two views or epipolar geometry. This geometry is focused on studying the re-
lation between what are called correspondent points, i.e, points in different images
that are the projection of the same 3D point. This relation is encoded in terms
of the fundamental matrix F by what is called the epipolar constrain. We will see
how this matrix can be computed using this constrain, and how it can be used to
retrieve a pair of camera matrices corresponding to the images up to a projective
transformation. We end this chapter by seeing that the knowledge of the calibration
matrix reduces the number of possible camera matrices to only four.
The chapter closing this section is focused on the possible reconstructions that may
arise, depending on the information we have about the scene and the camera. We
also see how discrete image coordinates may be corrected in order to reduce error
on the triangulated 3D point an give an algorithm to obtain it.

On the second section, we find the applied chapters. On chapter 5, we give a
very minimal introduction to image processing, and how it can be applied to find
correspondences between images. Finally, on chapter 6 we apply the results we have
been seen along the project in order to perform a calibrated reconstruction.

2

2 Cameras and Calibration

In this first chapter, we will introduce the pinhole camera model as the basis of this
project. We will see how its information can be encoded in matrix form, and how
the different aspects of the camera, such as its situation on the world or its internal
parameters, affect the image. We will talk about the importance of calibration, and
will see how projective geometry allows us to use known information in the world in
order to get information from the camera. This process will be developed in terms
of the projective space P3 := A3 ∪ P(R3), i.e. the real affine space, extended by
adding the infinite directions. Finally, we will give a basic algorithm in order to
compute the calibration matrix, which contains the information from the camera
internal parameters.

2.1 The Pinhole Model

Without body, without lenses, under this model a camera is reduced to its simplest
representation: a tiny hole were light goes through and a plane were it collides,
generating an image. Under this approach, we present the model as follows:

Definition 2.1.0.1. Under the pinhole model, a camera is the central projection
from points in space onto a plane, i.e. is a map R3 \ {C} → π which sends points
X in the 3D world to points x in the plane π as x = (C ∨X) ∩ π.

We now define the nomenclature: C is the camera center, and its also the center
of projection. π is the image plane. The orthogonal ray from π to C is the principal
ray, and its intersection with π is the principal point, f is the distance between
C and π, called the focal length, the plane parallel to π containing C is known as
the principal plane of the camera. Points in space may be referred as world points,
whilst points in π will be referred as image points.

Figure 1: The Pinhole model

[6, chapter 6, pg. 206].

Let’s take Euclidean coordinates as follows: let C = (0, 0, 0), the camera center,
be the origin, and π the plane z = f , the image plane. Let X = (x, y, z) be a point

3

in the space, is easily seen that the ray C ∨X intersects π at x = (xf/z, yf/z, f).
Taking homogeneous coordinates, C becomes (0 : 0 : 0 : 1) and the image plane
is z = ft. Then, the central projection expression can be expressed as a linear
mapping P : P3 \ {C} → π which sends X = (x : y : z : t) to x = (fx : fy : z).
That is:

x
y
z
t

→
fxfy
z

 =

f 0 0 0
0 f 0 0
0 0 1 0

 ·

x
y
z
t

 . (2.1)

This matrix may be written as diag(f, f, 1) · [I|0], where diag(f, f, 1) is a 3× 3
diagonal matrix and [I|0] is a matrix divided by blocks, where I is a 3× 3 identity
matrix and 0 is a zero column. We may denote it by P , and it will be called the
camera projection matrix. However, the simplicity of the expression is due to some
facts that we are now going to discuss.

First of all, we supposed that the camera center C was the origin of our coor-
dinate system, and the principal axis was over the Z-axis, but world points may
be expressed in a different coordinate frame, usually referred as world coordinate
frame, in which C may not be the origin. If that happens, there will be a rotation
and a translation that will relate both systems: Xcam = R(X − C̃), where R is a
rotation matrix and C̃ are the coordinates of the camera center in the world coor-
dinate frame.
We were also considering that the principal point was the origin of coordinates
in the image plane, which is not be always possible. In this case, the point
X = (x : y : z : 1) is mapped to x = (xf + px, yf + py, z), where (px, py) are
the coordinates of the principal point. In this case, the 3x3 diagonal matrix is af-
fected, and is no longer diagonal.
The camera may also be involved in the map expression; some cameras may have
not square pixels, this introduce the effect of scale factors in each direction: mx in
the x-axis and my in the y-axis. Under this circumstances, the diagonal has the
form diag(αx, αy, 1), where αx = f ·mx and αy = f ·my.
Finally, the pixel coordinate system may not be orthogonal, in that case, an extra
parameter s is added to our old diagonal matrix, called the skew parameter.

Adding this parameters to the original diag(f, f, 1), we obtain the calibration
matrix:

Definition 2.1.0.2. The matrix K, containing the internal parameters of the cam-
era, is called the calibration matrix.

We have seen in a heuristic way which role plays K on codifying the image
information. Being more precise, K is defined as the change of coordinate matrix
from the image plane to the pixel plane. This can be seen as follows:

Let O be the origin of coordinates of the pixel coordinate frame on the top
left corner of the pixel plane. Let x, y be the direction of the horizontal and quasi-
vertical axes, considering that the angle θ between them may differ from 90 degrees.

4

Under this point of view, mx and my may be seen as the amount of pixels per unity
on the directions of the axes Ox, Oy respectively. Then, the change of coordinates
between the image coordinate frame and the pixel coordinate frame is ruled by the
expression:

v1 = 1
mx
e1.

v2 = 1
my

(e1 cos θ + e2 sin θ).

Where (v1, v2), (e1, e2) are vectors on the (pixel, image) coordinate frame. Isolating
e1, e2, we get the expression we are looking for.

e1 = mxv1.

e2 = 1
sin θ

(myv2 − cos θmxv1) = my

sin θ
v2 −mxv1 cot θ.

Multiplying by diag(f, f, 1), we get an explicit expression for K:

K =

αx −αx cot θ x0
0 αy/ sin θ y0
0 0 1

.

This matrix plays a crucial role in 3D reconstruction , since it encodes the trans-
formation from image coordinates to pixel coordinates in the image plane. It will
be seen how euclidean information can be received from pictures once this matrix is
known, and so a complete metric reconstruction is possible. A camera from which
the calibration matrix is known, is called a calibrated camera. Methods for com-
puting this matrix won’t be seen in depth, but a relation between this matrix and
the absolute conic will be established.

Before that, we will retake our study on the projection matrix and see some of
the information it entrains. First of all, we will introduce a compact form of the
projection matrix as follows:

P = K[R|t].

where t = −RC̃, K is the calibration matrix of the camera and R is a rotation
matrix. Note that this definition allows the immediate retrieve of many of the
elements of the pinhole model. It’s immediate to see that C is the right null space
of P . The principal plane of the camera can also be directly obtained as the plane
defined by the last row of P , while the last column of P defines the image of the
world coordinate frame into the image plane. With these elements, the camera can
be situated in the euclidean coordinate frame from its matrix.

In our model, P is a 3 × 4 matrix with its 3 × 3 left submatrix is non-singular.
Later, we will mention other models where the non-singularity constrain is not
required.

5

The camera matrix can present some changes depending where the camera center
is supposed to be. We will not study in detail the differences it generates, but will
talk briefly about it now. If C is located on the infinite plane and this plane
coincides with the principal plane, the left 3 × 3 submatrix is singular and there’s
no principal point in the image. These cameras are called infinite cameras and are
often used when points in space are in similar depth. we will focus on the cameras
with invertible left 3× 3 submatrix, called the finite cameras.

To summarize, P encodes the transformation from world coordinates to pixel
coordinates, in other words, is a change of coordinates matrix. We can distinguish
two separated parts on this process, the first one is carried out by the rotation
matrix R by changing the world coordinate frame to the camera coordinate frame.
In this part is where the called extrinsic parameters of the camera (such as situa-
tion or orientation under the world coordinate frame) play part. Once the camera
coordinate frame is set, we procede with the projection into the image plane and
hence, the pixel plane. This projection is encoded by the intrinsic parameters of the
camera and therefore, ruled by the calibration matrix. This process is summarized
on the next figure:

Figure 2: Projection by P .

2.2 Calibration

Now, we will take a closer look to the calibration matrix K. We will see its im-
portance in terms of obtaining information from an image and will justify it using
projective invariants. Finally, it will be seen how this matrix can be computed, but
again, we won’t enter in deep in this subject, since it could be a whole new project.

An image point x in π back-projects to a ray defined by X and C. On the camera
coordinate frame, calibration relates the image point to the ray’s direction. Let X
be a point in space, X can be expressed as X = λ~d + C, where ~d = (X − C). In

the camera’s euclidean coordinate frame, C = (0, 0, 0), so X = λ~d .

Going back to P3, this point is projected to x = PX = K[I|0](~d , 1) = K~d , if

K is known, since it’s not singular, ~d can be computed from the image point as
~d = K−1x.

So, it’s clear that the knowledge of the calibration matrix provides us very in-
teresting opportunities towards getting metric information from images. However,

6

this matrix is different for each camera, and its parameters are provided by techno-
logical components inside the camera (as for example, the focal length f , the pixel
distortion...). A direct attempt from getting them would imply the dismantling of
the camera, accurate measurements and the subsequent mounting of the camera,
where the parameters that were so carefully measured, would almost be altered.
Then, how can K be obtained? The following results will show how the projective
character of P can be used for the obtainment of K. The projective geometry pro-
vides us very important tools for this calculation. Now, we’ll leave K and P apart
and take a little trip inside the projective geometry.

First of all, we’ll suppose that there’s a metric on E, consisting of the usual inner
product <,>: E × E → R3 defined by the identity matrix Id. We’ll assume that
π∞ := {(x : y : z : t)|t = 0}.

Our goal is to relate the inner product derived from the affine space with a
projective invariant, so information from angles in the world can be used in the
imaged angles. This invariant will prove to be the cross ratio; we’ll show that’s
invariant under projective transformations and how angles can be related with it.

Definition 2.2.0.1. Let a, b, c, d ∈ P1, no three of them equal. In a fixed reference
on P1, the cross ratio of this points is defined as:

(a, b; c, d) =
|ac||bd|
|bc||ad|

.

Where |xy| is the determinant of x and y with coordinates on the line coordinate
frame.

The invariance of the cross ratio almost projective transformation can be easily
seen as follows.

Lemma 2.2.0.1. Let H be a projective transformation of a line. Then:

(Ha,Hb;Hc,Hd) = (a, b; c, d).

In other words, the cross ratio does not depend on the choice of the reference.

Proof. (Ha,Hb;Hc,Hd) =
|HaHc||HbHd|
|HbHc||HaHd|

=
det(H)2|ac||bd|
det(H)2|bc||ad|

=
|ac||bd|
|bc||ad|

= (a, b; c, d).

�

The cross ratio needs four points to be computed; two concurrent lines l1, l2 on
the world intersect π∞ on two points p1, p2, representing the lines directions. So
other two points are needed; since all points must lie on the same line and the known
two points lie on π∞, the other two lie on π∞ too. Since every pair of concurrent
lines defines an angle, and we want it to be invariant under the projection P , it’s
not a surprise that the two remaining points are determined once p1, p2 are given.
We introduce a very important object, which will give us the relation we are looking
between projective an affine geometry.

7

Definition 2.2.0.2. The absolute conic Ω∞ is the conic lying at π∞ defined by the
equation:

Ω∞ := x2 + y2 + z2 = 0.

This conic is defined by the Id matrix, and has no real points on it. Finally,
joining all these results, we are in position of announcing the next proposition.

Proposition 2.2.0.1. (Laguerre’s Formula) Let l,m be two finite lines on P2 and
let L,M be the corresponding intersection with the line at infinity l∞. Then, the
angle α between l1 and l2 is:

α = 1
2i
ln((L,M ; I, J)).

