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High-momentum proton removal from 16O and the „e,e8p… cross section
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The cross section for the removal of high-momentum protons from16O is calculated for high missing
energies. The admixture of high-momentum nucleons in the16O ground state is obtained by calculating the
single-hole spectral function directly in the finite nucleus with the inclusion of short-range and tensor corre-
lations induced by a realistic meson-exchange interaction. The presence of high-momentum nucleons in the
transition to final states in15N at 60–100 MeV missing energy is converted to the coincidence cross section for
the (e,e8p) reaction by including the coupling to the electromagnetic probe and the final state interactions of
the outgoing proton in the same way as in the standard analysis of the experimental data. Detectable cross
sections for the removal of a single proton at these high missing energies are obtained which are considerably
larger at higher missing momentum than the corresponding cross sections for thep-wave quasihole transitions.
Cross sections for these quasihole transitions are compared with the most recent experimental data available.
@S0556-2813~97!03902-2#

PACS number~s!: 25.30.Dh, 25.30.Fj, 21.10.Jx, 21.30.Fe
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I. INTRODUCTION

Experimental progress in the exclusive (e,e8p) reaction
in recent years has provided a clear picture of the limitati
of the simple shell-model description of closed-shell nuc
Of particular interest is the reduction of the single-parti
~sp! strength for the removal of particles with valence ho
quantum numbers with respect to the simple shell-model
timate which corresponds to a spectroscopic factor of 1
such states. Typical experimental results@1# for closed-shell
nuclei exhibit reductions of about 30–45% for these spec
scopic factors. In the case of208Pb, one obtains a spectro
scopic factor for the transition to the ground state of207Tl of
about 0.65 which is associated with the removal of a 3s12
proton. An analysis which uses information obtained fro
elastic electron scattering indicates that the total occupa
number for this state is about 10% higher@2#, corresponding
to 0.75. This additional background strength should
present at higher missing energy and is presumed to
highly fragmented. The depletion of more deeply bound
bitals is expected to be somewhat less as suggested by
retical considerations@3# which also indicate that the
strength in the background, outside the main peak, co
sponds to about 10%~see also@4#!.

Recent experimental results for16O @5# yield a combined
quasihole strength for thep 1

2 andp
3
2 states corresponding t

about 65% with thep 1
2 strength concentrated in one peak a

the p 3
2 strength fragmented already over several peaks.

cent theoretical results yield about 76% for thesep states@6#
550556-2813/97/55~2!/810~10!/$10.00
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without reproducing the fragmentation of thep 3
2 strength.

This calculation includes the influence of both long-ran
correlations, associated with a large shell-model space
well as short-range correlations. This inclusion of the lon
range correlations yields in general a good description
e.g., thel52 strength. However, it fails to reproduce som
details: In the experimental data, one observes some stre
of positive parity (l52) at energies below the firstp 3

2 frag-
ment whereas the calculation yields alll52 strength above
the p 3

2 peak. This suggests that additional work has to
done to reproduce such details. Furthermore, one shoul
aware that also a correct treatment of the center-of-mass
tion may affect the distribution of single-particle streng
even for nuclei as heavy as16O @7#. The contribution to the
depletion of the sp strength due to short-range correlation
typically about 10%. This result is obtained both in nucle
matter calculations, as reviewed in@3#, and in calculations
directly for finite ~medium! heavy nuclei@7–10,6#. Although
the influence of long-range correlations on the distribution
the sp strength is substantial, it is clear that a sizable frac
of the missing sp strength is due to short-range effects.
experimental data@1,5# indicate that only about 70% of th
expected protons in the nucleus has been detected in
energy and momentum domain studied so far. It is theref
important to establish precisely where the protons wh
have been admixed into the nuclear ground state due
short-range and tensor correlations can be detected in
(e,e8p) reaction and with what cross section.

The influence of short-range correlations on the prese
810 © 1997 The American Physical Society
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55 811HIGH-MOMENTUM PROTON REMOVAL FROM16O AND . . .
of high-momentum components in finite~medium! heavy nu-
clei has been calculated in@8–10#. In this work the spectra
function for 16O has been calculated from a realistic intera
tion without recourse to some form of local density appro
mation @11,12#. No substantial high-momentum componen
are obtained in@8–10# at small missing energy. With in
creasing missing energy, however, one recovers the h
momentum components which have been admixed into
ground state. The physics of these features can be tr
back to the realization that the admixture of high mome
requires the coupling to two-hole–one-particle~2h1p! states
in the self-energy for a nucleon with high momentum.
nuclear matter the conservation of momentum requires
equality of the 2h1p momentum in the self-energy and
external high momentum. Since the two-hole state has a r
tively small total pair momentum, one automatically nee
an essentially equally large and opposite momentum for
intermediate one-particle state to fulfill momentum conser
tion. As a result, the relevant intermediate 2h1p states wil
at increasing excitation energy with increasing momentu
Considerations of this type are well known for nuclear ma
~see, e.g.,@13#!, but are approximately valid in finite nucle
as well. Recent experiments on208Pb @14# and 16O @15# es-
sentially confirm that the presence of high-momentum co
ponents in the quasihole states accounts for only a tiny f
tion of the sp strength.

