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Abstract

Fractal geometry was first invented by mathematicians of the late 19th and early
20th century to study problems as abstract as the existence of continuous functions
non derivable at any point, the continuum hypothesis, or the existence of topolog-
ical spaces with strange properties. It was not until the second half of the 20th
century that fractal geometry became popular, and it was applied to the study of
natural phenomena by the hand of B. Mandelbrot.

The study of tumor growth using fractal geometry is relatively recent. This study
is based on the fractal character of tumor contours. One of their most important
features is roughness, since its increase is related to the tumor growth. Tumor
growth dynamic can be described by a function that depends on both time and
position, known as local width function, as well as by some power law exponents,
called critical exponents.

The aim of this final degree project is to study all these concepts in connection
with fractals. Elementary concepts of the theory of fractals will also be studied,
as the iterated function systems, the fractal dimension and the fractal interpola-
tion functions. Since fractal dimension can only be computed accurately for some
specific mathematical objects, we will study some methods that estimate fractal
dimension of tumors based on its fractal characteristics. Finally, we will develop
some Matlab programs which will compute the fractal dimension of tumors, as well
as the roughness of their contours. Furthermore, we will compare our results with
the experimental data.
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1 Introduction

This work stems from my interest in mathematics applied to medicine, specially in
tumors.

This project revolves around fractals and their relationship with natural objects,
in particular, tumors. To start, we could define a fractal as a mathematical model
or a real object that maintains its essential form, irregular and fragmented, against
changes in the scale of observation. We distinguish two types of fractals: the artifi-
cial fractals and the natural fractals. On the one hand, artificial fractals are objects
whose parts, at infinitely many levels of magnification, appear geometrically similar
to the whole. That is, they look the same at all scales. Examples of artificial fractals
are, for instance, the Cantor set, the Sierpinski triangle or the Koch snowflake. On
the other hand, natural fractals are real objects that display this “self-similarity”
for only a range of magnifications or scales. The mathematical object will of course
only be an accurate model within this particular range. In nature, the contour or
bone fissures, of coastlines or tumor contours as well are examples of natural fractals.

On the one hand, artificial fractals are defined from iterated function systems (IFS),
using concepts such as metric spaces or contraction mappings. We can compute
their fractal dimension by means of the Box Counting Theorem, although we will
study some other methods that relate the fractal dimension concept to the IFS one.
Furthermore, we are going to study the so-called fractal interpolation functions.
These are functions that interpolate data as complex as those of the stock market,
of cardiograms or of seismograms as well. The graph of these functions possesses
fractal characteristics, in particular, it is constructed from IFS once more. There-
fore, we can use the aforementioned methods for compute the fractal dimension of
these graphs.

On the other hand, natural fractals are more complicated to study since there is no
method or mathematical formula that defines them. However, we are going to focus
on tumors, and we are going to study their fractal characteristics and their growing
dynamics. As we will later see, what determines the growth dynamic of tumors is
the morphology of their contours. These contours possess fractal characteristics,
so a fractal study of tumor will determine the growing dynamic behavior. Finally,
other concept related to tumor growth is the fractal dimension. We are going to
study some methods that estimate tumor dimension based on their fractal nature.
The question then will be if the box counting dimension of tumors is the same as
the one obtained by the studied methods. A program will be used to answer this
question.
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Structure of the Project

The aim of this project is to study fractal geometry in order to apply it to the study
of tumors. The contents are developed through three chapters.

The study of artificial fractals takes place in Chapter 2. I start defining the met-
ric space in which fractals live. Then, I define some elementary concepts, such as
affine transformations and contraction mappings, to be able to study the Iterated
Function Systems and The Collage Theorem. After this, through some theorems
and properties, I define the fractal dimension. Finally, I give the formal definition
of an artificial fractal.

Chapter 3 focuses on fractal interpolation functions. I start giving their definition
to then study their relation with fractals. Lastly, I define the fractal dimension of
these functions. Besides, I create a Matlab program to test it with some examples.

The fractal study of tumor develops throughout chapter 4. I start defining tumors
and studying their fractal character. Later, I do a dynamic scaling analysis to de-
fine the critical exponents and then I use these exponents to determine the tumor
growth dynamic. Finally, I study the fractal dimension of tumors, and I create a
Matlab program to test it with a real example.

The code of the programs is attached and explained in the Appendix.
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2 Artificial Fractals and Fractal Dimension

Let’s start talking about artificial fractals. As we said before, they are mathe-
matical objects that maintain their essential form against changes in the scale of
observation. In other words, they are self-similar objects that look the same at in-
finitely levels of magnification. We will focus on deterministic fractals, that are the
ones created with no randomness involved. The aim, however, is to find an accurate
definition of these complex objects, which, from now on, we just call them fractals,
as well as to study how they are constructed and what their main properties are.

2.1 The Metric Space (H(X), h): The Place Where Fractals
Live

In order to give an exact definition of a fractal, we first need to define a space
in which to study them. We may start working in some metric spaces which we
denote by (X, d), such as (R2, Euclidean). But then, when we wish to discuss pic-
tures, drawings, or subsets of the space, it becomes natural to introduce the space
(H(X), h).

Definition 2.1. Let (X, d) be a metric space. Then H(X) denotes the set whose
elements are the nonempty compact subsets of X.

In order to define this metric space in which to study fractal geometry, we need a
distance (also called metric). Its definition will follow the following steps.

Definition 2.2. Let (X, d) be a metric space, x ∈ X, and B ∈ H(X). Define

d(x,B) = min{d(x, y) : y ∈ B}.

d(x,B) is called the distance from the point x to the set B.

Remark. The existence of the minimum value of the set of real numbers {d(x, y) :
y ∈ B} follows from the compactness and nonemptyness of the set B ∈ H(X).
Let’s consider, given x ∈ X, the real-valued function f : B → R defined by

f(y) = d(x, y) for all y ∈ B.

From the definition of the metric it follows that f is continuous, viewed as a transfor-
mation from the metric space (B, d) to R. Moreover, B is a nonempty and compact
set due to the definition of H(X). Then, applying the Weierstrass Extreme Value
Theorem, we obtain that f attains a maximum and a minimum value. That is,
there exist numbers z1 and z2 in B such that f(z1) ≤ f(y) ≤ f(z2) for all y ∈ B.
In particular, there exists z1 ∈ B such that f(z1) = d(x, z1) = min{d(x, y) : y ∈ B}
which is what we wanted to show.
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Definition 2.3. Let (X, d) be a metric space. Let A,B ∈ H(X). Define

d(A,B) = max{d(x,B) : x ∈ A}.

d(A,B) is called the distance from the compact set A to the compact set
B.

Just as above, using the compactness and nonemptyness of the sets A and B, we
can prove that this definition is meaningful. Specifically, there are points x̂ ∈ A
and ŷ ∈ B such that d(A,B) = d(x̂, ŷ).

This definition is not completely satisfying. In particular, it is not symmetric with
respect to A and B. Moreover, if A ⊂ B, then d(A,B) = 0 (even if the inclusion is
proper and the sets are different). We get a satisfactory definition of a distance in
H(X) by symmetry of the previous definition.

Definition 2.4. Let (X, d) be a metric space. Let A,B ∈ H(X). Then the Haus-
dorff distance between the sets A and B is defined by

h(A,B) = max{d(A,B), d(B,A)}.

Proposition 2.1. h is a metric on H(X). In other words, (H(X), h) is a metric
space.

Proof. Let A,B,C ∈ H(X). We have to show that h obeys the following axioms:

i) 0 ≤ h(A,B) < ∞, so h(A,B) = d(a, b) for some a ∈ A and b ∈ B using the
compactness of A and B. If A 6= B we can assume there is an a ∈ A so that
a /∈ B.

ii) h(A,A) = 0, so h(A,A) = max{d(A,A), d(A,A)} = d(A,A) = max{d(x,A) :
x ∈ A} = 0 since d is a metric.

iii) h(A,B) = h(B,A) given that the definition of h is symmetric.

iv) To show that h(A,B) ≤ h(A,C) + h(C,B) we first show that d(A,B) ≤
d(A,C) + d(C,B). We have, for any a ∈ A:

d(a,B) = min{d(a, b) : b ∈ B}
≤ min{d(a, c) + d(c, b) : b ∈ B} ∀c ∈ C
= d(a, c) +min{d(c, b) : b ∈ B} ∀c ∈ C, so

d(a,B) ≤ min{d(a, c) : c ∈ C}+max{min{d(c, b) : b ∈ B} : c ∈ C}
= d(a, C) + d(C,B).

Hence, d(A,B) ≤ d(A,C) + d(C,B). Similarly,

d(B,A) ≤ d(B,C) + d(C,A) whence

h(A,B) = max{d(A,B), d(B,A)}
≤ max{d(A,C), d(C,A)}+max{d(C,B), d(B,C)}
= h(A,C) + h(C,B) as desired.
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Then h is a metric on H(X) as we wanted to see. �

Therefore, we have that (H(X), h) is a metric space and we refer to it as the space
of fractals. At this point and time, we define a fractal as any element of the set
H(X) (i.e. as any nonempty compact subset of X).

The central result of this section is the completeness of the space of fractals, as well
as its relation to the completeness of the metric space (X, d). This is shown in the
theorem below.

Theorem 2.1. The Completeness of the Space of Fractals.
Let (X, d) be a complete metric space. Then (H(X), h) is a complete metric space.
Moreover, if {An ∈ H(X)}∞n=1 is a Cauchy sequence, then

A = lim
n→∞

An ∈ H(X)

can be characterized as follows:

A = {x ∈ X : there is a Cauchy sequence {xn ∈ An}∞n=1 that converges to x}.

2.2 Construction of Fractals

The aim of this section is to define what is known as an Iterated Function System
(IFS), which is a method of constructing fractals. But before that, we must define
some important previous concepts such as affine transformations or contraction
mappings.

2.2.1 Transformations on Metric Spaces

The goal of fractal geometry is to study “complicated” subsets of geometrically
“simple” spaces such as R, R2 or C. Furthermore, deterministic fractal geometry
focuses on those subsets of a space that are generated by, or possess invariance
properties under, simple geometrical transformations of the space into itself. These
simple transformations are, for instance, affine transformations in R2 such as rota-
tions, translations or homothecies.

