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Pauli distorted double folded potential
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A new method to incorporate the Pauli principle into the double folding approach to the nucleus-nucleus
potential is proposed. The description of the exchange terms at the level of the quasiclassical one-body density
matrix is used. It is shown that in order to take into account the Pauli blocking properly, a redefinition of the
density matrices of the free isolated nuclei must be done. A solution to the self-consistent incorporation of the
Pauli blocking effects in the mean-field nucleus-nucleus potential is obtained in the Thomas-Fermi approxi-
mation.
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I. INTRODUCTION

For several decades the microscopic calculations of
nucleus-nucleus potential to describe the scattering phen
ena have been the subject of great interest in heavy ion p
ics @1–7#. A large variety of different theoretical mode
have been proposed to this aim. The difficulties in solv
this problem are caused by the very complicated connec
between the intrinsic degrees of freedom of the collid
nuclei and the dynamics of their relative motion. Therefo
many assumptions to calculate the nucleus-nucleus pote
at the numerical level are needed. However, these simpl
approaches have to satisfy the fundamental quantum
chanical principles, and the Pauli principle is the most i
portant one to be considered in the nucleus-nucleus sca
ing problem. To incorporate the Pauli principle into th
standard coupled channel scattering theory, the resona
group method~RGM! @8# was proposed. However, even fo
the elastic scattering problem~one-channel approximation!
the microscopic calculation of the effective Hamiltonian th
describes the relative motion of the nuclei is very comp
cated for two reasons:~i! The antisymmetrization operato
leads to very complicated nonlocal matrix elements, and~ii !
the RGM equations are not of the Schro¨dinger type for rela-
tive motion due to the nontrivial energy dependence. T
the numerical applications of the RGM are restricted to ca
where the intrinsic wave functions can be based on the
monic oscillator. However, these harmonic oscillator so
tions are not very useful to describe the nucleus-nucleus s
tering because of their unrealistic asymptotic behavior.

The double folded model~DFM! @1#, which is less funda-
mental than RGM but starts from realistic nuclear densit
has become one of the most popular methods to calculate
real part of the optical potential. Using the DFM detailed fi
to elastic scattering data for many systems are obta
@9–16#. While in earlier publications the one-particle e
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change was described by a zero-range pseudopotential,
accurate methods have been developed later@6,7,11,17#.
When one uses a finite range effective nucleon-nucleon fo
in the DFM calculation, the one-body density matrix~DM!
for each nucleus is needed. In a simple harmonic oscilla
model the DM is known explicitly. In a more realistic case
can be obtained numerically from the solution of the Hartr
Fock ~HF! equations@18#. However, this is not suitable for a
DFM calculation for two reasons. First, the nucleon-nucle
force and the local densities are used as independent in
for the DFM. If one wants to calculate the DM within the H
method, the effective nucleon-nucleon force used for cal
lating the ground states of the colliding nuclei has also to
considered. This force can differ from the one used in
actual DFM calculation. Second, to calculate the DFM p
tential with a DM that is known numerically is not an ea
task. Following the original DFM idea, approximations
express the DM by means of the local density are used.
of the most popular approaches to the DM is given by Cam
and Bouyssy~CB! @19#. It consists of a resummation of th
Negele-Vautherin expansion@20# and presents the DM in the
Slater form with some effective momentum. Recently a
other approach to the DM based on the extended Thom
Fermi theory~ETF! has been proposed@21#. It allows a very
good description of the exact DFM potential~i.e., the DFM
obtained with the exact DM! @22#.

In heavy ion scattering the nuclear rainbow phenome
are observed in very precise experiments@9,10,12–15#. In
order to explain these phenomena, a strongly attrac
nucleus-nucleus potential at small distances~in the interior
of nuclei! is of primary importance. In particular the system
atics of the elastic scattering in the16O116O system
@12,16,23#, which has been measured with high precisi
over a large region of scattering angles and incident ener
(Elab575–1120 MeV with 15 individual energies!, has
triggered the development of refinements of the DFM. T
phenomenon of the nuclear rainbow scattering has been
tablished in this system with the observation of primary A
maxima in the region of energies between 350 MeV–11
MeV, and the occurrence of the higher order Airy structu
©2001 The American Physical Society01-1
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has been established down to the lowest energy of 75 M
These data have been successfully described by the
recent version of the DFM, which uses density-depend
N-N interactions adjusted to reproduce nuclear matter pr
erties @24#. The volume integrals of the corresponding re
and imaginary parts of the potentials obtained via fits to
angular distributions have been determined using the D
or a phenomenological Woods-Saxon squared form facto
constant rise of the volume integrals towards the lowest
ergies is observed, giving probably a maximum at a rat
small energy. This fact illustrates the persistence of v
deep potentials responsible for the observation of the r
bow scattering at low energies. In the description with
DFM of Ref. @24# the main part of the energy dependence
the potential is properly described; it originates from the c
sistently calculated exchange term. In addition an ove
normalization factor that is smaller than unity~0.7–0.9! is
needed, which has an additional energy dependence.