The theoretical prediction concerning the presence
high-momentum components at high missing energy rem
to be verified experimentally, however. In order to facilita
and support these efforts, the present work aims to com
the calculation of the spectral function at these energies w
the description of both the electromagnetic vertex and fi
state interactions~FSI’s! in order to produce realistic est
mates of the exclusive (e,e8p) cross section under exper
mental conditions possible at NIKHEF and Mainz. The im
pulse approximation has been adopted for
electromagnetic current operator, which describes the non
ativistic reduction~up to fourth order in the inverse nucleo
mass@16#! of the coupling between the external virtual ph
ton and single nucleons only. The treatment of FSI’s h
been developed by the Pavia group@17–21# ~see also Ref.
@22#! and takes into account the average complex opt
potential the nucleon experiences on its way out of
nucleus. Other contributions to the exclusive (e,e8p) reac-
tion are present in principle, such as two-step mechanism
the final state or the decay of initial collective excitations
the target nucleus. However, by transferring sufficiently h
energyv to the target nucleus and by selecting typical kin
matical conditions corresponding to the so-called quasie
tic peak withv5q2/2m (q the momentum transfer andm
the nucleon mass!, these contributions are suppressed.
these conditions, adopted in the most recent experiments
direct knockout mechanism has been shown to be the do
nant contribution@21# and essentially corresponds to calc
lating the combined probability for exciting a correlated p
ticle ~which is ultimately detected! and a correlated hole suc
that energy and momentum are conserved but no furthe
teraction of the particle with the hole is included.

The calculation of the spectral function for16O is re-
viewed in Sec. II. Special attention is given to a separa
representation of the spectral function which facilitates
-
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practical implementation of the inclusion of FSI’s. In Sec.
the general formalism of the distorted wave impulse appro
mation~DWIA ! is briefly reviewed. The influence of FSI’s i
studied in Sec. IV for the quasihole transitions for which da
are available@5,15#. Extending the calculation of the cros
section to higher missing energies yields the expected ris
high-missing-momentum components in the cross sectio
comparison to the results near the Fermi energy. The co
bution of various partial waves is studied demonstrating
increasing importance of higherl values with increasing
missing momentum. All these results are discussed in S
IV and a brief summary is presented in Sec. V.

II. SINGLE-PARTICLE SPECTRAL FUNCTION

The calculation of the cross section for exclusi
(e,e8p) processes requires the knowledge of the hole sp
tral function which is defined in the following way

S~p,ms ,mt ,p8,ms8 ,mt ;E!

5(
n

^C0
Aua†~p8,ms8,mt!uCn

A21&

3^Cn
A21ua~p,ms ,mt!uC0

A&d„E2~E0
A2En

A21!…, ~1!

where the summation overn runs over the discrete excite
states as well as over the continuum of the (A21) particle
system,uC0

A& is the ground state of the initial nucleus, an
a(p,ms ,mt) @a†(p8,ms8,mt)# is the annihilation@creation#
operator with the specified sp quantum numbers for m
menta and third component of spin and isospin, respectiv
The spectral function is diagonal in the third component
the isospin, and ignoring the Coulomb interaction betwe
the protons, the spectral functions for protons and neutr
are identical forN5Z nuclei. Therefore in the following we
have dropped the isospin quantum numbermt . Note that the
energy variableE in this definition of the spectral function
refers to minus the excitation energy of staten in theA21
particle system with respect to the ground-state ene
(E0

A) of the nucleus withA nucleons.
To proceed further in the calculations it is useful to intr

duce a partial wave decomposition which yields the spec
function for a nucleon in the sp basis with orbital angu
momentuml , total angular momentumj , and momentum
p:

Sl j ~p,p8;E!5(
n

^C0
Auap8 l j

† uCn
A21&^Cn

A21uapl j uC0
A&

3d„E2~E0
A2En

A21!…, ~2!

whereapl j (ap8 l j
† ) denotes the corresponding removal~addi-

tion! operator. The spectral functions for the various par
waves,Sl j (p,p8;E), have been obtained from the imagina
part of the corresponding sp propagatorgl j (p,p8;E). This
Green’s function solves the Dyson equation
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gl j ~p1 ,p2 ;E!5gl j
~0!~p1 ,p2 ;E!1E dp3E dp4gl j

~0!

3~p1 ,p3 ;E!DS l j ~p3 ,p4 ;E!gl j ~p4 ,p2 ;E!,

~3!

where g(0) refers to a Hartree-Fock propagator andDS l j
represents contributions to the real and imaginary parts of
irreducible self-energy, which go beyond the Hartree-Fo
approximation of the nucleon self-energy used to der
g(0). Although the evaluation of the self-energy as well
the solution of the Dyson equation has been discusse
detail in previous publications@9,10#, we include here a brie
summary of the relevant aspects of the method.

