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Continuum random phase approximation method applied to the inclusive
transverse electron scattering response
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A continuum random phase approximatiRPA) method for evaluating the structure function of nuclear
matter is developed, where exchange terms for any particle-hole interaction are explicitly included. The
method is applied to the inclusive transverse quasielastic electron scattering response at momentum transfer
ranging fromq=300 to 550 MeV¢. The interaction employed is g’ Landau-Migdal constant plus a
(7+ p)-meson exchange interaction. A comparison with the standard ring series is made showing that the
inclusion of finite range effects in the exchange terms is neced&0$56-28136)01312-X

PACS numbsg(s): 25.30.Fj, 21.60.Jz, 24.16i

I. INTRODUCTION (7+ p)-meson exchange as a model interaction. The election

of the transverse channel with this interaction is due to two

Correlations of the random phase approximati&iPA) reasons. First, it allows for a comparison with the more com-
type are relevant in many nuclear physics problems, ranginglex work of Ref.[4]. Second, even if the method is general,
from low to medium energy processes. These correlation is particularly suitable for this channel as will be made

are well established at low enerd¢]. Going to the con- clear later in this work.

tinuum, such as in the quasielastic peak region for electron The contribution of direcph terms to the RPA response

scattering, there are some technical complications. In thifor @ general interaction can be summed up to infinite order
region, RPA correlations are important at low momentum(fing serles..Unfortunater, this is not possible for exchange

transfer but the role played by exchange terms for a generd'™Ms: In this work we present a scheme to account for such

particle-hole ph) interaction is still not clear. terms in a simple way and analyze their magnitude. More

The more elemental approach to this problem relied onspe_cifica_lly, we present t_he fqrmalism in Sec. |l, where the
. S : . . residual interaction is divided into a pure contact term and a
the ring approximation using effective Landau-Migdal pa-

rameters to account for the exchange terms in an aporox iece containing a contact term plus a finite range interac-
9 PBrOXtion. As will be shown there, the separation is made by de-

mate_wa_y. This is eq.uivalenF to .assuming that the eXChangﬁWanding that the second piece of the interaction gives rise to
contribution of theph interaction is of zero range. There are 4 ¢oc¢ convergence of the RPA series, which can then be

several schemes to calculate the RPA response with @ Mofgyated up to second order. The remaining pure contact inter-
general interaction in the continuum. One is the doorwayaction allows a summation up to infinite order. In Sec. Il
state expansion method of Brieeal.[2]. The method was e present some numerical results, showing that exchange
applied to the longitudinal response function and the phototerms are relevant, and make comparison with other meth-
absorption on*’C. Alternatively, Shigeharat al. [3] devel-  ods. Finally, the main conclusions are summarized in Sec.
oped a method based on matrix inversion. Using this formalv.
ism they calculated the spin longitudinal, spin transverse,
and longitudinal responses which were compared to the ring
results. Also Buballat al. [4] developed a formalism based Il. FORMALISM
ona Stur.mlan fu_nctlon expansion for continuum RPA with a Let us first introduce the transversg)(structure function
general interaction. They applied the formalism to both er unit volume
guasielastic longitudinal and transverse response functions
for 1%C. Finally, Garca Recioet al. [5] developed a self-
consistent RPA with the inclusion of exchange terms but 1 +
limited to a Skyrme-type interaction. They applied the for- Si(giw) == —5 Im{0[O7G (% w) Or(0), (1)
malism to nuclear matter and liquitHe.

In this paper, we develop a simple method which accounts
for RPA correlations in nuclear matter for any interactionwhere(} is the volume. The structure function is related to
including the exchange terms. The method can be used tine response functiorR+(q,%# ), through the usual dipole
study both the longitudinal and transverse nuclear responsetectromagnetic form factoGe(qg,A w). In Eq. (1), fw rep-
for inclusive quasielastic electron scattering. However, waesents the excitation energy amdthe three-momentum
will focus on the study of the transverse response using theansfer. The operata; is the external excitation operator
standard Landau-Migdal parameterg’ plus a which is given by
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wherem is the nucleonic mass anx] and p; denote the

intrinsic coordinates and momentum operators for individual

nucleons. The values @fs and ., , which are related to the
proton and neutron magnetic moments, arg=0.88 and
=4.70.
The nuclear ground state is denoted|by while the po-
larization propagato6G (% w) is given by

1 1

G(ﬁw):ﬁw—H-l—in _ﬁw-I—H—i?]’