There are still questions concerning the theoretical fo
dations of the DFM. First of all, the DFM potential repr
sents the interaction energy~‘‘energy surface’’! @25# of two
nuclei that depends on the distance between the mean fi
rather than on the dynamical radial variable. Second, the
rect treatment of the Pauli principle has to take place.

The DFM is used to describe the potential of elastic sc
tering, thus it reflects the mean-field effects that occur if
two nuclei overlap in their ground states. In most of t
DFM calculations the ‘‘frozen density’’ approximatio
~FDA! is used. It implies that the local densities of the c
liding nuclei do not change during the interaction, which
valid at large distances and at high enough energy. This
proach touches on the questions of the relative values
collision times and the readjustment times of the nucl
wave functions@4–6#. Selecting the purely elastic channe
also for small impact parameters with large density overl
we project from the collision those processes in which
ground states of the nuclei are recovered. However, the
trinsic states of the colliding nuclei could neverthele
change during the interaction. Due to the Pauli principle,
occupied states in one nucleus are strictly forbidden for
nucleons of the second nucleus. This process would lead
‘‘Pauli excitation,’’ provided the momentum distortions a
transformed into intrinsic excitations of the two fragment

In the local nuclear matter approximation the Pauli bloc
ing disturbs the local Fermi distributions of nucleons in t
colliding nuclei, an effect that can be considered as a virt
dynamical excitation and that has been discussed in term
a contribution to the kinetic energy term in the heavy i
potential@4,5#. If this virtual excitation is transformed into
real excitation of one of the nuclei, this will lead to a loss
flux in the elastic channel and consequently to a contribu
to the absorption. Such processes are known in atomic p
ics as Pauli excitations. We also note that nuclear rainb
scattering is only observed in strongly bound systems invo
ing a particles anda-cluster nuclei. This fact implies tha
the intrinsic excitations of the participating nuclei are su
pressed due to the high energy levels of such excitatio
Thus the backward scattering ofa particles ona-cluster nu-
clei is related to scattering without energy transfer.
01460
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The paper is organized as follows. In the first section
derive the Pauli distorted double folding model~PDDFM!
starting from momentum-dependent determinant wave fu
tions using the orthogonalization procedure first conside
by Fliessbach@3#. In the second section we discuss the sem
classical content of PDDFM that simplifies the problem s
nificantly and explain the procedure to calculate it. We co
pare the PDDFM with the standard DFM and discuss
Pauli distortion effects on the nucleus-nucleus potential
applied to the16O216O elastic scattering in the third section
The summary is given in the last section.

II. PAULI DISTORTED DOUBLE FOLDING MODEL

The DFM potential for two nuclei consisting ofN1 and
N2 nucleons contains the direct and exchange terms an
defined as follows~see for example@16#!:

V~D,p!5E dr1dr2r10~r1!r20~r22D!vd~s!

1E dr1dr2r10~r1 ,r2!r20

3~r22D,r12D!ve~s!eips/\. ~1!

Herer10 andr20 are the ground-state local densities~direct
part! and DM ~exchange part! of each nucleus,p is the rela-
tive momentum between two nucleons of different nuc
due to their relative motion@we will use P for the relative
momenta of nuclei, whilep refers to the relative momenta o
the corresponding nucleonsP5mp, m5N1N2 /(N11N2)#,
andD is the separation distance between the two centers
define the nuclear densities. Note that herem corresponds to
the reduced mass number. The form factorsvd(s) andve(s)
of the direct and exchange effective nucleon-nucleon fo
depend on the nucleon-nucleon distance (s5r12r2). The
DFM in the form ~1! corresponds to the case when sp
isospin states are degenerated and each orbital state is
pied by four nucleons. Throughout the paper we will co
sider this case because it simplifies the presentation.
formula ~1! can easily be generalized for asymmetric nucl
In this latter case both proton and neutron densities for e
nucleus are needed~see for example Refs.@28,33#!. How-
ever, because only the proton density is available from
electron scattering, the symmetrical formula~1! is widely
used.

