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Continuum random phase approximation method applied to the inclusive
transverse electron scattering response
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A continuum random phase approximation~RPA! method for evaluating the structure function of nuclear
matter is developed, where exchange terms for any particle-hole interaction are explicitly included. The
method is applied to the inclusive transverse quasielastic electron scattering response at momentum transfer
ranging from q5300 to 550 MeV/c. The interaction employed is ag8 Landau-Migdal constant plus a
(p1r)-meson exchange interaction. A comparison with the standard ring series is made showing that the
inclusion of finite range effects in the exchange terms is necessary.@S0556-2813~96!01312-X#

PACS number~s!: 25.30.Fj, 21.60.Jz, 24.10.2i
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I. INTRODUCTION

Correlations of the random phase approximation~RPA!
type are relevant in many nuclear physics problems, rang
from low to medium energy processes. These correlati
are well established at low energy@1#. Going to the con-
tinuum, such as in the quasielastic peak region for elec
scattering, there are some technical complications. In
region, RPA correlations are important at low momentu
transfer but the role played by exchange terms for a gen
particle-hole (ph) interaction is still not clear.

The more elemental approach to this problem relied
the ring approximation using effective Landau-Migdal p
rameters to account for the exchange terms in an appr
mate way. This is equivalent to assuming that the excha
contribution of theph interaction is of zero range. There a
several schemes to calculate the RPA response with a m
general interaction in the continuum. One is the doorw
state expansion method of Brievaet al. @2#. The method was
applied to the longitudinal response function and the pho
absorption on12C. Alternatively, Shigeharaet al. @3# devel-
oped a method based on matrix inversion. Using this form
ism they calculated the spin longitudinal, spin transver
and longitudinal responses which were compared to the
results. Also Buballaet al. @4# developed a formalism base
on a Sturmian function expansion for continuum RPA with
general interaction. They applied the formalism to bo
quasielastic longitudinal and transverse response funct
for 12C. Finally, Garcı´a Recioet al. @5# developed a self-
consistent RPA with the inclusion of exchange terms
limited to a Skyrme-type interaction. They applied the fo
malism to nuclear matter and liquid3He.

In this paper, we develop a simple method which accou
for RPA correlations in nuclear matter for any interacti
including the exchange terms. The method can be use
study both the longitudinal and transverse nuclear respo
for inclusive quasielastic electron scattering. However,
will focus on the study of the transverse response using
standard Landau-Migdal parameterg8 plus a
540556-2813/96/54~6!/2959~8!/$10.00
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(p1r)-meson exchange as a model interaction. The elec
of the transverse channel with this interaction is due to t
reasons. First, it allows for a comparison with the more co
plex work of Ref.@4#. Second, even if the method is gener
it is particularly suitable for this channel as will be mad
clear later in this work.

The contribution of directph terms to the RPA respons
for a general interaction can be summed up to infinite or
~ring series!. Unfortunately, this is not possible for exchang
terms. In this work we present a scheme to account for s
terms in a simple way and analyze their magnitude. M
specifically, we present the formalism in Sec. II, where t
residual interaction is divided into a pure contact term an
piece containing a contact term plus a finite range inter
tion. As will be shown there, the separation is made by
manding that the second piece of the interaction gives ris
a fast convergence of the RPA series, which can then
treated up to second order. The remaining pure contact in
action allows a summation up to infinite order. In Sec. I
we present some numerical results, showing that excha
terms are relevant, and make comparison with other m
ods. Finally, the main conclusions are summarized in S
IV.

II. FORMALISM

Let us first introduce the transverse (T) structure function
per unit volume

ST~q,\v!52
1

pV
Imk0uOT

†G~\v!OTu0l, ~1!

whereV is the volume. The structure function is related
the response function,RT(q,\v), through the usual dipole
electromagnetic form factor,GE(q,\v). In Eq. ~1!, \v rep-
resents the excitation energy andq the three-momentum
transfer. The operatorOT is the external excitation operato
which is given by
2959 © 1996 The American Physical Society
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OT5
1

2mq(i51

A S 11t3~ i !

