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The differences found in the relativistic and nonrelativistic methods used in the literature to
account for short range nuclear correlations in the decay of A hypernuclei are analyzed. By means of
a schematic microscopic model for the origin of correlations, the appropriate method to include them
in nuclear processes is derived and is found to be the same one used in the nonrelativistic approach.
The differences do not stem from relativistic effects but from the improper implementation of the
correlations in the relativistic approach, which leads to several pathologies as shown in the paper.
General formulas are given to evaluate the nonmesonic decay width of finite hypernuclei and results

are obtained for 3 He and }2C.

PACS number(s): 21.80.+a

I. INTRODUCTION

When stable against particle emission, A-hypernuclei
decay through weak interaction processes which do not
involve leptons. Studying the hypernuclear decay modes
may help to shed some light on the strong interaction cor-
rections to the basic weak interaction. The mesonic mode
(A — 7wN) is highly supressed in the nuclear medium
due to Pauli blocking acting on the emitted nucleon,
which has a momentum of about 100 MeV/c. In the
nonmesonic AN — NN process, where the pion can be
viewed as being absorbed by another nucleon, there is
no Pauli blocking since the two nucleons emerge with a
large momentum of about 400 MeV /c. Therefore, the de-
cay of all but the lightest A hypernuclei proceeds mainly
through the nonmesonic mode AN — NN, which, since
the pioneering work of Adams [1], has received much the-
oretical attention [2-7]. Although the two-body-induced
nonmesonic mode ANN — NNN was found to be rel-
atively important [8], a recent calculation, which uses
a more realistic input for the pion optical potential and
takes into consideration the available phase space for two-
particle-two-hole excitation, finds that this decay mode
only amounts to about 15% of the total decay rate [9].

The large momentum of the emitted nucleons in the
AN — NN channel makes this decay mode quite insen-
sitive to nuclear structure details and, therefore, it can
provide useful information to learn about the weak inter-
action at the hadronic level. On the other hand, the large
momentum carried by the exchanged meson indicates
that the distances probed by this process are relatively
small and the effect of strong short range correlations be-
tween the interacting AN pair can be quite important.
This was indeed found to be the case for the nonrelativis-
tic calculations in nuclear matter [2—4], where the non-
mesonic rate was reduced by a factor of up to 2. Surpris-
ingly, the relativistic calculation of Ref. [7] in }2C found
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twice as much reduction with a similar correlation func-
tion. However, it is difficult to reconcile this discrepancy
within the new ingredients of Ref. [7], namely, the use
of a relativistic formalism based on Dirac phenomenol-
ogy, and the consideration of a finite system rather than
nuclear matter. On the one hand, Ref. [7] showed that
both relativistic and nonrelativistic calculations give very
similar rates in the absence of correlations while, on the
other hand, one expects the size of the system to be ir-
relevant in understanding short range phenomena which
occur at distances smaller than one fermi.

It is the purpose of the present work to understand
the origin of such discrepancies. In Sec. II, we show that
the explanation can be traced to the way the correlations
are implemented. The relativistic calculations use pseu-
doscalar 1NN couplings at the vertices and their matrix
elements are evaluated with spinors carrying the external
quantum numbers. The nonrelativistic procedure, which
assumes a pseudovector coupling at the strong TNN ver-
tex with the derivative acting on the pion field, is shown
to be equivalent to what is obtained from a microscopic
model for the short range correlations. This microscopic
model, developed in Sec. II, shows that the essential point
is that the matrix elements of the 7NN and wNA cou-
plings must contain the intermediate momentum states
excited by the exchange of heavy mesons originating the
correlations. In Sec. III the elementary AN — NN cor-
related transition amplitude is obtained for the two pre-
scriptions, and the expression for the decay rate of fi-
nite nuclei in terms of a correlated potential in r space
is given. This r-space potential is derived in Sec. IV.
A numerical comparative study of both prescriptions in
the weak decay of 3 He is done in Sec. V. Final results
for the nonmesonic decay rate of 3 He and }2C with the
proper prescription for short range correlations and in-
corporating form factors at the vertices are also discussed
in Sec. V. Some concluding remarks are given in Sec. VI.
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II. CORRELATED FEYNMAN AMPLITUDE

The starting point for our derivation is the Feynman
diagram of Fig. 1 which is given by the expression

My = /d4zd4y$p3 (2)T1¢p, (2)Ar(z — y)

X%, (U) 2%, (v) (1)

where
Pp:(T) = e Piu(p;) (2)

is the free baryon field of positive energy, I'; the Dirac
operator characteristic of the baryon-baryon-pion vertex,
and

B dq eta(z—y)
—u= / (2m)* (¢°)2 — q? — p? ®)

the pion propagator, where p is the pion mass.