Let’s see how these transformations are defined, to later be able to work in fractal
geometry.

Definition 2.5. Let (X, d) be a metric space. A transformation on X is a
function f : X → X, which assigns exactly one point f(x) ∈ X to each point
x ∈ X.

Therefore, a transformation is merely a map. We now define the affine transforma-
tions in R2.
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Definition 2.6. A transformation w : R2 → R2 of the form

w(x1, x2) = (ax1 + bx2 + e, cx1 + dx2 + f),

where a, b, c, d, e and f are real numbers, is called a two-dimensional affine trans-
formations.

An affine transformation is nothing more than a linear transformation followed by
a translation, that is why we often use the following equivalent notation:

w(x) = w

(
x1
x2

)
=

(
a b
c d

)(
x1
x2

)
+

(
e
f

)
= Ax+ t.

Here A =

(
a b
c d

)
is a two-dimensional, 2×2 real matrix and t is the column vector(

e
f

)
. Such transformations have important geometrical and algebraic properties.

As we will see later with IFS’s, sometimes the problem is to find an affine transfor-
mation that approximately transforms one given set into another given set in R2.
The way of doing this is as follows.
Suppose that we want to find the affine transformation that almost takes set A to
set B. Therefore we need to find the numbers a, b, c, d, e, and f defined above so
that w(A) ≈ B. We begin by introducing x and y coordinate axes. We mark three
points on the initial set A and determine their coordinates (x1, x2), (y1, y2), and
(z1, z2). Then we mark the corresponding three points on the set B, and determine
again their coordinates; say (x̃1, x̃2), (ỹ1, ỹ2), and (z̃1, z̃2) respectively. Then a, b
and e are obtained by solving the three linear equations

x1a+ x2b+ e = x̃1,

y1a+ y2b+ e = ỹ1,

z1a+ z2b+ e = z̃1;

while c,d and f satisfy
x1c+ x2d+ f = x̃2,

y1c+ y2d+ f = ỹ2,

z1c+ z2d+ f = z̃2.

To finish, there are a kind of affine transformations, called similitudes, having this
special form:

w

(
x1
x2

)
=

(
r 0
0 r

)(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
+

(
e
f

)
for some translation (e, f) ∈ R2, some real number r 6= 0, and some angle θ ∈ [0, 2π).
We call θ the rotation angle and r the scale factor or scaling. Thus, we have that
a similitude is the composition of a translation, a rotation and an homothecy.
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2.2.2 Contraction Mappings

From the concept of transformation (or map), we are going to define what is known
as contraction mapping. Afterwards, we will see the most important theorem so far,
the Contraction Mapping Theorem, also known as Banach Fixed Point Theorem.

We start defining the following concept.

Definition 2.7. Let f : X → X be a transformation on a metric space. A point
xf ∈ X such that f(xf ) = xf is called a fixed point of the transformation.

The fixed points of a transformation are very important, because they tell us which
parts of the space are fixed (not moved) by the transformation.

Let’s now define the contraction mappings.

Definition 2.8. A transformation f : X → X on a metric space (X, d) is called
contractive or a contraction mapping if there is a constant 0 ≤ s < 1 such that

d(f(x), f(y)) ≤ s · d(x, y) ∀x, y ∈ X.

Any such number is called a contractivity factor for f .

The contraction mappings have the following properties, some of which we will use
to prove the Contraction Mapping Theorem.

Lemma 2.1. Let w : X → X be a contraction mapping on the metric space (X, d).
Then w is continuous.

Lemma 2.2. Let w : X → X be a contraction mapping on the metric space (X, d)
with contractivity factor s. Then w : H(X)→ H(X) defined by

w(B) = {w(x) : x ∈ B} ∀B ∈ H(X)

is a contraction mapping on (H(X), h) with contractivity factor s.

The above definitions lead us to the following theorem.

Theorem 2.2. The Contraction Mapping Theorem.
Let (X, d) be a complete metric space. Let f : X → X be a contraction mapping
with contractivity factor 0 ≤ s < 1. Then f possesses exactly one fixed point xf ∈ X
and, moreover, for any point x ∈ X, the sequence {fn(x) : n = 1, 2, · · · } converges
to xf . That is, for each x ∈ X,

lim
n→∞

fn(x) = xf .
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In addition,

d(x, xf ) ≤ (1− s)−1 · d(x, f(x)) ∀x ∈ X.

Proof. Let x ∈ X, and let 0 ≤ s < 1 be the contractivity factor for f . Then

d(fn(x), fn+k(x)) ≤ sn · d(x, fk(x)) (2.1)

for all n, k = 0, 1, 2, · · · , where we have fixed x ∈ X. In particular, for k = 0, 1, 2, · · ·
we have

d(x, fk(x)) ≤ d(x, f(x)) + d(f(x), f 2(x)) + · · ·+ d(fk−1(x), fk(x))

≤ (1 + s+ s2 + · · ·+ sk−1) · d(x, f(x)) ≤ (1− s)−1 · d(x, f(x))

since 1 + s+ s2 + · · ·+ sk−1 is a geometric series with common ratio 0 ≤ s < 1, and
using that f is a contraction mapping. So substituting this into equation (2.1) we
obtain that

d(fn(x), fn+k(x)) ≤ sn · (1− s)−1 · d(x, f(x)),

from which it immediately follows that {fn(x)}∞n=0 is a Cauchy sequence. Now since
(X, d) is a complete metric space, this Cauchy sequence possesses a limit xf ∈ X.
Then, for each x ∈ X, we have that

lim
n→∞

fn(x) = xf .

Now we shall show that xf is a fixed point of f . But since f is contractive, it is
continuous (Lemma 2.1), and hence

f(xf ) = f( lim
n→∞

fn(x)) = lim
n→∞

fn+1(x) = xf .

Finally, we have to show that f possesses exactly one fixed point xf ∈ X. Let’s
suppose that it possesses more than one, for instance, let xf and yf be two fixed
points of f . Then xf = f(xf ), yf = f(yf ), and

d(xf , yf ) = d(f(xf ), f(yf )) ≤ s · d(xf , yf ),

where (1− s) · d(xf , yf ) ≤ 0. But 0 ≤ s < 1, which implies that d(xf , yf ) = 0 and
hence xf = yf .

Lastly, we have to show that d(x, xf ) ≤ (1 − s)−1 · d(x, f(x)) ∀x ∈ X. But this
follows from what we have proved above.

d(x, xf ) = d(x, lim
n→∞

fn(x)) = lim
n→∞

d(x, fn(x)) ≤ lim
n→∞

(1− s)−1 · d(x, f(x))

= (1− s)−1 · d(x, f(x)) ∀x ∈ X.

This completes the proof. �

8



2.2.3 Iterated Function Systems

Let (X, d) be a metric space and let (H(X), h) denote the corresponding space of
nonempty compact subsets with the Hausdorff metric h.

We are not able yet to give an accurate definition of a fractal. Even so, we have
agreed that they are elements of the set H(X). If we wanted to be a little more
specific, we could define a fractal as a fixed point of a contractive transformation
on the metric space (H(X), h). Therefore we need not only the underlying metric
space (X, d) to be “geometrically simple”, but also the contraction mapping to be
constructed from simple and easily specified contraction mappings on (X, d).

The next lemma provides an important method for combining contraction mappings
on (H(X), h) to produce new contraction mappings on (H(X), h). This method is
different form the obvious one of composition.

Lemma 2.3. Let (X, d) be a metric space. Let {wn : n = 1, 2, · · · , N} be contrac-
tion mappings on (H(X), h). Let the contrativity factor for wn be denoted by sn for
each n. Define W : H(X)→ H(X) by

W (B) = w1(B) ∪ w2(B) ∪ · · · ∪ wN(B) =
N⋃
n=1

wn(B), for each B ∈ H(X).

Then W is a contraction mapping with contractivity factor s = max{sn : n =
1, 2, · · · , N}.

Now we are able to define what is known as Iterated Function System. An IFS is a
method of constructing fractals based on the definition of a set of transformations
in a metric space that, when iterated, they create fractal representations. One of its
properties is that the resulting constructions are always self-similar (they are formed
by parts that are “similar” to the whole). These are usually called IFS fractals and
they can be of any number of dimensions, although are commonly computed and
drawn in 2D.

The formal definition is the one below.

Definition 2.9. An iterated function system consists of a complete metric
space (X, d) together with a finite set of contraction mappings wn : X → X with
respective contractivity factors 0 ≤ sn < 1 for n = 1, 2, · · · , N . The notation for the
IFS just announced is {X; wn, with n = 1, 2, · · · , N} and its contractivity factor
is s = max{sn : n = 1, 2, · · · , N}, 0 ≤ s < 1.

The following theorem summarizes the main facts so far about an IFS.

Theorem 2.3. Let {X; wn, with n = 1, 2, · · · , N} be an iterated function system
with contractivity factor s. Then the transformation W : H(X)→ H(X) defined by

W (B) =
N⋃
n=1

wn(B)
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for all B ∈ H(X), is a contraction mapping on the complete metric space (H(X), h)
with contractivity factor s. That is

h(W (B),W (C)) ≤ s · h(B,C)

for all B,C ∈ H(X). Its unique fixed point, A ∈ H(X), obeys

A = W (A) =
N⋃
n=1

wn(A)

and is given by A = lim
n→∞

W n(B) for any B ∈ H(X).

Definition 2.10. The fixed point A ∈ H(X) described in the theorem is called the
attractor of the IFS.

With all this, we can now define a fractal as an attractor of an IFS.

2.2.4 The Collage Theorem

Once we have defined the concept of an Iterated Function System, we are going to
see how to make fractal models by means of the Collage Theorem. This important
theorem is based on the design of an IFS whose attractors are closed to given sets.
Let’s see this in detail.