)

whereH is the nuclear Hamiltonian. As usu#l,is separated
into a one-body parti,, and a residual interactiol, given

by

2

V(|)=;}rf,u)(ga.a’+§'(|)7-7’a.a'
+h'()r7 o1 o) 4)
with
Sl o) 12
g'(h=g' —W Corz 2 Qprynd 5
- 12 (1) 12
MOTTEe Tem Sz

where uiic (u,fic) is the pion(rho) rest massC,=2.18
and the Landau-Migdal parametegsand g’ account for
short range correlations. For the form factor of th&lN
(pNN) vertex we have taken

AZ =~ (pr,hc)?

, (7
AfT'er(ﬁcI)z

Lo p(h)=

with A ;=1.3 GeV andA ,=2 GeV. The static limit to the
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FIG. 1. Goldstone diagrams stemming from the insertion of Eqg.
(10) into Eq. (8). In every diagram two wavy lines represent the
external probe with momentum and energyf{w). Only forward-
going contributions are shown. Diagram Lind represents the
Lindhard function. Diagram®1 andE1 are the direct and ex-
change first order contribution to the RPA response, respectively,

while diagramsD2, ED2, DE2, andEE2 are the second-order
contributions.

m{?

The presence ofV makes G(fZw) nondiagonal in the
particle-hole basis. To treat this, the standard Dyson equation
is employed:
G(hw)=G%hw)+G%hw)VG(ho), 9
whereG%(z w) results from replacing the total Hamiltonian

H in Eq. (3) by the one-body partl,. The matrix elements
for the first perturbative terms of E¢Q) are given by

(1p1HG(fw)|1p'1h')=(1pIHG(h w)|1p1R Sppr S
+(1p1HG°(fw)|1p1h
X(1plHV|1p'1h’),
X(1p' 10 |GO%(A w)|1p'1h’)

+ee (10
where (1plHV|1p'1lh'), stands for antisymmetrized
V-matrix elements accounting for both direct and exchange
terms. The first forwardgoing terms contributing to the struc-
ture function are shown in Fig. 1.

If we neglect the exchange part of all the matrix elements
or we consider a pure contact interaction, the terms in Eq.
(10) can be easily summed up to infinite order leading to the
usual ring approximation. In Fig. 1, this sum is represented
by the diagrams labeled Lindp1, D2, ..., where the
nuclear interaction is limited to destroy and create a particle-
hole pair.

To obtain the antisymmetric structure function in the RPA

(m+p)-meson exchange interaction has been taken in Egscheme, one has to evaluate the exchange terms explicitly. In
(4). An energy dependent interaction makes minor changegractice, this can be done up to second order. Higher order

in the result.

terms become a prohibitive calculation for finite range inter-

The Hartree-Fock ground statgF), was adopted as a actions. The question then is if the first three terms of Eq.
model for our ground state and the set of intermediate statg4.0) can account for the full sum. To see this, let us compare

has been restricted to one-particle—one-hdplh excita-
tions. Under these assumptions,
Si(g,%w), can be redrawn as

hw)= ! Im >, (HF|O;f|1p1
Sr(q, w)__w_Q m1p1h< |O7'|1p1b
1p'1n’
X (1p1HG (% w)|1p 10 )(1p 10 | O7|HF).

®

the infinite ring seriedi.e., direct termp with the sum of

the structure functiodirect terms up to second order. For numerical purposes we

will restrict ourselves to @' plus a (T + p)-meson exchange
interaction. In Fig. 2, we make this comparison for two val-
ues ofg’, where the free structure functio® (diagram
labeled Lind in Fig. 1 was subtracted. We see that for
g’ =0.5 the accordance is almost exact. This accordance is
not good forg’ =0.95. While, as shown in the literatufa],
ag’'~0.5—-0.7 is taken to partially account for the exchange
terms, a valugy’ ~0.7—0.95 should be employed if the ex-
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FIG. 2. Comparison between the ring seri&sl lines) and the
sum of terms up to second ordétashed linesfor g’'=0.5 and
g’ =0.95 where the free structure function was subtracted. Graphi- 512 = - + - + e
cally both results coincide for thg’ value 0.5. 9 ﬁ}