Assume now that the two-body process illustrated in
Fig. 1 takes place in the nuclear medium. One may con-
sider a phenomenological way of taking the short range
correlations (SRC’s) between the initial particles into ac-
count by including in Eq. (1) an appropriate pair cor-
relation function f(z — y), which simulates the strong
repulsion at short relative distances generated by the ex-
J

An(z
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P, P,

FIG. 1. Illustration of the Feynman diagram for the
two-body transition amplitude B; B, — B3 Bj.

change of heavy mesons between the interacting pair of
particles.

Using Eqgs. (2) and (3), performing a change to center-
of-mass and relative variables

x+y = 2R,

X—-y=r, (4)
where the masses of the particles have been assumed to
be identical for simplicity, and integrating over R, time,

and energy variables, one easily derives (except for an
energy conserving delta function)

~ . d3q e_iq"'
— d3ret(P1—P3)r I _ 3
M(plap3) / re f(’l") (27r)3u(p3)rlu(p1) (q0)2 — q2 — HZU(P4)F2U(P2)7 (5)
|
with ¢° = p} — p§ = p] — p} and p1 — p3 = ps — P s i N
In Eq. (5), the correlation function has been assumed u(p')ivsu(p) = m(? —P')u%(p' )5y u(p) - (8)

to be static and depending only on the modulus of the
relative distance, r =| x — y |, which is justified by the
short range nature of the strong interaction inducing the
correlations.

The vertex u(p')['u(p) comes from the matrix element
between fields,

P ()T (), (6)

when only the parts of the field corresponding to the
positive energy states are considered. For the case of
the TNN strong coupling and on-shell positive energy

components, two types of vertices, pseudoscalar (I'pg =
gnNN

YT v5y*9,), are
known to give the same matrix elements, i.e.,

igxnn7s) and pseudovector (I'py = —

PO @iy @) = -0 [77@) g7 @)

(7)
with M the nucleon mass and (), E(_) the parts of

the fields attached to the positive energy components.
Equivalently, we can express Eq. (7) as

Using the fact that the addition of a total derivative of a
Lagrangian leaves the equations of motion invariant, the
identity in Eq. (7) can be expressed as

37 (@)ivsyp P ()@ ()

=77 @) s P @0,8(2) , (9)

with ®(z) the pion field, which is a more common way
of establishing the equivalence between pseudoscalar and
pseudovector couplings in the case of plane waves.

By using the equivalence of the two couplings in the
form of Eq. (7) or (8) and going to the usual nonrela-
tivistic limit, we obtain in both cases the vertex

. gnNN —
i o (p — p). (10)

Therefore, assuming q° = 0, the nonrelativistic reduction
of Eq. (5) gives for both cases
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d3 e—iq-r

"~ g1rNN 3,.,tk-
k) = k r -
M (k) ViYehd azk/d re*“Tf(r) (27r) P
g1rNN 3. .tk-r e Hr
AM? —_— 1k0‘2k/d Te f( ) pry— , (11)

where k = p; — ps-

Now let us take the pseudovector coupling in the form
of Eq. (9). The derivative 8,, acts now on the pion field in
the pion propagator. Since, according to Eq. (3), the pion
momentum is q, a nonrelativistic reduction of Eq. (5)
now gives

2
"~ 9= tk-r
M (k) = —225 / d*re f(r)

da e—iq~r
<[ Eparanaa 0

The main difference between Egs. (11) and (12) lies in
the fact that the quantities ooq do not factorize out of
the integral over q in Eq. (12) and the Yukawa shape
of Eq. (11) is not recovered. Instead, the integral over
q gives the typical one-pion-exchange (OPE) potential
comnsisting of a central and a tensor piece:

VopE(l') = Vc(’r‘)tfla'z + VT(T)Slz(f'), (13)

with S]_z(f') = 30’1f'02i‘ — 0102 and
2 —ur
_ 9xnn }_ 2€ -5
T aM?3 (IL 47r (r)) ’

g‘IrNN 1,7t 3 3
= 1+ —4+-—=) -
Vr(r) aMm2 3" e ( + ur + (pr)?

Ve(r)

By inspecting the form of Eq. (12) for M(k), one re-
alizes that it is already the Fourier transform of the r-
dependent quantity

V(r) = Vope(r)f(r) , (14)
which is directly identified with the correlated potential
in r space. Since correlations are now present in the
potential, any transition matrix element from an initial
to a final state must be evaluated with an uncorrelated
wave function

(btinl V | himi) o / Propa(r)Vors () f (1) dimi(r).  (15)

It is clear that Eq. (15) is equivalent to the transition
amplitude for the bare potential [Eq. (13)] starting from
an initial correlated wave function, (¥sn| VoPE |#ini), Pro-
vided one identifies
Yini(r) = f(7)Pini(r) , (16)

J
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FIG. 2. Schematic model to include correlations in the
OPE potential. Bare one-pion-exchange diagram (a) and
one-pion exchange with simultaneous exchange of a heavy me-
son responsible for the short range repulsion (b).

which, in a first approximation, is the usual procedure in
the study of strong transition amplitudes.