Theorem 2.4. The Collage Theorem.
Let (X, d) be a complete metric space. Let L ∈ H(X) be given, and let ε ≥ 0 be
given too. Choose an IFS (or IFS with condensation) {X; (w0), w1, w2, · · · , wN}
with contractivity factor 0 ≤ s < 1, so that

h(L,
N⋃

n=1(n=0)

wn(L)) ≤ ε,

where h is the Hausdorff metric. Then

h(L,A) ≤ ε/(1− s),

where A is the attractor of the IFS. Equivalently,

h(L,A) ≤ (1− s)−1 · h(L,
N⋃

n=1(n=0)

wn(L)) ∀L ∈ H(X).

This theorem tells us that to find an IFS whose attractor is “close to” or “looks
like” a given set, one must find a set of transformations (i.e. contraction mappings
on a suitable space where the given set lies) such that the union, or collage, of the
images of the given set under the transformations is near to the given set. In other
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words, given a set L, it tells us how to find an IFS for which L is the attractor. We
use the Hausdorff metric to measure nearness.

The proof of the Collage Theorem is just the last part of the proof of the Contrac-
tion Mapping Theorem.

Finally, we have that an artificial fractal is an attractor of an IFS. Let’s study now
one of its main properties, the fractal dimension.

2.3 Fractal Dimension

From an early age, we learn that lines and curves are one-dimensional, planes and
surfaces are two-dimensional, solids such as a cube are three-dimensional, and so
on. In a formal way, we have the following definition.

Definition 2.11. Let X be a subset of Rn. We say that X has dimension zero if, for
any point p ∈ X, there are arbitrarily small neighborhoods of p whose boundaries
don’t intersect the set. Inductively, we say that X has dimension n if there are
arbitrarily small neighborhoods for any point p ∈ X whose boundaries intersect X
in a set of dimension n− 1, being n the minimum natural number for which this is
true.

This notion of dimension is called the topological dimension of a set. Let’s see
some examples.

Example 1. Let’s consider the set X as follows.

Figure 1: Set X

As we can see, for any point p ∈ X there are arbitrarily small neighborhoods whose
boundaries don’t intersect the set. Then, according to the definition, the topologi-
cal dimension of X is 0.

Example 2. Let’s now consider the set Y shown in the image below.

11



Figure 2: Set Y

We can observe that there are arbitrarily small neighborhoods for any point p ∈ Y
whose boundaries intersect Y in a set of dimension 0. Then, using the above defi-
nition, the topological dimension of the set Y is 1.

Example 3. Finally, let’s consider the set Z as the one shown in the following
image.

Figure 3: Set Z

According to Definition 2.11 once more, the topological dimension of Z is 2 (for any
point of Z there are arbitrarily small neighborhoods whose boundaries intersect Z
in a set of dimension 1).

Now, when it comes to fractals we need to be more specific. Imagine, for instance,
that we want to know the dimension of the Koch Snowflake.

Figure 4: Koch Snowflake
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According to Definition 2.11, it has topological dimension one (for any point of the
Koch Snowflake, there are arbitrarily small neighborhoods whose boundaries inter-
sect the fractal in a set of dimension zero). However, it is, by no means, a rectifiable
curve (i.e. the length of the curve between any two points on the Koch Snowflake
is infinite). No small piece of it is line-like, but consists of an infinite number of
segments joined at different angles. The dimension of a curve can be explained
intuitively thinking of a fractal line as an object too detailed to be one-dimensional,
but too simple to be two-dimensional. Therefore, its dimension might best be de-
scribed not by its usual topological dimension but by some other dimension, which
in this case is a number between one and two. This new dimension is known as
fractal dimension.

Fractal dimension is an attempt to quantify how densely a fractal occupies the met-
ric space in which it lies. It is highly useful since it provides an objective means
for comparing fractals, in particular, attractors of IFS’s. Moreover, as we will see
in next chapters, fractal dimension can be also applied in natural fractals where
we can measure it approximately by experiments. In this way, fractal dimension is
connected, for instance, to clouds, trees, coastlines, or to tumor interfaces as well.
However, in this section we will focus on the fractal dimension of artificial fractals.

To start, we could give this informal definition. A fractal dimension is a ratio
providing a statistical index of complexity comparing how detail in a fractal pat-
tern changes with the scale at which it is measured. It does not have to be an integer.

Next, we are going to see formally the mathematical concept of fractal dimension,
as well as some of its properties and theorems.

Let’s focus on compact subsets of metric spaces. Let (X, d) denote a complete
metric space, and let A ∈ H(X) be a nonempty compact subset of X. Let ε > 0,
and let B(x, ε) denote the closed ball of radius ε and center at a point x ∈ X. We
define the integer N (A, ε) as the least number of closed balls of radius ε needed to
cover the set A. That is

N (A, ε) = smallest positive integer M such that A ⊂
M⋃
n=1

B(xn, ε),

for some set of points {xn : n = 1, 2, · · · ,M} ⊂ X. We know that there is such a
number N (A, ε) because of the compactness of the set A, since every open covering
has a finite sub-covering.
The intuitive idea behind fractal dimension is that a set A has fractal dimension
D if the number of closed balls needed to cover A grows exponentially fast when ε
goes to zero. That is

N (A, ε) ≈ Cε−D for some positive constant C.

13



This notation means that lim
ε→0

{
log(N (A,ε))
log(Cε−D)

}
= 1. So, if we solve for D, we find that

D ≈ log(N (A, ε))− logC

log(1/ε)
.

Since lim
ε→0

{
logC

log(1/ε)

}
= 0, it leads us to the following definition.

Definition 2.12. Let A ∈ H(X) where (X, d) is a metric space. For each ε > 0 let
N (A, ε) denote the smallest number of closed balls of radius ε > 0 needed to cover
A. If the limit

D = lim
ε→0

{
log(N (A, ε))

log(1/ε)

}
exists, then D is called the fractal dimension of A. We will also use the notation
D = D(A).

Remark. But what happens if this limit doesn’t exist? In order to avoid this
problem, we are giving the following definition which provides a value for the fractal
dimension for a wider collection of sets.

Let (X, d) be a complete metric space, and let A ∈ H(X). If

Ds = lim
ε→0

{
sup

{
log(N (A, ε̃))

log(1/ε̃)
: ε̃ ∈ (0, ε)

}}
DEF.
= lim sup

ε→0

{
log(N (A, ε))

log(1/ε)

}
exists, then Ds is called the superior fractal dimension of A.
In the same way, if

Di = lim
ε→0

{
inf

{
log(N (A, ε̃))

log(1/ε̃)
: ε̃ ∈ (0, ε)

}}
DEF.
= lim inf

ε→0

{
log(N (A, ε))

log(1/ε)

}
exists, then Di is called the inferior fractal dimension of A.

Therefore, if Ds = Di =: D we say that D is the fractal dimension of A.

As we can see, this extended definition is consistent with Definition 2.12. So if a
set has dimension D according to Definition 2.12, then it has the same dimension
according to the new one. Moreover, all the theorems we are going to see from now
on apply with either definition. This latter definition is broader, so it provides a
fractal dimension in some cases where the first one makes no assertion.

Theorem 2.5. Let’s consider the metric space (Rm, Euclidean), and let m be a
positive integer. The fractal dimension D(A) exists for all A ∈ H(Rm). Let B ∈
H(Rm) now be such that A ⊂ B, and let D(B) denote the fractal dimension of B.
Then D(A) ≤ D(B). In particular,

0 ≤ D(A) ≤ m.
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In any case, the definition of fractal dimension of a set depends on the metric used.
However, the following theorem tells us that metrically equivalent sets have same
fractal dimension.

Theorem 2.6. Let the metric spaces (X1, d1) and (X2, d2) be metrically equivalent.
Let θ : X1 → X2 be a transformation that provides the equivalence of the spaces.
Let A1 ∈ H(X1) have fractal dimension D. Then A2 = θ(A1) has fractal dimension
D. That is

D(A1) = D(θ(A1)).

The next two theorems simplify the process of calculating the fractal dimension.
Specially, they allow us to replace the continuous variable ε by a discrete variable.

Theorem 2.7. Let A ∈ H(X), where (X, d) is a metric space. Let εn = Crn for
real numbers 0 < r < 1 and C > 0, and integers n = 1, 2, 3, · · · If

D = lim
n→∞

{
log(N (A, εn))

log(1/εn)

}
,

then A has fractal dimension D.

Proof. Let the real numbers r and C, and the sequence of numbers E = {εn : n =
1, 2, 3, · · · } be as defined in the statement of the theorem. Define f(ε) = max{εn ∈
E : εn ≤ ε}. Assume that ε ≤ r. Then

f(ε) ≤ ε ≤ f(ε)/r and N (A, f(ε)) ≥ N (A, ε) ≥ N (A, f(ε)/r).

Now, since log(x) is an increasing positive function of x for x ≥ 1, it follows that

{
log(N (A, f(ε)/r))

log(1/f(ε))

}
≤
{

log(N (A, ε))

log(1/ε)

}
≤
{

log(N (A, f(ε)))

log(r/f(ε))

}
. (2.2)

Assume that N (A, ε) → ∞ as ε → 0. If not, then the theorem is true. Therefore,
the right-hand side of equation 2.2 obeys

lim
ε→0

{
log(N (A, f(ε)))

log(r/f(ε))

}
= lim

n→∞

{
log(N (A, εn))

log(r/εn)

}

= lim
n→∞

{
log(N (A, εn))

log(r) + log(1/εn)

}
= lim

n→∞

{
log(N (A, εn))

log(1/εn)

}
since f(ε) = εn for some n = 1, 2, 3, · · · .

The left-hand side of equation 2.2 obeys

lim
ε→0

{
log(N (A, f(ε)/r))

log(1/f(ε))

}
= lim

n→∞

{
log(N (A, εn−1))

log(1/εn)

}
15



= lim
n→∞

{
log(N (A, εn−1))

log(1/r) + log(1/εn−1)

}
= lim

n→∞

{
log(N (A, εn))

log(1/εn)

}
since f(ε)/r = εn/r = Crn−1 = εn−1 for some n = 1, 2, 3, · · · .

