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Variational Wigner-Kirkwood approach to relativistic mean field theory

M. Del Estal, M. Centelles, and X. Vin˜as
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E-08028 Barcelona, Spain
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The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field
theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-
infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory
and the fully quantal approach.@S0556-2813~97!01310-1#

PACS number~s!: 21.60.2n, 21.10.Dr, 21.65.1f
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I. INTRODUCTION

Semiclassical methods are widely used to deal with pr
erties of global character of different types of Fermi syste
like atoms, nuclei, helium, or metallic clusters~see Refs.@1,
2# for comprehensive reviews!. Concerning the nuclea
ground-state energy, the simplest approach is the semiem
ical mass formula based on the liquid drop model@3#. This
approximation gives the smooth part of the energy and
produces reasonably well the experimental values. The
cess of the mass formula is due to the fact that the fluctua
quantal correction to the nuclear energy~shell effects! is
small as compared with the average part. This allows a
turbative treatment of the shell effects that is justified from
theoretical point of view by the Strutinsky energy theore
@4#.

Actually, to obtain the correct semiclassical averaged
ergy one should solve the problem using the Strutin
smoothing. However, this is in general more difficult
handle than the quantal problem itself if realistic nuclear
tentials are used@5#. The search for alternative methods
therefore an interesting and yet open problem. One poss
ity is to use density functional theory~DFT! techniques, such
as the Thomas-Fermi~TF! method and its extensions~ETF!.
These methods can be based on the Wigner-Kirkwood~WK!
\ expansion of the density matrix@2,6#. The WK theory
provides an expansion of the particle and kinetic energy d
sities in gradients of the single-particle potential up to zero
second, or fourth order in\. These\ corrections come from
the fact that in the Hamiltonian the momentum operator d
not commute with the potential. In DFT the original W
expansion of the densityr is inverted to recast the kineti
energy density as a functionalt@r# of the density and its
gradients. If the potential part of the interaction is al
known as a functional ofr, as happens with Skyrme force
then minimization of the DFT energy leads to a variation
equation forr alone@2,6#.

Recently, the variational content of the WK expansion
the energy has been studied for a set of nonrelativistic
mions submitted to external~Woods-Saxon! or self-
consistent~Skyrme! one-body potentials@7–9#. It has been
shown that the variational solution for the particle dens
that minimizes the semiclassical energy at each order in
\ expansion is just the WK expansion ofr at the same orde
560556-2813/97/56~4!/1774~8!/$10.00
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in \. The method for solving this variational problem wa
presented in Ref.@7# and called variational Wigner
Kirkwood ~VWK ! theory.

The VWK theory has been mainly applied to the calcu
tion of the surface energy coefficient in semi-infinite nucle
matter ~SINM!. It has been found to reproduce the quan
value nicely@7–9#. From a comparison of VWK and DFT
calculations@2,9,10#, one can see that the agreement with t
quantal results is worse in DFT~even at order\4! than in
VWK theory @7–9#.

In recent years the investigation of nuclear systems
means of a relativistic approach has attracted a growing
terest. Especially successful has been the phenomenolo
relativistic mean field theory~RMFT! @11#. The semiclassi-
cal approach to the relativistic theory has been rece
worked out and\ corrections to the earlier established re
tivistic TF model have been derived@12–14#, both at the WK
and at the relativistic DFT~RDFT! level. It is the purpose of
this paper to formulate, to second order in\, the relativistic
variational Wigner-Kirkwood ~RVWK! theory, i.e., the
VWK approach to RMFT. We will do that based on th
nonlinear s-v model @11,15#. We do not attempt here to
investigate the quality of the relativistic model. Rather, w
want to compare the new semiclassical theory with the us
RDFT, adopting the quantal results as a standard, and tr
find a good alternative to the Strutinsky averaging procedu
As an application of the theory we will calculate the surfa
energy coefficient in SINM.

