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Variational Wigner-Kirkwood approach to relativistic mean field theory
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The recently developed variational Wigner-Kirkwood approach is extended to the relativistic mean field
theory for finite nuclei. A numerical application to the calculation of the surface energy coefficient in semi-
infinite nuclear matter is presented. The new method is contrasted with the standard density functional theory
and the fully quantal approacf50556-28137)01310-1

PACS numbegs): 21.60—n, 21.10.Dr, 21.65:f

[. INTRODUCTION in 2. The method for solving this variational problem was
presented in Ref.[7] and called variational Wigner-
Semiclassical methods are widely used to deal with propKirkwood (VWK) theory.

erties of global character of different types of Fermi systems The VWK theory has been mainly applied to the calcula-

like atoms, nuclei, helium, or metallic clusteisee Refs[1, tion of the surface energy coefficient in semi-infinite nuclear

2] for comprehensive reviews Concerning the nuclear matter(SINM). It has been found to reproduce the quantal

ground-state energy, the simplest approach is the semiempialue nicely[7—9]. From a comparison of VWK and DFT

ical mass formula based on the liquid drop mofBjl This  calculationg2,9,10, one can see that the agreement with the

approximation gives the smooth part of the energy and requantal results is worse in DF{even at orde:*) than in

produces reasonably well the experimental values. The sug/wK theory [7—9].

cess Of the mass formula iS due to the faCt that the ﬂuctuating In recent years the investigation Of nuc|ear Systems by

quantal correction to the nuclear ener¢ghell effects is  means of a relativistic approach has attracted a growing in-
small as compared with the average part. This allows a pefgrest. Especially successful has been the phenomenological

turbative treatment of the shell effects that is justified from a.g|5tivistic mean field theoryRMFT) [11]. The semiclassi-
theoretical point of view by the Strutinsky energy theoremcaI approach to the relativistic theory has been recently

[4] . . . worked out andi corrections to the earlier established rela-
Actually, to obtain the correct semiclassical averaged en;. . . .

: : tivistic TF model have been derivg¢ti2—14, both at the WK

ergy one should solve the problem using the Strutinsky

smoothing. However, this is in general more difficult to f?r?d at the :el?t'V'StIICtDFIRDFD I((jevel(.j Itrf;S ttEe pL:rFt)_oset_of
handle than the quantal problem itself if realistic huclear po- IS paper to formuiate, to second ordeminthe relativistic

tentials are use@5]. The search for alternative methods is Variational Wigner-Kirkwood (RVWK) theory, i.e., the
therefore an interesting and yet open problem. One possibilV WK approach to RMFT. We will do that based on the
ity is to use density functional theoffpFT) techniques, such honlinear o-» model [11,15. We do not attempt here to
as the Thomas-FerniTF) method and its extensiofETF). investigate the quality of the relativistic model. Rather, we
These methods can be based on the Wigner-Kirkwik) want to compare the new semiclassical theory with the usual
7 expansion of the density matrij2,6]. The WK theory RDFT, adopting the quantal results as a standard, and try to
provides an expansion of the particle and kinetic energy derfind a good alternative to the Strutinsky averaging procedure.
sities in gradients of the single-particle potential up to zerothAs an application of the theory we will calculate the surface
second, or fourth order ifi. These# corrections come from energy coefficient in SINM.
the fact that in the Hamiltonian the momentum operator does
not commute with the potential. In DFT the original WK
expansion of the density is inverted to recast the kinetic 1. RELATIVISTIC VARIATIONAL WIGNER-KIRKWOOD
energy density as a functionalp] of the density and its THEORY
gradients. If the potential part of the interaction is also ) o , ,
known as a functional of, as happens with Skyrme forces,  OUr starting point in setting the RVWK theory is the con-
then minimization of the DFT energy leads to a variationalStrained energ¥. of a finite nucleus:
equation forp alone[2,6].