So as ε→ 0, both the left-hand side and the right-hand side of equation 2.2 approach
the same value claimed in the theorem. By the Sandwich Theorem of calculus, the
limit as ε→ 0 of the quantity in the middle of equation 2.2 also exist, and it equals
the same value. That is

lim
ε→0

{
log(N (A, ε))

log(1/ε)

}
= lim

n→∞

{
log(N (A, εn))

log(1/εn)

}
HIP.
= D.

This completes the proof. �

The most important result of this section is the theorem below, since it provides a
very useful method of computing the fractal dimension of an object. In particular,
an artificial fractal. But as we will see in the following chapters, it can be used to
compute the fractal dimension of natural fractals as well.

Theorem 2.8. The Box Counting Theorem.
Let A ∈ H(Rm), where the Euclidean metric is used. Cover Rm with a grid whose
square boxes have side length 1/2n. Let Nn(A) denote the number of boxes of side
length 1/2n which intersect the attractor. If

D = lim
n→∞

{
log(Nn(A))

log(2n)

}
,

then A has fractal dimension D.

Proof. Since the Euclidean metric is equivalent to the metric derived from the
uniform norm (or sup norm), the fractal dimension is the same for both metrics.
Therefore, we are going to use the second one to prove the theorem.
To start, we have that

2−mNn−1(A) ≤ N (A, 1/2n) ≤ Nn−1(A) for all n = 1, 2, 3, · · ·

The first inequality holds because a square box of radius 1/2n can intersect at most
2m “on-grid” boxes of side length 1/2n−1. The second one, because N (A, 1/2n)
is the minimum closed covering of A. Now, since log(x) is an increasing positive
function of x for x ≥ 1, it follows that{

log(2−mNn−1(A))

log(2n)

}
≤
{

log(N (A, 1/2n))

log(2n)

}
≤
{

log(Nn−1(A))

log(2n−1)

}
. (2.3)

On the one hand, the right-hand side of the equation 2.3 obeys

lim
n→∞

{
log(Nn−1(A))

log(2n−1)

}
= lim

n→∞

{
log(Nn(A))

log(2n)

}
HIP.
= D.
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On the other hand, the left-hand side of the equation 2.3 obeys

lim
n→∞

{
log(2−mNn−1(A))

log(2n)

}
= lim

n→∞

{
log(2−m) + log(Nn−1(A))

log(2n)

}

= lim
n→∞

{
log(Nn−1(A))

log(2n)

}
= lim

n→∞

{
log(Nn(A))

log(2n)

}
HIP.
= D.

So as n → ∞, both the left-hand side and the right-hand side of equation 2.3
approach the same value. By the Sandwich Theorem of calculus again, the limit as
n → ∞ of the quantity in the middle of equation 2.3 also exist, and it equals the
same value. Theorem 2.7 with r = 1/2 and C = 1 completes the proof.

D
HIP.
= lim

n→∞

{
log(N (A, 1/2n))

log(2n)

}
Th 2.8

= lim
ε→0

{
log(N (A, ε))

log(1/ε)

}
.

�

We have used boxes of side 1/2n in Theorem 2.8 as an example. We could equally
well use boxes of side Crn, where C > 0 and 0 < r < 1 are fixed real numbers.

Finally, we are going to connect the concept of fractal dimension to the IFS one. To
do this, we are giving the following theorem which provides the fractal dimension
of the attractor of an important class of IFS. It also allow us to estimate fractal
dimensions simply using pictures of fractals.

Theorem 2.9. Let {Rm; w1, w2, · · · , wN} be an IFS, and let A denote its attractor.
Suppose that each wn is a similitude of scaling factor 0 ≤ sn < 1 for each n ∈
{1, 2, · · · , N}. If the IFS is totally disconnected or just-touching then the attractor
has fractal dimension D(A), which is given by the unique solution of

N∑
n=1

|sn|D(A) = 1, D(A) ∈ [0,m].

If the IFS is overlapping, then D ≥ D(A), where D is the solution of

N∑
n=1

|sn|D = 1, D ∈ [0,∞).

Remark. We say that an IFS is totally disconnected if each point of its attractor
possesses a unique address. In the same way, we say that an IFS is just-touching if
it is not totally disconnected and if its attractor contains an open set O such that
(i) wi(O)∩wl(O) = ∅ for all i, l ∈ N and (ii)

⋃N
i=1wi(O) ⊂ O. Finally, an IFS with

some attractor A is said to be overlapping if for some wi, wj there exists an open
set P such that P ⊂ wi(A) ∩ wj(A).
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In order to show this theorem, let’s see some examples.

Example 4. Let’s consider the totally disconnected IFS {[0, 1] ; w1, w2}, where

w1(x) =
1

3
x

w2(x) =
1

3
x+

2

3

are two similitudes of scaling factor 1
3
. The attractor of this IFS is the Cantor set.

Figure 5: First iterations of the IFS whose limit is the Cantor set.

According to the theorem above, the dimension of the Cantor Set is the unique
solution D of the equation

2∑
n=1

|sn|D = 1⇐⇒ |1/3|D + |1/3|D = 1⇐⇒ 2 · (1/3)D = 1.

If we solve for D, we obtain that

D =
log(1/2)

log(1/3)
=

log(2)

log(3)
≈ 0.63.

Therefore, the fractal dimension of the Cantor Set (attractor of the totally discon-
nected IFS {[0, 1] ; w1, w2}) is 0.63.

Example 5. Let’s now consider the metric space (R2, Euclidean), and the simili-
tudes w1, w2 and w3 defined as follows

w1

(
x1
x2

)
=

(
0.5 0
0 0.5

)
·
(
x1
x2

)
+

(
0
0

)
,

w2

(
y1
y2

)
=

(
0.5 0
0 0.5

)
·
(
y1
y2

)
+

(
0.5
0

)
,
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w3

(
z1
z2

)
=

(
0.5 0
0 0.5

)
·
(
z1
z2

)
+

(
0

0.5

)
.

Then, {R2; w1, w2, w3} is a just-touching IFS of three similitudes of scaling factor
0.5. Moreover, the attractor of this IFS is the Sierpinski Triangle.

Figure 6: Similitudes and Attractor of the IFS

Now, according to Theorem 2.9, the fractal dimension of the Sierpinski Triangle is
the unique solution D of the equation

3∑
n=1

|sn|D = 1⇐⇒ |0.5|D + |0.5|D + |0.5|D = 1⇐⇒ 3 · (0.5)D = 1.

If we solve for D, we find that

D =
log(1/3)

log(0.5)
=

log(3)

log(2)
≈ 1.58.

Therefore, the fractal dimension of the Sierpinski Triangle (attractor of the just-
touching IFS {R2; w1, w2, w3}) is 1.58.

Example 6. Finally, let’s consider the metric space (R2, Euclidean) once more,
and the similitudes w1, w2, w3 and w4 defined as follows

w1

(
x1
x2

)
=

(
1/3 0
0 1/3

)
·
(
x1
x2

)
+

(
0
0

)
,

w2

(
y1
y2

)
=

(
1/6 −

√
3/6√

3/6 1/6

)
·
(
y1
y2

)
+

(
1/3
0

)
,

w3

(
z1
z2

)
=

(
1/6

√
3/6

−
√

3/6 1/6

)
·
(
z1
z2

)
+

(
1/2√
3/6

)
,
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w4

(
t1
t2

)
=

(
1/3 0
0 1/3

)
·
(
t1
t2

)
+

(
2/3
0

)
.

Then, {R2; w1, w2, w3, w4} is a just-touching IFS of four similitudes of scaling factor
1/3. Moreover, the attractor of this IFS is the Koch Curve.

Figure 7: Similitudes and Attractor of the IFS

Now, according to Theorem 2.9 again, the fractal dimension of the Koch Curve is
the unique solution D of the equation

4∑
n=1

|sn|D = 1⇐⇒ |1/3|D + |1/3|D + |1/3|D + |1/3|D = 1⇐⇒ 4 · (1/3)D = 1.

If we solve for D, we find that

D =
log(1/4)

log(1/3)
=

log(4)

log(32)
≈ 1.26.

Therefore, the fractal dimension of the Koch Curve (attractor of the just-touching
IFS {R2; w1, w2, w3, w4}) is 1.26.

With all this, we are finally able to define rigorously the fractal objects. To do this,
we are using the box-counting dimension as follows.

Definition 2.13. An artificial fractal is an object so that its fractal dimension
is larger than its topological dimension.
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3 Fractal Interpolation

Another concept closely related to fractals, that will be developed throughout this
chapter, is the fractal interpolation functions. As a preview, we say that a function
f is a fractal interpolation function if its graph is the attractor of an IFS, under
some conditions we later study.

What links these functions with fractals is that they present self-similarity, although
only for a range of scales. Even so, its fractal character makes that we can apply
them what we have studied so far. That is, we can use IFS’s to construct these
fractal interpolation functions as well as the Box Counting Theorem to compute
the fractal dimension of their graphs.

Figure 8: Self-similarity of fractal interpolation functions. The graph is made by running program
A.1, see details in Appendix.

3.1 Introduction

Let {(xi, yi) : i = 0, 1, · · · , N} ⊂ R2, N > 1, be a discrete data set such that
x0 < x1 < · · · < xN . In many engineering and science tasks, we often have a
number of data points, such as the one described above, obtained by sampling or
experimentation, which represent the values of a function for a limited number
of values of the independent variable. Interpolation is a method of constructing
a continuous function f that fits the given points, that is, f(xi) = yi for each
i = 0, 1, · · · , N . Usually, such a function is called an interpolation function.
Interpolation can be employed for various purposes. One of the most common
is to estimate the value of the implied function for an intermediate value of the
independent variable (i.e., a value other that x0, x1, · · · , xN).
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There are several interpolation methods that can be applied to a specific data
set, according to the assumptions that underlie the model we investigate. Usually,
these assumptions include smoothness and simplicity. The most popular methods
are the piecewise constant interpolation, the piecewise linear interpolation and the
polynomial interpolation. We can see an example of each below.

Figure 9: On the left, piecewise constant interpolation. In the middle, plot of a set of data
with piecewise linear interpolation superimposed. And on the right, plot of a set of data with
polynomial interpolation applied.

Most interpolation functions are given as linear combinations of elementary func-
tions. For instance, a linear combination of monomials leads to polynomial in-
terpolation functions. We can employ trigonometric, logarithmic, or exponential
functions as well.