II. RELATIVISTIC VARIATIONAL WIGNER-KIRKWOOD
THEORY

Our starting point in setting the RVWK theory is the co
strained energyEc of a finite nucleus:

Ec5E2lA5E dr @Etot~r !2lr~r !#, ~1!

whereEtot is the total energy density and the chemical pote
tial l is the Lagrange multiplier that ensures the correct p
1774 © 1997 The American Physical Society
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56 1775VARIATIONAL WIGNER-KIRKWOOD APPROACH TO . . .
ticle numberA. Assuming for simplicity the nucleus to b
symmetric and uncharged, in the relativistic nonlinears-v
modelEtot reads1 @11,15#

Etot5E1gvVr2mr1
1

2
@~“f!21ms

2f2#

2
1

2
@~“V!21mv

2V2#1
1

3
bf31

1

4
cf4. ~2!

In this equationV and f are the vector and scalar field
respectively, and the energy densityE stands for
t1mr2gsfrs , with t the relativistic kinetic energy densit
andrs the scalar density. Quantally, we haver5(awa

†wa ,
rs5(awa

†bwa , and t5(awa
†(2 i a•“1bm2m)wa on a

single-particle basiswa . The free couplings and meso
masses of the relativistic energy functional are usually fix
by adjusting them to reproduce nuclear matter propertie
experimental data on finite nuclei within the Hartree appro
mation.

To second order in the WK expansion one has

r5r01r2 , rs5rs,01rs,2 , E5E01E2 . ~3!

The well-known relativistic TF expressions are

r05
2kF

3

3p2 , ~4!

rs,05
m*

p2 FkFeF2m* 2 ln
kF1eF

m* G , ~5!

E05
1

4p2 FkFeF
31kF

3eF2m* 4 ln
kF1eF

m* G , ~6!

with the definition of a local Fermi momentum

kF5A~l1m2gvV!22m* 2, ~7!

a Dirac effective massm* 5m2gsf, and eF5AkF
21m* 2.

The second-order WK correctionsr2 , rs,2 , andE2 contain
squared gradients and Laplacians of the fieldsV andf. Their
expressions are considerably lengthier and will not be rep
duced here as they can be found in Refs.@12–14#. On ac-
count of Eqs.~3!–~7!, the WK constrained energy densi
Etot2lr becomes a functional of the vector and scalar fie
only. This is in accordance with the fact that in the relat
istic framework there exist two different densities, name
the baryon and the scalar densities, in contrast to the non
ativistic situation where the basic quantity is the ground-s
density, related to the one-body potential through the Fe
momentum.

With Eq. ~3!, however, the constrained energy~1! does
not represent yet a complete separation into\0 and\2 parts.
The vector and scalar fields and the chemical potential
have to be split into zeroth- and second-order term
V5V01V2 , f5f01f2, andl5l01l2 . For instance,

1Units \5c51 are used, except in the occasions where we w
\ to indicate the order of the semiclassical expansions.
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E5E0~V,f,l!1E2~V,f,l!1•••

5E0~V0 ,f0 ,l0!1
]E0

]V0
V21

]E0

]f0
f21

]E0

]l0
l2

1E2~V0 ,f0 ,l0!1O~\4!. ~8!

In what follows, the WK functionalsr0 ,r2 ,E0 ,E2 , etc., are
to be evaluated at theV0 , f0 , and l0 values. Introducing
m5l01m, the separation ofEc into pure TF (\0) and
second-order (\2) contributions will then read

Ec
~0!5E dr H E01~gvV02m!r01

1

2
@~“f0!21ms

2f0
2#

2
1

2
@~“V0!21mv

2V0
2#1

1

3
bf0

31
1

4
cf0

4J , ~9!

Ec
~2!5E dr H E21

]E0

]V0
V21

]E0

]f0
f21

]E0

]l0
l2

1~gvV02m!S r21
]r0

]V0
V21

]r0

]f0
f21

]r0

]l0
l2D

1~gvV22l2!r02f2~¹22ms
2!f01V2~¹22mv

2!V0

1~bf0
21cf0

3!f2J . ~10!