2
@q3$pi8 ,e

iq•xi%#

1 i
ms1mvt3~ i !

2
$q3@s~ i !3q#%eiq•xi D , ~2!

wherem is the nucleonic mass andxi and pi8 denote the
intrinsic coordinates and momentum operators for individ
nucleons. The values ofms andmv , which are related to the
proton and neutron magnetic moments, arems50.88 and
mv54.70.

The nuclear ground state is denoted byu0& while the po-
larization propagatorG(\v) is given by

G~\v!5
1

\v2H1 ih
2

1

\v1H2 ih
, ~3!

whereH is the nuclear Hamiltonian. As usual,H is separated
into a one-body part,H0, and a residual interaction,V, given
by

V~ l !5
f p
2

mp
2 Gp

2 ~ l !„gs•s81g̃8~ l !t•t8s•s8

1h̃8~ l !t•t8s• l̂ s8• l… ~4!

with

g̃8~ l !5g82
Gr
2~ l !

Gp
2 ~ l !

Cr

l 2

l 21mr
2 , ~5!

h̃8~ l !52
l 2

l 21mp
2 1

Gr
2~ l !

Gp
2 ~ l !

Cr

l 2

l 21mr
2 , ~6!

wheremp\c (mr\c) is the pion~rho! rest mass,Cr52.18
and the Landau-Migdal parametersg and g8 account for
short range correlations. For the form factor of thepNN
(rNN) vertex we have taken

Gp,r~ l !5
Lp,r
2 2~mp,r\c!2

Lp,r
2 1~\cl !2

, ~7!

with Lp51.3 GeV andLr52 GeV. The static limit to the
(p1r)-meson exchange interaction has been taken in
~4!. An energy dependent interaction makes minor chan
in the result.

The Hartree-Fock ground state,uHF&, was adopted as a
model for our ground state and the set of intermediate st
has been restricted to one-particle–one-hole~1p1h! excita-
tions. Under these assumptions, the structure func
ST(q,\v), can be redrawn as

ST~q,\v!52
1

pV
Im (

1p1h
1p81h8

^HFuOT
†u1p1h&

3^1p1huG~\v!u1p81h8&^1p81h8uOTuHF&.

~8!
l

q.
es

es

n

The presence ofV makes G(\v) nondiagonal in the
particle-hole basis. To treat this, the standard Dyson equa
is employed:

G~\v!5G0~\v!1G0~\v!VG~\v!, ~9!

whereG0(\v) results from replacing the total Hamiltonia
H in Eq. ~3! by the one-body part,H0. The matrix elements
for the first perturbative terms of Eq.~9! are given by

^1p1huG~\v!u1p81h8&5^1p1huG0~\v!u1p1h&dpp8dhh8

1^1p1huG0~\v!u1p1h&

3^1p1huVu1p81h8&a

3^1p81h8uG0~\v!u1p81h8&

1••• , ~10!

where ^1p1huVu1p81h8&a stands for antisymmetrized
V-matrix elements accounting for both direct and exchan
terms. The first forwardgoing terms contributing to the stru
ture function are shown in Fig. 1.

If we neglect the exchange part of all the matrix eleme
or we consider a pure contact interaction, the terms in
~10! can be easily summed up to infinite order leading to
usual ring approximation. In Fig. 1, this sum is represen
by the diagrams labeled Lind,D1, D2, . . . , where the
nuclear interaction is limited to destroy and create a partic
hole pair.

To obtain the antisymmetric structure function in the RP
scheme, one has to evaluate the exchange terms explicitl
practice, this can be done up to second order. Higher o
terms become a prohibitive calculation for finite range int
actions. The question then is if the first three terms of E
~10! can account for the full sum. To see this, let us comp
the infinite ring series~i.e., direct terms! with the sum of
direct terms up to second order. For numerical purposes
will restrict ourselves to ag8 plus a (p1r)-meson exchange
interaction. In Fig. 2, we make this comparison for two va
ues of g8, where the free structure functionST