A. Calculation of the nucleon self-energy

The self-energy is evaluated in terms of aG matrix which
is obtained as a solution of the Bethe-Goldstone equation
nuclear matter choosing for the bareNN interaction the one-
boson-exchange potential B defined by Machleidt~Ref. @23#,
Table A.2!. We have chosen version B as it seems to be
most typical of the different Bonn potentials. The strength
its tensor components is in between those of versions A
C as can be seen from thed-state probabilities calculated fo
the deuteron~4.5 for Bonn A, 5.1 for Bonn B, and 5.5 fo
Bonn C!. The Bethe-Goldstone equation has been solved
a Fermi momentumkF51.4 fm21 and starting energy
210 MeV. The choices for the density of nuclear matter a
the starting energy are rather arbitrary. It turns out, howe
that the calculation of the Hartree-Fock term@Fig. 1~a!# is
not very sensitive to this choice@24#. Furthermore, we will
correct this nuclear matter approximation by calculating
two-particle–one-hole~2p1h! term displayed in Fig. 1~b! di-
rectly for the finite system. This second-order correcti
which assumes harmonic oscillator states for the occup
~hole! states and plane waves for the intermediate unbo
particle states, incorporates the correct energy and den
dependence characteristic of a finite nucleusG matrix. To
evaluate the diagrams in Fig. 1, we need matrix element
a mixed representation of one particle in a bound harmo
oscillator while the other is in a plane wave state. Us
vector bracket transformation coefficients@25# one can trans-
form matrix elements from the representation in coordina
of relative and center-of-mass momenta to the coordinate
sp momenta in the laboratory frame in which the two-parti
state is described by

up1l 1 j 1p2l 2 j 2JT&, ~4!

FIG. 1. Graphical representation of the Hartree-Fock~a!, the
two-particle–one-hole~2p1h! ~b!, and the two-hole–one-particl
contribution~2h1p! ~c!, to the self-energy of the nucleon.
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where pi , l i , and j i refer to momentum and angular mo
menta of particlei whereasJ andT define the total angula
momentum and isospin of the two-particle state. Perform
an integration over one of thepi , one obtains a two-particle
state in the mixed representation

un1l 1 j 1p2l 2 j 2JT&5E
0

`

dp1p1
2Rn1 ,l1

~ap1!up1l 1 j 1p2l 2 j 2JT&.

~5!

HereRn1 ,l1
stands for the radial oscillator function and th

oscillator lengtha51.72 fm21 has been chosen to have a
appropriate description of the bound sp states in16O. Using
the notation defined in Eqs.~4! and ~5!, our Hartree-Fock
approximation for the self-energy is obtained in the mom
tum representation

S l1 j 1
HF ~p1 ,p18!5

1

2~2 j 111! (
n2l2 j 2JT

~2J11!~2T11!

3^p1l 1 j 1n2l 2 j 2JTuGup18l 1 j 1n2l 2 j 2JT&.

~6!

The summation over the oscillator quantum numbers is
stricted to the states occupied in the independent par
model of 16O. This Hartree-Fock part of the self-energy
real and does not depend on the energy.

The terms of lowest order inG which give rise to an
imaginary part in the self-energy are represented by the
grams displayed in Figs. 1~b! and 1~c!, referring to interme-
diate 2p1h and 2h1p states, respectively. The 2p1h contr
tion to the imaginary part is given by

Wl1 j 1
2p1h~p1 ,p18 ;E!5

21

2~2 j 111! (
n2l2 j 2

(
lL

(
JJSST

E k2dk

3E K2dK~2J11!~2T11!

3^p1l 1 j 1n2l 2 j 2JTuGuklSJSKLT&

3^klSJSKLTuGup18l 1 j 1n2l 2 j 2JT&p

3dSE1en2l2 j 22
K2

4m
2
k2

mD , ~7!

where the ‘‘experimental’’ sp energiesen2l2 j 2 are used for

the hole states (247 MeV,221.8 MeV, and215.7 MeV for
s12, p

3
2, andp

1
2 states, respectively!, while the energies of the

particle states are given in terms of the kinetic energy on
The plane waves associated with the particle states in
intermediate states are properly orthogonalized to the bo
sp states following the techniques discussed by Borrom
et al. @26#. The 2h1p contribution to the imaginary pa
Wl1 j 1

2h1p(p1 ,p18 ;E) can be calculated in a similar way~see also

@26#!.
Our choice to assume pure kinetic energies for the part

states in calculating the imaginary parts ofW2p1h @Eq. ~7!#
andW2h1pmay not be very realistic for the excitation mod
at low energy. Indeed a sizable imaginary part inW2h1p is
obtained only for energiesE below 240 MeV. As we are
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55 813HIGH-MOMENTUM PROTON REMOVAL FROM16O AND . . .
mainly interested, however, in the effects of short-range c
relations, which lead to excitations of particle states w
high momentum, the choice seems to be appropriate. A
ferent approach would be required to treat the coupling to
very low-lying 2p1h and 2h1p states in an adequate w
Attempts at such a treatment can be found in Refs.@27–
31,6#. The 2p1h contribution to the real part of the se
energy can be calculated from the imaginary partW2p1h us-
ing a dispersion relation@32#

Vl1 j 1
2p1h~p1 ,p18 ;E!5

1

p
PE

2`

` Wl1 j 1
2p1h~p1 ,p18 ;E8!

E82E
dE8, ~8!

whereP represents a principal value integral. A similar d
persion relation holds forV2h1p andW2h1p.

Since the Hartree-Fock contributionSHF has been calcu
lated in terms of a nuclear matterG matrix, it already con-
tains 2p1h terms of the kind displayed in Fig. 1~b!. In order
to avoid such an overcounting of the particle-particle lad
terms, we subtract from the real part of the self-energ
correction term (Vc), which just contains the 2p1h contribu
tion calculated in nuclear matter. Summing up the vario
contributions we obtain for the self-energy the expressio

S5SHF1DS5SHF1~V2p1h2Vc1V2h1p!

1~W2p1h1W2h1p!. ~9!