Straightforward evaluation of the derivatives inEc
(2) simpli-

fies it to

Ec
~2!5E dr$E21~gvV02m!r21~gvV22l2!r02gsf2rs,0

2f2~¹22ms
2!f01V2~¹22mv

2!V0

1~bf0
21cf0

3!f2%. ~11!

The gist of the derivation of the variational equatio
from the constrained energyEc5Ec

(0)1Ec
(2)1O(\4) in the

RVWK theory is the fact that the minimization must be pe
formed for each order in\ separately@7# ~i.e., dEc

(0)50,
dEc

(2)50!. This point is carefully discussed in the Appendi
Defining Ei

eff[Ei1(gvV02m)r i with i 50,2 the following
relationships hold:

dEi
eff

dV0
5gvr i ,

dEi
eff

df0
52gsrs,i . ~12!

With the aid of Eqs.~12!, at lowest order one gets from Eq
~9! the usual Euler-Lagrange equations for the TF fieldsV0
andf0 @11,15#:

~¹22mv
2!V01gvr050, ~13!

~¹22ms
2!f01gsrs,02bf0

22cf0
350. ~14!

The Fermi momentum at the TF level is easily found fro
Eq. ~7!: k05A(m2gvV0)22m0*

2. It should be noticed tha
the density is already normalized at the TF level@7# ~see the
Appendix for details!:

e
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A5E drr0 . ~15!

Consequently, the full\2 contribution toA must vanish:

E dr Fr21
]r0

]V0
V21

]r0

]f0
f21

]r0

]l0
l2G

5E dr Fr21
]r0

]k0
k2G50 ~16!

~see below for the correctionk2 to the Fermi momentum!.
The second-order Euler-Lagrange equations are der

from Eq. ~11! and, using Eqs.~12!, turn out to be

~¹22mv
2!V21gvr22gs

]rs,0

]V0
f21

]r0

]V0
~gvV22l2!50,

~17!

~¹22ms
2!f21gsrs,22S 2bf013cf0

22gs

]rs,0

]f0
Df2

2
]r0

]f0
~gvV22l2!50. ~18!

In practice, the procedure to solve these variational equat
for a finite nucleus withA particles is the following. First,
one solves the TF equations~13!–~15! in the usual manne
@11# to find the fieldsV0 andf0 and the chemical potentia
l0 . Inserting in Eqs.~17! and~18! the TF solutions, one get
two linear differential equations to compute the so-far u
known correctionsV2 andf2 . These quantities will depen
on l2 , which in turn has to be determined so that the n
malization condition~16! is satisfied. Equations~16!–~18!
will be iterated until consistency is reached. We will sho
below, however, that to calculate the correction of order\2

to the energy it is not necessary to obtainV2 , f2 , andl2 ;
only the TF solutionsV0 , f0 , andl0 are needed.

Once the solutions for the fields and the chemical pot
tial are known, it is immediate to obtain the Fermi mome
tum to second order by direct expansion of Eq.~7!:

kF5k01k25A~m2gvV0!22m0*
21

e0

k0
~l22gvV2!

1gs

m0*

k0
f2 . ~19!

In principle, due to divergences at the classical turning po
in RVWK theory the densities and potentials beyond the
order must be considered as distributions. However, they
very efficient to compute expectation values by integr
over the space@6,12,16#.

It is worthwhile noting that the same variational equatio
~13!, ~14! and ~17!, ~18! can be obtained if we start by d
rectly varying Eq.~1! with respect toV andf, now employ-
ing expressions~4! for r and ~6! for E, and only afterwards
do we perform in the new Euler-Lagrange equations
splitting of V, f, and l into their \0 and \2 parts. Thus,
expansion and variation can be interchanged. For brevity
ed

ns

-

-

-
-

t,
F
re
s

s

e

e

prove this statement for the vector field equation only. T
variation with respect toV of Eq. ~1! before expansion re
sults in

~¹22mv
2!V1gvr50, ~20!

with r given by Eq.~4!. Now one makesV5V01V2 and
r5r01(]r0 /]V0)V21(]r0 /]f0)f21(]r0 /]l0)l21r2 .
It is simple to see that

gv

]r0

]f0
5gvgs

2

p2 k0m0* 52gs

]rs,0

]V0
, ~21!

gv

]r0

]l0
5gv

2

p2 k0e052
]r0

]V0
. ~22!