0 ~diagram
labeled Lind in Fig. 1! was subtracted. We see that fo
g850.5 the accordance is almost exact. This accordanc
not good forg850.95. While, as shown in the literature@3#,
a g8'0.520.7 is taken to partially account for the exchan
terms, a valueg8'0.720.95 should be employed if the ex

FIG. 1. Goldstone diagrams stemming from the insertion of E
~10! into Eq. ~8!. In every diagram two wavy lines represent th
external probe with momentum and energy (q,\v). Only forward-
going contributions are shown. Diagram Lind represents
Lindhard function. DiagramsD1 andE1 are the direct and ex
change first order contribution to the RPA response, respectiv
while diagramsD2, ED2, DE2, andEE2 are the second-orde
contributions.
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54 2961CONTINUUM RANDOM PHASE APPROXIMATION METHOD . . .
change terms are to be evaluated explicitly. In a sepa
publication@6#, we perform an extensive study of the influ
ence of the exchange terms on the nuclear response, in
ing other types of diagrams than those discussed in this
per. Our study, therefore, requires the use of
g8'0.720.95, which has been shown in Fig. 2 not to rep
duce the ring series when the sum is restricted up to sec
order. Consequently, there is no reason to believe tha
explicit evaluation of the exchange diagrams ofph type up
to second order~see diagramsE1, ED2, DE2, andEE2 in
Fig. 1! would provide, when added to the infinite ring serie
a good representation of the antisymmetric RPA respo
However, going to infinite order in the exchange terms i
difficult task. Below we present an easy prescription t
allows one to obtain a reliable approximation of the ex
RPA response without having to calculate exchange
grams beyond second order in the finite range interac
explicitly.

As we have mentioned above, for a pure contact inter
tion it is possible to sum the fully antisymmetric series of E
~10!. Taking this into account, together with the fact that, f
some values ofg8, the ring~direct! series can be reproduce
by its terms up to second order in the residual interaction,
divide the interaction as follows:

V5V11V2, ~11!

whereV1 is a pure contact interaction (V15g18) andV2 con-
tains a contact (g28) plus the exchange of the (p1r) mesons.
TheV2 interaction is chosen to ensure a fast convergenc
the ring series which, as will be shown later, also implie
fast convergence of Eq.~10!, allowing terms of third and
higher order inV2 to be neglected.

The polarization propagator of Eq.~10! can now be drawn
as

G~\v!5G1~\v!1G2~\v!1G12~\v!, ~12!

where

FIG. 2. Comparison between the ring series~full lines! and the
sum of terms up to second order~dashed lines! for g850.5 and
g850.95 where the free structure function was subtracted. Gra
cally both results coincide for theg8 value 0.5.
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G1~\v!5G0~\v!1G0~\v!V1G
0~\v!

1G0~\v!V1G
0~\v!V1G

0~\v!1•••, ~13!

G2~\v!5G0~\v!V2G
0~\v!

1G0~\v!V2G
0~\v!V2G

0~\v!, ~14!

G12~\v!5G0~\v!V1G
0~\v!V2G

0~\v!

1G0~\v!V2G
0~\v!V1G

0~\v!

1G0~\v!V1G
0~\v!V1G

0~\v!V2G
0~\v!

1••• . ~15!

Inserting Eq.~12! into Eq. ~8! one can define three differen
contributions to the structure function,S1, S2, andS12, as-
sociated toG1, G2, andG12, respectively. In the case o
S1, sinceV1 is a pure contact interaction, the direct an
exchange terms are equivalent and they can both be sum
up to infinite order by evaluating the ring series of Eq.~13!
with redefined values for the Landau-Migdal parameters
tering in the interaction. In the case ofS2, Eq. ~14! is only
considered up to second order, while forS12, Eq.~15! is also
evaluated up to infinite order in theV1 interaction keeping
terms up to first order inV2 as it will be justified below. In
Fig. 3, a graphical representation of this division is show