B. Solution of the Dyson equation

The next step is to solve the Dyson equation~3! for the sp
propagator. To this aim, we discretize the integrals in t
equation by considering a complete basis within a spher
box of a radiusRbox. The calculated observables are ind
pendent of the choice ofRbox, if it is chosen to be around 15
fm or larger. A complete and orthonormal set of regular ba
functions within this box is given by

F i l jm~r !5^r upi l jm&5Nil j l~pir !Yl jm~u,f!. ~10!

In this equationYl jm represent the spherical harmonics i
cluding the spin degrees of freedom andj l denote the spheri
cal Bessel functions for the discrete momentapi which fulfill

j l~piRbox!50. ~11!

Note that the basis functions defined for discrete value
the momentumpi within the box differ from the plane wave
states defined in the continuum with the corresponding m
mentum just by the normalization constant, which isA2/p
for the latter. This enables us to determine the matrix e
ments of the nucleon self-energy in the basis of Eq.~10!
from the results presented in the preceding subsection.

As a first step we determine the Hartree-Fock approxim
tion for the sp Green’s function in the ‘‘box basis.’’ For th
purpose the Hartree–Fock Hamiltonian is diagonalized:

(
n51

Nmax K piU pi22md in1S l j
HFUpnL ^pnua& l j5ea l j

HF^pi ua& l j .

~12!
r-

if-
e
y.

r
a

s

s
al
-

is
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-

-
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Here and in the following the set of basis states in the b
has been truncated by assuming an appropriateNmax. In the
basis of Hartree–Fock statesua&, the Hartree-Fock propaga
tor is diagonal and given by

gl j
~0!~a;E!5

1

E2ea l j
HF6 ih

, ~13!

where the sign in front of the infinitesimal imaginary qua
tity ih is positive ~negative! if ea l j

HF is above~below! the
Fermi energy. With these ingredients one can solve
Dyson equation~3!. One possibility is to determine first th
so-called reducible self-energy, originating from an iterati
of DS, by solving

^auS l j
red~E!ub&5^auDS l j ~E!ub&1(

g
^auDS l j ~E!ug&

3gl j
~0!~g;E!^guS l j

red~E!ub& ~14!

and obtain the propagator from

gl j ~a,b;E!5da,bgl j
~0!~a;E!1gl j

~0!~a;E!^auS l j
red~E!ub&

3gl j
~0!~b;E!. ~15!

Using this representation of the Green’s function one c
calculate the spectral function in the ‘‘box basis’’ from

S̃l j
c ~pm ,pn ;E!5

1

p
ImS (

a,b
^pmua& l j gl j ~a,b;E!^bupn& l j D .

~16!

For energiesE below the lowest sp energy of a give
Hartree-Fock state~with l j ) this spectral function is differen
from zero only due to the imaginary part inS red. This con-
tribution involves the coupling to the continuum of 2h1
states and is therefore nonvanishing only for energies
which the corresponding irreducible self-energyDS has a
nonzero imaginary part. Besides this continuum contributi
the hole spectral function also receives contributions fr
the quasihole states@9#. The energies and wave functions
these quasihole states can be determined by diagonal
the Hartree-Fock Hamiltonian plusDS in the ‘‘box basis’’:

(
n51

Nmax K piU pi22md in1S l j
HF1DS l j ~E5eY l j

qh !UpnL ^pnuY& l j

5eY l j
qh ^pi uY& l j . ~17!

Since in the present workDS only contains a sizable imagi
nary part for energiesE beloweY

qh, the energies of the quas
hole states are real and the continuum contribution to
spectral function is separated in energy from the quasih
contribution. The quasihole contribution to the hole spec
function is given by

S̃Y l j
qh ~pm ,pn ;E!5ZY l j ^pmuY& l j ^Yupn& l jd~E2eY l j

qh !,
~18!

with the spectroscopic factor for the quasihole state given
@9#
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ZY l j5S 12
]^YuDS l j ~E!uY&

]E U
e

Y l j
qh D 21

. ~19!

Finally, the continuum contribution of Eq.~16! and the
quasihole parts of Eq.~18!, which are obtained in the basis o
box states, can be added and renormalized to obtain the s
tral function in the continuum representation at the mome
defined by Eq.~11!:

Sl j ~pm ,pn ;E!5
2

p

1

Nil
2 S S̃l jc ~pm ,pn ;E!

1(
Y

S̃Y l j
qh ~pm ,pn ;E! D . ~20!

It is useful to have a separable representation of the spe
function in momentum space. For a given energy, the sp
tral function in the box is represented by a matrix in mome
tum space; after diagonalizing this matrix, one obtains

Sl j ~pm ,pn ;E!5 (
i

Nmax

Sl j ~ i !f i~pm!f i~pn!, ~21!

whereSl j ( i ) are the eigenvalues andf i are the correspond
ing eigenfunctions. In all cases considered here, it is eno
to consider the first five or six largest eigenvalues in Eq.~21!
for an accurate representation of the spectral function. Th
eigenfunctions are in principle sp overlap functions@see dis-
cussion after Eq.~29! below#. They can be thought of as th
natural orbits at a given energy. In fact, if the diagonalizat
is performed after integrating over the energyE, one would
precisely obtain the natural orbits associated with the o
body density matrix and the eigenvaluesSl j ( i ) would be the
natural occupation numbers@10#.