The direct and exchange parts of the nucleon-nucl
force in general are defined as follows~see for example Refs
@26,27#!: v̂d(x1 ,x2)5 v̂(x1 ,x2) and v̂e(x1 ,x2)
5 v̂(x1 ,x2) P̂12

r , where x consists of spatialr and spin-

isospins,t variables of the nucleons, whileP̂12
r stands for the

exchange operator of the spatial coordinates. As usual we
the hat to define the operators. Let us consider the cen
force of the standard form that will be used in the followin

v̂~x1 ,x2!5(
i

v i~s!~wi1bi P̂12
s 2hi P̂12

t 2mi P̂12
s P̂12

t !,

~2!
1-2
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PAULI DISTORTED DOUBLE FOLDED POTENTIAL PHYSICAL REVIEW C64 014601
whereP̂12
s(t) is the spin~isospin! exchange operator andv i(s)

is the common radial form factor of the force. One can a
use a more general central force with different form fact
for each exchange term, and the results presented her
easily generalized for this latter force. However, in this ca
the number of parameters that define the effective force
be much larger. One can recast~1! in terms of Eq.~2! by
substituting

vd~s!→(
i

Xd,iv i~s!,

ve~s!→(
i

Xe,iv i~s!, ~3!

where Xd,i5wi1bi /22hi /22mi /4, and Xe,i5mi1hi /2
2bi /22wi /4 are the standard combinations of the excha
parameters that enter into the central nucleon-nucleon f
of Eq. ~2!. In practice the effective nucleon-nucleon for
consists of the sum of several terms that represent the s
and long range components of the force. For the sake
simplicity we will drop the indexi in the following and will
consider only one term in Eq.~2!.

In Eq. ~1! the direct term depends on the local densities
each isolated nucleus, while the exchange contribution
pends on the corresponding density matrices. Using the
expansion of the DM or the ETF DM~see Ref.@21#! the
exchange term can also be rewritten in terms of the lo
densities. These methods give the rather accurate expre
for the DM r I(r1 ,r2) averaged over the directions5r1
2r2. Thus the DFM potential~1! becomes dependent on th
modulusD andp. In order to be used in Eq.~1! there are two
possible definitions@22# of the relative momentum of the
nucleonsp: the local valuep252m@Ec.m.2V(D)#/m and the
‘‘global,’’ or asymptotic value withp252mEc.m./m. Here
Ec.m. is the energy of relative motion in the center-of-ma
~c.m.! system. In the first case the system of coupled eq
tions with p5p(V) and V5V(D,p) must be solved self-
consistently for each separation distanceD. Subscripts ‘‘0’’
for the local densities and the DM indicate that these co
spond to the ground states of the isolated nuclei.

The formal foundation of the DFM can be found in th
generalized Born-Oppenheimer method@3#, where the poten-
tial between two nuclei is defined as follows:

V~D!5E0~D!2E0~D5`!. ~4!

In this equationE0(D) is the energy of the two nuclei sepa
rated by the distanceD without their relative kinetic energy
E0(D)5E(D)2P2(D)/2mm, which is the expectation valu
of the energy operatorĤ2T̂R whereĤ and T̂R are the total
microscopic Hamiltonian and the relative motion kinetic e
ergy operator, respectively.

Equation~4! defines the ‘‘energy surface,’’ which canno
be strictly identified with the microscopic nucleus-nucle
potential@25# and depends on the parameterD rather than on
the dynamical variableR. The DFM potential of Eq.~1! also
depends on the parameterD. Therefore to derive the DFM
we start from anzatz~4!. In order to calculate the energ
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E(D)5^FuĤuF&, one has to define the normalized wa
function F, which describes two nuclei separated by d
tance D in the c.m. system. At infinite separation,E(D
5`) has to be equal to the sum of the intrinsic energies
the two isolated nuclei and their relative motion in the c.
system:E(D5`)5e101e201Ec.m..

In order to take into account the Pauli principle we st
from the normalized many-particle wave function~Refs.
@3,29#!