Recently, the variational content of the WK expansion of
the energy has been studied for a set of nonrelativistic fer- e YA _
mions submitted to externalWoods-Saxon or self- E.=E AA_J’ dr[&alr) —Ap(r)], 1)
consistent(Skyrme one-body potential§7—9]. It has been
shown that the variational solution for the particle density
that minimizes the semiclassical energy at each order in thehere&, is the total energy density and the chemical poten-
# expansion is just the WK expansion @ht the same order tial \ is the Lagrange multiplier that ensures the correct par-
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ticle numberA. Assuming for simplicity the nucleus to be E=Ey(V,p,N)+E(V,p,N)+ -+
symmetric and uncharged, in the relativistic nonlinea®
model &y reads [11,15 & 9& 9&

. =&(Vo,bo,No) + (9_\/0V2+ r%d’z"‘ (9_)\0)\2
Eo=E+9,Vp—mp+ S[(V )2+ mig?] +E(Vo, b0, ho) + O(h%). ®

1 TR S In what follows, the WK functional®g,p,,&,&,, €tc., are

S L(VV)T+mVo]+ 2bé™+ 7 e (2)  to be evaluated at th¥y, ¢, and\, values. Introducing
w=X\o+m, the separation oE, into pure TF ¢°) and

In this equationV and ¢ are the vector and scalar fields, Second-order#(*) contributions will then read

respectively, and the energy density stands for

T+ mMp—gsdps, With Tt.he relativistic kinetic energy gensity E(CO)=f dr

and p the scalar density. Quantally, we haye= ¢, ¢,

pS:EaQDZﬂ(Pai and T:Eagol(_ia'V+ﬂm_m)¢a on a

1 2, 2,2
Et(9,Vo—u)pot 5[(V¢>0) +mg ¢g]

1 1 1
single-particle basisp,. The free couplings and meson _5[(VV°)2+ m2V3]+ §b¢8+ Zc¢>3 , 9)
masses of the relativistic energy functional are usually fixed
by adjusting them to reproduce nuclear matter properties or
experimental data on finite nuclei within the Hartree approxi- g(2) — J' dri &+ (9_50\/ + (9_504, + ‘9_50)\
mation. ¢ 25Ny 2 dgy P Ny P
To second order in the WK expansion one has
RCRSN) PRSI PRSI
p=potpz, Ps=psotpsa E=EtE. (9 TP v, T2 g 2T ang 2
The well-known relativistic TF expressions are +(9, V2= N2)po— 2(VZ—M3) o+ Vo(V2—m2) Vg
2kE b2 3
Po=5—3, (4) +(bpg+cdy) by (10
37
- ket e Straightforward evaluation of the derivativest* simpli-
- _ % 2 ok - .
Ps0="2 Keep—m*< In | (5) fiesitto
1 ket e E<2>:fdr5+ Vo— +(9,Va—N2)po—
fo= oz keed + K ep—m** In Fm* Fl © c {&+(9,Vo— ) p2t+(9,V2—N2) po—9sP2ps0
, . , — $o(V2=mZ) o+ Vo(VZ—m2) Vg
with the definition of a local Fermi momentum 5 5
+ (bdo+cdp) da}- (1)
ke=V(A+m—g,V)?—m*?, (7

The gist of the derivation of the variational equations
a Dirac effective mass™* =m—g.¢, and eg= \/kzF—i—m*Z_ from the constrained enerdy,=E+E®@ + O(#*) in the
The second-order WK corrections, ps», and&, contain ~ RVWK theory is the fact that the minimization must be per-
squared gradients and Laplacians of the fisdldmd¢. Their  formed for each order i separately{7] (i.e., 5Eg°):0,
expressions are considerably lengthier and will not be repr05E(02):0). This point is carefully discussed in the Appendix.
duced here as they can be found in R¢f2—14. On ac-  Defining £&"=¢ + (g,Vo— 1) p; With i=0,2 the following
count of Egs.(3)—(7), the WK constrained energy density relationships hold:
Eot— Ap becomes a functional of the vector and scalar fields
only. This is in accordance with the fact that in the relativ- o5& o&
istic framework there exist two different densities, namely, EVARLLE W: ~OsPs,i - (12
the baryon and the scalar densities, in contrast to the nonrel- 0 0

ativistic situation where the basic quantity is the ground-stat§yith the aid of Eqs(12), at lowest order one gets from Eq.
density, related to the one-body potential through the Fermig) the usual Euler-Lagrange equations for the TF fialgs

momgntum. . and ¢ [11,15;
With Eg. (3), however, the constrained ener@l) does
not represent yet a complete separation fifteand#? parts. (V32— mf)Vo+ 9,p0=0, (13
The vector and scalar fields and the chemical potential also
have to be split into zeroth- and second-order terms: (V2—m2) o+ gspso— bp2—cp3=0. (14)