III. GENERAL FORMALISM OF THE DWIA

For the scattering of an ultrarelativistic electron with in
tial ~final! momentumpe(pe8), while a nucleon is ejected
with final momentumpN8 , the differential cross section in th
one-photon-exchange approximation reads@19,21#

ds

dpe8dpN8
5

e4

16p2

1

Q4pepe8
(

l,l850,61

Ll,l8Wl,l8, ~22!

whereQ25q22v2 andq5pe2pe8 , v5pe2pe8 are the mo-
mentum and energy transferred to the target nucle
respectively. The quantitiesLl,l8, Wl,l8 ~usually referred
to as the lepton and hadron tensors, respectively! are ex-
pressed in the basis of unit vectors

e05~1,0,0,0!,

e615S 0,7A1

2
,2A1

2
i ,0D , ~23!

which define the longitudinal~0! and transverse (61) com-
ponents of the nuclear response with respect to the pola
tion of the exchanged virtual photon. The components of
lepton tensor depend only on the electron kinematics, w
ec-
ta

ral
c-
-

h

se

n

e-

s,

a-
e
le

Wl,l8 depend onq, v, pN8 , cosg5pN8 •q/pN8q, and the angle
a between the (pN8 ,q) plane and the electron scatterin
plane.

The hadron tensor is defined as@19,21,33#

Wl,l85(
i

¯
(E
f

Jl~q!Jl8
* ~q!d~Ei2Ef!; ~24!

i.e., it involves the average over initial states and the s
over the final undetected states~compatible with energy-
momentum conservation! of bilinear products of the scatter
ing amplitudeJl(q).

This basic ingredient of the calculation is defined as

Jl~q!5E dreiq•r^C f
AuĴm•el

muC0
A&, ~25!

where the matrix element of the nuclear charge-current d
sity operatorĴm is taken between the initial,uC0

A&, and the
final, uC f

A&, nuclear states. A natural choice foruC f
A& is sug-

gested by the experimental conditions of the reaction sel
ing a final state, which behaves asymptotically as a knock
out nucleon with momentumpN8 and a residual nucleus in
well-defined stateuCn

A21(E)& with energyE and quantum
numbersn. By projecting this specific channel out of th
entire Hilbert space, it is possible to rewrite Eq.~25! in a
one-body representation~in momentum space and omittin
spin degrees of freedom for simplicity! as @18#

Jl~q!5E dpxp
N8En

~2 !*
~p1q!Ĵm

eff~p,q!•el
mfEn~p!@Sn~E!#1/2,

~26!

provided thatĴm is substituted by an appropriate effectiv
one-body charge-current density operatorĴm

eff , which guaran-
tees the orthogonality betweenuC0

A& and uC f
A& besides tak-

ing into account effects due to truncation of the Hilbe
space. Actually, the orthogonality defect is negligible in t
standard kinematics for (e,e8p) reactions and in the DWIA
Ĵm
eff is usually replaced by a simple one-body current opera

@18,20,21#.
The functions

@Sn~E!#1/2fEn~p!5^Cn
A21~E!ua~p!uC0

A&,

xp
N8En

~2 !
~p!5^Cn

A21~E!ua~p!uC f
A& ~27!

describe the overlap between the residual stateuCn
A21(E)&

and the hole produced inuC0
A& and uC f

A&, respectively, by
removing a particle with momentump. BothfEn ,xp

N8En
(2)

are

eigenfunctions of a Feshbach-like nonlocal energ
dependent Hamiltonian referred to the residual nucleus,
longing to the eigenvaluesE andE1v, respectively@17#.
The norm offEn is 1 andSn(E) is the spectroscopic facto
associated with the removal process; i.e., it is the probab
that the residual nucleus can indeed be conceived as a
produced in the target nucleus. The dependence ofxp8En

(2)
on
N
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pN8 is hidden in the asymptotic stateuC f
A& and the boundary

conditions are those of an incoming wave.
Because of the complexity of the eigenvalue problem

the continuum, the Feshbach Hamiltonian is usually repla
by a phenomenological local optical potentialV(r ) of the
Woods-Saxon form with complex central and spin-or
components. It simulates the mean-field interaction betw
the residual nucleus and the emitted nucleon with ene
dependent parameters determined through a best fit of el
nucleon-nucleus scattering data including cross section
polarizations. Then,xp

N8En
(2)

;xp
N8

(2)
is expanded in partia

waves and a Schro¨dinger equation includingV(r ) is solved
for each component up to a maximum angular momen
satisfying apN8 -dependent convergency criterion@21#. The
nonlocality of the original Feshbach Hamiltonian is tak
into account by multiplying the optical-model solution by th
appropriate Perey factor@34#.

After summing over the undetected final states with qu
tum numbersn of the residual nucleus, the hadron tens
Wl,l8 in momentum space becomes

Wl,l8;(
n
E dpdp8xp

N8
~2 !*

~p1q!Ĵm~p,q!•el
mfEn~p!

3fEn* ~p8!Sn~E!Ĵn
†~p8,q!•el8

n†xp
N8

~2 !
~p81q!

[E dpdp8xp
N8

~2 !*
~p1q!Ĵm~p,q!•el

mS~p,p8;E!