Using these results and separating Eq.~20! into each order
allows one to recover the previous variational equations~13!
and ~17!.

On the other hand, one can follow an alternative route t
consists in working withkF as if it were an independen
variable ofV andf, i.e., without replacing it by Eq.~7!. In
this case, after expanding to order\2 (kF5k01k2), minimi-
zation with respect tok0 (dEc

(0)/dk05dEc
(2)/dk050) yields

two variational equations which are just the zeroth- a
second-order contributions tokF given by Eq.~19!. There-
fore, at each order in\, the relation~7! betweenkF and the
fieldsV andf is the variational Euler-Lagrange equation f
kF , a basic test of consistency. It also can be shown
when kF is kept as an independent variable, the variatio
equations for the fields reduce to Eqs.~13!, ~14! and ~17!,
~18!.

On the basis of Eqs.~13! and~14! it is easy to verify that
several contributions to Eq.~11! cancel out so that, taking
into account the condition~15!, the correction of order\2 to
the total energyE5Ec1lA finally is

E~2!5E dr @E21~gvV02m!r2#. ~23!

Since the quantitiesE2 andr2 are to be evaluated using th
V0 andf0 values, we arrive at the remarkable result that
calculate the energy to second order only the lowest-or
TF equations~13! and ~14! need to be solved. In this sens
we have a perturbational approach, as the calculation of
energy to a given order in\2 requires knowledge of the
solution only to the next lower order. A similar idea of in
cluding \2 corrections perturbatively, but in a rather mo
heuristic way, has been carried out in Ref.@17#. In particular,
this calculation differs from the present method in that t
chemical potential is not split into\0 and\2 parts.

Though we have derived the VWK equations for the re
tivistic energy functional~2!, it is easy to realize that the
method is more general and that it can be applied to m
realistic functionals~e.g., with an isovectorr meson, other
types of scalar couplings, or self-interactions of the vec
field!. To conclude this section, we would like to mentio
again that the semiclassical calculation provides only the
erage part of the quantal energy. However, a semiclass
method can be useful to replace some complicated full qu
tal calculations@6#. In such cases the remaining shell corre
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tion should be added perturbatively to the semiclass
quantity, as indicated by the Strutinsky procedure or the
pectation value method@2,5,18#.

III. COMPARISON WITH RELATIVISTIC DENSITY
FUNCTIONAL THEORY

The normalization condition~15! brings us to the discus
sion of an important difference between the RVWK theo
we have just introduced and the standard RDFT@12,19,20#.
While in RVWK theory the result of the integral~16! van-
ishes, RDFT is more restrictive and reinforces this condit
by imposing that the integrand vanishes locally. Then,
RDFT one has that, at each point,

k̃252
p2

2k̃ 0
2
r2 . ~24!

We write k̃0 andk̃2 to distinguish them fromk0 andk2 of the
RVWK theory. Owing to the ansatz~24!, in RDFT the func-
tional r0( k̃0) equals the exact densityr, i.e., r52k̃ 0

3/3p2.
Notice that at the TF level, RVWK theory and RDFT a
equivalent.

Next we briefly recall the derivation of the RDFT varia
tional equations. In RDFT the scalar and vector fields and
chemical potential are not explicitly split into\0 and \2

parts@12,19,20#; only kF is. Thus, expanding Eq.~2! into k̃0

and k̃2 and utilizing Eq.~24!, the RDFT constrained energ
to second order is

Ec
RDFT5E dr H E01 Ẽ22 ẽ0r̃21gvrV2~l1m!r

1
1

2
@~“f!21ms

2f2#2
1

2
@~“V!21mv

2V2#

1
1

3
bf31

1

4
cf4J , ~25!

with ẽ05Ak̃ 0
21m* 2. The notationẼ2 and r̃2 means that in

the WK expressions forE2 andr2 , the gradients of the field
V have been inverted in favor of the gradients ofk̃0 and f
~or r andm* ! as described in Refs.@12, 19, 20#, where the
expression of the functionalE2

RDFT[ Ẽ22 ẽ0r̃2 can be found.
From Eq. ~25!, the RDFT variational equation fork̃0

(dEc
RDFT/d k̃050) becomes@12,19,20#

ẽ01gvV2l2m2
p2

2k̃0ẽ0

r̃250. ~26!