F5n~D !Â@F1~D1!F2~D2!ei (P1R11P2R2)/\#, ~5!

whereDI(I 51,2) are the centers of the nucleon coordinat
Â5( P̂d P̂P̂ is the antisymmetrization operator;d P̂ the sign
of the permutationP̂; F I(DI) are the wave functions of the
interacting nuclei centered aroundDI ; PI ,RI(I 51,2) are
the momenta and coordinates of the centers of theI th
nucleus;D5D12D2, andn(D) is the normalization.

Now E, E0, andV become functions ofD andP. If one
uses forP(D) its asymptotic valuePas5A2mmEc.m. ~the
global definition of the relative momenta! the formula ~4!
becomesV(D,Pas)5E(D,Pas)2E(D5`,Pas). At infinite
separation we haveE(D5`)5E11E2, whereEI contains
the nucleus center of mass motion. Neglecting the spuri
c.m. motion~e.g., the energies of center mass motion in
single-particle potential of the shell model@29#!, one can
write EI'e I01PI

2/(2NIm) and E(D5`) becomes e10

1e201Ec.m..
Assuming that the center-of-mass momentaPI depend on

D and tend to their asymptotic values~in the c.m. system
PI

252mmEc.m.) at infinite separation, the wave function~5!
describes two nuclei moving freely with their relative motio
perturbed by the nucleus-nucleus potential. In the c.m. s
tem the wave functionF depends on the parametersD and
P.

If P depends onD it could be chosen so as to ensure t
energy conservation@3#: E(D,P)5E(D5`,Pas), which
givesP(D)5A2mm@Ec.m.2V(D,P)# and corresponds to th
local definition of the relative momenta. This potential
turn is used to obtain the scattering wave function of the t
nuclei. Thus an iterative self-consistent procedure is use
calculate the scattering solution using the potential obtai
with the plane wave relative motion as the first step.

The calculation ofE(D,P) with arbitrary intrinsic wave
function F I is not an easy task. It becomes simpler if o
uses single-particle shell model wave functions:

F I5
1

ANI !
ÂI )

aPI
fa8 ~xa8 !5

1

ANI !
ÂI )

aPI
fa~xa!, ~6!

whereI 51,2; x contains spatialr and spin-isospin variable
s,t; x5(r,s,t), andfa8 (x8) stands for the wave function o
the shifted spatial argumentx85(r2DI ,s,t): faPI8 (x8)
5fa(x). The index of each statea contains orbital and
spin-isospin quantum numbers. It is the standard coordin
system that is used in the two-center shell models and in
DFM @26#.
1-3
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V. B. SOUBBOTIN et al. PHYSICAL REVIEW C 64 014601
Using this approximation one can write the total wa
function~5! in the form of a Slater determinant whose mat
elements can be calculated easily. To this aim one can in
duce momentum-dependent single-particle states in the
lowing way @3#:

f̃aPI~x![faPI~x!exp~ ipIr/\!; S pI5
PI

NI
D . ~7!

Now the wave function~5! can be written as a Slater dete
minant,

F5
1

AN!G
Â )

aP1,2
f̃a~xa!5

1

AN!G
detLa,b , ~8!

whereN5N11N2 , La,b5f̃a(xb), Ga,b5$^f̃auf̃b&% and
G5detG is the Gram determinant~as defined for example in
Ref. @30#! of the set $uf̃a&%. The functions$f̃a(r)% are
square integrable and depend on the position vectorsDI 51,2

and on the momentapI 51,2. Note that the vectorsuf̃a& are
ordered in the sense that one can distinguish to wh
nucleus they belong to:aPI ;I 51,2.

These functions are orthonormal, if they belong to t
same nucleus,Ga,b[^f̃auf̃b&5da,b(a,bPI ), but they are
not if a and b are states of different nuclei withGa,b
Þda,b .

Due to the fact that the functions$fa% are finite with
respect tor, the functionGa,b(D,p)→0 if D→` and ~or!
p→`. Thus the matrixG is strictly diagonal for infinite
radial separation and for infinite separation in moment
space (p). This statement can also be approximately valid
the region of small radial overlap or at high enough energ

If we have overlap withDÞ0 or pÞ0, the Gram deter-
minant does not vanishG5det$^f̃auf̃b&%Þ0. In this case
the single-particle states of both nuclei are linearly indep
dent and the vectors$uf̃a&% form a basis in theN dimen-
sional subspace of the Hilbert space. This is due to th
separation inr space as well as in momentum space. In
case of complete overlap, forD→0 andp→0, we haveG
→0, however, the wave functionF remains well defined
and tends towards the ground-state shell model configura
of the composite system@31#. We will not consider this case
in the present paper because the values of the potenti
zero separation play a negligible role in the elastic scatte
problem. Using the well-known technique of Ref.@31#, one
can calculate the potential of Eq.~4! using the nonorthogona
basis$f̃ i% which coincides with the DFM potential at larg
separation distances where the nonorthogonality vanishe

V~D,P!5^T&1^V&2
P2~D!