Where I, J are the intersection between the line L ∨M and the absolute conic.

Proof. Let l = p1+ < L >, m = p2+ < M > be the two lines. Then, their respective
infinite points are L,M respectively. Since they are defined up to scale, we can
consider that L and M are unity vectors, dividing by their norm if its necessary.
Therefore, their coordinates in l∞ are L = (cosα : sinα), M = (cosβ : sinβ). We
can suppose β ≤ α.

So, θ = (α−β) mod(π) is the angle we are looking for. Let’s start with the cross
ratio expression:

(L,M ; I, J) =

∣∣∣∣∣∣ 1 i
cosα sinα

∣∣∣∣∣∣∣∣∣∣∣∣ 1 i
cosβ sinβ

∣∣∣∣∣∣
:

∣∣∣∣∣∣ 1 −i
cosα sinα

∣∣∣∣∣∣∣∣∣∣∣∣ 1 −i
cosβ sinβ

∣∣∣∣∣∣
=
sinα− icosα
sinβ − icosβ

:
sinα + icosα

sinβ + icosβ
.

We may rewritte this expressions in polar coordinates, and using the pair, odd
properties of the cos and sin funtions, we obtain:

(L,M ; I, J) =
i

i

cosα + isinα

cos(−α) + isin(−α)

i

i

cos(−β) + isin(−β)

cosβ + isinβ
=

eiα

e−iα
e−iβ

eiβ

= e2i(α−β) = e2iθ.

So, isolating θ, we obtain:

θ =
1

2i
ln((L,M ; I, J)).

As we wanted to prove. �

So far, we have seen that there’s a relation between angles and projectives in-
variants, so the knowledge of, for example, orthogonality in the world is transferred
to the image in terms of the absolute conic. We’ll go further in this direction, and
see how K and Ω∞ are related. First of all, since points in π∞ are of the form
X∞ = (d : 0), where d is an homogeneous 3−vector, its immediate to see that they
are mapped to:

8

PX∞ = KR[I| − C̃]

(
d
0

)
= KRd.

Corollary 2.2.0.1. The mapping between π∞ and the image plane is given by the
planar homography H, where:

H = KR.

Since Ω∞ lives in π∞, we have to see how conics are affected by a planar homog-
raphy. It was seen in the projective geometry course that the image of a conic Q
under an homography H is:

Q′ = H−tQH−1.

Finally, we get what we were looking for:

Theorem 2.2.0.1. The image of the absolute conic Ω∞ (IAC) is ω = (KKt)−1.

Proof. Ω∞ lies on π∞, so it’s image under P is ruled under the planar homography
H = KR, so Ω∞ is mapped to ω = H−tΩ∞H

−1 = (KR)−tId(KR)−1, since R is a
rotation matrix, and therefore, orthogonal, ω = K−tRR−1K−1 = (KKt)−1.

�

So ω depends only on the internal parameters of the camera, it does not depend
on the camera orientation or position. We will use this fact to get an universal form
for computing K.

Theorem 2.2.0.2. Determining ω in an image also determines K.

Proof. This result will follow immediately once the next lemma is proven:

Lemma 2.2.0.2. Cholesky Factorization: Let A be a symmetric matrix positive-
defined. Then A can be uniquely decomposed as A = KKt, where K is an upper-
triangular real matrix with positive diagonal entries.

Proof. Let UDU t be the SVD decomposition of A. Since A is symmetric, we know
that D has positives entries and U is orthogonal. Let E be the square root of D,
that is D = EEt, being E diagonal. Then A = UDU t = UEEtU t = V V t, where
V = UE. Now, taking the QR decomposition of V , we get V = KQ, where Q is
orthogonal and K is an upper-triangular matrix. Replacing this on the last expres-
sion of A, we get A = V V t = KQ(KQ)t = KQQtKt = KKt. We can ensure that
K has positive entries by multiplying by a diagonal matrix with entries ±1 without
changing the product KKt.
To see the uniqueness of the factorization, let K1, K2 two upper triangular matrix
satisfying A = K1K

t
1 = K2K

t
2 then K−12 K1 = Kt

2K
t
1. Since Ki are upper triangular,

the right side of the equation is upper triangular, while the left side is lower tri-
angular. Therefore, they both must be diagonal: D = K−12 K1 = Kt

2K
t
1. However,

Kt
2K

t
1 is the inverse transpose of K−12 K1, and so D is it’s own inverse transpose,

and hence, it’s entries must be ±1. If K1 and K2 have positive entries, it must be
D = Id, so K1 = K2. �

9

Since ω is a 3× 3 symmetric positive defined matrix, we can apply the Cholesky
factorization on it to obtain K. �

So, the problem has been reduced to find ω. Now is when angles come into scene.
We have proved they relation with Ω∞, and this relation is where our this result
will hold. Let α be the image of a known angle between the world lines d1 and d2.
The cosine formula asserts:

cos(α) =
dt1d2√

dt1d1
√
dt2d2

.

Seeing d1 and d2 as back projections of the image plane points x1 and x2 by the
camera matrix P = KR[Id|t], we can develop this expression as follows:

cos(α) =
(R−1K−1x1)

t(R−1K−1x2)√
(R−1K−1x1)t(R−1K−1x1)

√
(R−1K−1x2)t(R−1K−1x2)

=

=
xt1(K

−tRR−1K−1)x2√
xt1(K

−tRR−1K−1)x1
√
xt2(K

−tRR−1K−1)x2
=

xt1(KK
t)−1x2√

xt1(KK
t)−1x1

√
xt2(KK

t)−1x2
=

=
xt1ωx2√

xt1ωx1
√
xt2ωx2

.

It follows immediately that if d1 and d2 are orthogonal, x1 and x2 are conjugated
by ω, so x1ωx2 = 0, so it gives linear constrains on ω. In general, any known α
gives constrains on ω, although if d1 and d2 are not orthogonal, these constrains are
not linear.

We have enough tools to give an algorithm for calculating K. It uses what is
called a calibration device, an object with very specific geometric information, such
as a chess table. In this case, we will use the image of three squares, situated
on none parallel, neither orthogonal planes. Consider one of the squares. The
correspondence between its four corner points and the image define an homography
H between the plane π of the square and the image. Applying H to the circular
points on π (every plane intersects π∞ in a line, and this line intersects ω in the
two circular points of π), determines their images as H(±i : 1 : 0). This gives us
two points on the unknown ω. Applying this methodology with the other squares,
we get a total of six points on ω, enough to compute it, since only 5 are necessary
to determine a conic. So the algorithm is the following:

1. For each square compute the homography H that maps its corners:
(0, 0), (1, 0), (0, 1), (1, 1) to their image points.

2. Compute the imaged circular points for the plane of that square as H(±i : 1 :
0).

3. Fit a conic ω to the six imaged circular points; this conic is determined up to
scale.

10

4. Compute the calibration matrix K from ω = (KKt)−1 with the Cholesky
factorization.

[6, chapter 6, pg. 211].

Figure 3: Calibration Device.

The three none perpendicular neither parallel planes allow the computation of the calibration
matrix from Ω∞.
[6, chapter 6, pg. 211].

Although this method may make finding the calibration matrix seem to be quite
simple, this is far from being true. This method is only applicable on very controlled
environments, were external issues as, for example, light influence can be handled,
and even under this circumstances, the presence of errors is quite significant, either
in form of image measurements or in the template geometry, so trusting in only
one template may be dangerous. The only way to deal with this facts is through
a large bank of data; without varying the camera parameters, a significant number
of templates should be used in order to get the correspondent calibration matrix.
Then optimization processes can be carried out from the data, and the most suitable
calibration matrix can be obtained.

11

3 Two Views Geometry

Let’s guess the next situation: we make a search on google images for a famous
monument; for sure we will get a huge amount of pictures from every viable point
of view of it. But how are this images related? The same point in space is likely to
be mapped to different image locations in different photos. Intuitively, this images
of the same point may seem to be, somehow, related, and is in this relation in which
this chapter is focused. We will study the geometry of two views, see how the idea
of correspondent points leads us to find a way for locating points on one image in
the other, and how this correspondences can help us at determining the relative
positions of the two cameras.

3.1 Epipolar Geometry

Let π1, π2 be two image planes, X a world point which is mapped to x, x′ respec-
tively. We call x, x′ corresponding points. It will be seen that corresponding points
are needed in order to compute the reconstruction from the images. Now we are
going to study this relation of correspondence, and try to use it in order to search
for corresponding points between images. We can begin observing that x, x′ are
coplanar with the camera centers, lying in the plane π := X ∨ lb, where lb = C1∨C2

is called the base line. We can use this fact to try to determinate x′ once x is known:
π can be computed from x,C1, C2, and therefore, x′ must lie in it’s intersection with
the second image plane.

Figure 4: The main objects of the epipolar geometry.

In gray, the image planes. In blue, the epipolar line generated by the correspondent points x, x′.

First of all, let’s introduce some notation:

Definition 3.1.0.1. The main components of the epipolar geometry can be defined
as follows:

-We call epipol the point of intersection between the base line and the image
plane:

12

e := (C1 ∨ C2) ∩ π1, e′ := (C1 ∨ C2) ∩ π2.

-An epipolar plane is defined as a plane containing the baseline. An epipolar
plane can be generated by every x in the image plane different from the epipole, so
there is a one parameter family of epipolar planes.

-An epipolar line is defined as the intersection between an epipolar plane an image
plane. Therefore, epipolar lines from different image planes are corresponding if
they lie on the same epipolar plane and all epipolar lines contain the correspondent
epipole.

Proposition 3.1.0.1. Let x, x′ be corresponding points in π1, π2 respectively. Then,
x′ must lie on the epipolar line l′ = (x ∨ C1 ∨ C2) ∩ π2.

Proof. Since x, x′ are corresponding points, they are the projection from the same
point X in space. Therefore, x′ can be expressed as x′ = (X ∨C2) ∩ π2, but X lies
on the epipolar plane πe = x ∨ C1 ∨ C2, since it lies on the ray C1 ∨ x. Then the
ray X ∨C2 lies on the plane too, so the intersection between this ray and π2 lies on
the intersection between πe with π2, which is l′.

�

Thus, there is a map from a point in one image to its corresponding epipolar
line in the other image. It leaves us to the next section, where we are going to
characterize it and see some important properties in terms of our objective.

3.2 The Fundamental Matrix

Geometrically, this map can be seen as follows:

Let X be a world point, let π be a plane not containing neither of the camera
centers such that X ∈ π. The ray x ∨ C1 meets π in X and then is projected to
x′ on the other image plane. This point must lie on the epipolar line l′ by the
last proposition. x and x′ are images of the same point X, therefore, they are
projectively equivalent. Expanding this result to the set of corresponding points
between the images, we see that {xi ↔ x′i} is projectively equivalent to planar points
Xi. Thus, there is a planar transformation Hπ mapping xi to x′i. This process is
called transfer via a plane.

Now, the epipolar line corresponding to x can be constructed as the ray from e′

to x′, that is l′ = e′ ∨ x′. We now introduce some notation:

Definition 3.2.0.1. Let v = (x, y, z) be a 3−vector, then it’s skew-symmetric ma-
trix is defined as:

[v]x =

 0 −z y
z 0 −x
−y x 0

.

Lemma 3.2.0.1. Let v′ be a 3−vector, then:

13

v ∧ v′ = [v]xv
′ = (vt[v′]x)

t.

Proof. This follows immediately from a simple calculation: Let v = (x, y, z), u =
(a, b, c) be two two vectors in R3. Then:

v × u =

∣∣∣∣∣∣
i j k
x y z
a b c

∣∣∣∣∣∣ = (yc− zb, zc− xc, xb− ya).

[v]xu =

 0 −z y
z 0 −x
−y x 0

ab
c

 = (yc− zb, zc− xc, xb− ya).