Actually, Eq. ~26! corresponds again to the development
Eq. ~7! for kF ~equivalently, eF5m2gvV! into k̃0 and
k̃2 : If we expandeF as ẽ01 ẽ2 , the corrective term is jus
ẽ252p2r̃2 /2k̃0ẽ0 . The RDFT variational equations for th
vector and scalar fields read@12,19,20#

~¹22mv
2!V1gvr50, ~27!

~¹22ms
2!f1gsrs

RDFT2bf22cf350, ~28!
al
x-

n
n

e

f

where

rs
RDFT5rs,01 r̃s,22

m*

ẽ0
r̃2 ~29!

and r̃s,2 indicates that the gradients ofV have been inverted
as inẼ2 andr̃2 . Note that having varied the energy~25! as a
whole, and not independently for each order in\, the final
RDFT solution of Eqs.~26!–~28! mixes different powers of
\. Nevertheless, the RDFT functionals are free from div
gence problems at the classical turning point and gener
provide a good description of the local density profi
@2,7,12#.

IV. NUMERICAL APPLICATION

To exemplify all the above on a concrete case, we sh
present numerical calculations of the surface energy co
cient in SINM for several parameter sets of the relativis
interaction. The semi-infinite system corresponds to a o
dimensional geometry where half the space is filled w
nuclear matter at saturation and the other half is empty.
particle density then varies only along one axis, e.g., thz
axis, and develops a surface aroundz50. Following Ref.@3#,
the surface energy coefficientEs in SINM is written as

Es54pr `
2 E

2`

`

dz@Etot~z!2avr~z!#, ~30!

wherer ` andav refer to the radius and energy per particle
saturated nuclear matter. In the self-consistent problem
SINM, av equals the chemical potentiall, owing to the
Hugenholtz–Van Hove theorem. Consequently, the surf
energy is stationary with respect to variations of the dens
Our previous formulation can be fully applied to the on
dimensional semi-infinite geometry@compare Eqs.~1! and
~30!# with the simplification thatl is fixed and thusl250.

First, we will discuss SINM results for the linears-v
model (b5c50). In spite of its simplicity, the linear mode
allows one to investigate the incidence of the gradient c
rections more easily. Second, we will consider the more g
eral nonlinears-v model. We are mainly interested in ex
tracting the average part of the energy associated withs-v
interactions whose parameters have been obtained fro
mean field calculation. Within the framework of the RMF
and taking the quantal Hartree calculations as a standard
authors of Refs.@12, 18–21# studied extensively the quality
of the relativistic TF and RDFT~to order \2! approxima-
tions, and how the results depend on the parametrizatio
the effective interaction. It was seen that one must anal
more than just one single parameter set to draw conclus
about the quality of the semiclassical approximations, fo
much depends on some properties of the interaction. For
application to the surface of SINM, the mass of the sca
meson,ms , and the effective mass at saturation,m*̀ /m, have
the major influence. The discussion that follows is not s
nificantly altered by changing the remaining saturation pr
erties if they lie within ordinary values@19–21#.

Table I collects the results for the surface energy coe
cient Es calculated in the linears-v model. Table II shows
the corresponding surface thicknesst of the density profile
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~standard 90% to 10% falloff distance!. The nuclear matter
properties of the linear model are as follows@20#: volume
energyav5215.75 MeV, densityr`50.193 fm23, incom-
pressibilityK5546 MeV, and effective massm*̀ /m50.56.
The values in Table I correspond to the discussed semic
sical approaches~TF, RVWK, and RDFT! and the fully
quantal Hartree~H! calculation.~See Ref.@22# for details on
the quantal treatment of relativistic SINM.! In any WK cal-
culation beyond the TF order one is faced with dealing w
divergences at the turning point. The main difficulty is
treat them in such a way that the principal part of the ene
can be extracted. In practice, we encountered only one di
gent term in the WK functionalE2 . To get rid of the diver-
gence we added and subtracted the analytical asymptoti
tegrand, so that after having isolated the infinity we rejec
it. Other possibilities are the method of integrals in the co
plex plane@16# or low-temperature expansions@2#.