change terms are to be evaluated explicitly. In a separate _ _

publication[6], we perform an extensive study of the influ-  FIG. 3. Goldstone diagrams stemming from E@3)—(15). In

ence of the exchange terms on the nuclear response, inclugvery diagram a dashed line represents the nuclear interagsion

ing other types of diagrams than those discussed in this pathich is a general nonlocal interaction, while a dot between

per. Our study, therefore, requires the use of gparticle-hole bubbles represents the pure contact interadfion

g'~0.7-0.95 WhiCh has beelil shown in Fig. 2 not to repro_Line S1 is the usual ring series fof,. Line S2 is the sum of first-

duce the ring series when the sum is restricted up to secorfd second-ord_er RPA-type dlagram§ fpr Vpnteractuon_, Where.

order. Consequently, there is no reason to believe that xchange matrix elements are explicitly included. Finally, line
woli .it valuation f,th xchange diagram t 12 displays some interference terms betw&gnand V,. In all

teo geioﬁdzggefgeeodiagr:m%f ETDZ agéz S;:ggg; lIan cases, th&/, interaction is included up to second order.

Fig. D would provide, when added to the infinite ring series, 0 0 0

a good representation of the antisymmetric RPA respons& (@) =G (@) + G (hw)V,G (fw)

However, going to infinite order in the exchange terms is a +G%A%hw)V,G%Aw)V,Gofiw)+ - - -, (13
difficult task. Below we present an easy prescription that

allows one to obtgln a rella_ble approximation of the exa_ct Gy(thw)=Gfhw)V,G%h o)

RPA response without having to calculate exchange dia-

grams beyond second order in the finite range interaction +G%hw)V,Gohw)V,Go(hw), (14
explicitly.

As we have mentioned above, for a pure contact interac- G, (fiw)=G°%w)V,G%(%w)V,G (i w)
tion it is possible to sum the fully antisymmetric series of Eq.

(10). Taking this into account, together with the fact that, for +G%hw)V,G(fiw)V1G (hw)

some values of’, the ring(direc) series can be reproduced + GO w)V,Gh 0)V,GO( 0)V,GO(fiw)
by its terms up to second order in the residual interaction, we

divide the interaction as follows: +.o- (15

Inserting Eq.(12) into Eq. (8) one can define three different
V=V;+V,, (1)  contributions to the structure functio8;, S,, andS;,, as-

sociated toG,, G,, and G4, respectively. In the case of

S,, sinceV, is a pure contact interaction, the direct and
whereV; is a pure contact interactio’/{=g;) andV, con-  exchange terms are equivalent and they can both be summed
tains a contactdy) plus the exchange of ther(+ p) mesons. up to infinite order by evaluating the ring series of Et@)
TheV, interaction is chosen to ensure a fast convergence ofith redefined values for the Landau-Migdal parameters en-
the ring series which, as will be shown later, also implies d@ering in the interaction. In the case 8§, Eq. (14) is only
fast convergence of Eq10), allowing terms of third and considered up to second order, while 85, Eq.(15) is also

higher order inV, to be neglected. evaluated up to infinite order in th¢,; interaction keeping
The polarization propagator of EGLO) can now be drawn terms up to first order iV, as it will be justified below. In
as Fig. 3, a graphical representation of this division is shown.

Ill. RESULTS AND DISCUSSION
G(hw)=G(hw)+Gr(hiw)+Gfiw), (12

As an application of this method, the structure function of
nonrelativistic nuclear matter at a Fermi momentum
where ke=1.36 fm lis analyzed in detail for a momentum transfer
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TABLE I. RPA contribution to the structure function in nuclear
matter at ke=1.36 fm ! for a momentum transfer
=410 MeV/c. The energy is given in MeV, while the structure +
function is in units of (10° MeV ~! fm~3). The notation forS;,
S,, andS;, is the same as in Fig. 3, while that forl, E1, D2, and
E2 is the same as in Fig. 1, whel is the sum of all second-order
exchange contributionED2, DE2, andEE2. Note that the free
structure is included it$;. ColumnS; collects the sum of all con- + +
tributions.