III. RESULTS AND DISCUSSION

As an application of this method, the structure function
nonrelativistic nuclear matter at a Fermi momentu
kF51.36 fm21 is analyzed in detail for a momentum transf

i-

FIG. 3. Goldstone diagrams stemming from Eqs.~13!–~15!. In
every diagram a dashed line represents the nuclear interactioV2

which is a general nonlocal interaction, while a dot betwe
particle-hole bubbles represents the pure contact interactionV1.
Line S1 is the usual ring series forV1. Line S2 is the sum of first-
and second-order RPA-type diagrams for theV2 interaction, where
exchange matrix elements are explicitly included. Finally, li
S12 displays some interference terms betweenV1 and V2. In all
cases, theV2 interaction is included up to second order.
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2962 54E. BAUER, A. RAMOS, AND A. POLLS
q5410 MeV/c. We have employed ag850.95, taken from
Ref. @3#. The separation of the interaction is performed
consideringg1850.45 as the only contribution for the conta
interaction V1, while V2 contains g2850.5 plus the
(p1r)-meson exchange. AsV1 is a pure contact force it ca
be redefined to account for antisymmetrization. This
shown in full detail in Ref.@3#. For completeness, we outlin
here the procedure in our particular case. The direct piec
the ph interaction,

V15
f p
2

mp
2 g18t•t8s•s8, ~16!

contains only ag18 term. The total~direct plus exchange!
ph interaction is given by

~V1!ant5V11~V1!exch, ~17!

where the exchange piece is constructed via the spin-iso
exchange operatorPsPt

~V1!exch52PsPtV1

5
f p
2

mp
2 ~ f 1,E1 f 1,E8 t•t81g1,E s•s8

1g1,E8 t•t8 s•s8!, ~18!

and contains contributions in all the spin-isospin chann
with f 1,E52 9

4g18 , f 1,E8 5 3
4g18 g1,E5 3

4g18 , and g1,E8 52 1
4g18 .

Only g1 andg18 are relevant in the transverse structure fun
tion. Following Eq. ~17!, their antisymmetrized values ar
(g1)ant5g1,E50.3375 and (g18)ant5g18 1 g1,E8 50.3375. Using
the redefined interaction (V1)ant, the ring series accounts fo
both direct and exchange terms up to infinite order a
builds up theS1 contribution to the structure function.

In Fig. 2 we showed that the sum of direct terms up
second order inV2 equalled the ring series for that intera
tion. By restricting the sum of Eq.~14! to the second-orde
terms, we have implicitly assumed that the convergenc
also valid for the exchange terms, a fact which is not evid
as the exchange terms have different momentum de
dence. The assumption is based on the results show

TABLE I. RPA contribution to the structure function in nuclea
matter at kF51.36 fm21 for a momentum transfe
q5410 MeV/c. The energy is given in MeV, while the structur
function is in units of (1025 MeV21 fm23). The notation forS1,
S2, andS12 is the same as in Fig. 3, while that forD1,E1,D2, and
E2 is the same as in Fig. 1, whereE2 is the sum of all second-orde
exchange contributionsED2, DE2, andEE2. Note that the free
structure is included inS1. ColumnST collects the sum of all con-
tributions.

\v S1 S2 S12 ST

D1 E1 D2 E2

40 24.903 -10.396 4.035 1.333 -0.503 -0.374 18.9
80 39.923 -5.466 2.178 -0.295 0.186 0.780 37.3
120 51.820 0.801 0.050 -0.561 0.338 1.065 53.5
160 50.682 3.697 -1.552 0.096 -0.040 -0.826 52.0
s

of

in

s,

-

d

is
t
n-
in

Table I, where the different contributions to the total stru
ture functionST are shown. By comparing columnsE1 with
D1 andE2 with D2, it is observed that exchange terms a
smaller than the corresponding direct ones. Since the hig
order direct terms will be negligible small, it is plausible
believe that, according to the trend of the results shown
Table I, the same will hold true for the exchange terms.