However, in the case where the given data set is more complex (for example, data
that are generated by cardiogram, seismogram, stock exchange...) the models men-
tioned above, which usually assume smoothness, cannot give satisfactory results.
In this cases, we will employ methods with functions whose graphs have fractal
characteristics. Such functions are called fractal interpolation functions, and
will be introduced over this chapter.

Fractal interpolation functions can be used to interpolate any form of experimental
data, and their construction is based on the generation of an appropriate IFS whose
attractors interpolate the given data. The graphs of these functions can be used to
approximate image components such as the profiles of mountain ranges, the tops
of clouds, or the interfaces of tumors as we will see in Chapter 4. In all these cases
it is not sufficient to make a polynomial “least-squares” fit. That is why we need
fractal interpolation functions to “fit” such experimental data. That is, the graph
of the fractal interpolation function can be made close, in the Hausdorff metric,
to the data. Moreover, we can ensure that the fractal dimension of the graph of
the fractal interpolation function agrees with that of the data, over an appropriate
range of scales.

Fractal interpolation functions share with elementary functions that they are of a
geometrical character, that they can be represented by “formulas”, and that they
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can be computed rapidly. The main difference is their fractal character. Fractal
interpolation functions can have a non-integer fractal dimension while the fractal
dimension of elementary functions is always 1.

3.2 Fractal Interpolation Functions

Definition 3.1. A set of data is a set of points of the form {(xi, yi) ∈ R2 : i =
0, 1, 2, · · · , N}, where

x0 < x1 < x2 < x3 < · · · < xN .

An interpolation function corresponding to this set of data is a continuous func-
tion f : [x0, xN ]→ R such that

f(xi) = yi for i = 0, 1, · · · , N.

The points (xi, yi) ∈ R2 are called the interpolation points. We say that the
function f interpolates the data and that (the graph of) f passes through the inter-
polation points.

Let ∆ = {(xi, yi) ∈ R2 : i = 0, 1, 2, · · · , N} be a set of data. The question now
is how to construct an IFS in R2 whose attractor, which we denote by G, is the
graph of a continuous function f : [x0, xN ] → R which interpolates the data. We
will restrict to IFS’s whose maps are affine transformations.
Let’s consider then an IFS of the form {R2; wn : n = 1, 2, · · · , N}, where the maps
are affine transformations of the special structure

wn

(
x
y

)
=

(
an 0
cn dn

)
·
(
x
y

)
+

(
en
fn

)
.

Such transformations are called shear transformation, because they map line seg-
ments parallel to the y-axis to line segments parallel to the y-axis. Moreover, the
ratio of the length of wn(L) to the length of L is |dn| for all n = 1, 2, · · · , N . We
call dn the vertical scaling factor in the transformation wn.

Now, in order to ensure that the attractor of the IFS will pass through the in-
terpolation points, we impose that wn maps the endpoints of ∆, i.e. (x0, y0) and
(xN , yN), to (xn−1, yn−1) and (xn, yn) respectively. We can see this fact in Figure
10 below.
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Figure 10: An affine map wi.

Hence, we take:

wn

(
x0
y0

)
=

(
xn−1
yn−1

)
and wn

(
xN
yN

)
=

(
xn
yn

)
for n = 1, 2, · · · , N .

Then the transformation wn is specified by the five real numbers an, cn, dn, en, and
fn, which must obey the four linear equations

an · x0 + en = xn−1, (3.1)

an · xN + en = xn, (3.2)

cn · x0 + dn · y0 + fn = yn−1, (3.3)

cn · xN + dn · yN + fn = yn. (3.4)

Therefore we have 5N unknowns and 4N equations. It follows that there is effec-
tively one free parameter in each transformation (i.e. a total of N). We choose this
parameter to be dn since wn is a shear transformation. In this way, we are able
to specify the vertical scaling produced by the transformation. With dn = 0, for
n = 1, 2, · · · , N , the piecewise linear interpolation function is recovered. We will
later see that these parameters determine the fractal dimension of the attractor of
the IFS.

Assuming that dn is the free parameter, the linear system has a unique solution for
an, cn, en, and fn for every selection of interpolation points:

an =
xn − xn−1
xN − x0

,

en =
xNxn−1 − x0xn

xN − x0
,

cn =
yn − yn−1
xN − x0

− dn(yN − y0)
xN − x0

,
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fn =
xNyn−1 − x0yn

xN − x0
− dn(xNy0 − x0yN)

xN − x0
.

The IFS arising from these conditions is {R2; wn : n = 1, 2, · · · , N}, and will be
denoted as the IFS associated to ∆.

Let the vertical scaling factor dn obey 0 ≤ dn < 1 for n = 1, 2, · · · , N . Even
with this condition, the IFS is not, in general, hyperbolic on the metric space
(R2, Euclidean). This means that the affine transformations wn are not necessarily
contraction mappings. The question now would be, is there a metric such that the
IFS is hyperbolic? The answer to this question is in the theorem below.

Theorem 3.1. Let N > 1 be a positive integer. Let {R2; wn : n = 1, 2, · · · , N}
denote the IFS defined above, associated with the data set

{(xn, yn) : n = 0, 1, · · · , N}.

Let the vertical scaling factor dn obey 0 ≤ dn < 1 for n = 1, 2, · · · , N . Then there is
a metric d on R2, equivalent to the Euclidean metric, such that the IFS is hyperbolic
with respect to d. In particular, there is a unique nonempty compact set G ⊂ R2

such that

G =
N⋃
n=1

wn(G).

Proof. Let’s define a metric d on R2 by

d((x1, y1), (x2, y2)) = |x1 − x2|+ θ|y1 − y2|,

where θ is a positive real number which we specify below.

Let’s prove that this metric d is equivalent to the Euclidean metric on R2. Since
the Euclidean metric is equivalent to the Manhattan metric, it is enough to show
that the metric d defined above and the Manhattan metric on R2 are equivalent.
Recall that the Manhattan metric, dM , is defined by dM((x1, y1), (x2, y2)) = |x1 −
x2|+ |y1 − y2|. Let’s consider the following cases:
If θ = 1, then the two metrics d and dM are the same. Therefore, equivalent.
If θ > 1, then since θ|y1 − y2| ≥ |y1 − y2| we have that d((x1, y1), (x2, y2)) ≥
dM((x1, y1), (x2, y2)). In the same way, since 1

θ
|x1 − x2| ≤ |x1 − x2| we have that

1

θ
d((x1, y1), (x2, y2)) ≤ dM((x1, y1), (x2, y2)) ≤ d((x1, y1), (x2, y2)).

Hence, both metrics are equivalent.
Finally, if θ < 1 then we have, by the same argument, that

θ · dM((x1, y1), (x2, y2)) ≤ d((x1, y1), (x2, y2)) ≤ dM((x1, y1), (x2, y2)).

Again, both metrics are equivalent.
It is then proved that the metric d is equivalent to the Euclidean metric on R2.
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Now, let n ∈ {1, 2, · · · , N}. Let the numbers an, cn, en, fn be defined by equations
(3.1), (3.2), (3.3), and (3.4). Then we have that

d(wn(x1, y1),wn(x2, y2))

= d((anx1 + en, cnx1 + dny1 + fn), (anx2 + en, cnx2 + dny2 + fn))

= an · |x1 − x2|+ θ · |cn(x1 − x2) + dn(y1 − y2)|
≤ (|an|+ θ · |cn|) · |x1 − x2|+ θ · |dn| · |y1 − y2|

We notice that |an| = |xn − xn−1|/|xN − x0| < 1 since N ≥ 2. If ci = 0 for each
i = 1, · · · , n, then we choose θ = 1. Otherwise we choose

θ =
min{(2− |an|) : n = 1, 2, · · · , N}

max{2 · |cn| : n = 1, 2, · · · , N}
.

Then it follows that

d(wn(x1, y1), wn(x2, y2)) ≤ (|an|+ θ · |cn|) · |x1 − x2|+ θ · |dn| · |y1 − y2|
≤ a · |x1 − x2|+ θ · δ · |y1 − y2|
≤ max{a, δ} · d((x1, y1), (x2, y2)),

where

a = (1 + an −
max{|an| : n = 1, 2, · · · , N}

2
) < 1,

δ = max{|dn| : n = 1, 2, · · · , N} < 1.

Therefore, wn is a contraction mapping for each n = 1, 2, · · · , N . This completes
the proof. �

Theorem 3.2. Let N > 1 be a positive integer. Let {R2; wn : n = 1, 2, · · · , N} de-
note the IFS defined above, associated with the data set {(xn, yn) : n = 1, 2, · · · , N}.
Let the vertical scaling factor dn obey 0 ≤ dn < 1 for n = 1, 2, · · · , N , so that
the IFS is hyperbolic. Let G denote the attractor of the IFS. Then G is the
graph of a continuous function f : [x0, xN ] → R, which interpolates the data
{(xi, yi) : i = 1, 2, · · · , N}. That is,

G = {(x, f(x)) : x ∈ [x0, xN ]},

where

f(xi) = yi for i = 0, 1, 2, · · · , N .

Proof. Let F denote the set of continuous functions f : [x0, xN ] → R such that
f(x0) = y0 and f(xN) = yN . We define a metric d on F by

d(f, g) = max{|f(x)− g(x)| : x ∈ [x0, xN ]} for all f, g ∈ F ,
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so that (F , d) is a complete metric space. Let the real numbers an, cn, en, fn, be
defined by equations (3.1), (3.2), (3.3), and (3.4). We now define a graph transfor-
mation T : F → F by

(Tf)(x) = cnl
−1
n (x) + dn · f(l−1n (x)) + fn

for x ∈ [xn−1, xn] and for n = 1, 2, · · · , N , where ln : [x0, xN ] → [xn−1, xn] is the
invertible transformation ln(x) = an · x+ en.