=3

ASS S NS SN

fiw S S Si2 Sr
D1 El D2 E2

40 24903 -10.396 4.035 1.333 -0.503 -0.374 18.997
80 39.923 -5.466 2.178 -0.295 0.186 0.780 37.308 6 (5
120 51.820 0.801 0.050 -0.561 0.338 1.065 53.511 g(”‘“)r % e on @

160 50.682 3.697 -1.552 0.096 -0.040 -0.826 52.056

q=410 MeVk. We have employed g’ =0.95, taken from FIG. 4. Goldstone diagrams used to evalugi®. The shaded
Ref. [3]. The separation of the interaction is performed bybubble represents the sum of direct and exchange contributions of
consideringg; = 0.45 as the only contribution for the contact V, (see explanation in the text

interaction V,, while V, contains g;=0.5 plus the

(m+p)-meson exchange. Ag, is a pure contact force itcan Tapje |, where the different contributions to the total struc-
be red_eflned to account for antisymmetrization. Th|_s iStyre functionS; are shown. By comparing columigL with
shown in full detail in Ref[3]. For completeness, we outline D1 andE2 with D2, it is observed that exchange terms are

here the procedure in our particular case. The direct piece Qfyqjer than the corresponding direct ones. Since the higher
the ph interaction, order direct terms will be negligible small, it is plausible to

£2 believe that, according to the trend of the results shown in
Vi=—% gim 7o o, (16)  Table I, the same will hold true for the exchange terms.
e Explicit expressions for the different diagrams are shown

) ) ) in the Appendix. The multiple integrations have been per-
contains only ag; term. The total(direct plus exchange formed using a Monte Carlo technique. The numerical evalu-

ph interaction is given by ation of the exchange grapBE2 in Fig. 1 is particularly
Vo) Ve (V 1 difficult and cannot be given with good accuracy. However,
(Vi)an=V1+ (Vi) exch 17) this lack of accuracy does not affect the whole calculation as

where the exchange piece is constructed via the spin-isosp"? va_lue IS very small. As a consequence, some hlgh_er order
exchange operatd?, P contributions, as the one shown at the end of Egin Fig.
o T

3, can also be neglected. In Fig. 4 we present all diagrams
(V) exet= — P,P.V; used to evaluatg&,,, where the shaded bubble represents the
sum of direct D1) and exchangeH1) contributions of
V,. The first graph on the top LHS of Fig. 4 is the sum of the
first two graphs shown in Fig. 3 fd8,,. Similarly, the first
graph in the second line of Fig. 4 is the sum of the third and
+01g7 7 0 0'), (18 fourth graphs 05, in Fig. 3. All the other diagrams on the
) - ) o ) LHS of Fig. 4 represent additional contributions 8.,

and contains contributions in all the spin-isospin channelspresent in Eq(15), which have not been drawn in Fig. 3.
with fie=—%97, fig=391 01£=301, andgie=—179;. These contributions are obtained by allowing the shaded
Only g; andg; are relevant in the transverse structure func-bubble to be located in all different positions in the diagrams.
tion. Following Eq.(17), their antisymmetrized values are All contributions yield identical results and they can be ac-
(91)an=91£=0.3375 and §;) an=9; + 91£=0.3375. Using  counted for by the factor appearing on the RHS of Fig. 4.
the redefined interactiolV(;) 4, the ring series accounts for The resultingS,, is the sum of all graphs on the RHS of the
both direct and exchange terms up to infinite order andequations shown in Fig. 4 with their corresponding factors.
builds up theS,; contribution to the structure function. All graphs are first order iv,. The summation up to infinite

In Fig. 2 we showed that the sum of direct terms up toorder inV, gives a modified ring series as can be seen in Eq.
second order iV, equalled the ring series for that interac- (A6) of the Appendix: The possibility of summing this se-
tion. By restricting the sum of Eq14) to the second-order ries up to infinite order, together with the fact that the
terms, we have implicitly assumed that the convergence is
also valid for the exchange terms, a fact which is not evident—
as the exchange terms have different momentum depen-in the Appendix we show th¥, exchange contribution only. It is
dence. The assumption is based on the results shown #iraighforward to obtain the direct one.