Explicit expressions for the different diagrams are sho
in the Appendix. The multiple integrations have been p
formed using a Monte Carlo technique. The numerical eva
ation of the exchange graphEE2 in Fig. 1 is particularly
difficult and cannot be given with good accuracy. Howev
this lack of accuracy does not affect the whole calculation
its value is very small. As a consequence, some higher o
contributions, as the one shown at the end of lineS12 in Fig.
3, can also be neglected. In Fig. 4 we present all diagra
used to evaluateS12, where the shaded bubble represents
sum of direct (D1) and exchange (E1) contributions of
V2. The first graph on the top LHS of Fig. 4 is the sum of t
first two graphs shown in Fig. 3 forS12. Similarly, the first
graph in the second line of Fig. 4 is the sum of the third a
fourth graphs ofS12 in Fig. 3. All the other diagrams on th
LHS of Fig. 4 represent additional contributions toS12,
present in Eq.~15!, which have not been drawn in Fig. 3
These contributions are obtained by allowing the sha
bubble to be located in all different positions in the diagram
All contributions yield identical results and they can be a
counted for by the factor appearing on the RHS of Fig.
The resultingS12 is the sum of all graphs on the RHS of th
equations shown in Fig. 4 with their corresponding facto
All graphs are first order inV2. The summation up to infinite
order inV1 gives a modified ring series as can be seen in
~A6! of the Appendix.1 The possibility of summing this se
ries up to infinite order, together with the fact that th

1In the Appendix we show theV2 exchange contribution only. It is
straighforward to obtain the direct one.

FIG. 4. Goldstone diagrams used to evaluateS12. The shaded
bubble represents the sum of direct and exchange contribution
V2 ~see explanation in the text!.



ur

i
tu
-
t
n

th

re
T

f
-

h

e

es-
f
ce-
ce
er-
es
in

ase
n
e
ns
ults
fer
PA
all
are

dd-
a-
ion
e
m-
re
lat-
on

of
t in
t

the
x-
is
the
d
e
is
of

in

-

to

in
ults
ong
-
ow
um

he
r a

rin

e
su

te

54 2963CONTINUUM RANDOM PHASE APPROXIMATION METHOD . . .
second-order contributions inV2 are negligible forS12,
makes the division of the interaction useful for practical p
poses.

In Table II, we present the structure function calculated
several approximations for three values of the momen
transfer. The free structure function,ST

0 , has been sub
stracted in order to emphasize the differences between
approximations. This is indicated by the notatio
S̄T5ST2ST

0 . The results of our method~last column, la-
beledS̄RPA) are compared with those obtained summing
direct ring series employing an interactionV5g81(p1r)
with g850.55 (S̄ring1) andg850.70 (S̄ring2), as suggested in
Ref. @3#. These values ofg8 result from an average procedu
over the exchange matrix elements on the Fermi surface.
first value does not include a screening effect contained
the second one~see Ref.@3#!. Note that, in the evaluation o
S̄RPA, different values ofg28 have been employed for differ
ent values of the momentum transferq, according to the
prescription of a fast convergence to the ring series. T
resultingg28 values are 0.3, 0.5, and 0.85 forq5300, 410,
and 550 MeV/c, respectively. In Table II we observe that th

TABLE II. Comparison between the ring approximation and t
total RPA contribution to the structure function of nuclear matte
kF51.36 fm21, for three different transferred momenta:q5300,
410, and 550 MeV/c. Units are the same as in Table I. Ag8 plus a
(p1r)-meson exchange interaction was used to calculate the
series, takingg850.55 for S̄ring1 andg850.7 for S̄ring2. The results
of column S̄ring1ex employ ag850.95 and include the perturbativ
exchange graphs up to second order in the interaction. The re
of our method are given in columnS̄RPA, where the employed value
of g28 is explicitly shown. The free structure function was subtrac
for convenience as indicated in the text.

q5300 MeV/c
\v S̄ring1 S̄ring2 S̄ring1ex S̄RPA(g2850.30)

30 -19.698 -23.434 -36.762 -29.143
60 -13.867 -19.842 -12.322 -22.463
90 4.154 1.549 -6.674 2.295
120 10.442 18.578 25.908 17.711

q5410 MeV/c
\v S̄ring1 S̄ring2 S̄ring1ex S̄RPA(g2850.50)