First, we are going to verify that T does indeed take F into itself. Let f ∈ F . Then
the function (Tf)(x) obeys the endpoint conditions since

(Tf)(x0) = c1l
−1
1 (x0) + d1 · f(l−11 (x0)) + fn

= c1x0 + d1 · f(x0) + fn = c1x0 + d1y0 + fn

= y0

and

(Tf)(xN) = cN l
−1
N (xN) + dN · f(l−1N (xN)) + fN

= cNxN + dN · f(xN) + fN

= cNxN + dNyN .

This function (Tf)(x) is continuous on the interval [xn−1, xn] for n = 1, 2, · · · , N .
So what is left to demonstrate is that (Tf)(x) is continuous at each of the points
x1, x2, · · · , xN−1. At each of these points, the value of (Tf)(x) is apparently defined
in two different ways. For n ∈ {1, 2, · · · , N − 1} we have that

(Tf)(xn) = cn+1l
−1
n+1(xn) + dn+1 · f(l−1n+1(xn)) + fn+1

= cn+1x0 + dn+1 · f(x0) + fn+1 = yn

and also that

(Tf)(xn) = cnl
−1
n (xn) + dn · f(l−1n (xn)) + fn

= cnxN + dn · f(xN) + fn = yn,

so both methods of evaluation lead to the same result. Therefore, we conclude that
T does indeed take F into F .

Now we are going to show that T is a contraction mapping on the metric space
(F , d). Let f, g ∈ F . Let n ∈ {1, 2, · · · , N} and x ∈ [xn−1, xn]. Then

|(Tf)(x)− (Tg)(x)| = |dn| · |f(l−1n (x))− g(l−1n (x))| ≤ |dn| · d(f, g).

It follows that

d(Tf, Tg) ≤ δ · d(f, g) where δ = max{|dn| : n = 1, 2, · · · , N} < 1.
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Then, we conclude that T : F → F is a contraction mapping. By the Contraction
Mapping Theorem we know that T possesses a unique fixed point in F . That is,
there exists a unique function f ∈ F such that

(Tf)(x) = f(x) for all x ∈ [x0, xN ].

Moreover, this function f passes through the interpolation points.

Finally, let G̃ denote the graph of f . Notice that the equations that define T can
be rewritten as

(Tf)(anx+ en) = cnx+ dnf(x) + fn for x ∈ [x0, xN ] and for n = 1, 2, · · · , N ,

which implies that

G̃ =
N⋃
n=1

wn(G̃).

But G̃ is a nonempty compact subset of R2. By Theorem 3.1, there is only one
nonempty compact set G, the attractor of the IFS, which obeys the latter equation.
Therefore, it follows that G̃ = G. This completes the proof. �

Remark. Why do both of theorems above have the restriction that N is greater
than 1? Well, if we look at any hyperbolic IFS of the form {R2; w1(x, y)}, then by
definition, w1 is a contraction mapping and the attractor of the IFS is a single point.
But for N = 1, the curve we are attempting to interpolate has two interpolation
points. Hence the attempt will fail.

Now, we are able to define what is called fractal interpolation functions.

Definition 3.2. The function f(x) whose graph is the attractor of an IFS as de-
scribed in Theorems 3.1 and 3.2 above, is called a fractal interpolation function
corresponding to the data {(xi, yi) : i = 1, 2, · · · , N}.

Example 1. In Figure 11 below, we can see an example of a sequence of iterates
{T nf0 : n = 0, 1, 2, 3, · · · } obtained by repeated application of the contraction
mapping T introduced in the proof of Theorem 3.2. The initial function f0(x) is
linear, and the sequence {fn+1(x) = (Tfn)(x)} converges to the fractal interpolation
function f , which is the fixed point of T .
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Figure 11: Example of a Fractal Interpolation Function. The graph is made by running program
A.2, see details in Appendix.

At this point, in view of the proof of Theorem 3.2, we may wonder why going to
the trouble of establishing that there is a metric such that the IFS is contractive.
After all, we could simply use the contraction mapping T to construct fractal in-
terpolation functions. The answer has two main parts.
The first one is that, in this way, we are able to apply the theory of hyperbolic IFS,
seen in Chapter 2, to fractal interpolation functions. In particular, this means that
we can use IFS algorithms to construct fractal interpolation functions, that we can
use the Collage Theorem to find fractal interpolation functions which approximate
given data, and that we can use the Hausdorff metric to discuss the accuracy of
approximation of experimental data by a fractal interpolation function.
The second one is that we can provide a common language for the description of
an important class of functions and sets by treating fractal interpolation functions
as attractors of IFS of affine transformations. This common language is what is
known as IFS code.

One consequence of the fact that the IFS {R; wn : n = 1, 2, · · · , N} associated with
a set of data {(xn, yn) : n = 1, 2, · · · , N} is hyperbolic is that any set A0 ∈ H(R2)
leads to a Cauchy sequence of sets {An} that converges to G in the Hausdorff metric.
As in Chapter 2, we can define W : H(R2)→ H(R2) by

W (B) =
N⋃
n=1

wn(B) for all B ∈ H(R2).

Then {An = W n(A0)} is a Cauchy sequence of sets which converges to G in the
Hausdorff metric. Moreover, if A0 is the graph of a function f0 ∈ F then An is the
graph of T nf0.
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3.3 The Fractal Dimension of Fractal Interpolation Func-
tions

As we said at the beginning of the chapter, fractal interpolation functions have a
fractal character allowing us to compute the fractal dimension of their graphs. In
order to do this, we will use the theorem presented below.

Theorem 3.3. Let N > 1 be a positive integer. Let {(xn, yn) ∈ R2 : n =
1, 2, · · · , N} be a set of data, and let {R2; wn : n = 1, 2, · · · , N} be an IFS
associated with the data, where

wn

(
x
y

)
=

(
an 0
cn dn

)
·
(
x
y

)
+

(
en
fn

)
for n = 1, 2, · · · , N .

The vertical scaling factors dn obey 0 ≤ dn < 1, and the constants an, cn, en and
fn are given by equations (3.1), (3.2), (3.3) and (3.4) for n = 1, 2, · · · , N . Let G
denote the attractor of the IFS, so that G is the graph of a fractal interpolation
function associated with the data. If

N∑
n=1

|dn| > 1

and the interpolation points do not all lie on a single straight line, then the fractal
dimension of G is the unique real solution D of

N∑
n=1

|dn|aD−1n = 1.

Otherwise the fractal dimension of G is 1.

Remark. Let’s see how to compute the fractal dimension of a fractal interpolation
function in case where the interpolation points are equidistant.

Let xi = x0 + i
N

(xN − x0) for i = 1, 2, · · · , N . It follows that an = 1
N

for n =

1, 2, · · · , N . Hence if
∑N

n=1 |dn| > 1, then by Theorem 3.3 the fractal dimension D
of the interpolation function obeys

N∑
n=1

|dn|(
1

N
)D−1 = (

1

N
)D−1

N∑
n=1

|dn| = 1.

Therefore, we have

D = 1 +
log
∑N

n=1 |dn|
logN

.

Notice that
∑N

n=1 |dn| < N . Then the fractal dimension of a fractal interpolation
function is less than 2. However, we can make it arbitrarily close to 2 by selecting
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the respective vertical scaling factors close to 1 (or to −1). On the other hand,
since

∑N
n=1 |dn| > 1 the fractal dimension is greater than 1. Again, by selecting dn

close to 0 we can vary it down to 1.

Finally, observe that the fractal dimension does not depend on the selected inter-
polation points (unless these are collinear). It only depends on the selection of the
vertical scaling factors.

Let’s see an example.

Example 2. Let ∆ = {(0, 10), (0.5, 13), (1, 11)} be a set of data, and let {R2; w1, w2}
be an IFS associated with ∆ such that

w1

(
x
y

)
=

(
a1 0
c1 d1

)
·
(
x
y

)
+

(
e1
f1

)
=

(
x
y

)
=

(
0.5 0
2.5 0.5

)
·
(
x
y

)
+

(
0
5

)
,

w2

(
x
y

)
=

(
a2 0
c2 d2

)
·
(
x
y

)
+

(
e2
f2

)
=

(
x
y

)
=

(
0.5 0
−2.7 0.7

)
·
(
x
y

)
+

(
0.5
6

)
.

The vertical scaling factors are d1 = 0.5 and d2 = 0.7, satisfying that 0 ≤ d1, d2 < 1.
Moreover, the constants an, cn, en and fn are given by equations (3.1), (3.2), (3.3)
and (3.4) for n = 1, 2. Let G denote the attractor of the IFS, so that G is the graph
of a fractal interpolation function associated with the data. Then, since

2∑
n=1

|dn| = |d1|+ |d2| = 0.5 + 0.7 = 1.2 > 1

and the interpolation points do not all lie on a single straight line, by Theorem 3.3
we have that the fractal dimension of G is the unique real solution D of

2∑
n=1

|dn|aD−1n = 1.

That is

|0.5|·(0.5)D−1+|0.7|·(0.5)D−1 = 1⇐⇒ (0.5)D−1·(0.5+0.7) = 1⇐⇒ (0.5)D−1 = 1/1.2

⇐⇒ (D − 1) · log(0.5) = log(1/1.2)⇐⇒ D = 1 +
log(1/1.2)

log(0.5)
= 1.263.

Therefore, the fractal dimension of G is 1.263.

At this point, we could ask whether the fractal dimension of the graph G com-
puted using the Box Counting Theorem would be the same as the one just obtained
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(D = 1.263) by means of Theorem 3.3. To verify that, we would need to construct
the fractal interpolation function associated with ∆ (i.e. the attractor of the IFS
{R2; w1, w2}), plot its graph, and then apply the Box Counting Theorem to com-
pute its fractal dimension.

In order to do this test, I have created a Matlab program so that, given a data
set and the vertical scaling factors dn, it constructs a fractal interpolation function
passing through the interpolation points. This function is, as well, the attractor of
the IFS {R2; w1, w2}. The Matlab implementation is based on an algorithm for
computing fractals from IFS, known as Deterministic Algorithm. You can see how
it works, as well as the code of the program, in the section of Appendix A.2. The
program also computes and returns the values of the constants an, cn, en and fn
according to equations (3.1), (3.2), (3.3) and (3.4) for n = 1, 2.

The result of running this program is the graph in Figure 12 below.