2mm
2e12e2 , ~9!

where

^T&5(
a,b

^f̃autuf̃b&~G21!a,b ~10!

and
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^V&5
1

2 (
a,b,g,d

^f̃af̃buv̂uf̃gf̃d&@~G21!a,g~G21!b,d

2~G21!a,d~G21!b,g#. ~11!

Here t52\2/2m“

2 is the one-body kinetic energy operat
and v̂ the central effective nucleon-nucleon force. The m
trix G21 is the inverse matrix ofG defined previously. If the
statesf̃a are orthogonal, the matrixG becomes diagonal an
one immediately obtains the DFM from Eq.~9!.

At intermediate distances and energies the orthogona
of the single-particle states from different nuclei is violat
in the overlap region, where the potential is quite importa
for the description of the experimentally observed nucl
rainbow scattering. If the nonorthogonality of the singl
particle wave functions is significant enough, the usual DF
is expected to fail and one should use the full expressi
given in Eqs.~9!–~11!. Note that these equations are defin
in the momentum-dependent basisf̃a and are thus difficult
to compare directly with the DFM expression.

We will therefore use another option@3#. If the set of
states$f̃a% is linearly independent (GÞ0), it can be or-
thogonalized and one can consider the corresponding or
normal set$c̃a%. The orthogonalization can be done b
means of the Gram-Schmidt procedure~see for example Ref
@30#!. One can write down the wave function~5! with the
help of this new orthonormal basis. Expandingf̃a

5(bCa,bc̃b , where detCÞ0 and using properties of th
determinants, one will getF5exp@ is#det$c̃a(xb)%, where
s5arg(detC) ~see also Ref.@31#!.

Using this wave function, the kinetic energy reads

^T&5(
a

^c̃autuc̃a&5
\2

2m (
I
E drt̃ I~r!, ~12!

where t̃ I5(aPI u(“c̃a)u2 is the kinetic energy density cor
responding to the momentum-dependent basisc̃a . The po-
tential energy is given by

^V&5
1

2 (
a,b

@^c̃ac̃buv̂uc̃ac̃b&2^c̃ac̃buv̂uc̃bc̃a&#.

~13!

The set$c̃a% is also ordered in the sense that one can dis
guish to which nucleus each state belongs by considering
asymptotic behaviorc̃a→f̃a , if D→` ~at finite p). To
obtain an expression close to the DFM expression, let
introduce wave functionsca[c̃a exp@2 ipIr/\#(I 51,2,a
PI ), which correspond to the nucleus rest frame.

However, contrary tofa , these wave functionsca de-
pend on the relative momentump. Introducing again
ca8 (x8)[ca(x) one finally finds another definition of th
DFM potential that we call the Pauli distorted double foldin
model ~PDDFM!. Assuming spin-isospin degeneracy~e.g.,
each orbital state is occupied by four nucleons@31#! and
using Eq.~2! the nucleus-nucleus potential reads
1-4
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PAULI DISTORTED DOUBLE FOLDED POTENTIAL PHYSICAL REVIEW C64 014601
V~D,P!5XdE dr1dr2r1~r1!r2~r2!v~ ur12r21Du!

1XeE dr1dr2r1~r1 ,r2!r2

3~r22D,r12D!v~s!eips/\1«~D !, ~14!

where the densitiesr I(r1 ,r2)5(str I(x1 ,x2) are obtained
with the wave functionsca , and we use the definitionsx1
5r1 ,s,t, x25r2 ,s,t, and r I(r)5r I(r,r). Notice that
r I(r1 ,r2) andr I(r) are related to the DM and the local de
sities are calculated with the orthogonal wave functionsc̃a

throughr̃ I(r1 ,r2)5r I(r1 ,r2)eipIs and r̃ I(r)5r I(r). The last
term in Eq.~14! represents the excitation energy of the nuc
during the interaction and is given by«(D)5«1(D)
1«2(D), with

« I5(
a

^c̃autuc̃a&1
1

2 (
a,bPI

@^c̃ac̃buv̂uc̃ac̃b&

2^c̃ac̃buv̂uc̃bc̃a&#2
PI

2~D!