It is curious to see that the use of two equivalent La-
grangians gives rise to different results once the effect of
short range correlations is taken into account and this
calls for an answer. Meanwhile, we can already reach
some clarifying conclusion: The different effects of cor-
relations found in the relativistic calculation of Ref. [7]
as compared to the nonrelativistic ones [2-4] have noth-
ing to do with relativistic effects. They are due to the
different way in which the correlations are handled. In
Ref. [7] the effect of correlations appeared as in Eq. (11),
factorizing a Yukawa function, while in Refs. [2—4] it ap-
peared as in Eq. (12), factorizing the OPE potential with
a scalar and a tensor part.

Next we show that, even if intuitive, the way of imple-
menting the short range correlations which led to Eq. (11)
is incorrect and the proper method is the one that leads
to Eq. (12). To reach this conclusion we must go back to
the microscopic origin of short range correlations. In the
meson exchange model, they arise because of the simulta-
neous exchange of heavy mesons together with one-pion
exchange. The picture, simplified to include only one ex-
tra heavy meson (assume it a vector meson like the w),
is shown in Fig. 2. The intermediate nucleon states in
Fig. 2(b) are assumed to be positive energy states and
the potentials due to the exchange of mesons are taken
to be static as in the usual studies of nuclear correlations.
The uncorrelated OPE of Fig. 2(a) leads to the amplitude

M = g2, u(ps)v 5”(P1)k2 s u(pa)vsu(pz)  (17)

or, in the nonrelativistic limit,

N = _ghyy g1k ok ,
AM? K2 1 2

(18)

with k = p; — p3. On the other hand, the potential
equivalent to Fig. 2(b) will be given by

—iM =
/(2 E g“””~(q P14 P3)? —m2 —q2 — 2

%

Qg2 vu(p3)vsu(ps + @)u(pa)vsu(ps — q) » (19)

p —q° —E(p4—q)+i6p§+q°—E(p3+q)+ie
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where we have taken the usual nonrelativistic approach to w exchange which selects the —g
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00 component of the

propagator with wINN vertices of the v* type. In Eq. (19), E(p) is the nucleon energy and Q the Pauli blocking
operator acting on the intermediate states. By carrying out the ¢° integration we obtain

- d3q

2
9unn

Q

M

) @n)3 (a—p1+Pp3)2+m2 q?+pu2 p§+p) — E(ps +q) — E(ps — q) + i€

x g2 vB(P3)Ysu(ps + ¢)T(pa)vsu(ps — q) - (20)

In order to connect with the former expressions we take the usual nonrelativistic limit and obtain

2
9unn

M=

019029 Q

g?rmv/ d*q .
aM? | (27)3 (@—p1+Pps)2+m2 q?+p? pd+p) — E(ps+q) — E(ps — q) + i€

(21)

Note that the operator o1qo,q appears inside the integral over q like in Eq. (12) and does not factorize out as
o1k ok like in Eq. (11). Since the correlated potential corresponds to summing the contributions from Figs. 2(a)

and 2(b), by writing the correlation function f(r) as

fr)y=1-g(r), (22)
the sum of Egs. (21) and (18) can be identified with Eq. (12) by means of the equivalence

2
9unn

Q

/dsrei(k"q)"g(r) ~ —

The former relation replaces the effect of correlations by
a local and energy-independent function, which is shown
to be a good approximation in the case of very short
range strong repulsion [10]. The equivalence (23) can
also be illustrated in the following way: Assuming the
initial interacting nucleons at rest (p; = p2 = 0), the
outgoing momenta must be very large due to the effect of
the strongly repulsive core at short distances. Therefore,
one can approximate k = p; — ps = ps — p2 by k ~
—p3 =~ p4 and the second term in Eq. (23) turns out to
be a function of | k — q | as in the first term.

By means of Eq. (23) one can easily compare Eq. (20)
with Eq. (5) taking I' = ¢y5. The essential difference
is that instead of @(p3)T'u(p1) and u(ps)Tu(pz), as in
Eq. (5), one has now %(ps)T'u(ps +¢) and @(ps)Tu(ps —q)
involving intermediate spinors. In this way the matrix el-
ements become ¢ dependent rather than g independent
as in Eq. (11). The diagram of Fig. 2(b), which gives a
microscopic interpretation for the origin of correlations,
clearly shows that the bare interaction connects the final
states with intermediate spinors which are q dependent.