�

Thus, we can see [e′]x as the following map:

[e′]x : P2 \ {e′} → e′∗

[x′] 7→ e′ ∨ x′ =: l′

where l′ is the line containing [e′] and [x′] with coefficients e′ ∧ x′. Since x′ = Hπ,
we have:

l′ = [e′]xHπx = Fx

Definition 3.2.0.2. The fundamental matrix F is defined as F := [e′]xHπ, where
Hπ is the transfer mapping from one image to another via any plane π and e′ is the
epipol from the second image plane.

Observation 1. Since [e′]x has rank 2 and Hπ has rank 3, F is a rank 2 matrix.
This can also be seen from the fact that F represents a mapping from the projective
plane P2 from the first image to the pencil of epipolars lines through the epipol e′.

The fundamental matrix can be obtained in several ways. We will mention some
of them, and later will give an algorithm to carry out this work. The simplest way
is also the less useful, since it implies knowing everything about the two cameras,
their position and both calibration matrices.

Definition 3.2.0.3. Let P ∈ M(m,n;K) be a general matrix. Then the right
pseudo inverse of P is defined as a matrix P+ ∈M(n,m;K) such as:

PP+ = Id.

Lemma 3.2.0.2. Let P, P ′ be the camera matrices. F can be computed as:

F = [e′]xP
′P+.

Where P+ is a pseudo inverse of P .

14

Proof. This comes directly from the definition. P+(x) chooses a preimage of x, so
P ′P+ determines with e′ the epipolar line. �

Example 1. Let’s suppose we know P and P ′. This means to knowing the camera
position, orientation and calibration matrix. For both cameras. As we can see is a
very limited scenario, but in this controlled environment, the fundamental matrix is
obtained straightforward from the last result. If the camera position and orientation
is known, we can take new coordinates, allowing the first camera center to be the
origin of the world coordinate frame. This will simplify the first camera matrix,
while only affecting the rotation matrix from P ′ by a known affinity. So, we have:

P = K(Id|0), P ′ = K ′(R|t), e′ = P ′C.

Note that P+ can be obtained immediately as

(
K−1

0

)
. Then:

F = [e′]xP
′P+ = [P ′C]xP

′P+ = [K ′(R|t)
(

0
1

)
]xK

′(R|t)
(
K−1

0

)
= [t]xK

′RK−1.

We will now try another approach, focusing on the correspondence relation be-
tween points. The fundamental matrix will give us algebraic conditions to verify if
two points x, x′ can be correspondent. We are going to formalize this result, and
see some other important properties it hides.

Proposition 3.2.0.1. For any pair of corresponding points x, x′. It is fulfilled:

x′tFx = 0.

Proof. If x, x′ are corresponding points, then x′ must lie on the epipolar line l′ = Fx.
Therefore, x′tl′ = x′tFx = 0. If x, x′ are points satisfying x′tFx = 0, then, by the
definition of F , the rays defined by x, x′ must be coplanar, then are coplanar. �

So F can be characterized in terms of correspondent points. This is an important
result, since it implies that F can be computed through image correspondences,
without knowing any of the camera matrices. Later we will give an algorithm to
compute F using this fact, now we are going to focus on the properties of F .

Proposition 3.2.0.2. F satisfies:

1. If F is the fundamental matrix of the pair (P, P ′), F t is the fundamental
matrix of the pair (P ′, P).

2. Let x, x′ be points in the first and second images respectively. Then l′ = Fx
is the epipolar line corresponding to x, and l = F tx′ is the epipolar line
corresponding to x′.

3. Let e, e′ be the two epipoles. Then, e′tF = Fe = 0, in other words, e′ is the
left null-vector of F , and e is the right null-vector of F .

15

Proof. 1 is easily seen taking the expression of correspondence x′tFx = 0, where F
is the fundamental matrix of the pair (P, P ′). Then 0 = (x′tFx)t = xtF tx′, hence
F t is the fundamental matrix for the pair (P ′, P).
2 follows immediately from 1. If x, x′ are corresponding points, then x′tFx = 0 and
therefore, x′t(Fx) = x′tl′ = 0. Applying an analogous argument, we have that l is
the epipolar line corresponding to x.
3 can be obtained directly from the epipole definition. Since every epipolar line
contains the correspondent epipole, then, for every x in the first image, it will be
satisfied e′tFx = 0, hence e′ is the left null-vector of F . We also deduce that
etF t = 0, therefore (etF t)t = Fe = 0, hence e is the right null-vector of F . �

We have seen that F can be determined (up to scale) by the camera matrices.
One of the most interesting properties of F is that the other way is also true: F may
be used to determine the camera matrices of the two views. The map l′ = Fx and
the correspondence condition x↔ x′ are projective relationships, and consequently,
depend only on projective coordinates on the image, and not, for example, on the
camera position or orientation. The following results are oriented in seeing how F
reacts to changes on the camera matrices and image coordinates, with the aim to
see that F determines the camera matrices.

Lemma 3.2.0.3. Let F be the fundamental matrix, H a projective transformation
affecting the image coordinates, x̃ = Hx, x̃′ = H ′x′. Then, if x, x′ are corresponding
points (x↔ x′), there is the corresponding map l̃′ = F̃ x̃, where F̃ = H ′−tFH−1.

Proof. If x↔ x′, is fulfilled x′Fx = 0. We know x̃ = Hx, x̃′ = H ′x′.
Then H−1x̃ = x,H ′−1x̃′ = x′, so:

0 = x′Fx = (H ′−1x̃′)tF (H−1x̃) = x̃′
t
H ′−tFH−1x̃ = x̃′

t
F̃ x̃ = 0.

As we wanted to prove. �

This result involves only variations on the image coordinate frame, but we can
derive a similar result involving transformations to the camera matrices themselves.
That means that F is unaffected by changes on the world coordinate frame, this
fact is now formalized:

Theorem 3.2.0.1. Let (P1, P
′
1), (P2, P

′
2) two pairs of camera matrices. Then, exists

a projective transformation of 3-space H such that P1 = P2H,P
′
1 = P ′2H if and only

if (P1, P
′
1), (P2, P

′
2) have both the same fundamental matrix.

Proof. ⇒
Let’s suppose that P2 = P1H,P

′
2 = P ′1H. We begin observing that if X is a

world point, P1X = (P1H)(H−1X), P ′1X = (P ′1H)(H−1X). Then, if x, x′, are both
projections of the point X by P1, P

′
1 respectively, they are also projection of the

point H−1X by (P1H,P
′
1H) and therefore, F is the fundamental matrix for this

pair of cameras. �

16

What we have seen now implies that, although (P, P ′) determined a unique
fundamental matrix, the converse is not true, since they are determined up to a
projective transformation. By proving the other implication, we put an end to the
ambiguity: the fundamental matrix will prove to determine up to a space projective
transformation the two camera matrices. Given this ambiguity, it is natural to
introduce a canonical form for the pair of camera matrices given by F . We will take
the first camera matrix as P = (Id|0), where Id is the 3× 3 identity matrix and 0
the 3-null vector. This is a viable choice, since we can always take the projective
transformation H = P ∗−1, where P ∗ is the non singular augmented 4× 4 P matrix.
Taking this form for P , we have the next result:

Lemma 3.2.0.4. The fundamental matrix corresponding to the pair of cameras
P = (Id|0) and P ′ = (M |m) is:

F = [m]xM.

where M is a none singular 3× 3 real matrix and m ∈ R3.

Proof. By the lemma 3.2.0.4., we know F = [e′]xP
′P+. Let’s adapt this result to

our case, where:

e′ = P ′C, P+ =

(
Id
0

)
, C =

(
0
1

)
.

So we have:

F = [P ′C]xP
′P+ = [(M |m)

(
0
1

)
]x(M |m)

(
Id
0

)
= [m]xM .

�

This canonical form notation will serve us on simplifying the proof of the re-
maining implication.

Proof. ⇐
So, we have the same fundamental matrix F for the two pair of cameras (P1, P

′
1),

(P2, P
′
2). First of all, we assume that each pair is on the canonical form:

P1 = P2 = (Id|0), P ′1 = (R1|t1), P ′2 = (R2|t2).

Then, as we have just seen, F can be written as F = [t1]xR1 = [t2]xR2. Now, with
the help of the following technical lemma, the proof will follow easily.

Lemma 3.2.0.5. Suppose that a rank 2 matrix M can be decomposed in two dif-
ferent ways: M = [v]xV and M = [u]xU , where u, v ∈ R3, and U, V are rank 3 real
matrices. Then, ∃k, t, k ∈ R, t ∈ R3 such that u = kv and U = k−1(V + vtt).

17

Proof. The existence of k can be seen almost immediately, since vt, ut are both from
the left ker of M :

0 = vt[v]xV = vtM.

And similarly for u. Now, from [v]xV = [u]xU , it follows that [u]xU = [kv]xU =
[v]xkU . Thus, 0 = [u]xU − [v]xV = [v]x(kU − V), and since the right ker of [v]x is
generated by v, Im(kU − V) ⊂< v >, so kU − V = (vt1 vt2 vt3) for ti ∈ R. Setting
t = (t1, t2, t3), we have kU − V = vtt. Then, we only have to isolate U from the
expression (kU − V) = vtt, obtaining U = k−1(V + vtt). �

This lemma allows us to express P ′2 in terms of P ′1; P
′
2 = (k−1(R1+t1t

t)|kt1), and
reduces the proof in constructing a suitable transformation. Let H be the following
matrix:

H =

(
k−1Id 0
k−1tt k

)
.

With this choice, we get that P1H = k−1(Id|0) = k−1P2, and P ′1H = (R1|t1)H =
(k−1(R1 + t1t

t)|kt1) = (R2|t2) = P ′2 Thus the pairs (P1, P
′
1), (P2, P

′
2) are projectively

equivalent.

�

And directly from the theorem:

Corollary 3.2.0.1. To have the same fundamental matrix F , is an equivalence
relation in the set of the pair of camera matrices.

3.3 Calculating the Fundamental Matrix

In this section we will talk about how the fundamental matrix can be obtained
from the images, only through point correspondence. We will see some methods
of calculating it, and will give a justification for every method. However, this will
only be an introduction to the subject, since going in deep into it would require a
wide study on algorithms, error treatment and applied statistics. In this section,
we will suppose that correspondences are given. In later chapters, we will see how
correspondent points may be obtained, and will put this into practice.
We are aiming to obtain F through point correspondence, so it’s natural to take
the equation x′tFx = 0 as its definition. Now, let’s suppose we start from the very
beginning. What do we know from, the yet unknown, F? It’s a 3× 3 matrix, so it
has 9 entries, which are translated as nine degrees of freedom. Since it’s a projective
entity, it’s up to scale, so only 8 degrees are left. Last of all, we know F has rank
2 i.e. det(F) = 0, which is reflected as another constraint, hence 7 degrees are left.
For a general fundamental matrix, we can go no further in reducing its degrees of
freedom, so it turns out to be 7 the minimum number of correspondences required
to calculate F .

18

F =

f11 f12 f13
f21 f22 f23
f31 f32 f33

.

So, our goal is to solve the equation:

x′tFx = 0.

Which may be rewritten in terms of the points coordinates as follows:

α′αf11 + α′βf12 + α′f13 + β′αf21 + β′βf22 + β′f23 + αf31 + βf32 + f33 = 0.

Where x = (α, β, 1), x′ = (α′, β′, 1). To simplify the notation, we may refer to the
vector (f11, f12, f13, f21, f22, f23, f31, f32, f33) as f . This allows us to present the last
expression as an inner product between vectors:

(α′α, α′β, α′, β′α, β′β, β′, α, β, 1)f = 0 .

Thus, from a set of n correspondences, we get a system of n linear equations:

Af =

α
′
1α1 α′1β1 α′1 β′1α1 β′1β1 β′1 α1 β1 1
...

...
...

...
...

...
...

...
...