Figure 12: Graph G of the Fractal Interpolation Function related to the data ∆.

To obtain this graph, we have applied the Deterministic Algorithm a total of 10
times. In Figure 13 below, you can see the produced graphs given after 1, 2, 3, 4, 5
and 6 iterations respectively. First image is showing the three interpolation points
∆ = {(0, 10), (0.5, 13), (1, 11)}. In addition, we can see how the graphs are closer
to G in each iteration.

As we have seen in Example 1 before, G can be also be obtained by repeated
application of the contraction mapping T defined in Theorem 3.2.
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Figure 13: Produced graphs after 1,2,3,4,5 and 6 iterations of the Deterministic Algorithm respec-
tively.

Finally, the program also computes the fractal dimension of the graph of this fractal
interpolation function using the Box Counting Theorem. As before, you can see the
details in the section of Appendix A.2. The result, however, is that D = 1.297 is
the dimension of the graph G. Recall that the result obtained by Theorem 3.3 is
that D = 1.263, being 0.034 the difference between them. Hence, we can say that
the results obtained by our test fit well with the theoretical ones. Therefore, we
conclude that our test is effective for calculating the fractal dimension of the graph
of a fractal interpolation function.

To end with this example, let’s verify that the vertical scaling factor, dn, determine
the fractal dimension of the attractor of the IFS.

33



For instance, if we take d1 = 0.2 and d2 = −0.1, since

2∑
n=1

|dn| = |d1|+ |d2| = 0.2 + 0.1 = 0.3 < 1

the fractal dimension of G is 1.

On the other hand, if we take the vertical scaling factors d1 = 0.8 and d2 = −0.9,
since

2∑
n=1

|dn| = |d1|+ |d2| = 0.8 + 0.9 = 1.7 > 1

and the interpolation points do not all lie on a single straight line, by Theorem 3.3
we have that the fractal dimension of G is the unique real solution D of

2∑
n=1

|dn|aD−1n = 1.

That is

|0.8|·(0.5)D−1+|−0.9|·(0.5)D−1 = 1⇐⇒ (0.5)D−1·(0.8+0.9) = 1⇐⇒ (0.5)D−1 = 1/1.7

⇐⇒ (D − 1) · log(0.5) = log(1/1.7)⇐⇒ D = 1 +
log(1/1.7)

log(0.5)
= 1.766.

Therefore, the fractal dimension of G is 1.766.

As we can observe, if we take vertical scaling factors near to 1 or -1, the fractal
dimension is close to 2. On the contrary, if we take them around 0 the fractal
dimension is close to 1.
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4 Natural Fractals: Tumors

We have seen in previous chapters the concept of artificial fractal, as well as how
to construct it from IFS and how to calculate its fractal dimension by means of the
Box Counting Theorem. We have also studied the fractal interpolation functions
and how are they related to all this. But now, what remains to be studied is the
concept of natural fractal.

As we have previously said, a natural fractal is a real object that presents self-
similarity for only a range of scales. In fact, in nature we cannot proceed ad infini-
tum. Hence, this mathematical object will be only an accurate model within this
particular range. Examples of natural fractals can be the contour of bone fissures,
wrinkles, the brain, the retina or tumors contour as well.

In this chapter we are going to focus on tumors, and we are going to study their
roughness using the so-called local width function, their growing dynamics by means
of the critical exponents, and their fractal dimension from these two concepts.

4.1 Dynamic Scaling of Growing Interfaces and Tumor Growth

A tumor is a swelling of a part of the body, generally without inflammation, caused
by an abnormal growth of tissue, whether benign or malignant. We refer to it as a
tumor developing in vivo, while tumor cell lines growing in petri dishes for experi-
mental studies are called tumor developing in vitro. Along this section, we are going
to use scaling techniques to analyze the fractal nature of the growing interfaces or
fronts of both types of tumors.

What determines the growth dynamic behavior of a tumor is the morphology of
its contour. The tumor or cell colony contour is the tumor-host interface, i.e., it is
where tumor cells proliferation and spread in host tissues take place. This contour
presents scale invariance, what gives it a fractal character. In particular, tumor
interfaces are an example of self-affine objects which are “intermediate” between
fractal objects and none-fractal objects. This means that when we make a scale
change that is the same in all directions, they change morphology. But when the
scale change is different for each direction, they behave like fractal objects in that
they appear the same before and after the transformation. This dynamic behavior
provides us the information needed to study the tumor growth dynamic. However,
it is really complicated to obtain a description of the tumor contour due to its high
degree of complexity. That is why we will need a dynamic scaling analysis to help us
to determine the fractal character, and subsequently the growth dynamic, of tumor
interfaces.

Let’s start with the dynamic scaling analysis. Dynamic scaling is an heuristic
discipline that studies the geometrical features of growing interfaces using different
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concepts from the theory of stochastic processes and fractal geometry. One of the
most important features is roughness, since it is one of the factors that determine
the tumor growth dynamic. In fact, roughness usually increases as the tumor grows,
thus it is established a relation between them. In an informal way, we could define
roughness as a useful quantitative measurement of the irregularity of an interface
such as that of a tumor or cell colony contour. However, it is formally described
through some universal quantities, known as critical exponents. The dynamic scal-
ing analysis is what will determine these exponents, which in turn they will establish
the growth dynamic of tumors. To perform this analysis, we first need to study the
tumor interface by means of the local width function.

Let’s start with a physical quantity that presents scale invariance properties, that
is the mean tumor radius (see Figure 14). It is defined as follows

h̄(t) =
1

N

N∑
i=1

h(i, t),

where N is the number of points of the tumor interface, and h(i, t) are the distances
from these points i to the center of the tumor mass.

Now, the local fluctuations of the interface around its mean radius (i.e. the inter-
face width) are measured by a function known as local width function. This
function depends on both time and position, and it generally describes the process
of roughening of an interface. The local width function is defined as the root mean
square of the deviations of an interface about its mean value, and it is a function
of the arc length l ⊂ [0, 2π] and the time t. That is

w(l, t) =

{
1

n

n∑
i=1

(hl(i, t)− h̄l(t))2
}1/2

,

where n is the number of points of the tumor interface in the interval l, hl(i, t) are
the distances from these points i ∈ l to the center of the tumor mass, and h̄l(t) the
mean tumor radius in l (see Figure 14).

Figure 14: Interface width of a tumor or cell colony border. The local width functions w(l1, t)
and w(l2, t) are calculated for sectors with an arc length l1 and l2 respectively. Source [3].
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The roughening process of an interface develops both in time and in space, and it
is described by the so-called critical exponents. Usually, the interfaces become
more and more rough as time goes by until, in some cases, they reach saturation
and stay always of the same roughness. This increase in roughness implies that the
fluctuations around the mean tumor radius increase as well, i.e, implies an incre-
ment of the interface width. Therefore, since these fluctuations are measured by the
local width function, it is giving a description of the tumor growth process. This
dynamic process is divided in two different stages, let’s study what happens at each
stage.

Stage 1: Initially, the tumor grows exponentially as a power of time. At the same
time, the interface becomes increasingly rougher, making that the interface width
increases as a power of time as well. This stage is described by the power law

w(l, t) ∼ tβ for t� ts. (4.1)

The exponent β is called the growth exponent, and it describes the development
of the interface width with time.

Stage 2: These local fluctuations cannot grow indefinitely, therefore, there must
exist a point at which these fluctuations saturate. This critical time is called the
saturation time, ts, and it is when the tumor changes its growth behavior. The
tumor passes from grow exponentially to do it radially, as a power of the system
size L. In this case, the roughness of the interface remains the same and it is the
tumor mass the one that grows. In this case, the power law describing this stage is

w(L, t) ∼ Lα and w(l, t) ∼ lαloc for t� ts. (4.2)

The exponent α is called the global roughness exponent, and it quantifies the
roughness of the saturated interface at system size scale L. At small scale of the
system, the critical exponent characterizing this roughness is the local roughness
exponent αloc.

Now, the saturation time, ts, at which the interfaces crosses over from one behavior
to another depends on the system size, providing a new critical exponent. That is,

ts ∼ Lz (4.3)

where z is called the dynamic exponent. This exponent is related to the cor-
relation time of the interface. Its physical meaning is related to the celerity by
which the information about points growing on the interface is transmitted across
the interface.

Finally, let’s show that the three critical exponents α, β and z are not independent.

Let A,B,C be constants. On the one hand, by (4.1) we have that

w(L, t) ' A · tβ for t� ts =⇒ w(L, t) ' A · tβs ·
(
t

ts

)β
for

t

ts
� 1
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=⇒ w(L, t) ' A · tβs · f(u) for u� 1,

where f(u) ' uβ. On the other hand, by (4.2) we have that

w(L, t) ' B · Lα for t� ts =⇒ w(L, t) ' Lα · f(u) for u� 1,

where f(u) ' B is a constant. Hence,

w(L, t) ' Lα · f
(
t

ts

)
with f(u) =


A·tβs
Lα
· uβ if u� 1

B if u� 1

, (4.4)

being A·tβs
Lα

and B asymptotic constants.

This function f(u) defined above is called the scaling function. Now, by (4.3) we
have that ts ' C · Lz. Then, if we evaluate the scaling function f at the crossover
point u = 1, we obtain the following relation

A · tβs
Lα

= B =⇒ A·(C·Lz)β = B·Lα =⇒ A·Cβ·Lzβ = B·Lα =⇒ zβ ' α =⇒ z ' α/β.

Therefore, the scaling law z = α/β is valid for any growth process that obeys the
scaling relation (4.4).

To sum up, we have seen over this section that the dynamic of the growth process
of a tumor or cell colony can be fully described by the four critical exponents
determined by the scaling analysis. Recall that the exponents α and αloc are related
to the border’s shape, the exponent β is related to the development over time of
the contours, and that z is the dynamic exponents that relates α and β. According
to (4.1), (4.2) and (4.3), we have the following relations

w(L, t) ∼ tβ for t� ts =⇒ β ' log(w(L, t))

log(t)
,

w(L, t) ∼ Lα for t� ts =⇒ α ' log(w(L, t))

log(L)
,

w(l, t) ∼ lαloc for t� ts =⇒ αloc '
log(w(l, t))

log(l)
,

z ' α

β
=⇒ z ' log(t)

log(L)
.