2NIm
2e I

5
\2

2mE dr@t I~r!2t I0~r!#)

1
Xd

2 E dr1dr2@r I~r1!r I~r2!2r I0~r1!r I0~r2!#

3v~ ur12r2u!

1
Xe

2 E dRds@r I
2~R,s!2r I0

2 ~R,s!#v~s!, ~15!

where t I0 and t I are the kinetic energy densities of th
ground and excited states, respectively. We have used
spin-isospin degeneracy and the fact thatt̃ I(r)5t I(r)
1kI

2r I(r), wheret I5(aPI u(“ca)u2 refers to the rest frame
of each nucleus.

The nucleus-nucleus potentialV(D) given by Eq.~14! is
formally equivalent to those of Eqs.~9!–~11! but differs
from DFM for three reasons. First, the Pauli distorted D
@r I(x1 ,x2)5(aPIca* (x2)ca(x1)# enters into Eq.~14! in-
stead of those of the ground state for each isolated nuc
@r I ,0(x1 ,x2)5(aPIfa* (x2)fa(x1)#, which are used in the
usual DFM as in Ref.@1#. Second, the direct term in Eq.~14!
depends on the incident energy because the orthogona
tion is performed at a given relative momentump, which
defines the momentum-dependent functionsca . Finally, an
intrinsic excitation energy term appears in the PDDFM.

In order to calculate the DMr I one needs to know the
relative momentum of the nucleonsp(D) explicitly. In the
DFM it is assumed thatp2(D)52m@Ec.m.2V(D,p)#/m.
Thus, the problem of determining the potential taking in
account the dependence ofp(D) on the ‘‘final’’ potential has
to be solved self-consistently. Using Eq.~5! as an anzatz, one
can calculate a model nucleus-nucleus potential by s
consistently orthogonalizing the single-particle states~SPS!
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at each separationD. It is necessary to emphasize that t
considered excitations due to the Pauli principle are not o
dynamical origin. They are rather kinematic and contribu
to the ‘‘total kinetic energy’’ in the potential~see also@4,5#!
and will act as a repulsive potential term. In order to descr
the actual excitations of the nuclei involved in the scatteri
one should solve the true dynamical problem, which is
extremely difficult task.

In order to approach this self-consistent solution~see the
next section!, one can also define a momentum-depend
density matrix for each nucleus as follows:r̃ I(x1 ,x2)
5(aPI c̃a* (x2)c̃a(x1). The orthogonality of the single

particle states in different nuclei means that we haver̂̃1r̂̃2

50 or r̂̃25 r̂̃, wherer̂̃5 r̂̃11 r̂̃2 is the sum of the two DM’s.
Thus the PDDFM potential can be obtained starting fro

SPSf i of the isolated nuclei and using the orthogonalizati
procedure. Note that nothing is implied about the choice
these single-particle states. In fact, one can use the sin
particle states of the isolated nuclei that correspond to
frozen density approximation~FDA!. This procedure was
used in Ref.@3# using harmonic single-particle states wi
the density-independent Brink-Boeker force. The shall
nucleus-nucleus potential was obtained within this approa

However, the SPS and the mean field of one nucleus
change in the presence of the second nucleus and this c
plicates the problem significantly. Another problem in t
application of the described procedure is the use of exp
single-particle states while the main advantage of the DFM
to employ the local densities only. It will be shown in th
next section that these problems can be solved at a semi
sical level.

Due to the rotational invariance the nucleus-nucleus
tential depends on the scalar product (DP): V5V@(DP)#.
This dependence is also contained in the DM entering i
PDDFM. It was pointed out@3# that the dependence on th
angle betweenD and P is very weak and the potential de
pends mainly on the modulusD andP. Thus in Eq.~14! one
can use the DMr I(r1 ,r2) averaged over the directions.

III. SEMICLASSICAL APPROXIMATION

It is possible to simplify the calculations of the potenti
in Eq. ~14! by using semiclassical approaches based on
Thomas-Fermi~TF! method and its extension. In fact, i
most of the recent work on the DFM potential such kinds
approaches are applied. For example, the CB approxima
@19# to the DM is used in many cases. The CB-DM is tak
in the Slater form with an effective momentum that depen
on the quantal kinetic energy densityt and the local density
r. Thus, the CB-DM corresponds to a truncation of the f
quantal DM. However,t and r at a quantum level are un
known and therefore their semiclassical counterparts, wh
can be written in terms of the local density only, are used
this case one obtains the semiclassical CB-DM, which c
responds to a truncation of the semiclassical DM in the
tended Thomas-Fermi~ETF! approximation@21#. Thus, a
semiclassical picture is actually included in the DFM.