α′nαn α′nβn α′n β′nαn β′nβn β′n αn βn 1

 f = 0.

So, f generates the ker of A, in consequence, A can have, at most, rank 8, and if
the rank is exactly 8, f results to be the right ker of A. But we find a great mishap
at putting this to practice: errors. Even with an ideal camera, the presence of errors
cannot be ignored, due to the character of the P matrix. The projection from space
to the image plain hides a considerable source of errors: a continuous to discrete
map. A pixel in the image may be the projection of a neighborhood of space points;
this can be easily seen while zooming an image, when the pixels become visible to
human eye. So, when taking coordinates on an image point, there’s an entire set
of space points that are projected to these coordinates. This fact can cause the
resulting matrix to have rank 3, which means that epipolar lines do not meet in one
point. Lately, we will discuss how we face this problem. For now, we will just see
how F can be computed; see how errors might be handled would require an entire
project.

We begin talking about the case where less correspondences are required. If we
have 8 different correspondences i.e. A has rank 8, F is obtained straight from the
right ker of A. By this way, the singularity constrain does not appear, and hence
F might not be singular. So, we reduce to have 7 correspondences. This leads to
have a 7 × 9 matrix A with, we will suppose, rank 7. Under this circumstances,
the equation Af = 0 has a 2-dimensional space as solution, which may be written
as aF1 + (1 − a)F2, where a is a variable scalar. F1 and F2 are matrices obtained
from f1, f2, the two generators of A’s kernel. The rank 2 constrain may be used by
imposing:

19

det((aF1 + (1− a)F2) = 0.

Since F1 and F2 are known, this lead to a degree 3 polynomial equation in a.
Solving this new equation, we might find that it can either have one or three real
solutions (the complex solutions are discarded [7, Reconstruction from Other Con-
figurations]). Substituting either of the solutions into F = aF1 + (1− a)F2, we get
a possible solution for the fundamental matrix. This procedure is called the seven
point algorithm.

So, solving the equation with the minimum number of point correspondence
does not translate into a simple way to compute F , since it requires the solving of a
cubic polynomial in order to satisfy the singularity constrain. This fact motivate the
introduction of another method for computing F , called the eight-point algorithm.
First of all, we will try to minimize the dependence on the image coordinates that
F has by normalizing them. This means applying a translation over the image
coordinates, in order to make the centroid of the image the origin of the coordinate
frame, and scaling, in order to keep points inside the

√
2 circle. This process can

be packed up into the matrix:

T =

k 0 −kµx
0 k −kµy
0 0 1

.

Where k =
√

2/m is the scaling factors, being m the mean of the distances from
origin, µx, µy the mean of the x, respectively y, coordinate of the point set. So
why normalization of the data is important? We will only give a little example.
Considering we have noisy data, let’s suppose that there’s a correspondence between
the point x = (100, 100, 1) in the first image and the point x′ = (100, 100, 1) in the
second. Then, the quadratic entries of the vector (α′α, α′β, α′, β′α, β′β, β′, α, β, 1)
are of order 104, the linear entries of the order of 102 and the last entry will always
be a unity. As we can see, this is an appropriate circumstance for error propagation.
By normalizing data, we impose that all factors are of a similar order, which lead
us into a more accurate solution for our problem. As the name might suggest, we
start from eight different correspondences, which means that F is determined by
A’s kernel, having it rank 1. Here, we found ourselves in front of the same problem
we have already mentioned: this null-space of A may not be singular. We will face
this problem with the following result:

Lemma 3.3.0.1. Let F = UDV t be the SVD from a real 3 × 3 matrix F , with
D = (λ1, λ2, ε), ε ≤ λ2 ≤ λ1, none of them 0. Then, the matrix

F̃ = Udiag(λ1, λ2, 0)V t.

minimizes d(F̃ , F)2, satisfying det(F̃) = 0, where d is the euclidean distance in R9

Proof. diag(λ1, λ2, 0) is being denoted as D′. First of all, we will prove that the
matrices U and V play no role in this result.

20

Lemma 3.3.0.2. Let M,N be real 3 × 3 matrices, U an orthogonal matrix. The
following statements are satisfied:

• d(UM,UN)2 = d(M,N)2.

• d(MU,NU)2 = d(M,N)2.

Proof. We will prove the first case, the second is analogous. First of all, we will see
that orthogonal matrices preserves norms.
Let x ∈ Rn, U ∈ O(n) then:

‖Ux‖2 = (Ux) · (Ux) = (Ux)t(Ux) = xtU tUx = xtx = ‖x‖.

In order to apply this result, we define the matrix U ′ ∈M9×9 in terms of the entries
of U as follows:

U ′ :=

U11 0 0 U12 0 0 U13 0 0
0 U11 0 0 U12 0 0 U13 0
0 0 U11 0 0 U12 0 0 U13

U21 0 0 U22 0 0 U23 0 0
0 U21 0 0 U22 0 0 U23 0
0 0 U21 0 0 U22 0 0 U23

U31 0 0 U32 0 0 U33 0 0
0 U31 0 0 U32 0 0 U33 0
0 0 U31 0 0 U32 0 0 U33

.

It’s immediate to see that, expressing M as a 9-vector, U ′(M) = UM and also that
U ′ is orthogonal, since U ′U ′t = Id. So, what we are going to do is to substitute U
by U ′ on the distance expression:

d(UM,UN)2 = d(U ′(M), U ′(N))2 = ‖U ′(M)− U ′(N)‖2 = ‖M −N‖2 = d(M,N).

As we wanted to see. �

Using this lemma, our problem is reduced in finding the matrix F̃ minimizing
d(F̃ , D′)2 under the condition det(F̃) = 0. Since it’s an optimization problem,
we will make use of the Lagrange multipliers. Let F̃ = (a, b, c, d, e, f, g, h, i) be a
general vector in R9. Then, we must minimize:

d(F̃) = (a− λ1)2 + b2 + c2 + d2 + (e− λ2)2 + g2 + h2 + (i− ε)2.

Under the condition:

aei+ bfg + dhc− gec− ahf − bdi = 0.

Deriving d(F̃) by each variable and equaling 0, we get the conditions:

2(a− λ1) = 0 2b = 0 2c = 0
2(e− λ2) = 0 2d = 0 2f = 0
2(i− ε) = 0 2h = 0 2g = 0

.

21

Applying the singular condition, we get that either of a, e or i must be 0. So, we
have three possibilities for F̃ :

1. F̃1 = (0, 0, 0, 0, λ2, 0, 0, 0ε), d(F̃1) = λ21.

2. F̃2 = (λ1, 0, 0, 0, 0, 0, 0, 0, ε), d(F̃2) = λ22.

3. F̃3 = (λ1, 0, 0, 0, λ2, 0, 0, 0, 0), d(F̃3) = ε2.

So, the one which minimizes d(F̃) is, by hypothesis, F̃3, which corresponds to the
matrix diag(λ1, λ2, 0), as we wanted to prove. �

So, with the singularity issue managed, we can now introduce the 8-point algo-
rithm:

1. Normalize data: Apply the corresponding T transformation matrix to each
image x̃i = Txi, x̃′ = T ′x′i, in order to normalize the image coordinates.

2. Compute the matrix F̃ ′ satisfying x̃′iF̃
′x̃i = 0∀i:

• Solve the linear system given by the correspondences x̃↔ x̃′ in order to
obtain a matrix F̃ , which will usually be regular.

• Enforce the singularity constrain replacing F̃ by F̃ ′ using Lemma 3.3.0.8.

3. Denormalize data: Set F = T ′F̃ ′T . F is the fundamental matrix for the
correspondences xi ↔ x′i, corresponding to the original data.

These are not the only methods for obtaining the fundamental matrix. Iter-
ative oriented algorithms such as RANSAC are also used to carry out this task.
Each method has it’s own advantages and disadvantages. The 8-point algorithm
is, maybe, the most efficient one, although it may not be the most precise. The
Gold-Standard algorithm gives an accurate solutions, although it needs and initial
approximation, such as the matrix given by the 8-Point Algorithm, in order to pro-
ceed. The RANSAC algorithm gives an approximation in every iteration, which
can or not be better than the one given in the previous iteration, so when to decide
that an approximation is good enough becomes an issue. External information can
be used: the knowledge of the motion between the two cameras, geometric entities
on images, such as planes or quadrics, give accuracy on the correspondences. Cor-
respondences also affect the compute, a correspondence near an epipole will be very
susceptible to errors, since an error on the measurement or in the coordinates may
affect the epipolar line, and difficult the localization of the epipole.

22

3.4 The Essential Matrix

In this section, we will see how K helps to limit the ambiguity of the pair of cameras
determined by a general F , and in the next we will see its importance in computing
the reconstruction, allowing metric properties to be obtained. It will be proved
that, the knowledge of both calibration matrices reduces from a projective trans-
formation to only four possibilities the ambiguity of the possible pairs of cameras.
This fact, along with what will be seen on the reconstruction chapter motivates the
computation of K.
So, let’s suppose that the calibration matrices are both known. Under this circum-
stance, we may introduce what are called normalized coordinates as follows:
A general camera matrix decomposes as P = K(R|t), so a general point X in space
has as image x = PX. Since K is known, we can define x̃ = K−1x. Then, x̃ is the
image of the point X by the camera P̃ = (R|t), which has Id as calibration matrix.
P̃ = K−1P is called a normalized camera, the effect of the known calibration cam-
era having been removed.

Now, let’s consider a pair of normalized cameras P = (Id|0), P ′ = (R|t). By
Lemma 3.2.0.2., we know the expression that the fundamental matrix would have
under this circumstances.

F = [t]xR.

Definition 3.4.0.1. The Essential matrix E is defined as the fundamental matrix
corresponding to a normalized pair of cameras. It’s given by the equation:

x̃′
t
Ex̃.

Applying Lemma 3.2.0.3., taking K and K ′ as homography, we define the essential
matrix in terms of the fundamental matrix and the calibration matrix as:

E = K ′tFK.

The first effect that the known calibration provides is reducing the degrees of
freedom E has. Since only R and t are unknown, and each of this has 3 degrees
of freedom (the three degrees of R come from the two parameters for the axis plus
the angle), we fall from 9 to 6 degrees of freedom, and taking in account that there
is a scale ambiguity, we end having only 5 degrees of freedom. This is translated
into new properties that we are now going to discuss. First of all, we will give an
algebraic characterization of the essential matrix.

Theorem 3.4.0.1. A 3 × 3 matrix is an essential matrix if and only if two of its
singular values are equal, and the third one is zero.

Proof. Since E is a fundamental matrix, it may be decomposed as E = [t]xR = SR,
where S is a skew-symmetric matrix. We will use the next lemma to carry this prove
out.

23

Lemma 3.4.0.1. Let S be a 3 × 3 skew-symmetric matrix. Then, S may be
decomposed as S = kUZU t, where k is a scalar, U an orthogonal matrix. and
Z = [(0, 0, 1)]x

Proof. Given S, we can divide it by a convenient scalar in order to express it as
S = [t]x, where t is a unity vector. We define u3 = t, and take u1 ∈< t >⊥, a
unit vector, and u2 = −[t]xu1 = t ∨ u1. Then, [t]xu2 = t ∨ (u1 ∨ t) = u1, thus, the
application matrix [t]x expressed in the base {u1, u2, u3} is:

Z =

 0 1 0
−1 0 0
0 0 0

.

By construction, {u1, u2, u3} is an orthogonal basis. So, we have constructed the
decomposition:

[v]x = kUZU t.

Where U is an orthogonal matrix and k is a scalar. �

Now, we take the following matrix:

W =

0 −1 0
1 0 0
0 0 1

.