V:VO+V2, ¢:¢O+ ¢2, and)\:)\o+ )\2. For instance,
The Fermi momentum at the TF level is easily found from
Eq. (7): ko= (n—g,Vo)?—miZ. It should be noticed that

lunitsh=c=1 are used, except in the occasions where we writethe density is already normalized at the TF lej@l(see the
# to indicate the order of the semiclassical expansions. Appendix for detailg
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prove this statement for the vector field equation only. The
A= f drpo. (19  variation with respect to&/ of Eq. (1) before expansion re-
sults in
Consequently, the fult? contribution toA must vanish:
auenty (V2-m)V+g,p=0, (20)
f dr| po+ @VZJr ﬂ(ﬁﬁ @)\2} with p given by Eq.(4). Now one makes/=V,+V, and
No o INo p=pot (dpo! NVo)Vat+(dpol ddo) pat(IpolINg) N2+ pa.

It is simple to see that

dpo
Ko dpo 2 N Ipso
ngzgugS?kOmO:_gsaTy (21)
(see below for the correctiok, to the Fermi momentujm 0 0
The second-order Euler-Lagrange equations are derived op 5 ap
from Eq. (11) and, using Egs(12), turn out to be 2r_o <2 —_
9 Iho 9, 2Ko€o Ny (22
J J
(Vz—mf)V2+ gvpz—gs%)qﬁz-l- a—\’;o(gvvz—xz)zo, Using these results and separating E2f)) into each order
0 0 17) allows one to recover the previous variational equatidr3s
and(17).
ap On the other hand, one can follow an alternative route that
V2—m?2) ¢, + —| 2bdn+3cd2—g. 20 consists in working withkg as if it were an independent
( S) b2t Ospsz bo %o~ 0s deo b2 variable ofV and ¢, i.e., without replacing it by Eq(7). In
P this case, after expanding to ordet (kg =Kkq+ k), minimi-
= 2P0 4V, 2p) =0. (18  zation with respect tdx, (SEL") sko= SE(?)/ 5ko=0) yields
Ibo two variational equations which are just the zeroth- and

. _ . second-order contributions tq- given by Eq.(19). There-
In practice, the procedure to solve these variational equations . 4t each order ifi. the relation(7) betweerke and the

for a finite nucleus witm. particles is_ the following. First, fieldsV and ¢ is the variational Euler-Lagrange equation for
one solves the TF equatiori3)~(15) in the usual manner |, paqjc test of consistency. It also can be shown that

[11] to find the fieldsV, and ¢, and the chemical potential o is kept as an independent variable, the variational
\o. Inserting in Eqs(17) and(18) the TF solutions, one gets equations for the fields reduce to Eq&3), (14) and (17),
two linear differential equations to compute the so-far un-1g).

known corrections/, and ¢,. These quantities will depend On the basis of Eq€13) and(14) it is easy to verify that

on A,, which in turn has to be determined so that the nor-geyera| contributions to Eq11) cancel out so that, taking
m_al|zat|_on condltlo_n(16) IS satlsﬂ_ed. Equat|0n$16)—_(18) into account the conditiofiL5), the correction of ordet? to
will be iterated until consistency is reached. We will show ,q 5t energyE =E.+\A finally is

below, however, that to calculate the correction of ortiér

to the energy it is not necessary to obtaly, ¢,, and,;

only the TF solutions/,, ¢y, and\ are needed. E(2)=f dr[&+(9,Vo—m)p2l. (23
Once the solutions for the fields and the chemical poten-

tial are known, it is |mmepllate to obta_ln the Fermi momen-gjnce the quantitie§, and p, are to be evaluated using the
tum to second order by direct expansion of Ed: V, and ¢, values, we arrive at the remarkable result that to
calculate the energy to second order only the lowest-order
TF equationg13) and (14) need to be solved. In this sense
we have a perturbational approach, as the calculation of the
energy to a given order ii? requires knowledge of the
solution only to the next lower order. A similar idea of in-
cluding 2 corrections perturbatively, but in a rather more
heuristic way, has been carried out in Réf7]. In particular,
In principle, due to divergences at the classical turning pointthis calculation differs from the present method in that the
in RVWK theory the densities and potentials beyond the TFchemical potential is not split intb® and#? parts.
order must be considered as distributions. However, they are Though we have derived the VWK equations for the rela-
very efficient to compute expectation values by integraldivistic energy functional(2), it is easy to realize that the
over the spacg6,12,14. method is more general and that it can be applied to more
It is worthwhile noting that the same variational equationsrealistic functionalge.g., with an isovectop meson, other
(13), (14) and(17), (18) can be obtained if we start by di- types of scalar couplings, or self-interactions of the vector
rectly varying Eq.(1) with respect toV and ¢, now employ- field). To conclude this section, we would like to mention
ing expressiong4) for p and (6) for &, and only afterwards again that the semiclassical calculation provides only the av-
do we perform in the new Euler-Lagrange equations theerage part of the quantal energy. However, a semiclassical
splitting of V, ¢, and \ into their 4° and 42 parts. Thus, method can be useful to replace some complicated full quan-
expansion and variation can be interchanged. For brevity, wtal calculationg6]. In such cases the remaining shell correc-