The important point we have learned from this model
is that, in the construction of the correlated amplitude,
the vertices of the bare OPE potential must enter the
q integration as a function of q instead of factorizing
out as functions of the external variables as happened in
the derivation that led to Eq. (11). As we will show in
Sec. III, the nonmesonic AN — NN transition amplitude
has a parity conserving piece involving the use of pseu-
doscalar (or pseudovector) couplings at the vertices and
thus the arguments so far developed apply also to this
hypernuclear decay mode. As pointed out before, these
arguments explain the different effect of correlations on
the weak decay of hypernuclei found by the nonrelativis-
tic [2-4] and the relativistic [7] calculations. In Ref. [7],

(a—k)2+m2 pJ+p] — E(ps +q) — E(ps — q) + i€

(23)

the matrix elements of the couplings are evaluated be-
tween spinors carrying the external momenta, while the
microscopic model requires them to be evaluated between
an external spinor and a spinor carrying the momentum
of the intermediate state which is excited by the exchange
of the heavy meson originating the short range correla-
tions. From our microscopic model we conclude that the
form of the correlated potential as in Eq. (12) is the ap-
propriate one, which is obtained if one starts from the
OPE potential in coordinate space and multiplies it by
a correlation function as done in Refs. [2-4]. In fact,
we have shown that this appropriate correlated potential
can equivalently be obtained by following the steps of
Ref. [7] sketched at the beginning of this section, which
led to Eq. (5), and using a pseudovector coupling in the
form of Eq. (8), which leads to Eq. (12). Instead, if a
pseudoscalar coupling or a pseudovector coupling in the
form of Eq. (7) is used in Eq. (5), one obtains, as in
Ref. [7], the correlated potential of Eq. (11) which is not
what a microscopic interpretation of the SRC’s predicts.

III. NONMESONIC WEAK
AN — NN TRANSITION

The transition AN — NN can be represented by
the diagram of Fig. 1, where now p; denotes the four-
momentum of the A and I'y, I'; are the weak and strong
vertices, respectively. The weak vertex Hamiltonian for
the one-pion-exchange mechanism is parametrized as

Hane = iGrp’Py(A — Bys) T )a , (24)

where Grppu? = 2.21 x 1077 is the weak coupling con-
stant. The empirical constants A = 1.05 and B = 7.15,
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which are adjusted to the observables of the free A decay,
determine the strength of the parity violating (PV) and
parity conserving (PC) amplitudes, respectively. The nu-
cleon and pion fields are given by ¥y and ¢,, respec-
tively, while the lambda field v, is taken as the spurion
isospin state [t m;) = |1/2 — 1/2) to enforce the empiri-
cal AI = 1/2 rule observed in the decay of a free A.
The correlated PC amplitude, involving pseudoscalar
(or pseudovector) couplings for both pion vertices in the

replacement

9rnn GFN B grnn
aM? T ahf M’

(25)

where M is the average of the A and nucleon masses.
The correlated PV amplitude, involving a weak scalar
and a strong pseudoscalar (or pseudovector) pion vertex,
can be easily derived following the same lines that led to

diagrams of Fig. 2, will be given by Eq. (12) with the
]

Eq. (12). We finally obtain

: Gru®B g e dg e~iar
Mpc(k) = _;Hﬁ_gzjl\;" /d37'ek f(’l‘)/ (27!')3 q2+ alqazq,
Mov(k) = —Gpu?admiy [ gopiicr e
pv(k) = —GFru i re"™ T f(r) 27T)3q 2029 (26)

In order to clarify further the differences between this approach, consistent with the microscopic model for correlations,
and that of Ref. [7], we note that following the steps that led to Eq. (11) we would obtain

~ _ GF,U'ZB grNN 3., i1k-r

Mpc(k) = oM 2M alkUZk/d re f(r) prp—

Moy (k) = ~Gru? A9 ook [ ddreter (1) & (27)
2M 4rr

Equations (26) and (27) are the elementary AN — NN correlated transition amplitudes in momentum space for the
two procedures of including correlations.
The nonmesonic decay rate is given as [7]

$P [ &k
oy / ( 2W)32(27r)5 (Mg — Ep — By — Ey) | (b5; Pk § Ms T Mr| Oanonn 2 4) |7, (28)

where My, Eg, Eq, and E, are the mass of the hypernucleus, the energy of the residual (A — 2)-particle system,
and the total asymptotic energies of the emitted nucleons, respectively. A transformation to the center of mass and
relative momenta of the two outgoing nucleons is implied in Eq. (28). The sum ) indicates an average over the initial
hypernucleus spin projections My and sum over all quantum numbers of the residual (A — 2)-particle system, as
well as the spin and isospin projections of the exiting nucleons. We neglect final state distortions as we are studying
an inclusive process where the nucleons are still detected even if they undergo inelastic collisions. Therefore, the
antisymmetric state of the two final nucleons moving with center-of-mass momentum P and relative momentum k
can be written as

(Rr|Pk SMs T Mp) = —e'FP'R [eik"' - (—1)S+Te"ik"] xi,,sx%:h

1 .p. . . * - -
= —=P RN amit [1— (=1)E5T] Gp (k) Y7 g, (K) YL a1, ()Xo Xty 5 (29)