2

= _Z(fl,E"'fi,ET' 7+01g 00’
T
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TABLE Il. Comparison between the ring approximation and thering approximation underestimates the RPA correlations, es-
total RPA contribution to the structure function of nuclear matter atpecially in the cas&™2. This is due to an overestimation of

a n . L s .
kF_l'?’z fm =, fo\zthre_e d'ﬁer‘;m transferred mglmenm.—lsoo, the exchange contribution stemming from the average proce-
410, and 550 Me\. Units are the same as in Table l.gA plusa e forg’ "However, even if there is a manifest difference
(m+p)-meson exchange|_r_1teract|on was used__to calculate the "Between our results and the ring approximation, this differ-
series, taking' =0.85 for %" andg’=0.7 for S™%%. The results o0 gets smaller aptends to zero, that is when one goes
of column S™9"¢* employ ag’=0.95 and include the perturbative ¢|5qertg the Landau limit. The reason is that it is precisely in
exchange graphs up to second order in the interaction. The resul{ﬁiS low momentum transfer region where the effectiy/e

of our method are given in colun®™, where the employed value 4,0t account for exchange terms was derived. In the case
of g3 is explicitly shown. The free structure function was subtractedOf q=550 MeVk, the results of the ring approximation

for convenience as indicated in the text. . : . .
with g’=0.55 (S"9Y) even have a different sign than the

g=300 MeVk RPA results, although it must be noted that RPA correlations
o gfingl Sing2  gingrex  SRPA(g! — 0 30) are smaller in this region of momentum transfer. The results

of Table Il show that, in the intermediate momentum transfer
30 -19.698  -23.434  -36.762 -29.143 region, the average procedure is not adequate, while RPA
60 -13.867 -19.842 -12.322 -22.463

correlations are still significant. Note that in this region all

90 4.154 1.549 -6.674 2.295 . . . -
120 10442 18578 25908 17 711 correlations both in the ground state and in the final state are
relevant[7].
q=410 MeVt o o o Our method must be viewed as a convenient way of add-
fiow gringt gingz  gingrex  gRPA(g) = 50) ing the RPA series up to infinite order in which only dia-
rams up to second order in a piece of the interaction
30 13028 -21.063 20544 29461  Jrams up P
[Vo=g5+ (7+p)] need to be explicitly calculated. For the
60 -11.415 -20.344 -22.089 -27.626 :
20 6571 -13.755 -14.402 17.378 method to be useful, one must therefore check how it com-
120 0079 -2533 -5662 -1.833 pares with the technically similar but conceptually more
150 4.959 8.810 6.617 11.843 straightforward alternative procedure consisting in calculat-
180 4854 10.816 16.724 12.733 ing the direct ring series with the complete interaction
[V=g'+(7+p)] and the exchange graph€l, ED2,
q=550 MevVe  _ — — — DE2, andEE2 in Fig. 1) only up to second order iv.
ho Snngl SnngZ Srlng+ex SRPA(g’=O.85) oing+ex
2 Column S"97** in Table Il shows that the convergence of
30 4,794  -1.588 -4.523 -5.475 exchange terms in the alternative procedure is not fast in
60 7.849  -2.706  -7.463 -9.160 general and depends on thevalue employed. Observe that
220 gégg ‘g-ggg '2-3?675 '3-322 the discrepancy between tH&"9*®* value and our result
. 4. -o. -l RPA , i
150 3333  -1514 -4.384 -3.867 t?th, gets dsmaIIer ag, qpplroatches tg’, which is when
180 0.195 -0.313 -1.138 0.089 oth procedures are equivalent.
210 2303 0772  1.868 3.169 _ We want to stress that the difference between the
240 -3.563 1.420  3.908 4.324 Sng+ex approximation and ours, relays on higher order ex-
270 -3.262  1.392 3.995 3.436 change diagrams which we are including. To clarify this

point, let us consider a third-order exchange diagram in the

total interactionV. In S""9*® this diagram is not considered

makes the division of the interaction useful for practical pur-at all. However, it is partially _mclud_ed In our sc_:he_me n the
way we describe in the following. First of all, this diagram is