3 Ĵn
†~p8,q!•el8

n†xp
N8

~2 !
~p81q!, ~28!

where

S~p,p8;E!5(
n

Sn~E!fEn* ~p8!fEn~p! ~29!

is the hole spectral function defined in Eq.~1!. Notice that
the spin and isospin indices have been omitted for simpli
and the summation overn is over the different partial wave
contributions which are present at a given energyE. This
sum should not be confused with the separable represe
tion @Eq. ~21!# of the partial wave contributions to the spe
tral functionSl j (p,p8,E) defined in Eq.~2!. Eachl j contri-
bution, coming from either quasihole states~if E is the
correct excitation energy! or from states which are usuall
unoccupied in the standard shell model, can be separa
computed, so that the total hadron tensor will look like

Wl,l8[(
l j

Wl,l8
l j . ~30!

Experimental data for the (e,e8p) reaction are usually
collected as ratios between the measured cross section
KseN , whereK is a suitable kinematical factor andseN is
the elementary~half off-shell! electron-nucleon cross sec
tion. In this way the information contained in the fivefo
differential cross section is reduced to a twofold function
the missing energyEm5v2Tp

N8
2Ex (Tp

N8
is the kinetic en-

ergy of the emitted nucleon andEx is the excitation energy
of the residual nucleus! and of the missing momentum
n
d

t
n
y-
tic
nd

m

-
r

y

ta-

ly

nd

f

pm5pN8 2q @1#. Therefore, in the following section result
will be presented under the form of the so-called reduc
cross section@21#

n~pm![
ds

dpe8dpN8

1

KseN
. ~31!

IV. RESULTS

In this section we will discuss results for the reduc
cross section defined in Eq.~31! for (e,e8p) reactions on
16O leading both to discrete bound states of the resid
nucleus15N and to states in the continuum at higher missi
energy. Distortion of electron and proton waves has b
taken into account through the effective momentum appro
mation @35# and through the optical potential derived fro
the Schwandt parametrization@36# ~see Table III in Ref.@5#!,
respectively. All results presented here have been obta
using the CC1 prescription@37# for the half off-shell elemen-
tary electron-proton scattering amplitude in analogy w
what has been commonly done in the analysis of the exp
mental data. We also employed the nonrelativistic desc
tion for this amplitude@38# to be consistent with the nonre
ativistic calculation of the fivefold differential cross sectio
In parallel kinematics, where most of the experimental d
are available, this choice does not produce very differ
results with respect to the former and, therefore, will not
considered in the following.

A. Quasihole states

In Fig. 2 the experimental results for the transition to t
ground state of15N are displayed as a function of the mis
ing momentumpm . These data points have been collected
NIKHEF choosing the so-called parallel kinematics@5#,
where the direction of the momentum of the outgoing prot
pN8 , has been fixed to be parallel to the momentum trans

FIG. 2. Reduced cross section for the16O(e,e8p)15Ng.s. reaction
in parallel kinematics. Results with~solid line! and without~dashed
line! inclusion of the FSI’s are compared to the experimental d
@5#. A spectroscopic factor of 0.644 has been employed in disp
ing the results for the calculations involving the spectral functio
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q. In order to minimize the effects of the energy depende
of the optical potential describing FSI’s, the data points ha
been collected at a constant kinetic energy of 90 MeV in
center-of-mass system of the emitted proton and the resi
nucleus. Consequently, since the momentum of the eje
particle is also fixed and

pm5upN8 u2uqu, ~32!

the missing momentum can be modified by collecting dat
various momentaq transferred from the scattered electron

The experimental data points for this reduced cross s
tion are compared to the predictions of the calculations
cussed above. The quasihole part of the spectral function
the p 1

2 partial wave represents the relevant piece of
nuclear structure calculation for the proton knockout react
leading to the ground state of15N. Using the quasihole par
of the spectral function as discussed above@see Eq.~18!# but
adjusting the spectroscopic factor for the quasihole state
tribution Z0p1/2 to fit the experimental data, we obtain th
solid line of Fig. 2. Comparing this result with the expe
mental data one finds that the calculated spectral func
reproduces the shape of the reduced cross section as a
tion of the missing momentum very well. The absolute va
for the reduced cross section can only be reproduced by
suming a spectroscopic factorZ0p1/250.644, a value consid
erably below the one of 0.89 calculated from Eq.~19! @9#.
The phenomenological Woods-Saxon wave functions
justed to fit the shape of the reduced cross section req
spectroscopic factors ranging from 0.61 to 0.64 for the lo
est 0p 1

2 state and from 0.50 to 0.59 for the 0p 3
2 state, respec-

tively, depending upon the choice of the optical potential
the outgoing proton@5#. The fact that the calculated spectr
scopic factor is larger than the one adjusted to the exp
mental data may be explained by the observation that
calculations only reflect the depletion of the quasihole oc
pation due to short-range correlations. Further depletion
fragmentation should arise from long-range correlations
to collective excitations at low energies@6,31#. Other expla-
nations for this discrepancy could be the need for improv
the description of spurious center-of-mass motion@39,7# or a
different treatment of FSI’s in terms of a relativistic mod
for the optical potential@40#.