In coordinate space the semiclassical density matrix
1-5
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given by the inverse Wigner transformation~see for example
Ref. @32#! of the distribution functionf (R,p), which for a
moving nucleus, reads

r̃ I~r,r8,pI !5
g

~2p\!3E dp8 f̃ I~R,p8!eip8s/\

5
g

(2p\)3E dp8 f I~R,p8!ei (p81pI )s/\

5
g

~2p\!3E dp8 f I~R,p82pI !e
ip8s/\, ~16!

whereR5 1
2 (r1r8) ands5r2r8 while g stands for the spin

and isospin degeneracy. For the ground state at the Tho
Fermi level~the \0 order term in the Wigner-Kirkwood ex
pansion @32#! we have f I(R,p8)5Q@pFI

(R)2p8#, where

Q(x) is the unit step functionQ(x)51 at x>0 andQ(x)
50 otherwise. Thus,f̃ I(R,p8)5 f I(R,p82pI)5Q@pFI

(R)

2up82pI u# is just the distribution function related to the DM
r̃ I , as defined in the previous section.

We suggest that during the interaction these Fe
spheres can deform so that at each point in coordinate s
one can define for each nucleus an effective Fermi volu
VFI

and a distribution functionf I(R,p8)5Q@pFI
(vp8 ,R)

2p8#, where the momentumpFI
is related to the local den

sity of the nucleusI at the considered point in coordina
space and depends on its orientationvp8 in momentum
space. At a semiclassical level it is not possible to introd
the single-particle states explicitly and the orthogonality c
dition should be formulated in terms of the semiclassi
DM. We assume that the quantum orthogonality condit

r̂̃1r̂̃250 has to be fulfilled at the semiclassical level as f

lows: (r̂̃1r̂̃2)W50, where the subscriptW stands for the
Wigner transformation of the quantal operator. At the
level ~considering only\0 terms in the Wigner-Kirkwood
expansion! one will get

~ r̂̃1r̂̃2!W5~ r̂̃1!W~ r̂̃2!W

5 f 1~R2D1 ,p82p1! f 2~R2D2 ,p82p2!50.

~17!

By using translational invariance in the c.m. system (P1
1P250) we will get the relation

Q@pF1
~vp8 ,R2D1!2p8#Q@pF2

~vp8 ,R2D2!

2up81pu#50. ~18!

This means that the Fermi volume of the two interact
nuclei should not overlap in momentum space. Returning
the case of the standard DFM potential, one can see that
semiclassical level the nonorthogonality of the sing
particle states from different nuclei at finite values of d
tanceD and relative momentump means that their Ferm
spheres overlap in momentum space, as shown in the u
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part of Fig. 1; this overlap region is forbidden by the Pa
principle. If p→`, these Fermi spheres are separated and
overlap occurs. At a given value ofR, the Fermi momenta of
one of the nuclei ispF,15pF,1@r1(R)#, while for the second
nucleus it stands aspF,25pF,2@r2(R2D)#. If D→` andR
is finite, the values ofr2(R2D) andpF2

→0 and their over-
lap become zero too. At finitep andD the overlap will ap-
pear, implying that the DFM cannot be applied and the f
orthogonalization procedure has to be used. There is a
nificant difference between the quantal and the semiclass
orthogonality conditions. In the first case the orthogonali
tion procedure defines a distorted density matrix of the in
acting nuclei~up to a unitary transformation of the orthono
malized basis!. In the semiclassical approximation th
single-particle states are not defined and this orthogona
tion procedure is not applicable. In order to solve this situ
tion, we use the following geometrical anzatz. If there is
overlap of the initial Fermi spheres, the states of the isola
nuclei are not perturbed and the Pauli principle will not a
fect the DFM potential. If there is an overlap, we assume t
the distribution functions of the interacting nuclei are just t
Fermi spheres truncated by the plane going through the c
along the connection line of the initial Fermi spheres. T
anzatz is displayed in the lower part of Fig. 1. This is no
unique solution, but is probably the simplest assumption t
has already been used previously to calculate the adiab
nucleus-nucleus potential in the nuclear matter appro
such as in Ref.@2#.