0SES. T - . o2
P split into several contributions stemming from the division of

In Table II, we present the structure function calculated in>". — . .
several approximations for three values of the momentuz.y into V; andV,. The contribution which contains onl,

transfer. The free structure functio®?, has been sub- Is part of S;; contributions which only contaiv, or are
stracted in order to emphasize the differences between thSeCOnOI order itV (see the last diagram of lir, in Fig. 3

approximations. This is indicated by the notation Sre neglected. Finally, contributions that are first order in
Sr=S;—S7. The results of our methodast column, la-

V, are included inS;;. Note that we have numerically
checked that the second order\ip exchange diagrartdia-
beledS*™) are compared with those obtained summing thegram EE2 in Fig. 1) gives a small contribution, which sug-
direct ring series employing an interactidh=g'+(7+p)  gests that neglecting second- and higher oktediagrams is
with g’ =0.55 (S™9) andg’ =0.70 (S™%9), as suggested in a reliable assumption as already discussed in relation to
Ref.[3]. These values af’ result from an average procedure Table |I.
over the exchange matrix elements on the Fermi surface. The The total response functiorRr(q,%w), related toS;
first value does not include a screening effect contained ishrough the dipole electromagnetic form factor, is shown in
the second onésee Ref[3]). Note that, in the evaluation of Fig. 5 for several values of momentum transfer. Our results
SRPA different values ofy, have been employed for differ- are represented by the full line, the free response by the long
ent values of the momentum transfgr according to the dashed line, an®™9"®* by the short dashed line. It is ob-
prescription of a fast convergence to the ring series. Thgerved that the RPA correlations shift strength from the low
resultingg, values are 0.3, 0.5, and 0.85 fq=300, 410, to the high energy region, keeping the energy-weighted sum
and 550 MeV&, respectively. In Table Il we observe that the rule unchanged. Foq = 300 MeVk, we observe a non-

second-order contributions iV, are negligible forS;,,
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particular, the method can be easily applied to the longitudi-
nal channel. In this case, the Landau-Migdal parametfers
1 and f’ should be added to the residual interaction as they
dominate the direct contribution. Still, it is thgg parameter
which should be tuned up to apply the method.
ul-:'_' 0 50 100 150 IV. CONCLUSION
E 40 " T : ' We have presented a simple scheme to evaluate the full
- 30 g=410 MeV/c antisymmetric RPA series contributing to the structure func-
"> ol -7 A0 _ tion in nuclear matter. The prescription is based on two in-
§ ol ,/ A gredients. The first one is the separation of the interaction in
s / S a pure contact term plus a contribution which guarantees a
's OO - 5'0 160 150 20'0 fast convergence to the ring series. The second is the fact that
2 ) SN )
il for a pure contact interaction it is possible to sum the full
o 30 R ;’/ antisymmetric RPA series up to infinite order. The result is
. ) L that explicit evaluation of the exchange contribution is im-
- X portant and cannot be reduced to the evaluation of the ring
10}F 7 _ series with the standard average prescriptiondgbr espe-
cially for intermediate values of the momentum transfer.
0 o 160 2c')o 30'0 This stresses also the importance of the inclusion of the pion
(in particular its tensor forgewhich is not present in the ring
h o [MeV] approximation.
FIG. 5. Transverse response function at several values of the ACKNOWLEDGMENTS
momentum transfer as a function of the enefgy. The free re-
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exchgnge tgrms cannot bg made. deeper because the nucleus APPENDIX

considered in Refl4], 1%C, is too light for a nuclear matter

description. As other mechanisms beyond RPA correlations, In this appendix, we present explicit expressions for the
like higher order correlationN¥—15 or meson exchange cur- different exchange graphs needed to build up our antisym-
rents(MEC) [16,17], are important in the transverse channel, metric RPA for nuclear matter. We do not reproduce here the
a comparison with data is not possible. A more completeing series as it can be found in many referents=e, for
version, where the exchange contribution for higher ordeexample, Ref[18]).

correlations are included, is in progrels]. However, we Even if in our numerical example we have focused on a
have focused on RPA correlations because they deserve spg- plus a @+ p)-meson exchange interaction, we prefer to
cial attention. include also the parametgrof Eq. (4), for completeness.