In order to visualize the effects of FSI’s, Fig. 2 also d
plays the results obtained for the quasihole contribution
the spectral function~with the same spectroscopic fact
Z0p1/250.644 as before, for the sake of consistency! but ig-
noring the effects of the optical potential. In this so-call
plane-wave impulse approximation~PWIA! the reduced
cross section as a function of the missing momentum is id
tical to the spectral function at the missing energy of
considered 0p 1

2 state or, better, to the momentum distributi
of the peak observed at this missing energy with the quan
numbers of the ground state of15N. Therefore, the difference
between the solid and dashed lines in Fig. 2 correspond
the difference between the reduced cross section define
Eq. ~31! and the momentum distribution for the ground sta
of 15N. In other words, it illustrates the effect of all th
ingredients entering the present theoretical description of
(e,e8p) reaction, which are not contained in the calculati
of the spectral function. In particular, the real part of t
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optical potential yields a reduction of the momentum of t
outgoing protonpN8 . According to Eq.~32!, this implies in
parallel kinematics a redistribution of the strength towa
smaller values of the missing momentum and makes it p
sible to reproduce the observed asymmetry of the d
aroundpm50. This feature cannot be obtained in the PW
~dashed line!, where the results are symmetric arou
pm50 due to the cylindrical symmetry of the hadron tens
Wl,l8 around the direction ofq when FSI’s are switched of
~for a general review see Ref.@21# and references therein!.
The imaginary part of the optical potential describes the
sorption of the proton flux due to coherent inelastic resc
terings, which produces the well known quenching with
spect to the PWIA result.

As a second example for the reduced cross section
(e,e8p) reactions on16O leading to bound states of the re
sidual nucleus, we present in Fig. 3 the data for the3

2
2 state

of 15N at an excitation energy of26.32 MeV. Also in this
case the experimental data are reproduced very well if
adjust the spectroscopic factor for the corresponding qu
hole part in the spectral function toZ0p3/250.537. The dis-
crepancy with the calculated spectroscopic factor~0.914! is
even larger for this partial wave than it is for thep 1

2 state. A
large part of this discrepancy can be attributed to long-ra
correlations, which are not accounted for in the pres
study. Note that in the experimental data three3

2
2 states are

observed in15N at low excitation energies. Long-range co
relations yield a splitting such that 86% of the total streng
going to these three states is contained in the experime
data displayed in Fig. 3. This splitting is not observed in t
theoretical calculations. If one divides the adjusted spec
scopic factorZ0p3/2 by 0.86 to account for the splitting of th
experimental strength, one obtains a value of 0.624 whic

FIG. 3. Reduced cross section for the16O(e,e8p) reaction in
parallel kinematics leading to the32

2 state at26.32 MeV of the
residual nucleus15N. Results of the present Green’s function a
proach~solid line! are compared to those obtained in the variatio
calculation of@7# ~dashed line! and the experimental data@5#. A
spectroscopic factor of 0.537 was required for the Green’s func
approach, whileZp3/250.459 has been used to adjust the results
the variational calculation.
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close to the total spectroscopic factor adjusted to describe
knockout of a proton from ap 1

2 state.
Figure 3 also contains the results for the reduced cr

section derived by substituting the overlap@Sn(E)#
1/2fEn in

Eq. ~26! with the variational wave function of Radiciet al.
@7#, who employed the Argonne potential for theNN inter-
action @41#. Also in this case the shape of the experimen
data is globally reproduced with a slightly better agreem
for small negative values ofpm but with a clear underesti
mation at largerpm . The overall quality of the fit is some
what worse than for the Green’s function approach and
required adjusted spectroscopic factor isZ0p3/250.459, even
below the value of 0.537 needed in the present calculatio
is not clear, however, whether the differences in the ca
lated reduced cross section are more due to the use of d
ent interactions or more to the various methods employe
calculating the spectral function.

The analysis of the reduced cross section has been
tended to higher missing momenta by experiments p
formed at the MAMI accelerator in Mainz@15#, adopting
different kinematical conditions than the parallel kinemati
Using the same spectroscopic factors for thep 3

2 and thep 1
2

partial waves, which were adjusted to the NIKHEF da
above, the results of our calculations agree quite well a
with these MAMI data, as displayed in Fig. 4. Although th
calculation is somewhat below the data at high missing m
mentum, one should keep in mind that the correspond
difference in sp strength is only an extremely tiny fraction
the 10% of the protons which are expected to be associ
with high momenta due to short-range correlations@8–10#.

B. Contribution of the continuum

From theoretical studies it is known that an enhancem
of the high-momentum components due to short-rangeNN
correlations does not show up in knockout experiments le
ing to states of low excitation energy in the (A21) nucleus,
but should be seen at higher missing energies, which co

FIG. 4. Reduced cross section for the16O(e,e8p) reaction lead-
ing to the ground and the32

2 states of15N in the kinematical con-
ditions considered in the experiment of@15#. The calculations were
performed using the same spectral functions as discussed for F
and 3.
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spond to large excitation energies in the residual nucleus
careful analysis of such reactions leading to final sta
above the threshold for two-nucleon emission, however
much more involved. For example, a description of the el
tromagnetic vertex beyond the impulse approximation
needed and two-body current operators must be ado
which are consistent with the contributions included in t
spectral function. Moreover, the possible further fragmen
tion of the (A21) residual system requires, for a realist
description of FSI’s, a coupled-channel formalism wi
many open channels. Calculations based on the optical
tential are not satisfactory at such missing energies, bec
inelastic rescatterings and multistep processes will add
remove strength from this particular channel.