ﬁ LM,

where a partial wave expansion for the relative motion plane wave has been made. Following Ref. [7], a weak coupling
scheme, in which the A in an orbit apx = {na,lr,jar,ma} couples to the ground state of the nuclear (A — 1) core,
is assumed for the hypernuclear wave function. Employing the technique of coefficients of fractional parentage, the
core wave function is further decomposed into a set of states where the nucleon in an orbit ay = {nn,In,jin,mN}
is coupled to a residual (A — 2)-particle state. In the present work, the single particle A and N orbits are taken
as solutions of a harmonic oscillator potential with appropriate parameters by and by. Assuming an average size
parameter b = (bs + bn)/2, using Moshinski brackets [11], and working in the LS representation, the product of
the two harmonic-oscillator single-particle states can be transformed to a combination of relative and center-of-mass
wave functions. With all these ingredients, the many-body transition amplitude of Eq. (28) can be written in terms
of two-body amplitudes of the type
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EANDNN = / &R / dPre=PRyL (r)xhs T (0)@5, (5 V)RS, (R; b/ V)X,
= (i), (Kib/v2) [ a7 s, o Vad,,
= (—9)'" o5, (K;b/V2) tea (30)

where isospin indices have been omitted for simplicity. The functions ®,;(a;b) are solutions of the three-dimensional
harmonic oscillator and V' (r) is the correlated potential obtained as a Fourier transform of the nonrelativistic reduction

of the correlated Feynman amplitude [Egs. (26) or (27)].

Writing

V(r) = Vo(r)oios + Vi (r)S12(f) + Vev(r)ost , (31)

and assuming the lambda and the nucleon in their lowest | = 0 single-particle states, we obtain

3 . =
t?el =05 5,0Ms Ms, vVam2 [S(S + 1) - 5] /d’l"rzjo(kr)VC(’l‘)‘Pmo(T; \/Eb), (32)

tL) = —0ms ms, VATVE

25+ 1 (S| [o1 ® o2])”=2

150) (20 50| SoMss,)

250+ 1

V25 +1

x /drrzjz(kr)v:r(r)‘lhoo(’f'; V2b), (33)

25 +1 (S]] o2 ||So)

rel = 6Ms Ms, v4

(10 SMs| SoMs,)

280 +1 Vas i1
x / drr?y (k) Ve (1) @100 (5 V2b) - (34)

For nucleons in a p-shell orbit slightly more complicated expressions are obtained [12].

IV. WEAK AN — NN CORRELATED
POTENTIAL

In this section we derive the correlated potential in r
space by Fourier transforming the nonrelativistic reduc-
tion of the corresponding Feynman amplitude. We start
considering the procedure of the nonrelativistic calcula-
tions giving rise to Eq. (26) which is directly the Fourier
transform of the r-dependent potential

""/PC — VPC(r)f(’I'),

VPV = VEV(r)f(r), (35)
with
Gru®Bg d3q e~tar
VPC — F__ TNN
(r) oM oM (271,)3 2 + Hz 01q0:29
GFll'zB grnn e~tar
= ——Z0 i02; ViV
oM 2M "M% / (2m)® @* + 2
_ Grp®B grnn e KT
- 2oM 2M 71:02; Vi VJ 47r’
—-zq r
VPV e ZAg'IrNN /
(r) FH e @+ 2 o2q
= —’l:GF[_LZAg"J);;,v Ug,Vzm . (36)

Using the identities

Z; dh(r
Vih(’l") = T d’(’. ),

V:V;h(r) = §;;V2h(r)

. A d2h(r 1 dh(r
+(£L’.,;:Ej — %51]) [ d'f'(2 ) - ;" dr )] ) (37)

Egs. (35) and (36) can be written as

-~ Gru*B 1 e phT

~ Gru?B 1 ,e 3 3

T _ _GFH Gnnn L o 9

v ot 2M 3" dnr ( + + (,ur)2)
X f(r)S12(%),

PV _ 2 g grvn €M 1 7
VPV = iGpu®A onf P amr (1 + l”') f(r)oaf . (38)

In order to illustrate more explicitly the differences
with the results obtained in Ref. [7] we also derive the

r-space potential corresponding to Eq. (27). We must
then calculate the integrals
@k 3.1 ik-r' et
/ (27‘_)36 ¢ 'alkazk/d r'etcr f(’l‘l)—T, (39)
d*k ikr
—ik- k 1.k r'
/ (271')38 72 / f(r ) 4! (40)

where we have denoted by r’ the internal coordinate vari-
able. We first perform the momentum integral of Eqgs.
(39) and (40),
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d*k ko-k ik-(r'—r) _ vV
(7”—)—50'1 o2Ke = —01i02; V; j

d’k ik-(r'—r) . ’ '
Wazke = —109;V;6(r' — 1) .

Next, we perform the integration over r’. Recalling the properties

/daqkuh—nwuv=—vMux
[ [Vivis6’ - 0] o) = V:T59(0)

and using the relations (37), it is straightforward to derive

~ Grp’B gryn 1 eTHT e"HT (24 1 d2
VS S (e )0 - () o

VT = _GFII'ZB ngNl 2 ¥ {(

=77 o1 2Mm 3" anr i

V’,pv -G 2Ag1m~ €
tGru oM 12

4rr

By comparing Eqgs. (38) and (45) we realize that in the
approach based on Eq. (27) one obtains new terms in
the potential involving first and second derivatives of the
correlation function. This explains the different effect
of SRC’s on the AN — NN decay obtained in the ap-
proaches of Refs. [2-4] and Ref. [7]. In the former case
the correlated potential in coordinate space is simply
obtained by multiplying the original one by a correla-
tion function, as seen from Eq. (38). The nonrelativistic
equivalent of the procedure of Ref. [7] is a more com-
plicated correlated potential with additional derivative
terms.