Finally, it is important to note that our method can be In the following, we use dimensionless quantities
applied to a more general interaction with all the Landau-Q=q/kr and v=%w/2eg, whereke andeg are the Fermi
Migdal terms, as these additional constant terms can be propaomentum and Fermi energy, respectively.
erly antisymmetrized up to infinite order in the ring series. In  GraphE1 of Fig. 1:

f2

47hc

1

ke
[SEl(QIV)]T: - (277)5

hcus

fd3h Jd3k0(1—h)0(|h+Q|—1)0(1—|h+k|)0(|h+k+Q|—1)I‘fT(k)

x{[3(go+Tp) +h'14[h(h+k) = (Q-h)Q- (h+K) 1/Q%]+ (s> + 1, QA — G2) + (— 32+ 1, 2)
><2~’+F’I2A2(—1|)( ! ~ !
Qg h'(k-Q)%| = 7 Im 2v—(Q%*+2h-Q)+iyp 2v+(Q*+2h-Q)
1 1
2v—[Q%+2(h+K)Q)+in 2v+[Q%+2(h+k)Q)

X

: (A1)

where we have defined



54 CONTINUUM RANDOM PHASE APPROXIMATION METHOD ... 2965

2
LS 2k2 7 -
P20k i+ 2

9a(k)=g5— (A2)

GraphEE2 of Fig. 1:

2 \24mck2 ,
(Seer Q=i s | pers | o [ o [ aworniai-n

X 0(1—|h|)o(1—|h+k|)6(|h+k+Q|—1)8(1— |h+k+k'|) 8(|h+k+k'+Q|— 1)T2(k) T2(k")

x| {5[9(d5)2+h'2+6G5h" 1+9(9,)2+ 99,05+ 6g.h'18[h(h+k+k') = (Q-h)Q- (h+k+k')/Q?]

3 32_ v2 - ~ ~ R 52+ 02 9 52+ vz
+ 2B QU022+ 0+ 0 (Q-R) %+ (Q-KN}+ o QUgp2+
X (Q¥{(Gy)?+h 2 2(k-K)2 = 1]} +h"2[(Q-K)2+(Qk")? — 2(Q-k)(Q-K") (k-K")]
+""/Fr |2 2+ Izl 2 )( _ i | ) ( 1 _ 1

92 [(Q ) (Q ) ] T m 2v_(Q2+2h'Q)+i77 2V+[Q2+2h~Q]

1 1
2v—[Q%+2(h+k)-Q]+iy 2v+[Q2+2(h+k)Q]>
1 1 )
20 [Q%+ 2(h ikt KNQ) 117 2vi[Q22(h+k1k)Q]) | (A3)
GraphED2 (DEZ2) of Fig. 1:
! ( 5 )2 . 8m&
[SEDZ(QvV)]T__W Antic Fm Q

X

X

2(_%|m){£(Q,y)fd3h fd3k0(1—h)0(|h+Q|—1)0(1—|h+k|)

X 0(|h+k+ Q| — DI2(QT2(k){4gu g, 36— 3 (k- Q)21+ 4gju, [ — 9o+ Tp+h' (k- Q)21

1 1
X(zy—(Q2+2h.Q)+in_ 2v+(Q2+2h~Q))

1 1 ) }
(A4)

2, [QZr2(h+K)-Ql+iy  20+[Q%12(h+k)-0]

with
1

Sum of all graphs contributing t6,, (see the last line of Fig.)3

(A5)

~ 1 f2 s 4mc [ 1 . .
[SC12(QaV)]T__(27T)7 anic kF(ﬁCMi)z Q| —— Im E(Q,V)th fdke(l—h)0(|h+QI—l)

g1[2_4glcim(Q)£(va)] 2r _
[1-4g,C™Q)L(Q, ]2 Hs L~ 9

X 6(1— |h+k[) 6(|h+k+Q|— HT2(Q)I2(k)| 4 3G,-3h"(k-Q)?]

. 451[2—4616“(Q>£<Q,v>]
[1-49;C™(Q)L(Q,v)]?

Mvz[_92+§§+ﬁ/(|z'é)2])

1 1
X(Zv—(Q2+2h~Q)+i77_2v+(Q2+2h~Q) )

1 1
X(zy—[Q2+2(h+k)-Q]+i77_2v+[Q2+2(h+k)Q] ” (A6)
where
- _( f2 )kF mc
C(Q=| g ie) 2 a2 Q! (A7)
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