€0
ke =Ko+ ko= (1 —0,Vo)2—m*+ k_o(ﬂz_gvvz)

*

Mg
+gsk—o bs. (19
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tion should be added perturbatively to the semiclassicalvhere
guantity, as indicated by the Strutinsky procedure or the ex- .
ectation value metho®2,5,18. - m* _

P P T=pg ot P = P2 (29

Ill. COMPARISON WITH RELATIVISTIC DENSITY _

EUNCTIONAL THEORY andps , indicates that the gradients ¥fhave been inverted

as in&, andp,. Note that having varied the ener¢(gb) as a
whole, and not independently for each orderfinthe final
RDFT solution of Eqs(26)—(28) mixes different powers of

L . fi. Nevertheless, the RDFT functionals are free from diver-
While in RVWK theory the result of the integr&l6) van-

) . - . ) .. gence problems at the classical turning point and generall
ishes, RDFT is more restrictive and reinforces this conditio J P ap g y

id dd ipti f the local densit fil
by imposing that the integrand vanishes locally. Then, irrgo;nlae_ & 9ood description ot the ocal density profie

RDFT one has that, at each point,

The normalization conditiol5) brings us to the discus-
sion of an important difference between the RVWK theory
we have just introduced and the standard RDEZ,19,2Q.

2 IV. NUMERICAL APPLICATION

~ ar
Kp=— Igpz' (24 To exemplify all the above on a concrete case, we shall

present numerical calculations of the surface energy coeffi-
We writeTEo and]Zz to distinguish them fronk, andk, of the f:ient in. SINM for seygrgl parameter sets of the relativistic
RVWK theory. Owing to the ansat24), in RDFT the func- interaction. The semi-infinite system corresponds_to a one-
tional Po(Eo) equals the exact densipy, i.e., p=2'§g/3w2. dimensional geometry where half the space is filled with

Notice that at the TF level, RVWK theory and RDFT are nucl.ear mattgr at saturatllon and the other half is empty. The
equivalent, particle density then varies only along one axis, e.g.,zhe

Next we briefly recall the derivation of the RDFT varia- axis, and develops a surface around0. Following Ref]3],

tional equations. In RDFT the scalar and vector fields and théhe surface energy coefficieR in SINM is written as
chemical potential are not explicitly split intb® and 72 "

parts[12,19,2Q; only k is. Thus, expanding Ed2) into kq ES=47Trif dZ &(z) —a,p(2)], (30
andk, and utilizing Eq.(24), the RDFT constrained energy _°°

to second order is wherer,, anda, refer to the radius and energy per particle in

_ saturated nuclear matter. In the self-consistent problem for
Eot+Er—€gpatd,pV—(N+m)p SINM, a, equals the chemical potential, owing to the
Hugenholtz—Van Hove theorem. Consequently, the surface
1 1 energy is stationary with respect to variations of the density.
+ 5[(V¢)2+ m2$?]— E[(VV)2+ m2V?2] Our previous formulation can be fully applied to the one-
dimensional semi-infinite geometfizompare Eqs(1) and
1 1 (30)] with the simplification thah is fixed and thus\,=0.
+§b¢3+ ZC¢4 : (295 First, we will discuss SINM results for the linearw
model b=c=0). In spite of its simplicity, the linear model

With Z— m The notatiord> ands, means that in allows one to investigate the incidence of the gradient cor-
the WOK exproession.s faf, andp, thze gragfents of the field rections more easily. Second, we will consider the more gen-