30 -13.028 -21.063 -29.544 -29.461
60 -11.415 -20.344 -22.089 -27.626
90 -6.571 -13.755 -14.402 -17.378
120 -0.079 -2.533 -5.662 -1.833
150 4.959 8.810 6.617 11.843
180 4.854 10.816 16.724 12.733

q5550 MeV/c
\v S̄ring1 S̄ring2 S̄ring1ex S̄RPA(g2850.85)

30 4.794 -1.588 -4.523 -5.475
60 7.849 -2.706 -7.463 -9.160
90 8.120 -2.973 -8.086 -9.636
120 6.294 -2.500 -6.917 -7.480
150 3.333 -1.514 -4.384 -3.867
180 0.195 -0.313 -1.138 0.089
210 -2.303 0.772 1.868 3.169
240 -3.563 1.420 3.908 4.324
270 -3.262 1.392 3.995 3.436
-

n
m

he

e

he
in

e

ring approximation underestimates the RPA correlations,
pecially in the caseS̄ring1. This is due to an overestimation o
the exchange contribution stemming from the average pro
dure forg8. However, even if there is a manifest differen
between our results and the ring approximation, this diff
ence gets smaller asq tends to zero, that is, when one go
closer to the Landau limit. The reason is that it is precisely
this low momentum transfer region where the effectiveg8
value to account for exchange terms was derived. In the c
of q5550 MeV/c, the results of the ring approximatio
with g850.55 (S̄ring1) even have a different sign than th
RPA results, although it must be noted that RPA correlatio
are smaller in this region of momentum transfer. The res
of Table II show that, in the intermediate momentum trans
region, the average procedure is not adequate, while R
correlations are still significant. Note that in this region
correlations both in the ground state and in the final state
relevant@7#.

Our method must be viewed as a convenient way of a
ing the RPA series up to infinite order in which only di
grams up to second order in a piece of the interact
@V25g281(p1r)# need to be explicitly calculated. For th
method to be useful, one must therefore check how it co
pares with the technically similar but conceptually mo
straightforward alternative procedure consisting in calcu
ing the direct ring series with the complete interacti
@V5g81(p1r)# and the exchange graphs (E1, ED2,
DE2, andEE2 in Fig. 1! only up to second order inV.
Column S̄ring1ex in Table II shows that the convergence
exchange terms in the alternative procedure is not fas
general and depends on theg8 value employed. Observe tha
the discrepancy between theS̄ring1ex value and our result
S̄RPA, gets smaller asg2 approaches tog8, which is when
both procedures are equivalent.

We want to stress that the difference between
S̄ring1ex approximation and ours, relays on higher order e
change diagrams which we are including. To clarify th
point, let us consider a third-order exchange diagram in
total interactionV. In S̄ring1ex this diagram is not considere
at all. However, it is partially included in our scheme in th
way we describe in the following. First of all, this diagram
split into several contributions stemming from the division
V into V1 andV2. The contribution which contains onlyV1
is part of S1; contributions which only containV2 or are
second order inV2 ~see the last diagram of lineS12 in Fig. 3!
are neglected. Finally, contributions that are first order
V2 are included inS12. Note that we have numerically
checked that the second order inV2 exchange diagram~dia-
gramEE2 in Fig. 1! gives a small contribution, which sug
gests that neglecting second- and higher orderV2 diagrams is
a reliable assumption as already discussed in relation
Table I.

The total response function,RT(q,\v), related toST
through the dipole electromagnetic form factor, is shown
Fig. 5 for several values of momentum transfer. Our res
are represented by the full line, the free response by the l
dashed line, andS̄ring1ex by the short dashed line. It is ob
served that the RPA correlations shift strength from the l
to the high energy region, keeping the energy-weighted s
rule unchanged. Forq 5 300 MeV/c, we observe a non-

t

g

lts

d
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2964 54E. BAUER, A. RAMOS, AND A. POLLS
physical negative value forS̄ring1ex at low energy. This is a
simple consequence of having neglected higher order
change diagrams. Note that this pathology is absent in
method. Our results show a qualitative agreement with th
of Fig. 6 in Ref. @4#. The comparison of the effect of th
exchange terms cannot be made deeper because the nu
considered in Ref.@4#, 12C, is too light for a nuclear matte
description. As other mechanisms beyond RPA correlatio
like higher order correlations@7–15# or meson exchange cur
rents~MEC! @16,17#, are important in the transverse chann
a comparison with data is not possible. A more compl
version, where the exchange contribution for higher or
correlations are included, is in progress@6#. However, we
have focused on RPA correlations because they deserve
cial attention.