Which is an orthogonal matrix. Applying the lemma to S, we have its decomposition
as S = kUZU t, where U is orthogonal and Z the one from the lemma. W satisfies
Z = diag(1, 1, 0)W up to sign, then S = Udiag(1, 1, 0)WU t up to scale, and E =
Udiag(1, 1, 0)(WU tR), which is its SVD, with two equal singular values and the
other zero, as required. To see the converse, we have only to apply this construction
to a matrix with two singular values equal and factorize it as SR. �

What we want is to reduce the possible choices of P ′. To do that, our goal is to
constrain the possible factorizations of S and R from the decomposition of E. This
way, we may be able to get geometrical information of P ′. The following result is
aiming to that direction, we will see that S has only one possible decomposition,
while R can have two choices.

Proposition 3.4.0.1. Suppose that the SV D of E is Udiag(1, 1, 0)V t. Using the
notation of the previous proposition, there are two possible factorizations, up to
sign, E = SR as follows:

S = UZU t, R = UWV t or UX tV t.

Proof. In both cases, the factorization is valid. This can be easily seen by doing
the product:

• R = UWV t → SR = UZU tUWV t = UZWV t = Udiag(1, 1, 0)V t = E.

24

• R = UW tV t → SR = UZU tUW tV t = UZW tV t = −Udiag(1, 1, 0)V t = −E.

Thus, we have only to see that there are no more possible factorizations.
S is determined as S = UZU t, hence we have only to focus on R, which may be
written as UXV t, where X is a rotation matrix. Then:

E = Udiag(1, 1, 0)V t = SR = (UZU t)(UXV t) = U(ZX)V t.

Therefore, (ZX) must be diag(1, 1, 0). Since X is a rotation matrix, we have:

ZX = Z

α −β 0
β α 0
0 0 1

 = diag(1, 1, 0).

Then: (
0 −1
1 0

)(
α −β
β α

)
=

(
1 0
0 1

)
.

So, α = 0, β = 1. It follows X = W or X = W t (since it’s up to sign), as we
wanted to see. �

Taking in account that E = [t]xR, this result gives us a way to get [t]x, thus t
can be determined (up to scale). Since St = 0, it follows that t = U(0, 0, 1) = u3.
However, the sign of E, and in consequent, the sign of t, cannot be determined.
Given this fact, plus the ambiguity on the choice in R, we get the four possible pairs
of cameras.

Corollary 3.4.0.1. Let E = Udiag(1, 1, 0)V t be an essential matrix, P = (Id|0)
the first camera matrix determined by E. Then, P ′ can have the following forms:

P ′ = (UWV t| ± u3) and P ′ = (UW tV t| ± u3).

The four possible choices are represented on the following figure,

Figure 5: The four possible camera choices given by the essential matrix.

b) and d) have the baseline reversed comparing to a) and c); this reflects the sign ambiguity. In
each case, there’s a 90orotation of camera B. Only in a) the reconstructed point is in front of both
cameras.
[6, chapter 9, pg. 260]

25

4 Reconstruction

In this chapter, we will see how the tools that we have been developing along this
work are joined in order to get the reconstruction.

The procedure for obtaining the estimated 3D point for a pair of correspon-
dent points is quite straightforward. Our goal is to triangulate the position of the
searched point as follows:
Let’s suppose we have two images and its fundamental matrix F . We can obtain the
pair of cameras P , P ′ corresponding to F using the results seen on the last section.
Let x, x′ be two points in the images such that the epipolar constrain is satisfied,
i.e. xFx′ = 0. That means that x lies on the epipolar line defined by x′, while x′

lies on the one defined by x. Putting this together, we have that x and x′ lie on
the same epipolar plane and in consequence, the rays defined by x and x′ with their
respective camera center lie on the plane, hence they intersect in one point X. This
point X is the sought point, from which x and x′ are image. This process, known
as triangulation, can be used to obtain an estimation of the 3D position for all the
correspondent points, and this set of estimated 3D point defines what is called a
point cloud, which describes the external surface of the imaged scene.

4.1 Stratified Reconstruction

In this construction, only the fundamental matrix is needed, but what can we gain
if we know the infinite plane position? And the calibration matrix? In this sections,
we will see the limitation of the reconstruction obtained from uncalibrated cameras,
and which role play the concepts we have been developing on the last two chapters
upon refining the final reconstruction. Starting from only the fundamental matrix,
step by step we will see which constrains are added when camera information is
gained. We will suppose that a real reconstruction exists, with the exact measure-
ments, orientation, situation as the original set of world points, and will measure
the ambiguity of the obtained reconstruction in terms of its difference towards the
real one.
We will use this pair of images as model to see how reconstruction is refined as
further information is becoming known.

Figure 6: Model images

Extracted from [6, chapter 10, pg. 267].

26

4.1.1 Projective Reconstruction

In this scenario, we know nothing about the calibration of the cameras nor they
relative position, we have only the fundamental matrix and the set of correspon-
dences. Under this circumstances, we have a projective ambiguity coming from the
camera determination. This transformation maps the obtained reconstruction to
the real one. This implies that, for example, parallel lines on the real reconstruction
may not be parallel on the obtained one, angles, distances may also differ. Only
projective invariants, as the cross ratio and intersections are preserved.

Figure 7:

Two possibles Projective reconstructions [6, chapter 10, pg. 267].

4.1.2 Affine Reconstruction

Having an affine reconstruction implies that affine properties, such as parallelism,
mid point of two points and centroids, on the real reconstruction can be found on
the obtained one. Starting from a projective reconstruction, affine refinement can
be obtained by locating the infinite plane position on the projective reconstruction
and finding the transformation that maps its coordinates to the canonical coordi-
nates found on the real reconstruction. If the plane coordinates are the same, the
ambiguity between the obtained reconstruction and the real one is defined by a
transformation that fixes the infinite plane, in other words, an affinity.

Figure 8:

Affine Reconstruction [6, chapter 10, pg. 270].

4.1.3 Metric Reconstruction

If the image of the absolute conic ω is known in either of the images, one can refine
the affine reconstruction up to a metric reconstruction. This type of reconstruction
shares with the real reconstruction metric information, such as angles, ratios of

27

lengths and areas. The idea to upgrade an affine reconstruction up to a metric one
is to obtain the absolute conic from it’s known image (called the IAC), and find
the transformation that maps the conic to the conic on the real reconstruction. By
doing this, the ambiguity between the two reconstructions will be a transformation
that keeps Ω∞ invariant.

Proposition 4.1.3.1. Let H be a projective transformation. Ω∞ is fixed under H
if an only if H is a similarity.

Proof. Since Ω∞ lies on π∞, if H fixes Ω∞, H must also fix π∞, hence H must be
an affine transformation:

H =

(
A t
0 1

)
.

Since the image of Ω∞ will lie on π∞, we can restrict H to π∞, H|π∞ = A. Then
the image of Ω∞ under H|π∞ is given by the expression H|π∞(Ω∞) = A−tIA−1.
Assuming Ω∞ is fixed under H|π∞ , we have I = A−tIA−1, so AtA = I. Then A is
orthogonal, hence H is a similarity.
On the other hand, if H is a similarity, we immediately get H|π∞(Ω∞) = A−tIA−1 =
AAt = I. �

Figure 9:

Metric Reconstruction [6, chapter 10, pg. 274].

In conclusion, we have a similarity ambiguity. This means that the obtained
reconstruction will differ from the real one by a rotation or a reflection. This stage
is the final stratum, we can go no further in refining the reconstruction.

So, metric reconstruction requires the knowledge of, at least on one image, the
IAC. In other words, it requires the calibration of at least one camera. That implies
that, if both calibration are known, metric reconstruction can be done directly, with
no need of previous stratum. Computing the essential matrix E of the two images,
the two cameras can be determined, and triangulating the points position will lead
us to four possible point clouds. Discarding the ones that locate the points behind
the cameras, we obtain the metric reconstruction.

28

4.2 Epipolar Correction

As in the case of the fundamental matrix, the presence of errors cannot be obvi-
ated. In the case of triangulation, errors on the image coordinates may cause that
the obtained rays by back projecting the image points do not intersect, so no 3D
point X is obtained from x ↔ x′. This fact has also implication on the epipo-
lar constrain, since the no existence of such point implies that epipolar lines are
not coplanar, i.e. xFx′ 6= 0. In order to deal with errors, estimation methods are
introduced with the aim of locating the most suitable position for the point X to be.

In this section, we will suppose that either the fundamental or the essential
matrices have been precisely obtained, so error is only found in image coordinates.
Our objective is estimating the point X̃, satisfying x̃ = PX̃ and x̃′ = P ′X̃ for the
given P and P ′, from the measured points x, x′. First of all, we need a model
for the error measurement, which is usually assumed to be a Gaussian error model
(we will not enter in why this assumption is made). Thus, we suppose that image
errors obey a (0, σ2) Gaussian distribution. Assuming that exists {X̃i} such that,
if there is no error, x̃i = PX̃i ∀i, under the set Gaussian model, a general image
point xi will be given by the equation xi = x̃i + Ex, with Ex obeying a Gaussian
distribution (0, σ2). If errors in the measurements are independent, the probability
density function of each point is:

P (xi) =

(
1

2πσ2

)
e−d(xi,x̃i)

2/(2σ2).

Where d is the euclidean distance.
This can be applied in the case where the two images are affected by measure-
ment errors. If the true correspondence are given by the points x̃i ↔ x̃′i, then the
likelihood function is given by the expressions:

P ({xi ↔ x′i}) =
∏

i

(
1

2πσ2

)
e−(d(xi,x̃i)

2+d(x′i,x̃
′
i)

2)/(2σ2).

Taking logarithm, we have:

log(P ({xi ↔ x′i})) = − 1

2σ2

∑
i d(xi, x̃i)

2 + d(x′i, x̃
′
i)
2 + cnt.

Thus the maximum of the function is achieved upon minimizing:∑
i

d(xi, x̃i)
2 + d(x′i, x̃

′
i)
2.

Since this expression is given by a sum of squared factors, it is necessary to minimize
each factor in order to reach the minimum. So, we define the cost function:

C(x, x′) = d(x, x̃)2 + d(x′, x̃′)2.

29

Where x̃, x̃′ satisfy x̃′
t
Fx̃ = 0. Since these points maximize the likelihood

function, they are the maximum likelihood estimators for the true image correspon-
dences, and allow us to compute X̃ from triangulation, since the epipolar constrain
is satisfied.
Therefore, our problem has become estimating x̃, x̃′. First of all, we will reformulate
the approach in order to turn it to a one parameter minimization problem. This
can be done as follows:
Since x̃ and x̃′ satisfy the epipolar constrain, x̃ ∈ Fx̃′, which we will denote as l,
whilst x′ ∈ Fx̃, which will be denoted as l′. This is fulfilled by every pair of points
in these lines, being the orthogonal projection of x and x′ over them, x⊥ and x′⊥,
the ones that minimize C. So, we can rewrite the distance expressions in terms
of the epipolar lines as d(x, x̃) = d(x, l), changing the minimization problem upon
finding the pair of epipolar lines l, l′ that minimize:

d(x, l)2 + d(x′, l′)2.

This expression might seem similar to the original one, but we have made a huge
improvement, since l′ is determined by points in l, hence by l. This motivates us to
parametrize l by its angle t with the line parallel to the x-axis passing through the
epipole e. Now, the cost function depends only on this parameter t:

C(t) = d(x, l(t))2 + d(x′, l′(t))2.

Being this a one parameter minimizing problem, which solution can be computed
as follows.
First of all, we will suppose that none of the image points is either of the epipoles,
since X̃ cannot be found if x and x′ are the correspondent epipoles, or is immediately
found as the camera center if one of them is. Under this assumption, we apply a
translation on each image, in order to express x and x′ as the origin (0, 0, 1) of the
respective coordinate frame:

T =

1 0 −x
0 1 −y
0 0 1

 T ′ =

1 0 −x′
0 1 −y′
0 0 1

.