In our calculation we also include the effect of a TN N
form factor. We take a monopole form

AZ _ ”2
e (46)
at both the weak and the strong # NN vertices. The

cutoff mass is taken to be A = 1.3 GeV as needed in
the empirical study of the NN interaction. When a form
factor is included, the correlated potential of Eq. (38),
written as

- 2
VC — _MMLVC(T;“)f(T)Ulo'Zy

2M 2M 3
. Gru’B genn 1 7
77 56

VPV = iGF}LZA%IlVPV(T;ﬂ)f(T)sz , (47)

gets modified by using the replacements

{2
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e = mouoy Vivis( —x), (41)

(42)

(43)

(44)

4nr [_LE;‘ FW
3 3 3 1df 1 d%f N
1+ —+ (—”T—)z) f(r) — (E + 2) L dr + 2 dr? S12(%),

1df N

pg}nr. (45)

T
VO (r;iu) = VO (r;u) — VE(r;A)
A2 _ #2 e—Ar 2
A - =
2 4n (1 Ar) ’
VI(rp) = VI(r;p) — VT (r;A)
A2 _ uz e—Ar 1
A (1 + E) )
A2 — ;2 —Ar
VPV('I';[L) — VPV(T;M) _ VPV(’I';A) _ ,___Il'e ,
2 4m
(48)

where V(r; A) is the same as V*(r; ) but replacing the
pion mass u by the cutoff mass A.

V. RESULTS AND DISCUSSION

Once the issue of correlations has been clarified, we
can perform a comparative study of the nonmesonic de-
cay width of finite hypernuclei, improving on the results
of Ref. [3], where the calculations were done in infinite
nuclear matter and the results in finite nuclei were ob-
tained via the local density approximation.

The 3He wave function consists of a A particle in a
s1/2 state coupled to the ground state of 4He which has

spin parity 0. The “He core is described as four s-shell
nucleons moving in a harmonic oscillator potential, with
size parameter by = 1.4 fm, which provides a good de-
scription of the *He charge form factor. The A wave
function is taken as a solution of a harmonic oscillator
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with size parameter by = 1.85 fm. This wave function
has a similar shape to that obtained with a Woods-Saxon
potential adjusted to reproduce the A separation energy
in 3He, By = —3.12 MeV. In a similar way, the }2C is
also represented in terms of harmonic oscillator single-
particle wave functions. The parameter by = 1.64 fm
reproduces the 2C charge form factor while by = 1.87
fm has been chosen to reproduce the A separation en-
ergy in 32C of By = —10.7 MeV. In this case, the model
space contains the sy /2, p3/2, and p;/; orbits, thus allow-
ing configuration mixing to take place within the open p
shell.

We will consider different correlation functions which
are commonly used in the literature

(i) A Gaussian type

flr)y=1—eT""1%" (49)

with b = 0.75 fm, has been used in Refs. [2,4] in connec-
tion with the study of the nonmesonic decay in nuclear
matter. This correlation function is represented by the
dashed line in Fig. 3.

(ii) A Bessel type

f(r) =1-jo(ger) » (50)

with ¢. = 3.93 fm~!, was found to provide a good de-
scription of the correlation function for nucleon pairs in
4He [13] as calculated with the Reid soft core potential
[14]. This correlation function, depicted by the dotted
line in Fig. 3, was used in Ref. [3] in the study of the A
decay in nuclear matter.

(iii) Finally, the parametrization

1) = (1= ) br2er e (51)

with @ = 0.5 fm, b = 0.25 fm™2, ¢ = 1.28 fm, and n = 2,
provides a good description of realistic AN correlation
functions obtained with G-matrix calculations [15,16] us-
ing the Nijmegen interaction [17]. This correlation func-
tion, depicted by the solid line in Fig. 3, is the one used in
the relativistic calculations of Ref. [7] for the nonmesonic
decay of finite hypernuclei.
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FIG. 3. The AN correlation function as a function of the
relative distance ». The dashed, dotted, and solid lines cor-
respond to the Gaussian type of Eq. (49), the Bessel type of
Eq. (50), and the parametrization of Eq. (51), respectively.

TABLE I. Nonmesonic AN — NN decay rate of 3He for
the relativistic model of Ref. [7] (in units of the free A width).