Finally, it is important to note that our method can
applied to a more general interaction with all the Landa
Migdal terms, as these additional constant terms can be p
erly antisymmetrized up to infinite order in the ring series.

FIG. 5. Transverse response function at several values of
momentum transfer as a function of the energy\v. The free re-
sponse function~long-dashed line!, the response forS̄ring1ex ~short-
dashed line! and our result~full line! are shown.
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particular, the method can be easily applied to the longitu
nal channel. In this case, the Landau-Migdal parameterf
and f 8 should be added to the residual interaction as th
dominate the direct contribution. Still, it is theg8 parameter
which should be tuned up to apply the method.

IV. CONCLUSION

We have presented a simple scheme to evaluate the
antisymmetric RPA series contributing to the structure fu
tion in nuclear matter. The prescription is based on two
gredients. The first one is the separation of the interactio
a pure contact term plus a contribution which guarantee
fast convergence to the ring series. The second is the fact
for a pure contact interaction it is possible to sum the f
antisymmetric RPA series up to infinite order. The result
that explicit evaluation of the exchange contribution is im
portant and cannot be reduced to the evaluation of the
series with the standard average prescription forg8, espe-
cially for intermediate values of the momentum transf
This stresses also the importance of the inclusion of the p
~in particular its tensor force! which is not present in the ring
approximation.
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APPENDIX

In this appendix, we present explicit expressions for
different exchange graphs needed to build up our antis
metric RPA for nuclear matter. We do not reproduce here
ring series as it can be found in many references~see, for
example, Ref.@18#!.

Even if in our numerical example we have focused on
g8 plus a (p1r)-meson exchange interaction, we prefer
include also the parameterg of Eq. ~4!, for completeness.

In the following, we use dimensionless quantiti
Q5q/kF and n5\v/2«F , wherekF and «F are the Fermi
momentum and Fermi energy, respectively.

GraphE1 of Fig. 1:
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where we have defined
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GraphEE2 of Fig. 1:

@SEE2~Q,n!#T5
1

~2p!7
S f p

2

4p\c D 2 4mc2kF
5

~\cmp
2 !2

E d3h E d3k E d3k8u~ uh1Qu21!

3u~12uhu!u~12uh1ku!u~ uh1k1Qu21!u~12uh1k1k8u!u~ uh1k1k81Qu21!Gp
2 ~k! Gp

2 ~k8!

3S $5@9~ g̃28!21h̃8216g̃28h̃8#19~g2!
219g2g̃2816g2h̃8%8@h~h1k1k8!2~Q•h!Q•~h1k1k8!/Q2#

1
3ms

22mv
2

2
$Q2~g2!

21g2g̃281g2h̃8@~Q• k̂!21~Q• k̂8!2#%1
ms

21mv
2

2
Q2~g2!

21
9ms

21mv
2

2

3„Q2$~ g̃28!21h̃82@2~ k̂•k8̂!221#%1h̃82@~Q• k̂!21~Qk̂8!2 2 2~Q• k̂!~Q• k̂8!~ k̂• k̂8!#

1g̃28h̃8@~Q• k̂!21~Q• k̂8!2# D S 2
1

p
ImD F S 1

2n2~Q212h•Q!1 ih
2

1

2n1@Q212h•Q#
D

3S 1

2n2@Q212~h1k!•Q#1 ih

1

2n1@Q212~h1k!Q#
D

3S 1

2n2@Q212~h1k1k8!Q!1 ih
2

1

2n1@Q212~h1k1k8!Q#
D G . ~A3!

GraphED2 (DE2) of Fig. 1:
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Sum of all graphs contributing toG12 ~see the last line of Fig. 3!:
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