The saturation properties of infinite nuclear matter
governed by the meson coupling-to-mass ratiosgs

2/ms
2 and

gv
2/mv

2 and by the nonlinear couplingsb and c @11,15#. On
the contrary, the nuclear surface properties extracted f
SINM depend on the meson coupling constants and ma
separately. The mass of the vector meson,mv , is given its
physical value~783 MeV!. The mass of the scalar meso
ms , should lie somewhere between 400 and 700 MeV, si
the nonexperimentals particle is interpreted as simulatin
two-pion exchange contributions. For our purposes, it will
sufficient to look at the region 400 MeV<ms<550 MeV.
The scalar mass sets the range of the scalar interaction
therefore, there is a strong correlation ofEs andt with ms . A
largerms determines a shorter range of the attractive pot
tial, leading to a steeper surface and to smallerEs and t, as
seen from Tables I and II.

The TF surface energy coefficients in Table I overe
mate the quantal ones from;4% for ms5400 MeV to
;13% forms5550 MeV. When the\2 gradient corrections
are taken into account, one finds that the surface ener
calculated in the RVWK approach are larger than the H
sults, whereas the RDFT energies are smaller than in H
culations. In both casesEs is brought closer to the H valu

TABLE I. Linear s-v model. Surface energy coefficient in th
quantal Hartree approach,Es

H , and difference of the relativistic TF
DFT, and VKW calculations toEs

H . All quantities are in MeV.

ms Es
H Es

TF2Es
H Es

DFT2Es
H Es

VWK2Es
H

400 40.48 1.74 20.74 0.22
450 33.85 2.06 21.00 0.29
500 28.19 2.41 21.42 0.35
550 23.05 2.96 22.12 0.57

TABLE II. Linear s-v model. Surface thicknesst ~in fm!.

ms tH tTF tDFT

400 2.98 3.22 2.86
450 2.38 2.71 2.27
500 1.94 2.27 1.72
550 1.64 1.88 1.30
s-

y
r-

in-
d
-

e

m
es

e

e

nd,

-

-

ies
-
l-

than in the TF calculation. In RVWK theory the deviation
lie between 0.5% (ms5400 MeV) and 2.5%
(ms5550 MeV), while in RDFT they range from 2%
(ms5400 MeV) to 9% (ms5550 MeV). From Table I one
can check that the differencesEs

TF2Es
DFT and Es

TF2Es
VWK

show an upward tendency with the scalar massms , and that
Es

TF2Es
DFT is systematically larger thanEs

TF2Es
VWK . These

trends can be qualitatively understood looking at the val
of the surface thicknesst in Table II. The inhomogeneity
corrections of RVWK theory and RDFT concentrate at t
nuclear surface, where the gradients are more importan
flatter surface~small ms , large t! results in smaller correc
tions. In RVWK theory one calculates the gradients with t
TF density distributions that have a larger thickness than
RDFT profiles. Therefore, one expects the RVWK modific
tions to the TF energy to be smaller.

For relativistic harmonic oscillator scalar and vect
fields, it has been numerically shown@12# that the energies
calculated using the Strutinsky average and the WK
proach to second order almost coincide, a well-known fac
the nonrelativistic frame@5#. It is thus reasonable to identify
approximately the difference between H and RVWK calc
lations in the self-consistent problem with the quantal effe
~in SINM, Friedel oscillations, and the fluctuating part of th
spin-orbit force@21,22#!. Even though the quantal surfac
energy coefficient is acceptably reproduced by RDFT in g
eral, the difference with H calculations is larger than
RVWK theory and displays a stronger dependence on
particular value ofms . Altogether RVWK theory appears a
more reliable to estimate the quantal effects. This featu
also found in the nonrelativistic context@7#, stems from the
following reasons. First, RVWK theory properly sorts o
the different orders in\. Second, the restrictive local cond
tion ~24! for normalization within RDFT is replaced by th
more logical global condition~16! in RVWK theory.