Free f(r)

(Eq. (51)]
PC=C+T 0.637 0.187
PV 0.314 0.137
Total 0.951 0.324

The results of Table I show the effect of including the
correlation function of Eq. (51) in the nonmesonic de-
cay rate of 3 He using the relativistic model of Ref. [7].
Note that a reduction factor of about 3 is obtained with
respect to the results of the first column, which do not
include short range correlation effects. The reduction on
the free rate is twice as large as that obtained with the
nonrelativistic models in nuclear matter [2—4]. This was
the discrepancy that motivated the present work.

From Sec. II we have learned that these differences
must not be attributed to a relativistic effect but rather
to the different prescription on how to incorporate the
correlations. This can be clearly corroborated by ex-
amining the results of Table II, which compares the de-
cay rate of 3 He, without including form factors, for the
two nomnrelativistic correlated potentials: (i) the one of
Eq. (38), which is the prescription used in Refs. [2—4]
and has been shown to be consistent with a microscopic
interpretation of short range correlations, and (ii) the one
of Eq. (45), which is the nonrelativistic equivalent of the
relativistic model used in Ref. [7]. The results are given
for the different correlation functions described above.
Note that the rate of the fourth column based on the
potential of Eq. (45) gives a reduction near to that ob-
served in the relativistic calculations of Ref. [7], shown
in Table I, when the same correlation function [Eq. (51)]
is used. This comparison corroborates that the origin of
the discrepancies in the effect of correlations between the

TABLE II. AN — NN decay rate of 3He for different
correlation functions (in units of the free A width).

Free fr)y=1- P
Eq. (38) Eq. (45)
(o] 0.174 9.2 x 107 ¢ 0.028
T 0.495 0.309 0.077
PV 0.308 0.155 0.059
Total 0.977 0.465 0.164
Free Fr)y =1=7Jo(ger)
Eq. (38) Eq. (45)
(o] 0.174 2.2x107° 0.082
T 0.495 0.434 0.233
PV 0.308 0.249 0.156
Total 0.977 0.685 0.471
Free f(r) = (1 —e T /e? " + br2e=r/<?
Eq. (38) Eq. (45)
C 0.174 1.7x1073 0.057
T 0.495 0.448 0.159
PV 0.308 0.244 0.117
Total 0.977 0.694 0.333
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nonrelativistic approach [2-4] and the relativistic one [7]
has nothing to do with relativistic effects and is due to
the prescription used to include the correlation function
in the transition amplitude. Indeed, the strong reduction
obtained with the model of Ref. [7] is reproduced by the
nonrelativistic correlated potential of Eq. (45), which is
obtained when the pseudoscalar TNN and mnNA vertex
functions are evaluated between initial and final spinors
(as assumed in Ref. [7]) instead of using external and
intermediate spinors as the microscopic model for short
range correlations requires.

The results of Table II show that, in the standard non-
relativistic calculations of the third column, Eq. (38), the
channel more drastically affected by correlations is the
central one, the reason being that the correlation func-
tions used here have the property f(r = 0) = 0. Since
the correlated potential is V(r)f(r), the delta piece of
the interaction, which provides most of the contribution
for the central channel in the free calculation (second
column), is completely supressed. Although the delta
contribution is also removed in the prescription based on
Eq. (45), the results of the fourth column show that the
central strength is considerably larger due to the addi-
tional derivative pieces of the correlated potential. The
integrand of Eq. (32) is shown in Fig. 4 for the correla-
tion function of Eq. (51). The solid and dotted lines cor-
respond to the correlated central potential of Eqgs. (38)
and (45) respectively. Because of the change of sign
in the derivative of f(r) around 0.5 fm, the correlated
transition amplitude based on Eq. (45) shows large posi-
tive and negative contributions, which do not cancel each
other completely and end up giving an integrated central
rate much larger than that obtained from the integral
of the solid line in Fig. 4 corresponding to the poten-
tial of Eq. (38). On the other hand, it is precisely this
oscillatory behavior of the correlated potential given by
Eq. (45) that is the reason for the reduced tensor and par-
ity violating rates of the forth column in Table II with
respect to those of the third column, obtained with the
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FIG. 4. Integrand of the central transition amplitude [see
Eq. (32)], in arbitrary units, as a function of the relative dis-
tance r. The solid and dotted lines correspond to the corre-
lated potential of Egs. (38) and (45), respectively, using the
correlation function of Eq. (51).

standard procedure based on Eq. (38). The integrand for
the tensor rate is shown in Fig. 5. Here, one finds that
the positive and negative parts induced by the deriva-
tive terms of the correlated potential of Eq. (45) tend
to cancel each other, giving rise to an integrated rate
which is considerably smaller than that of the solid line,
obtained with the correlated potential of Eq. (38). A
similar behavior is obtained for the parity violating rate
and, therefore, the total rate based on Eq. (45) ends up
being much smaller than that of the appropriate calcu-
lation, based on Eq. (38). Depending somewhat on the
correlation function used, the rates based on the corre-
lated potential of Eq. (45) are a factor 2-3 smaller than
those obtained with Eq. (38). This is an important result
since, as already noted before, it explains the discrepan-
cies observed between the relativistic calculations [7] and
the nonrelativistic ones [2-4]. Our results, obtained with
nonrelativistic reductions of the Feynman amplitude, also
corroborate that the differences are inherent to the type
of prescription used to account for correlations and can-
not be attributed to a relativistic effect.