So, F will be changed by T ′−1FT−1. The epipoles obtained from this fundamental
matrix, e = (e1, e2, e3), e

′ = (e′1, e
′
2, e
′
3) might be imaged to the points (1, 0, f),

(1, 0, f ′) respectively:

R =

 ε1 ε2 0
−ε2 ε1 0
0 0 1

 R′ =

 ε′1 ε′2 0
−ε′2 ε′1 0
0 0 1

.

Where ε = (ε1, ε2, ε3) = λe, λ =
1√

e21 + e22
such that ε21 + ε22 = λ2e21 + λ2e22 = 1,

and similar for ε′. Hence, now F will be changed by R′TR.

30

A similar result as Lemma 3.3.0.9. show that these transformation do not affect
the distance expression, therefore the minimization problem is unchanged. In this
case, since F (1, 0, f)t = (1, 0, f ′)F = 0, the fundamental matrix has the form

F =

ff ′d −f ′c −f ′d−fb a b
−fd c d

.

The line l(t) is generated by the point (0, t, 1) and the epipole (1, 0, f), so it’s
coordinates will be given by the cross product (0, t, 1)×(1, 0, f) = (tf, 1,−t). Then,
we can give the concrete expression from d(x, l(t)) with the usual point to line
distance equation:

d(x, l(t))2 = ‖l(t)x‖2 =
t2

1 + (tf)2
.

Obtaining l′ = F (0, t, 1)t = (−f ′(ct+d), at+b, ct+d)t, we can get the correspondent
expression for the distance as:

d(x, l′(t))2 = ‖l′(t)x‖2 =
(ct+ d)2

(at+ b)2 + f ′2(ct+ d)2
.

Now, we define S(t) as the sum of both distance expressions:

S(t) =
t2

1 + (tf)2
+

(ct+ d)2

(at+ b)2 + f ′2(ct+ d)2
.

The minimum of this function will give us the parameter t that defines the epipolar
lines which minimize the error on the image coordinates, hence the points x̃ and x̃′

might be computed and X̃ finally obtained. So, we will proceed by deriving S(t)
and forcing it to be 0. The derivative is given by the expression:

S ′(t) =
2t

(1 + f 2 + t2)2
+

2(ad− bc)(at+ b)(ct+ d)

((at+ b)2 + f ′2(ct+ d)2)2
.

This expresson becomes 0 if an only if the numerator is 0, so taking common
denominator an equating it to 0, we obtain:

g(t) = t((at+ b)2 + f ′2(ct+ d)2)2 − (ad− bc)(1 + f 2t2)2(at+ b)(ct+ d) = 0.

g(t) is a 6-degree polynomial, so it can have up to 6 real roots, corresponding to 3
minimums and 3 maximums of S(t). Evaluating the real roots on S(t) and on the
asymptotic value t→∞, the absolute minimum may be obtained, so x̃ and x̃′ can
now be computed as the closest points in a line from the origin (for a general line
(α, β, γ), the closest point to the origin is (−αγ,−βγ, α2 + β2)). Nevertheless, we
still have to undo the transformations that have been done, so the points on the
original coordinate frame will be given as T−1Rtx̃ and T ′−1R′tx̃′.

31

4.3 The Linear Triangulation Method

With the estimated x̃ and x̃′, the point X̃ can finally be computed. Here we give
a general method in order to do it. The main idea is to combine the expressions
x̃ = PX̃ and x̃′ = P ′X̃ in order to get constrains on the unknown X̃. This
combination will become a system of the form AX̃ = 0, linear in X̃, which will lead
us to the point. The matrix A comes from joining both expressions, therefore, it
can be written as:

A =

[
P x̃

P ′ x̃′

]
.

The solution X̃ = 0 is of no use, so we seek X̃ minimizing ‖AX̃‖. Since X̃ is
determined up to scale, we can suppose ‖X̃‖ = 1. Let A = UDV t be the SVD of A,
we want to minimize ‖UDV tX̃‖ = ‖DV tX̃‖, considering ‖X̃‖ = ‖V tX̃‖. We may
rewrite the expression, setting y = ‖V tX̃‖, so our problem is to minimize ‖Dy‖
under the condition ‖y‖ = 1. Since D is a diagonal matrix, with its lowest value
on its last column, we can deduce that y = (0, ..., 0, 1), hence X̃ = V y is the last
column of V . This process is known as the least squared solution for the system
AX̃ = 0.

32

5 Image Processing in Correspondent Points Lo-

cation

Given a pair of images, we have seen that once the fundamental matrix is computed,
the reconstruction (projective if no further information is known) can be obtained.
But for having a precise estimation of the fundamental matrix, a reliable set of
correspondent points is needed. This task is easily carried out by a human, since
its capacity of recognizing objects almost instantly allows it to look for common
regions in both images and locate the correspondences within them. However, if
this task is let for a computer, this direct approach is no longer possible. Then,
how can correspondent points be automatically computed? This section is focused
on giving an answer to this question.

5.1 Image Representation

First of all, we will talk about how images can be seen in order for a computer to
work with them. An image has implicit a resolution n×m, where its dimension in
pixels is reflected. This fact can be used in order to represent an image as a matrix
of dimension equals to its resolution. Here, the discrete nature of the projection
mapping can be clearly seen, since every pixel in the i row and j column of the
image is related to the element i, j in the matrix.
Color images are usually represented with the RGB code, this can be seen as a
multidimensional array Im,n,3, where I1m,n is the matrix containing the red values,
I2m,n contains the green values and I3m,n the blue ones. In this section we will
suppose that the image is given in gray scale, i.e. it is represented as a n × m
matrix, with values between 0 and 1, where 0 represents black and 1 white. This is
done for time efficiency, since in the RGB model, every process are introducing must
be carried out in each matrix, and the information we seek can also be obtained
from the gray scale model. Nevertheless, the conversion from a pixel expressed in
RGB to gray scale can be done with the following expression:

Y = 0.2125R + 0.7154G+ 0.0721B

Where Y is the luminescence of the pixel and coefficients are estimated to be the
perception of human eye to the respective color.

5.2 Image Filtering

This section is a very brief introduction to image filtering. We will only give a first
contact with the subject, see some of the main concepts and applications that fil-
tering brings to our project and apply them in order to locate correspondent points.
Let’s suppose that we have a deficient camera, with a tiny stain on the objective.
Every image taken by this camera will have this stain projected on it, so will the
matrix representation. Many times, this will seem to be a kind of discontinuity on
the values of the matrix, for example, if the image of a white sheet is taken. So,

33

it is interesting to have a method for extracting information from the matrix using
local information given by small groups of pixels, rather than using individual pixel
values. In this section we will talk about these methods, and see how they can be
used in order to extract information from the image.
We shall begin differentiating two different kind of methods: methods over the spa-
tial domain, which means that they are based on direct manipulation of the pixels,
and methods over the transform domain, where first the image is transformed, the
task is carried out over the transformed image, and the inverse transformation is
applied, bringing back the results to the spatial domain. We won’t enter in deep
into these kind of methods, since they are based on signal theory and Fourier analy-
sis, tools that differ too much from the direction of this project. Nevertheless, they
are worth mentioning, since we make use of them in order of, for example, removing
noise in images, as we can see in this picture:

Figure 10: Noise removal using frequency domain techniques.

A gaussian filter has been used, with µ = 0 and σ = 1.

So, we will talk briefly over spatial filtering, to give an intuitive idea its mechan-
ics, before entering in gradient based methods. We will denote processes in the
spatial domain as:

g(x, y) = T [f(x, y)].

Where f(x, y) is the input image, g(x, y) is the output image and T is an operator
on f , defined over a neighborhood of the point (x, y), usually taken as a 3×3 square
centered on (x, y). So, by moving the center of the square from pixel to pixel, and
applying T in every neighborhood, we get the value of g at the correspondent point.
If this value has the property of being shift invariant, meaning that it depends on
the pattern on the neighborhood, rather than its position in the image and linear,
with the usual interpretation, the procedure is known as linear filtering.
The values of the T operator used in linear image filtering is usually referred as
the kernel of the filter, and the action of applying the filter is usually referred as
convolution. Its output is given by the expression:

g(i, j) =
∑
u,v

Ti−u,j−vIu,v.

This is a particularization of the usual convolution expression, taking the input
image and the filter as functions to convolve and the output image as the result of the

34

convolution. This particularization means that the usual properties of convolution
are present, which combined with Fourier analysis, makes this operation to be very
fast to compute.

5.2.1 Edges and Corners detection

Between many applications of filtering, we are focusing on the ones that allow the
localization and detection of interests zones, which likely contain correspondent
points. The best candidates ought to be visible from two views, keeping its prop-
erties under the camera motion, so they can be easily computed. That makes of
corners a very interesting choice, since they satisfy these properties. In this section,
we will study gradient-based filtering for edge and corner detection. This will allow
us to built a simple algorithm for point detection.
How can an edge be characterized? They might be thought as strong changes in
image intensity along a curve. This curve is what we call an edge, although not all
edges are defined by this feature. Our goal is to detect points lying on the curve,
called the edge points. First of all, we will introduce the image gradient. As we
know, the gradient of any differentiable 2D function f is given by the expression:

∇f = (
∂f

∂x
,
∂f

∂y
).

Instead of a differentiable function but, we have a discrete image I, so we will net

to give an approximation for
∂I

∂x
and

∂I

∂y
. This approximation is given in terms of

the finite differences, in other words:

Ix =
∂I

∂x
= lim

h→0

I(x+ h, y)− I(x, y)

h
≈ I(x+ 1, y)− I(x, y).

And similarly:

Iy =
∂I

∂y
≈ I(x, y + 1)− I(x, y).

This definition of the gradient is very sensible big differences between pixel values,
and in consequence it results to be very sensitive to noise, so smoothing the image
with is almost obligatory in order not to have strong responses in wrong points.
This expression of the gradient vector allows it to be represented as the following
linear filter:

∂I

∂x
=
(
−1 1

) ∂I

∂y
=

(
−1
1

)
.

This representation has been improved in order to be less sensitive no noise, taking
in account a hull neighborhood of pixels for the kernel:

∂I

∂x
=

−1 0 1
−1 0 1
−1 0 1

 ∂I

∂y
=

−1 −1 −1
0 0 0
1 1 1

.

35

These operators are known as Prewitt operators. Other operators, such as Sobel,
are even less sensitive to noise. Its response to an image can be seen in the next
picture:

Figure 11: Gradient Based Filters Over an Image.

The first image has been prepares for the test, the second shows the effect of the horizontal
Prewitt filter, the third one, shows the effect of the vertical Prewitt filter. Note that the direction

of an edge at an arbitrary point (x, y) is orthogonal to the direction α(x, y) = tan−1
(Iy
Ix

)
of the

gradient at the point.

With these operators, we do detect directional edges, but only if they point in
the direction of the kernel. In order to detect the whole edge curve, we proceed as
follows. First of all, we locate a local maximum of the gradient value, which will
play the role of the starting point of the edge curve. We know that the gradient
direction is orthogonal with the edge, so we must seek the next edge point on
the normal direction of the gradient. This point will be a local maximum on the
gradient direction, so we can iterate the process, marking each point visited and
its neighbors. Upon reaching a visited point, we will have a closed curve, that will
determine our edge. In order not to have open curves, this method needs the use of
two different thresholds, one for determining the start of a curve, an another lower,
to keep the tracking of the edge points.
The kernel used in this method is usually the laplacian of a gaussian filter. The
gaussian part of the operator gives the smoothing needed to reduce noise, and its
capacity of being parametrized allows it to detect edges of different shapes, while the
laplacian has the property of being isotropic (invariant to rotations), so it respond
equally to changes in intensity in any directions, avoiding having to apply different
filters for each direction.

Figure 12: Improved Gradient Based Filters Over an Image.

The Canny edge detector has been applied to the original image. As we can see, all the edges
pointing in different directions have been detected. Note that the vagueness on corners.