) i i eral nonlinearo-w model. We are mainly interested in ex-
V have been inverted in favor of the gradientskgfand ¢ tracting the average part of the energy associated with
(or p andm*) as described in Ref§12, 19, 20, where the

) ; SDET. interactions whose parameters have been obtained from a
expression of the functionah™ '=&,— €pp, can be found.  mean field calculation. Within the framework of the RMFT,
From Eq. (25, the RDFT variational equation fokg and taking the quantal Hartree calculations as a standard, the

o[

(5E§DFT/5§O=0) become$12,19,2Q authors of Refs[12, 18—2] studied extensively the quality
of the relativistic TF and RDFTto order#?) approxima-
_ m tions, and how the results depend on the parametrization of
€tg,V—A—m— == p,=0. (26)  the effective interaction. It was seen that one must analyze
0€o more than just one single parameter set to draw conclusions

Actually, Eq. (26) corresponds again to the development Ofabout the quality of the semiclagsical app.roximat_ions, for it
o ~ much depends on some properties of the interaction. For our

Eq. (7) for ke (equivalﬁedntl)’/v, EF:“_gvV). into ko .ar_1d application to the surface of SINM, the mass of the scalar
kp: If we expander aseo+ €;, the corrective term is just  esonm, and the effective mass at saturatior,/m, have
€= — mpy/2Kg€y. The RDFT variational equations for the the major influence. The discussion that follows is not sig-

vector and scalar fields reqd2,19,2Q nificantly altered by changing the remaining saturation prop-
s erties if they lie within ordinary valuegl9-21].
(VE=m,)V+g,p=0, (27) Table | collects the results for the surface energy coeffi-

s 2 RDET 5 5 cient Eg calculated in the lineas-w model. Table Il shows
(VE=mg)p+gsps —bep“—cep°=0, (28)  the corresponding surface thicknessf the density profile
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TABLE |I. Linear o-0 model. Surface energy coefficient in the than in the TF calculation. In RVWK theory the deviations
quantal Hartree approacEsH, and difference of the relativistic TF, |je between 0.5% ;=400 MeV) and 2.5%
DFT, and VKW calculations t&" . All quantities are in MeV. (ms=550 MeV), while in RDFT they range from 2%
(mg=400 MeV) to 9% (=550 MeV). From Table | one

Ms E BB EMTEOEMOH can check that the differencegl —EX™" and EIF— EYWK

400 40.48 1.74 -0.74 0.22 show an upward tendency with the scalar mmags and that
450 33.85 2.06 ~1.00 0.29 EF—EDFTis systematically larger thaB! —EY"¥ . These

500 28.19 241 -1.42 0.35 trends can be qualitatively understood looking at the values
550 23.05 2.96 —-212 0.57 of the surface thickness in Table Il. The inhomogeneity

corrections of RVWK theory and RDFT concentrate at the
nuclear surface, where the gradients are more important. A
(standard 90% to 10% falloff distanceThe nuclear matter flatter surface(small ms, larget) results in smaller correc-
properties of the linear model are as folloy20]: volume  tions. In RVWK theory one calculates the gradients with the
energya, = —15.75 MeV, density..=0.193 fm 3, incom-  TF density distributions that have a larger thickness than the
pressibility K=546 MeV, and effective mas®’/m=0.56.  RDFT profiles. Therefore, one expects the RVWK modifica-
The values in Table | correspond to the discussed semiclasions to the TF energy to be smaller.
sical approachesTF, RVWK, and RDFT and the fully For relativistic harmonic oscillator scalar and vector
quantal Hartreg¢H) calculation.(See Ref[22] for details on  fields, it has been numerically shoWh2] that the energies
the quantal treatment of relativistic SINMn any WK cal-  calculated using the Strutinsky average and the WK ap-
culation beyond the TF order one is faced with dealing withproach to second order almost coincide, a well-known fact in
divergences at the turning point. The main difficulty is to the nonrelativistic framg5]. It is thus reasonable to identify
treat them in such a way that the principal part of the energypproximately the difference between H and RVWK calcu-
can be extracted. In practice, we encountered only one divetations in the self-consistent problem with the quantal effects
gent term in the WK functionaf,. To get rid of the diver-  (in SINM, Friedel oscillations, and the fluctuating part of the
gence we added and subtracted the analytical asymptotic ispin-orbit force[21,22)). Even though the quantal surface
tegrand, so that after having isolated the infinity we rejectednergy coefficient is acceptably reproduced by RDFT in gen-
it. Other possibilities are the method of integrals in the com-eral, the difference with H calculations is larger than in
plex plane[16] or low-temperature expansiof3]. RVWK theory and displays a stronger dependence on the