Results for the nonmesonic decay rate of 3He and
1ZC containing also the effect of a form factor are given
in Table III, where the correlation function used is the
parametrization of Eq. (51). The values I',,,, /I'A = 0.56
for $He and I'pym/T'a = 0.96 for 12C are consistent with
the experimental data [18]. Because of the short range
nature of the AN — NN transition, it has been argued
that the exchange of heavier mesons may also give a rel-
evant contribution to the decay rate. However, recent
calculations suggest that, when SRC’s and form factors
are included, the heavier mesons do not modify the decay
rate of 2C appreciably [19]. As for 3He, we must note
that the mean field picture used in the present work is a
quite crude model and calculations based on a more mi-
croscopic picture of the hypernuclear wave function are
needed. We have used a shell model wave function for
the A while it is known [20] that the short range AN re-
pulsion pushes the A wave function to the surface of the
nucleus. Then the overlap with the nucleons becomes
smaller and produces a reduced decay rate. According
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FIG. 5. The same as Fig. 4 for the tensor transition ampli-
tude [see Eq. (33)].
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TABLE IIIl. AN — NN decay rate of 3He and }?C including SRC’s and form factors (FF) (in

units of the free A width).

%He R2c
Free SRC’s SRC’s + FF Free SRC’s SRC’s + FF
c 0.174 0.002 0.008 0.285 0.003 0.013
T 0.495 0.448 0.363 0.843 0.764 0.621
PV 0.308 0.244 0.189 0.513 0.419 0.330
Total 0.977 0.694 0.560 1.641 1.186 0.964
Expt [18] 0.41 +£0.14 1.14 +0.20

to Ref. [21], this reduction is of the order of 40% and this
would produce a nonmesonic rate in §He of the order of
0.34T's, which is more consistent with experiment.

The fact that the one-pion-exchange mechanism pro-
vides nonmesonic AN — NN rates close to experiment
should not make us forget that it fails badly to provide
the ratio of neutron to proton induced A decay [6]. It
is, however, shown in Ref. [19] that the addition of other
meson exchanges can alter substantially this ratio while
leaving the nonmesonic rate practically unchanged.

VI. CONCLUSIONS

The main aim of this paper has been to find the rea-
sons for the discrepancies found in the literature on the
effect of short range correlations in the nonmesonic decay
width of A hypernuclei. The rates obtained in the rel-
ativistic model developed in Ref. [7] were much smaller
than the nonrelativistic calculations of Refs. [2-4], sug-
gesting that relativistic effects might be very important
in the nonmesonic A decay.

We have shown that the discrepancies are not due to
relativistic effects but to the way the short range cor-
relations are implemented. First, we showed that the
prescription to include correlations used in Ref. [7] leads
to different results if one uses pseudoscalar or pseudovec-
tor TNN couplings, the latter one with the derivative
acting on the pion field. This already shows a pathology
in the approach used to include correlations in Ref. [7],
since in the present problem one only needs matrix ele-
ments between positive energy components, where, in the
usual nonrelativistic approximation, these two couplings
are equivalent.

In order to understand the origin of this pathology we
constructed a schematic microscopic model for the short
range effects which provided us with the right way to in-
clude the correlations by means of a correlation function.
This allowed us to show that the prescription followed in
Ref. 7] is incorrect because it factorizes the matrix ele-
ments of the vertices as a function of the external vari-

ables, while in the appropriate method they appear as a
function of the momentum in the loop integral involved
in the correlated amplitudes. This correct prescription
is equivalent to multiplying the potential, written fully
in coordinate space, by the correlation function, which
is the procedure followed in Refs. [2-4]. However, the
nonrelativistic potential obtained with the procedure of
Ref. [7] gives rise to additional terms involving derivatives
of the correlation function.

A quantitative comparison of the 3 He nonmesonic de-
cay rate obtained by both procedures has shown that the
correct prescription gives moderate reductions of about
30% instead of reductions of about a factor of 3 found
by the incorrect one. This study has also corroborated
that the differences on the rates observed between the
relativistic model of Ref. [7] and the nonrelativistic ap-
proach of Refs. [2-4] cannot be attributed to relativistic
effects.

By taking the correct correlated potential, a realistic
correlation function, and form factors at the vertices, we
have obtained results for the nonmesonic decay width of
8He and }2C, using also realistic wave functions for the
finite nucleus instead of the infinite nuclear matter ap-
proach of Refs. [2-4]. We obtain a very close agreement
with the experimental data, especially in the case of §2C
for which a mean field description of the wave function
is a rather realistic picture. For § He, the additional con-
sideration of dynamical effects tied to the short range
AN repulsion, which pushes the A wave function more
to the surface of the nucleus, also brings the results in
good agreement with experiment.
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