The surface energy is also strongly correlated with
value of the effective mass in nuclear matterm*̀ /m
@9,19,20#. To analyze this fact we have considered the no
linear parameter sets of Ref.@20#. They have
av5215.75 MeV,r`50.16 fm23, andK5200 MeV, with
0.55<m*̀ /m<0.80 and 400 MeV<ms<550 MeV which
covers the range of commonly accepted values form*̀ /m
andms . Figure 1 illustrates the dependence of the differen
between the TF and H surface energy coefficients onm*̀ /m
and ms . The discrepancies between the TF and H res
exhibit a nearly linear behavior withm*̀ /m. For small values
of the effective mass the TF surface energy coefficients
larger than the H ones. They practically agree with the
results form*̀ /m.0.65, and become smaller than the H r
sults for largerm*̀ /m. These trends have been found in
similar fashion for the total energies of finite nuclei in th
s-v model @18# and in nonrelativistic calculations@9#.

Figure 2 displays the difference in the surface energy
efficient between the semiclassical approaches to sec
order and H calculations. Again, for all the analyzed para
eter sets, we observe that the RVWK energies are larger
the H ones while the RDFT energies are smaller. Also,
deviations to the H values are an increasing function of
scalar massms . Their dependence onms and onm*̀ /m is
weaker in RVWK theory than in RDFT~and, in both
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approaches, much weaker than in the TF method!. Finally,
one realizes that the semiclassical surface energies can
large discrepancies with the quantal value for some par
eter sets~e.g., ms5550 MeV andm*̀ /m50.55 and 0.60!.
This is due to the fact that in such cases the thickness of
particle density and local effective mass is very small. Th
gradients are therefore very large, causing the semiclas
expansions to break down.

V. SUMMARY

In this paper we have developed the relativistic variatio
Wigner-Kirkwood theory, extending first work in the nonre
ativistic domain. This generalization is not trivial because
the presence of two different fields. The RVWK theory h

FIG. 1. Nonlinears-v model. Difference between the surfac
energy coefficients obtained in the relativistic TF and H approxim
tions, as a function of the effective mass at saturationm*̀ /m and the
scalar massms .

FIG. 2. Same as Fig. 1 for the difference of the second-or
VWK and DFT calculations to the H results. A stable numeric
solution could not be achieved in the DFT case whenm*̀ /m50.55
andms5550 MeV, and hence this result is not shown.
ow
-

he
ir
cal

l

f
s

been based on a strict expansion of the energy in power
\, together with a global normalization to the particle num
ber. Self-consistency enters at the TF level, whose solutio
the input to calculate the higher-order corrections. In obta
ing the variational equations we have shown that the step
variation and expansion can be interchanged. We also h
discussed the equivalence of working with the scalar a
vector fields as the fundamental variables or with the Fe
momentum as an additional variable. The new theory
been compared with the RDFT.

Semi-infinite nuclear matter calculations in the relativis
problem have shown that the average part of the qua
surface energy is acceptably estimated in both the RVW
and RDFT approaches. However, for a quantitative estim
of the quantal effects, it has been seen that the RVWK the
is preferable. In addition, it must be considered an advant
of RVWK theory that its quality is less dependent on t
properties of the effective interaction than in the TF a
RDFT approximations.
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APPENDIX

Without loss of generality the variational problem a
dressed in Sec. II can be formulated as follows. Letf @c# and
g@c# be two functionals ofc(r ). Suppose they admit an
expansion in powers of a small parameter~say,\! and con-
sider the problem of finding the functionc which extremizes

E dr f @c# ~A1!

subject to the constraint

E drg@c#5A, ~A2!