The saturation properties of infinite nuclear matter areparticular value ofng. Altogether RVWK theory appears as
governed by the meson coupling-to-mass ratigénZ and  more reliable to estimate the quantal effects. This feature,
g,f/mﬁ and by the nonlinear couplings andc [11,15. On  also found in the nonrelativistic contei], stems from the
the contrary, the nuclear surface properties extracted frorfollowing reasons. First, RVWK theory properly sorts out
SINM depend on the meson coupling constants and mass#e different orders irk. Second, the restrictive local condi-
separately. The mass of the vector mesop, is given its  tion (24) for normalization within RDFT is replaced by the
physical value(783 MeV). The mass of the scalar meson, more logical global conditiori16) in RVWK theory.
ms, should lie somewhere between 400 and 700 MeV, since The surface energy is also strongly correlated with the
the nonexperimentad- particle is interpreted as simulating value of the effective mass in nuclear matter;/m
two-pion exchange contributions. For our purposes, it will be[9,19,20. To analyze this fact we have considered the non-
sufficient to look at the region 400 Me¥m,<550 MeV. linear parameter sets of Ref[20]. They have
The scalar mass sets the range of the scalar interaction ara},= —15.75 MeV, p,.=0.16 fm 3, andK =200 MeV, with
therefore, there is a strong correlationmfandt withmg. A 0.55=m*/m=0.80 and 400 Me¥ m,<550 MeV which
largermg determines a shorter range of the attractive poteneovers the range of commonly accepted valuesnidym
tial, leading to a steeper surface and to smallgandt, as  andmg. Figure 1 illustrates the dependence of the difference
seen from Tables | and II. between the TF and H surface energy coefficientsnim

The TF surface energy coefficients in Table | overesti-agnd my. The discrepancies between the TF and H results
mate the quantal ones from4% for ms=400 MeV 10  exhibit a nearly linear behavior witi;/m. For small values
~13% forms=550 MeV. When the:” gradient corrections of the effective mass the TF surface energy coefficients are
are taken |_nto account, one finds that the surface energiggrger than the H ones. They practically agree with the H
calculated in the RVWK approach are larger than the H reyegyits form*/m=0.65, and become smaller than the H re-
SU|tSZ whereas the RDFT energies are smaller than in H ca sults for largerm’/m. These trends have been found in a
culations. In both casel; is brought closer to the H value similar fashion for the total energies of finite nuclei in the

o-w model[18] and in nonrelativistic calculatior®].

TABLE II. Linear o-w model. Surface thickness(in fm). Figure 2 displays the difference in the surface energy co-

m M (TF (DFT efficient between thfe semicla}ssical approaches to second-
S order and H calculations. Again, for all the analyzed param-
400 2.98 3.22 2.86 eter sets, we observe that the RVWK energies are larger than
450 2.38 271 2.27 the H ones while the RDFT energies are smaller. Also, the
500 1.94 2.27 1.72 deviations to the H values are an increasing function of the

550 1.64 1.88 1.30 scalar massn,. Their dependence omg and onmZ/m is

weaker in RVWK theory than in RDFTand, in both
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been based on a strict expansion of the energy in powers of
f, together with a global normalization to the particle num-
‘-._‘ m,= 400 MeV & | ber. Self-consistency enters at the TF level, whose solution is
L 450 L the input to calculate the higher-order corrections. In obtain-
20L o 2(5)8 : — ing the variational equations we have shown that the steps of

A N 7 variation and expansion can be interchanged. We also have

e T discussed the equivalence of working with the scalar and
vector fields as the fundamental variables or with the Fermi
momentum as an additional variable. The new theory has
been compared with the RDFT.

Semi-infinite nuclear matter calculations in the relativistic
| problem have shown that the average part of the quantal
N surface energy is acceptably estimated in both the RVWK
- and RDFT approaches. However, for a quantitative estimate
of the quantal effects, it has been seen that the RVWK theory
is preferable. In addition, it must be considered an advantage
. of RVWK theory that its quality is less dependent on the
meo/m properties of the effective interaction than in the TF and
RDFT approximations.