36

Now, we will leave edges a part and will focus in finding corners. As we said
before, corners are potential candidates to be correspondent points, so having a
methodology of computing them is important. A first approach in order to find a
corner is locating an edge, and keeping track of it looking for a sudden change of
its direction, which will mark the corner. This approach but, has an issue, since
the smoothing applied in order to make the location of the edge more accurate, can
make corners to disappear, as we can see on the last figure.
So, we will focus in what might make a corner characteristic in order to locate it.
Intuitively, in a corner the gradient should be large, since we are on an edge, but
also the its direction should suddenly change. Hence, we will try to locate corners
looking at strong variations in orientations in small neighborhoods. In order to pack
these information, we define the expression:

E(i, j) =
∑
x,y

ω(x, y)[I(x+ i, y + j)− I(x, y)]2.

Where ω(x, y) is a window operator representing the neighborhood, setting all
values outside the ranges of (x, y) to 0. The factor [I(x+ i, y+ j)− I(x, y)]2 will be
large on windows with a high variety of values. These regions are of interest, since
reflect a variation on the image, which could either be an edge or a corner. We can
obtain a first order approximation of I(x+ i, y + j) using Taylor series:

I(x+ i, y + j) = I(x, y) + iIx(x, y) + jIy(x, y).

So, for i, j smalls, E(i, j) may be rewrite as:

E(i, j) =
∑
x,y

[I(x, y) + iIx(x, y) + jIy(x, y)− I(x, y)]2 =
∑
x,y

i2I2x + 2ijIxIy + j2I2y .

This can be written in terms of a matrix product:

E(i, j) =
(
i j

)
H

(
i
j

)
.

where:

H =
∑(

I2x IxIy
IyIx I2y

)
.

This matrix can be used in order to describe the behavior of the orientation in
our neighborhood. If both eigenvalues are small, then all values have to be small,
meaning that we are in a neighborhood with poor variation on the gray level. If
only one eigenvalue is large, our window will be situated over an edge, being the
eigenvalue associated with the edge direction. On the other hand, if both eigenvalues
are large, we might be over a corner.

37

Under this assumption, the Harris corner detector is defined, relating corners to the
local maximums of the function:

H(x, y) = det(H)− k
(trace(H)

2

)2
.

where k is some constant, originally set to 0.5. Note that we are comparing the
product of the eigenvalues with the square of the mean, hence local maximums of
H(x, y) correspond to both eigenvalues being large.

Figure 13: Detecting Corners Using Harris Algorithm

The Harris algorithm has been used over the test image. The corners have been detected and
painted white.

5.2.2 Point Matching

A last tool is needed in order to build our algorithm. We have a list of possible
correspondences given by Harris algorithm for corner detection, but now need to
decide which point is related to which. In order to take this decision, we need a way
of evaluating similarity between points, and Gabor filters will provide it. As [?, 1.1]
introduces, these filters are obtained by combining a sinusoid with a Gaussian, so
they will respond to some frequency, but only in a localized part of the signal.
Let g(x, y, θ, φ) be the function defining a Gabor filter centered at the origin with
θ as the spatial frequency and φ as the orientation. We can see it in terms of the
following expression:

g(x, y, θ, φ) = exp
(
− x2+2

σ2

)
exp(2πθi(x cosφ+ y sinφ).

These parameters allow to set a Gabor filter to respond to a concrete feature,
for example orientation. Hence, applying a prepared Gabor filter will provide infor-
mation of a desired feature on our list of possible correspondences. This idea can
be generalized as follows: Let G = (G1, ..., Gn), usually known as a bank of filters,
a set of n Gabor filters, each filter prepared to respond to a different feature. We
can define the function:

38

f : I → Cn

p 7→ ((G1 ∗ I)(p), ..., (Gn ∗ I)(p))

Where ∗ denotes convolution.

We can proceed intuitively, two points will be correspondent if they have similar
responses to the bank of filters, i.e., if they are close in terms of the euclidean
distance. This notion of closeness will be given in terms of a threshold parameter
ε, so we have different scenarios. In the ideal one, we would have to list of possible
correspondences, l1 and l2, of the same length, and would be able to find an ε such
that for every point x of l1 there is only one point y of l2 such that d(x, y) <= ε, and
this y is truly the correspondent point to x. Sadly, this is very unlikely to happen.
In the general case, a point x can have either multiple possible matches or none,
the length of the two list will differ and sometimes we will assign the wrong match
to a point.
Under this circumstances, there are two different approaches in order to get the
matches. We can either minimize the global error or assign to each point x ∈ l1 the
closest point y ∈ l2. Although the first approach will always give more matches than
the second one, it is not recommendable to take it, since it has a high computational
cost and it tends to give many wrong correspondences. So, we will take the second
approach, and match the points with, usually called, brute force.

We can now give our first algorithm in order to get a set of correspondences:

Algorithm:
Input: Two images I1 and I2.
Output: A set of correspondences {xi ↔ yi} between I1 and I2.

1. Get l1, l2 from I1, I2 using Harris algorithm.

2. Prepare a bank of Gabor filters G.

3. For each point in each list, compute its image under f and store it in two new
lists l′1 and l′2.

4. Match the points in l′1 and l′2 in terms of the euclidean distance with a thresh-
old ε.

5. The matching in l′1 and l′2 corresponds to a matching in l1 and l2.

5.3 An Introduction to Feature Extractors, SIFT and BRIEF

In the last section, we talked about the difficulty in finding correspondences be-
tween images. In order of having a robust estimation of the fundamental matrix,
we need a consistent set of correspondent points. Although the given algorithm is
indeed a good start point, it is not reliable enough to be used in practice. For this

39

reason, we will use the BRIEF algorithm for point correspondences. In this section,
we will give an introduction to feature extractors, in particular to SIFT as a general
example, and later will deepen in BRIEF as our choice.
In this point, we assume to have a list of possible interest points given by the corner
detector, and want to be able to compare such points in order to set the correspon-
dences. We will describe the methodology as it is presented in [4, 5.4].

Our first step will consist in building a suitable neighborhood around the corner
points. By doing this, we will be able to relate two points by comparing their neigh-
borhoods, defining two points as correspondent if they neighborhoods are similar.
These neighborhoods should not be affected by direct image transformations, i.e.,
if the image is translated, the neighborhoods should also be affected be the same
translation, whereas if the image is scaled by a factor k, this scaling should also
affect the neighborhood. In order to have these properties, and also benefit from
smoothing, the Laplacian of a Gaussian filter is used.
Let (x, y) be the coordinates of a corner point, σ the smoothing parameter, k a
scale parameter, the radius of the neighborhood is given by the expression:

r(x, y) = argmaxσ∇2
σI(x, y).

With this definition, the radius fulfills what we wanted, since now scales with
the same parameter k as I. We can now build the neighborhood N as, for example,
creating a circle of radius r with center (x, y). The next step for refining N is
obtaining an estimation of the orientation of N . First of all, we will compute an
orientation histogram H(θ) of gradient orientation within a radius kr of (x, y). We
then define the orientation of the neighborhood as:

θp = argmaxθH(θ).

Then, we define the neighborhood N as N := (x, y, r, θp). Now we will see how
we can extract features from these neighborhoods. We will begin talking about
SIFT (Scale Invariant Feature Transform), which will serve as general example of
how an extractor works. First of all, N is divided into an n × n grid, and each
element of this grid is also divided into an m × m grid made of subcells. At the
center of each subcell, an estimation of the gradient is computed from a weighted
average of the gradients around the center of the cell. The magnitude of these
gradient estimations are weighted by a Gaussian in distance from the center of
the patch and used to create h histograms, each one corresponding to a different
gradient direction. These histograms are joined into a n × n × h vector v, which
is normalized and truncated by a threshold parameter. This vector v is called a
SIFT feature vector, containing information about the orientation of the gradient
in the neighborhood, and as we said in the last section, allows to compute similarity
between neighborhoods in terms of the euclidean distance.

This approach is very similar to what we did in the last section, computing
estimations of the gradient direction and using them as values in a vector in order

40

to use the euclidean distance. This may be computationally expensive, since we are
normalizing each vector and computing the euclidean distance in each comparison.
In order to deal with this computational cost, BRIEF (Binary Robust Independent
Elementary Features) was introduced. We begin computing the corner points as
we did in SIFT, but instead of computing gradient histograms, we define the test
τ between the image points u, v as:

τ(p;u, v) =

{
1 if p(u) < p(v)
0 otherwise.

Where p(u) (resp. p(v)) is the pixel intensity in a smoothed region of u (resp.
v). Note that all neighborhood must be of the same size and orientation in order to
have the same coordinates, so the correspondent transformations might be needed.
Applying the test to a set of n pairs of points, we get a n binary string, which will be
used as feature vector. Once we have obtained all the feature vectors, we proceed
in computing the matching. This time but, we won’t make use of the euclidean
distance. Since we are working on binary strings, we can use the Hamming distance,
and compare only bit by bit of each string. This operation is very efficient in terms
of computability, hence this algorithm will be very useful in devices such as mobile
phones and cameras, which are not provided with a powerful CPU.

Figure 14: Matching Correspondent Points

The BRIEF algorithm has been used on this pair of images. The matches have been established
and now the calculation of the fundamental matrix is available. Notice that some mismatches
have occurred.

41

6 Implementation

In this section, we will show examples of some the topics than have been explained in
this project. From the importance of blurring an image before applying certain kinds
of filters on it to the plot of the epipolar lines resulting from a computed fundamental
matrix. All the algorithms have been implemented with Python, making us of
the numpy library for numeric calculations and the scikit-image library for image
treatment.

We shall begin showing the impact that noise may cause to our results. As
we have just said, this can easily be seen with the implementation of the simplest
directional filter on the space domain. The implementation is very simple, just
compute the difference between adjacent pixels and compare it with a threshold. If
it’s higher, set the corresponding pixel value to (255, 255, 255), otherwise set it to
(0, 0, 0).

Figure 15: The effect of noise on an untreated image

The left image has been taken with a Nikon D500, a model of camera that was released on 2010.
As we can see, the amount of noise that affects the output is considerable.

Figure 16: The effect of noise on a treated image

The left image is the result of applying a Gaussian kernel on the input image. The disparity on
the pixel values has been reduced, and the output is now much more accurate.

As we can see, although the image seems clean from noise, it must be treated
before carrying out our algorithms, since it may affect in a dramatic way the output
result. This fact affects directly the computation of the calibration matrix, since

42

the corner detector used to locate the vertex of the square may not give accurate
results. These facts, added to the lack of time have motivated the use of a pair of
stereo images, obtained from an stereo bank, with the calibration matrix already
computed. The chosen images are:

Figure 17: The pair of images we will use for now on.

Images taken from http://vision.middlebury.edu/stereo/data/2014/

6.1 General Procedure

First of all, we will obtain the fundamental matrix F corresponding to this pair
of images. As we have seen on section 3.3, we need an initial set of at least eight
corresponding points in order to execute the 8-point algorithm. We can obtain these
correspondences using the BRIEF algorithm.

Figure 18: Corresponding points obtained by BRIEF

These are the correspondences that we will use in order to compute the funda-
mental matrix. Notice that there are two faulty correspondences. Since we have
more than ten points, we might eliminate them from our set and use the remaining.
In a full automatic methodology, we would have used an iterative algorithm like the
Gold Standard algorithm from the full set in order to detect them and act before
they affect the final result.

We shall now run the 8-point algorithm and get a first approximation of the
fundamental matrix. We can also see the importance of normalizing the data before
using SVD. The approximations we ha get is:

43

F =

 5.99318723e− 09 −3.58949616e− 06 1.22479712e− 03
3.42188001e− 06, 6.95215185e− 08 3.72863860e− 03
−1.16352337e− 03 −3.80782527e− 03 1.64716197e− 02

.