up to a given order in the expansion~say, second order!. For
this purpose one constructs the auxiliary functional

K@c,l#5E dr f @c#2lF E drg@c#2AG , ~A3!

wherel is called a Lagrange multiplier. In obvious notatio
expansion ofK@c,l# to second order in the small paramet
givesK5K01K2 with

K0@c0 ,l0#5E dr $ f 0@c0#2l0g0@c0#%1l0A, ~A4!
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K2@c0 ,c2 ,l0 ,l2#5E dr H f 2@c0#2l0g2@c0#

1
d

dc0
~ f 02l0g0!c22l2g0@c0#J

1l2A. ~A5!

According to textbook theory of Lagrange multipliers,
locate the extrema of Eq.~A1! with the restriction~A2!, one
has to seek the critical points of the auxiliary functionalK.
In doing this, one treatsc0 andc2 as independent variable
because the constraint has already been taken into acc
through the Lagrange multipliers. Thus, we have

dK

dc0
5

dK

dc2
50,

]K

]l0
5

]K

]l2
50. ~A6!

The variation ofK5K01K2 with respect toc0 produces

d

dc0
~ f 02l0g0!1

d

dc0
~ f 22l0g22l2g0!

1
d

dc0
F d

dc0
~ f 02l0g0!c2G50, ~A7!

and from the variation with respect toc2 one obtains

d

dc0
~ f 02l0g0!50. ~A8!

The derivatives onl0 andl2 yield, respectively,

E dr H g0@c0#1g2@c0#1
dg0

dc0
c2J 5A, ~A9!

E drg0@c0#5A. ~A10!

Equation~A8! is just

dK0

dc0
50. ~A11!
l.
unt

Inserting Eq.~A8! into Eq. ~A7! shows that Eq.~A7! is
equivalent to

dK2

dc0
50. ~A12!

Equation~A10! tells us that the lowest order already fulfil
the restriction condition~A2!, and in view of Eq.~A9! the
total second-order contribution toA vanishes:

E dr H g2@c0#1
dg0

dc0
c2J 50. ~A13!

Therefore, one can paraphrase the variational problem u
consideration as follows. Minimization must be perform
for each order in the expansion parameter separately,
~A11! and~A12!, and the constraint must be satisfied by t
zeroth-order solution. Oncec0 andl0 are known by solving
Eqs.~A10! and~A11!, they are inserted into Eqs.~A12! and
~A13! to calculate the second-order correctionsc2 andl2 .

Expanding Eq.~A1!,

E dr f @c#5E dr H f 0@c0#1 f 2@c0#1
d f 0

dc0
c2J .

~A14!

Using Eqs.~A8! and ~A13!,

E dr
d f 0

dc0
c252l0E drg2@c0#. ~A15!

And, finally,

E dr f @c#5E dr$ f 0@c0#1 f 2@c0#2l0g2@c0#%.

~A16!

This result shows that the extremum of Eq.~A1! can be
computed to second order from the knowledge ofc0 andl0
only. We then observe that the whole procedure is consis
with the spirit of perturbation theory, since the lowest-ord
solution serves as the input to calculate the higher-order
rections. It furthermore guarantees that different powers
the expansion parameter do not mix at each order of
expansion.
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@9# X. Viñas, M. Centelles, M. Durand, and P. Schuck, inPro-

ceedings of the International Conference on Many-Body Ph
ics, Coimbra, 1993, edited by C. Fiolhaiset al. ~World Scien-
tific, Singapore, 1994!, p. 383.



ys

l.

J.

56 1781VARIATIONAL WIGNER-KIRKWOOD APPROACH TO . . .
@10# J. Treiner and H. Krivine, Ann. Phys.~N.Y.! 170, 406 ~1986!;
W. Stocker, J. Bartel, J. R. Nix, and A. J. Sierk, Nucl. Ph
A489, 252 ~1988!.

@11# B. D. Serot and J. D. Walecka, Adv. Nucl. Phys.16, 1 ~1986!;
B. D. Serot, Rep. Prog. Phys.55, 1855~1992!.
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