4.0 T T T T T ]

00+

— E (MeV)

TF
s

E,

-4.0
0.50 0.60 0.70 0.80

FIG. 1. Nonlinearo-w model. Difference between the surface
energy coefficients obtained in the relativistic TF and H approxima-
tions, as a function of the effective mass at saturatidrim and the ACKNOWLEDGMENTS
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APPENDIX

V. SUMMARY . . .
Without loss of generality the variational problem ad-

In this paper we have developed the relativistic variationaddressed in Sec. Il can be formulated as follows. filet] and
Wigner-Kirkwood theory, extending first work in the nonrel- g[ /] be two functionals ofis(r). Suppose they admit an
ativistic domain. This generalization is not trivial because ofexpansion in powers of a small paramefgay,#) and con-
the presence of two different fields. The RVWK theory hassider the problem of finding the functiohwhich extremizes

T T I T I
drf Al
2.0 my= 400 MeV & —| f [y (AD)
450 ]
I 500 o ; ;
=N 550 x| subject to the constraint
2
5 J drgl¢]=A, (A2)
| 0.0~
g i i up to a given order in the expansi@ay, second ordgrFor
o -1.0— ,\‘\%‘\‘\‘\‘\. — this purpose one constructs the auxiliary functional
201 - K[m:j drf[w]—xU drg[w]—A] (A3)
. | . | . |
0.50 0.60 0.70 0.80

where\ is called a Lagrange multiplier. In obvious notation,
expansion oK[ ,\] to second order in the small parameter
gives K=K+ K, with

ml, /m

FIG. 2. Same as Fig. 1 for the difference of the second-orde
VWK and DFT calculations to the H results. A stable numerical

solution could not be achieved in the DFT case wh€im=0.55 . _
andms=550 MeV, and hence this result is not shown. Kol wo’)\OJ_J‘ dr{fol o] =Mool oI} +hoA,  (A4)
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Kol 0,2, M0, N 2]= f dr[ fol ol —Nodal Yol

o
+ = (fo—=NoGo) ¥2— N 200l ¥o]

Ot

+N\,A. (A5)

According to textbook theory of Lagrange multipliers, to

locate the extrema of EgAL) with the restriction(A2), one
has to seek the critical points of the auxiliary functiokal

In doing this, one treatg, and ¢, as independent variables
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Inserting Eq.(A8) into Eq. (A7) shows that Eq.A7) is
equivalent to

oKy
S
Equation(A10) tells us that the lowest order already fulfills

the restriction conditiofA2), and in view of Eq.(A9) the
total second-order contribution # vanishes:

o
J dr‘gz['ﬂo]*' %'ﬂz}zo-

(Al2)

(A13)

because the constraint has already been taken into accourtierefore, one can paraphrase the variational problem under

through the Lagrange multipliers. Thus, we have

oK oK 0
5% Sy,

The variation ofK =K+ K, with respect tay, produces

K
Mgy

dK

o
—~ (fo=No00) + = (f2—No92—N200)

5o 5!#

I
+ = |5 (fo=NoQo) 2| = (A7)

oo lﬂ

and from the variation with respect i, one obtains

1)
~—(fo—=A09o)=0.

A8
500 (A8)
The derivatives ony and\, yield, respectively,
690 _
dry ol Yol + 92l ol + Wl//z =A, (A9)
0
f drgol ol =A. (A10)
Equation(A8) is just

o _ (A11)

oo

consideration as follows. Minimization must be performed

for each order in the expansion parameter separately, Egs.

(Al11) and(Al12), and the constraint must be satisfied by the

zeroth-order solution. Oncg, and\ § are known by solving

Eqgs.(A10) and(A1l), they are inserted into Eq6A12) and

(A13) to calculate the second-order correctiafgsand\ .
Expanding Eq(Al),

f drf[iﬁ]:f [ 0[¢o]+f2[¢o]+ lﬁz]

(A14)
Using Eqgs.(A8) and(A13),
5to
f dr Wlﬂz— Aof drgs[ o] (A15)
And, finally,
| arttur= [ anttalvol+ tal el -Nogal vl
(Al6)

This result shows that the extremum of E@1l) can be
computed to second order from the knowledgelgfanda

only. We then observe that the whole procedure is consistent
with the spirit of perturbation theory, since the lowest-order
solution serves as the input to calculate the higher-order cor-
rections. It furthermore guarantees that different powers of
the expansion parameter do not mix at each order of the
expansion.
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