And the corresponding epipolar lines on the first image:

Figure 19: Epipolar lines corresponding to the equation F tx′ = l

Note that, thanks to the singularity enforcement, the epipole e is defined as the intersection of
all epipolar lines. The plotted points are the correspondent points found by BRIEF on the first
image. The origin of coordinates is taken on the top left corner of the image.

We can see that, even with the normalized data, there are some points in which
the corresponding epipolar line does not pass exactly through them. We will fix
this issue later, by finding more corresponding points using this estimation of F .
This couldn’t be done with the estimation given be the unnormalized data. In that
case, the resulting matrix is:−3.25189277e− 06 3.77542843e− 05 −8.23638758e− 03

−3.69450974e− 05 −7.68805648e− 06 6.94520615e− 03
1.05995773e− 02 −2.10620074e− 03 −9.99883561e− 01

.

And the epipolar lines that we might get would be:

Figure 20: Epipolar lines corresponding to an unnormalized F

As we can see, the normalization of the data is almost obligatory if we want to
make use of the fundamental matrix for further computations. Up to this point,

44

we will make use of the epipolar geometry to motivate the use of the RANSAC
algorithm. Since these images have been taken using an stereo rig, we know that
the two camera planes are parallel, hence the epioles must lie at infinity. In our
approximation, although the epipole is quite far from the image, epipolar lines are
far from being parallel. This may be the result of not having enough correspon-
dences, or to have them in a poor distributed way over the image. To deal with
this fact, we need a considerable amount of candidates to be corresponding points
and a way of determining if they are truly or not. As before, we will start making
use ob the Brief algorithm in order to get the possible correspondences. This time
but, we will make use of a less restricting corner detector that will provide more
candidates than Harris.

Figure 21: Points detected by the Kitchen-Rosenfeld algorithm

Note that, unlike Harris procedure, with this algorithm many detected corners do not correspond
with the definition of corner that we are used to.

Now, Brief will give us the possible correspondences between the two sets of
points:

Figure 22: Matches resulting of the brief algorithm

There have been found 676 matches. We can immediately see that some of them are not correct.

This time, it is not viable to see one by one which of the matches are actually
mismatches, so we will use RANSAC. In general terms, given a data set, a model
that can be fitted by the data and an error measure, RANSAC (the abbreviation
for RANdom SAmple Consensus) determines which of the data defines a model
minimizing the error measure by taking random samples of the data, generating

45

the model with it and testing with the remaining data. After a certain number
of iterations, the best model with the data that defines it will be the output. In
our case, the model will be the normalized eight point algorithm, whilst the error
measure will be given by the Sampson Error (a first order approximation of the
geometric error). Applying RANSAC to our matching problem, we obtain the
following estimation for the fundamental matrix: 4.97461164e− 21 −2.59199018e− 05 8.38552368e− 03

3.10487321e− 05 4.33960970e− 06 4.75882516e+ 12
−9.13146095e− 03 −4.75882516e+ 12 1.00000000e+ 00

 .

The correspondences used for generating this estimation are:

Figure 23: Matches used for the RANSAC estimation of F .

And the epipolar lines defined by this estimation of the fundamental matrix are:

Figure 24: Epipolar lines drawn on the first image.

Note that in this case, they are indeed parallel.

This is a reliable estimation of the fundamental matrix, that we can use in order
to obtain more correspondent points. The procedure will be very simple. We will
make use of the epipolar constrain for a pair of correspondent points on a set of
correspondences. In this case, we will use Brief over the edge points, detected by
the canny algorithm. Once the possible correspondences are set, we will establish
a threshold ε over the expression x′tFx, accepting every pair of points as a true
correspondence if it fulfills x′tFx <= ε. This will lead us to a smaller set of points,

46

which we will assume that are effectively correspondent. According to 3.4.0.3., there
is only one of the four possible cameras that situates the 3D points in front of both
cameras. Due to errors, this will no be true for all points, even for the correct
camera. Therefore, we are selecting the one that has the most by triangulating all
the points using 4.3, and checking the sign of the third coordinate of the resulting 3D
point. Being it negative means that the point has been situated behind the camera.
Once the second camera has been found, we can proceed to plot the triangulated
points corresponding to it, generating the reconstruction:

Figure 25: Reconstructed Scene From the Initial Views

6.2 Observations on the Depth Levels

On the last days of the project, we came up with a surprising result concerning the
distribution of the correspondent points in the image. We found out that, depending
on which depth level these points are located, the reconstruction on certain objects
in the scene will differ. For seeing this, we will take this pair of images:

Figure 26: Input Images

Note the difference between the deep of the bike compared to the shelf.

Following the general procedure, i.e., computing the correspondences from the
corners, estimating the fundamental matrix with the RANSAC algorithm and fil-
tering the correspondences from the canny algorithm, we produced the following
reconstruction:

47

Figure 27: Reconstruction with an homogeneous distribution of points along the
image.

On the first image, we can see the reconstructed scene from a frontal view, while on the second
image, we see the reconstructed scene from a lateral view. Note that, although neither of the
objects present a high level of deep, they are clearly separated.

As we can immediately see, this reconstruction lacks of volume, it’s mainly com-
posed by two parallel planes, representing the two principal levels of deep in the
image: on the front, the plane containing the bike, while the other plane contains
the shelf.
We shall now separate the two sets of points. We will do so by trying to approxi-
mate one of the planes equation, and then compute it’s value for each reconstructed
point.

The procedure to approximate the plane can be resumed in the following steps:

1. Pick a random point p.

2. Obtain all the points x such that d(x, p) < ε, for a given ε, where d is the
euclidean distance.

3. Stack all the found points in a matrix A and solve the system AX = 0 using
least squares. The obtained X will correspond to the approximation of the
plane coefficients.

4. Set a threshold ε̃ and pick every reconstructed point x such that X∆x < ε̃.
This set of points will correspond to one of the deep levels.

Taking ε = 10−3, ε̃ = 6.5−3, and the random point from the bike, we obtained
an approximation of the points corresponding to the bike plane. An analogous pro-
cedure, with the random point from the shelf, might give the shelf plane, although
its computation is not needed.
Note that these parameters have been given by observation, so these are the only
parameters that need of the user in order to be set.

48

Figure 28: Bike separated from the shelf.

Now, taking a sample of of these points, we can recalculate the essential matrix
and recompute the camera matrices. The reconstruction given from these cameras
can be seen on the following images:

Figure 29: Reconstructed scene with the recalculated essential matrix.

We have gained in deep detail, even in the shelf. Clearly, objects are less similar
to planes now, and the proportions of the bike are much closer to the real ones.

49

7 Conclusions

This project is a basic introduction to 3D reconstruction. We have seen, step by
step, how starting from a simple camera model, we can deduce the existence of
the fundamental matrix, and from it, the possibility of triangulating correspondent
points, found automatically thanks to image processing techniques. As we have
seen, it’s possible to retrieve a scene of a quite surprising quality, taking in account
that we have used basic tools in almost every step of the reconstruction. This process
but, needs of an above average computer to be done properly. For generating these
reconstructions, we have re sized all images to a size of 800×537 pixels, and although
we apply brief by sectors, in some images we needed computers with more than 4GB
of RAM in order to generate the matches.

We only have to look behind and see how many times is written ”‘it would re-
quire a whole project”’ to see how many things we have left. From more advanced
calibration methods, to a study on the accuracy of the fundamental matrix estima-
tions, passing through a better implementation. What we have seen is only a little
introduction into this field of computer vision.

The next natural step would be to increase the number of images to reconstruct.
In this process, the fundamental matrix would be replaced by the trifocal tensor,
requiring in consequence of tensor analysis in order to proceed.
Another possibility would be to improve the current reconstruction by adding colors,
textures and surfaces, or by providing a GUI to ease the use of the implementation.
We could also try to find a mathematical justification for the disparity in the recon-
struction. The differences between the reconstruction obtained from an essential
matrix coming from correspondences in the bike, with the one obtained from the
essential matrix coming from the shelf might allow the computation of the distance
between both deep levels, but this is just an hypothesis that might be tested.

50

A Additional Algorithms

Aiming to improve the reconstruction, we have developed additional algorithms as,
for example, the already told algorithm for separating two planes in space. Another
one, for cleaning out outlayers in a reconstruction of a single object, used in the
bike reconstruction with the following results:

Figure 30: Result of the algorithm on the bike reconstruction.

Aiming to an algorithm for generating triangulations in a point cloud, we have
developed an algorithm that computes the euclidean ball centered in a point p
with an average complexity of n log n. The procedure is simple. First, the data is
sorted by, for example, its value on the first coordinate. Doing so, we prevent from
comparing the euclidean distance from one point to all the rest for each ball we
want to calculate. Instead we compare the distance with the adjacent points in the
sorted list while they fulfill the desired distance with the coordinate used for the
sorting. These points are the only ones that may be inside the ball.

51

References

[1] Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P.:
Brief: Binary robust independent elementary features,
https://www.robots.ox.ac.uk/ vgg/rg/papers/CalonderLSF10.pdf

Accessed on 30th March 2016, École Polytechnique Fédérale de Lausanne,
2010.

[2] Chojnacki, W.; Brooks, M.; Hengel, A.; Gawley, D.:
Revisiting Hartley’s Normalized Eight-Point Algorithm,
https://cs.adelaide.edu.au/wojtek/papers/paminals2.pdf, Accessed
on 3rd March 2016, University of Adelaide, 2004.

[3] Espuny, F.: Geometria de la Visió, Universitat de Barcelona, 2005.

[4] Forsyth, D; Ponce J.; Computer Vision: A Modern Approach, second edition,
Prentice Hall Professional Technical Reference, 2012.

[5] Gonzalez, R.; Woods, R.: Digital Image Processing, Second Edition, Prentice
Hall of India, 2003.

[6] Hartley, R.; Zisserman, A.: Multiple View Geometry in Computer Vision,
Cambridge University Press, 2004.

[7] Hartley, R.: Projective reconstruction and invariants from multiple images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 16:1036-
1041, October 1994.

[8] Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Computing in Science
& Engineering, Vol. 9, No. 3., 2007, pp. 90-95.

[9] Lamoureux, P.: Numerical Stability of the 8-Point Algorithm,
https://www.ecse.rpi.edu/Homepages/qji/CV/8point.pdf, Accessed
on 2nd March 2016, Rensselaer Polytechnic Institute, 2005.

[10] Maini, R.; Aggarwal, H.: Study and Comparison of Various Image Edge Detec-
tion Techniques, http://www.math.tau.ac.il/ turkel/notes/Maini.pdf,
Accessed on 17th March 2016., University of Punjabi, 2007.

[11] Naranjo, J.C.: Fonaments Geomètrics de la Reconstrucció 3D, Universitat de
Barcelona, Pre Published, 2016.

[12] Scharstein, D.: Stereo datasets with ground truth,
http://vision.middlebury.edu/stereo/data/2014/, Accessed on 15th
May 2016, Middlebury College, 2014.

[13] Shin Naga Prasad, V; Domke, J.: Gabor Filter Visualization,
https://wwwold.cs.umd.edu/class/spring2005/cmsc838s/assignment-projects/gabor-filter-visualization/report.pdf

Accessed on 20th April 2016. Tech. Rep., University of Maryland, 2005.

52

[14] Smallwood, H.: Projective Geometry: Perspectives from Art and Mathematics.,
http://eprints.fortlewis.edu/27/1/Projective Geometry Perspectives from Art and Mathematics.pdf,
Accessed on 23rd June 2016, Fort Lewis College, 2009.

[15] Solem, J. E.: Programming Computer Vision with Python, O’Reilly Media,
2012.

[16] Van der Walt, S.; Schönberger, J.; Nunez-Iglesias, F.; Boulogne, J.; Warner,
N.; Yager, E.; Gouillart, T.: scikit-image: image processing in Python,
http://scikit-image.org/, 2014.

53