In conclusion, both cell colonies and tumors present exactly the same growth dy-
namic, which is described by means of the local width function as follows

w(l, t) =


tβ if t� ts

lα if t� ts

.
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This growth dynamic corresponds to the molecular beam epitaxy (MBE) universality
class. MBE is a method for thin-film deposition of single crystals, whose main
feature is the roughening of growing interfaces. Its growth dynamic is characterized
by a linear growth rate, the constraint of cell proliferation to the colony/tumor
border, and surface diffusion of cells at the growing edge.

Studies and experiments, as the ones in [3], show the following features about tumor
growth dynamics:

1. Cell diffusion at the colony or tumor border: It was observed that tumors in
vivo and in vitro present surface diffusion, that is, their cells move along the tu-
mor/colony border unable to get away from it.

2. Cell proliferation mainly restricted to the colony or tumor border: Experiments
have shown a relationship between the ability to proliferate and spatial distribution
within the colony or tumor. In particular, a clear tendency toward the restriction of
cell proliferation to the edge of the colony or tumor was seen, as well as an inhibition
in the innermost areas.

3. Linear growth rate: For both types of tumors, it was observed that tumor radius
grows linearly with time. The growth rate of colonies was obtained by plotting the
variation of the mean radius as a function of time. In vivo tumor growth rate could
not be measured this way. However, the restriction of cell proliferation to the tumor
contour mathematically implies that it is linear.

These proved that tumor growth dynamic corresponds to the MBE universality
class both for tumors in vivo and in vitro.

4.2 Fractal Dimension

What remains to be studied is the fractal dimension of the natural fractals, in par-
ticular, of tumors. In an strict sense, we can only compute accurately the fractal
dimension for very specific mathematical objects. Hence, we need a method to es-
timate the fractal dimension of a tumor based on its fractal characteristics. That
is, a method using all the concepts studied so far in this chapter.

As we have seen before, in vivo and in vitro tumor interfaces present a self-similar
character. However, dynamic scaling deals with interfaces that roughen in time but
remain graph (i.e. can be described by means of continuous functions) showing
self-affinity as well. In this case, the interface scales as

h(x, t) ∼ b−αh(bx, t), (4.5)

where α is called the Hölder or self-affine exponent, and corresponds to the local
roughness exponent studied before. Hence, the function h(x, t), which describes
the tumor or colony contour, is a Hölder continuous non differentiable function, so
it behaves like fractal function. Therefore, if ∆(l) ≡ |h(x1) − h(x2)| is the height
difference between two points separated by a distance l ≡ |x1− x2| for a fixed time
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t, we have that
∆ ' lαloc . (4.6)

In addition to the roughness exponent αloc, it is possible to associate a fractal di-
mension D to the function h(x, t). Consider that this self-affine function is defined
on the interval [0, 1] which we cover with boxes of size l. We first divide the horizon-
tal domain of the function into Ns segments, so the width of each one is l = 1/Ns.
In a horizontal interval of size l, the height changes according to (4.3), so we require
∆/l ' lαloc−1 boxes of size l × l to cover the function. Since we need lαloc−1 boxes
to cover the variation in one segment, for Ns segments the total number of boxes
required is

N(l) ' Ns × lαloc−1 ' lαloc−2 for ∆� l.

Thus, since N(l) ' l−D as we saw in Chapter 2, we have that

D ' 2− αloc. (4.7)

For ∆� l the number of boxes required to cover the function scales as N(l) ' 1/l,
and therefore D ' 1.

We conclude that the fractal dimension of tumors and natural fractals can be esti-
mated, in general, by means of the formula D ' 2− αloc.

4.3 Real Example

Finally, we are going to study the real case of a tumor using the experimental data
in [3]. What we are going to do is performing a test to compute the fractal di-
mension of the tumor shown in Figure 15, and then calculate the local roughness
exponent αloc with the formula D ' 2 − αloc. Finally, we will compare our results
to the ones obtained in [3] by the experts.

To carry out this test I have created a Matlab program so that, given a bitmap
image file of a tumor contour, it computes its fractal dimension using the Box
Counting Theorem. You can see in detail how the program works, as well as its
code, in the section of Appendix A.3. I wasn’t able to compute neither the width
function nor the roughness exponents from that bitmap image file, since the tumor
contour has concavities. That is why I am using the aforementioned formula to do it.

Let’s consider the C6 cell line studied in [3]. The contours of this tumor in vitro,
shown in Figure 15, were measured at intervals of 24 hours. We are taking for this
test the black, the dark blue, and the orange ones (see Figure 16).
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Figure 15: Cell colony contours. Contours of a C6 cell line at different culture times. Source [3]

Figure 16: Contours of a C6 cell line at intervals of 24, 72 and 168 hours respectively.

According to [3], the tumor has a fractal dimension D = 1.21± 0.03, a local rough-
ness exponent αloc = 0.91± 0.05, and a global roughness exponent α = 1.49± 0.15.
Let’s compare these experimental results with the ones obtained from our test.

Let’s start with the black contour, where t = 24h. If we run program A.3 we obtain
that the fractal dimension of this tumor contour is D = 1.29. Therefore, according
to (4.7), we have that

D ' 2− αloc =⇒ αloc = 2−D = 2− 1.29 = 0.71.

Let’s continue with the blue contour, where t = 72h. If we run program A.3
we obtain that the fractal dimension of this tumor contour is D = 1.32. Then,
according to (4.7), we have that

D ' 2− αloc =⇒ αloc = 2−D = 2− 1.32 = 0.68.
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Let’s finish with the orange contour, where t = 168h. If we run program A.3
we obtain that the fractal dimension of this tumor contour is D = 1.49. Thus,
according to (4.7) once more, we have that

D ' 2− αloc =⇒ αloc = 2−D = 2− 1.49 = 0.51.

As we can see, the results of our test are close to the ones in [3], specially for the
black contour. On the other hand, we can also observe that the fractal dimension
of this tumor contours increases as time goes by. That is, the fractal dimension
of the black contour is smaller than the one for the blue contour, which in turn is
smaller than the one of the orange contour. Therefore, we could say that the tumor
is growing according to our test.

Regarding the local roughness exponents, we can say that they fit well enough with
the one in [3] (αloc = 0.91 ± 0.05), specially the local roughness exponent of the
black contour again. We can observe as well, how the roughness of the contour
changes as the tumor grows. Since it is decreasing, we could think that the tumor
is reaching the saturation point in which the roughness remains “constant”. How-
ever, we would need more information and studies to confirm that.

We finally conclude that our test works quite good for computing the fractal dimen-
sion of a tumor. Furthermore, the local roughness exponents computed using this
fractal dimension and the formula (4.7), fit sufficiently well to the results obtained
in [3].
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5 Conclusions

The aim of this project was to study fractal geometry in order to apply it to the
study of tumors. When I started this project, I was not fully aware of the signif-
icance and the complexity of fractal geometry. Even now, after 50 pages, I don’t
see the limits of this discipline.

I started this work by studying elementary concepts such as metric spaces, affine
transformations or contraction mappings. These concepts led me to the Iteration
Function Systems, and then to the fractal dimension. It was here, and due to the
Box Counting Theorem, that I realized that fractal dimension would be a very im-
portant matter to develop it in detail along the project.

And that is what I did, since Chapter 3 was focus on the fractal interpolation func-
tions and their fractal dimension. Moreover, I created a program so that, given a
data set and the vertical scaling factors, it constructs a fractal interpolation func-
tions passing through the interpolation points and then computes the box counting
dimension of its graph. This program helped me to understand the relation of these
functions with fractals, as well as its application to fields such as Economy (stock
market).

Finally, with Chapter 4, I have learned how to apply the theoretical concepts about
fractals to the problems of the real world. In particular, I have observed the utility
of the fractal geometry in an issue as important as the tumor growth. During my
research I have learned how to describe the tumor growth dynamics by means of
the critical exponents, which are no more than a description of the tumor contour
(again fractal). However, from here a set of mathematical models based on stochas-
tic partial differential equations can be developed to describe completely tumor
growth. This work would be, without any doubt, a very interesting project.

Throughout this process of research and work, I have learn that fractal geometry
is a very powerful tool that can be used, among others, to describe processes as
sophisticated as the tumor growth. Therefore, my conclusion is that not only lives
can be saved with a white coat and a scalpel, but also with a paper and a pen.
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6 Appendix: Programs

6.1 A.1

This Matlab program firstly computes and returns the values of the constants an, cn,
en and fn, for n = 1, 2, according to equations (3.1), (3.2), (3.3) and (3.4) of Chapter
3. Then, it constructs a fractal interpolation function passing through the inter-
polation points. The input is the data set ∆ = {(0, 0), (30, 50), (60, 40), (100, 10)},
the vertical scaling factors d1 = 0.5, d2 = −0.5 and d3 = 0.23, and the number of
mappings, N = 3.

This program is based on an algorithm for computing fractals from IFS, known as
Deterministic Algorithm. This algorithm is based on the idea of directly computing
a sequence of sets {An = W n(A0)} starting from an initial set A0.
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6.2 A.2

This Matlab program is the same as the above (A.1), unlike that, in addition to
the fractal interpolation function, it also computes the fractal dimension of its graph.

In this case, the input for the first part of the program is the data set ∆ =
{(0, 10), (0.5, 13), (1, 11)}, the vertical scaling factors d1 = 0.5 and d2 = 0.7, and the
number of mappings, N = 2. For the second part, where it computes the fractal
dimension of the graph of the fractal interpolation function just created, the input
is the image of the output of the first part in bitmap format.
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6.3 A.3

This last Matlab program computes the fractal dimension of three different con-
tours of the image shown in Figure 15. To select each one of these contours, I have
used the program “GIMP”. The results are shown in the image of Figure 16. It also
computes the local roughness exponent using the formula (4.7) of chapter 4.

The input of the program is each one of the contours in a bitmap image file
(’tumor orange.bmp’, ’tumor blue.bmp’, and ’tumor black,bmp’).
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