Nevertheless, it should be of interest to analyze the p
dictions of the present approach at such missing energ
first of all, because it represents the first realistic attempt o
complete calculation of the single-particle channel leading
the final proton emission, including intermediate states ab
the Fermi level up tol54, and therefore, it represents
realistic estimate of the relative size of this specific chann
second, because information on the shape of the redu
cross section as a function of the missing momentum or
the relative contribution of various partial waves could yie
reliable results even at these missing energies. Because o
problems mentioned above, no reliable description of the
solute value of the reduced cross section can be reache
this framework.

In order to demonstrate the energy dependence of
spectral function and its effect on the cross section, we h
calculated the reduced cross section for the excitation
3
2

2 states atEm5263 MeV. For these studies we consider
the so-called perpendicular kinematics, where the energ
the emitted proton is kept fixed at 90 MeV as well as t
momentum transfer atq;420 MeV/c ~equal to the outgoing
proton momentum!. The same optical potential as in Figs.
and 3 can be adopted to describe FSI’s and the missing
mentum distribution is obtained by varying the angle b
tweenpN8 andq. For a spectral function normalized to unit
~as the absolute result for the cross section is not reliab!,
the reduced cross section is represented by the solid lin
Fig. 5. If, however, we replace the spectral function deriv
from the continuum contribution in Eq.~20! by the one de-
rived for the 3

2
2 quasihole state at its proper missing ener

~but now in the same kind of perpendicular kinematics a
normalized to 1!, we obtain the dashed line. A comparison
these two calculations demonstrates the enhancement o
high-momentum components in the spectral function lead
to final states at large excitation energies. Note that the c
section derived from the appropriate spectral function
about two orders of magnitude larger atpm;500 MeV/c
than the one derived from the spectral function at the qu
hole energy.

The discussion so far is of course somewhat acade
since it will be difficult to perform a decomposition of th
continuum contribution to the reduced cross section in te
of the quantum numbers for angular momentum and parity
the state for the residual system. Therefore we display
Figs. 6 and 7 the contributions to the total reduced cr
section of the various partial waves associated with sta
above the Fermi level and usually unoccupied in the stand

. 2
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818 55POLLS, RADICI, BOFFI, DICKHOFF, AND MÜTHER
shell model. From Fig. 6 we can furthermore see that
relative importance of the various partial waves changes w
the missing momentum, emphasizing the contribution
higher angular momenta at increasingpm . This feature can
be observed even better in Fig. 7, where the percentag
each relative contribution to the total reduced cross sectio
displayed as a function of the missing momentum. For e
orbital angular momentum we obtain a ‘‘window’’ inpm
where its contribution shows a maximum as compared
other partial waves.

V. CONCLUSIONS

In the present paper the consequences of the presen
high-momentum components in the16O ground state have
been explored in the calculation of the (e,e8p) cross section
within the formalism for the DWIA developed in Refs.@17–
22#. The spectral functions have been calculated for

FIG. 5. Reduced cross section for the16O(e,e8p) reaction in
perpendicular kinematics for the excitation of32

2 states at
Em5263 MeV ~solid line! and26.32 MeV ~dashed line!.

FIG. 6. Contributions of various partial waves to the reduc
cross section for the16O(e,e8p) reaction in the same conditions a
for the solid line in Fig. 5.
e
th
f

of
is
h

o

of

e

16O system itself, by employing the techniques develop
and discussed in@26,8–10#. At low missing energies, the
description of the missing momentum dependence of
p 1
2 andp

3
2 quasihole states compares favorably with the

perimental data obtained at NIKHEF@5# and at the MAMI
facility in Mainz @15#. The difference between theory an
experiment at high missing momenta can at most accoun
a very tiny fraction of the sp strength which is predicted
be present at these momenta@8–10#. A comparison with the
PWIA result clarifies the influence of FSI’s in parallel kine
matics. We also compare our results for thep 3

2 quasihole
state with the results obtained in Ref.@7# for the Argonne
NN interaction. While the shape of the cross sections
nicely described by our results, the associated spectrosc
factors are overestimated substantially. Although a la
fraction of this discrepancy can be ascribed to the influe
of long-range correlations@6,31#, which are outside the
scope of the present work, a discrepancy may still rem
although it has been suggested that a correct treatment o
center-of-mass motion@7# may fill this gap.

As discussed previously for nuclear matter~see, e.g.,@13#!
and emphasized in@8–10# for finite nuclei, the admixture of
high-momentum components in the nuclear ground state
only be explored by considering high missing energies in
(e,e8p) reaction. Although other processes may contrib
to the cross section at these energies, we have demonst
in this paper that the expected emergence of high-miss
momentum components in the cross section is indeed
tained and yields substantially larger cross sections than
corresponding outcome for the quasihole states. As a re
we conclude that the presence of high-momentum com
nents leads to a detectable cross section at high missing
ergy. In addition, we observe that it is important to inclu
orbital angular momenta at least up tol54 in the spectral
function in order to account for all the high-missing
momentum components up to about 600 MeV/c. A clear
window for the dominant contribution of eachl value as a
function of missing momentum is also established. This f
ture may help to analyze experimental data at these h
missing energies.

d

FIG. 7. Relative importance of various partial waves to the
duced cross section for the16O(e,e8p) reaction in the same condi
tions as in Fig. 6.
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@9# H. Müther, A. Polls, and W. H. Dickhoff, Phys. Rev. C51,

3040 ~1995!.
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