In fact the deformation of the Fermi spheres for tw
interacting nuclei can be very complicated. Howev
the nucleus-nucleus potential reflects the global propertie
the colliding nuclei. Therefore, to use truncated Fer
spheres in the present approach can be considered as a
erage over their different excitations and seems to be rea
able for our aim.

FIG. 1. The Fermi spheres that correspond to the different po
in coordinate space of the interacting nuclei separated by the l
momentump(D) in momentum space. The upper part correspon
to the usual double folding model~DFM!, where the Fermi sphere
with momentapI0 overlap. In the lower part the truncated Ferm
spheres with momentapI corresponding to the PDDFM are show
1-6
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Actually, the Thomas-Fermi approximation correspon
to a local nuclear matter approach. The truncated sphere
determined by two parameters: the radiuspFI

and the angleu

as defined in Fig. 1. The angleu depends on the relativ
momentap and the Fermi momentapFI

. For the case of

distortion we have to calculate new values ofpFI
. To this

aim one can note that the value of the local density of e
nucleus is determined by the distribution function as follow

r I~R!5
g

~2p\!3E dp8 f I~R,p8!5
g

~2p\!3
VFI

~pFI
,p!,

~19!

where we assume a sharp border distribution functionf I and
VFI

is the volume in momentum space occupied by nucle
of a given nucleus after the distortion. To determine
value ofpFI

we have to know the volumeVFI
or the value of

the local densityr I . There are at least three options to d
terminer I that correspond to three different approximation

~i! For fast~largep) or peripheral~largeD) collisions the
overlap of the initial Fermi spheres from different nuclei
rather small and the total configuration in momentum sp
has a well-developed two-piece picture. In this case the F
is often used. In our semiclassical consideration the F
simply means that the local densities of the nuclei do
change during the interactionr I5r I ,0 . However, to satisfy
the Pauli principle one has to deform the Fermi distributio
of the colliding nuclei, which means that the correspond
DMs change during the interactionr I(r,r8)Þr I ,0(r,r8).
Note, that in our approach the FDA only means that the lo
densities are fixed while usually the FDA consists of fixi
the single-particle states~i.e., the DM!. In this case the val-
ues ofpF,I are simply determined by the conservation of t
volume in momentum spaceVFI

5VFI0
.

~ii ! At lower energies~or deeper penetration! the adiabatic
process starts to give contributions. In this case the inter
ing nuclei still keep their individuality but the intrinsic de
grees of freedom of each nucleus start to change to a
equilibrium configuration due to the presence of the sec
nucleus@quasiadiabatic approximation~QAA!#. In this case
at each separation distanceD one can find the DM~and local
densities! of each nucleus, which minimize their energi
under the assumption that the phase space available fo
nucleons in one nucleus is restricted by the presence of
second due to the Pauli-blocking effect. Continuing alo
these lines, one will get new values of the nuclear local d
sitiesr I that determine the volumeVFI

in momentum space

and consequently the value ofpFI
.

~iii ! Finally, in a very slow collision~or a total overlap in
D space!, the fully adiabatic process has to be considered
this case the total density of the composite system tends t
equilibrium value to give the minimum energy of the tot
system. In this case there is only one Fermi sphere in
mentum space that corresponds to the total density of
compound system.

At finite energy all these considered cases occur at dif
ent points in coordinate space. It means that the FDA use
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the present version for the PDDFM potential is still valid
some external region, but cannot be used to describe
potential at the smallest distances. In this situation a co
ment is needed. The effective nucleon-nucleon forces
are used in the DFM also depend on the total density of
system, which reflects the in-medium properties of the for
In our semiclassical approach~FDA or QAA! the total dis-
tribution function is just the sum of distribution functions o
the interacting nuclei and, therefore, the total local densit
simply given by the sum of the local nuclear densitiesr
5r11r2. In the FDA the local densities of the nuclei do n
change during the interaction and the ‘‘sudden approxim
tion’’ for the total density is used. In contrast, in the QA
case the densitiesr I change due to the minimization of th
intrinsic energies.

Now we are ready to derive the necessary formulas for
truncated Fermi spheres at the TF approximation level. T
DM of the ground state at the TF level is given by a st
function in momentum space. This latter case correspond
the full Fermi sphere in momentum space. If there is over
we define the truncated Fermi spheres~see Fig. 1!. Some
words of caution must be added. The truncated Fermi sph
corresponds to an excited state of the nucleus, because
states that correspond to the forbidden overlap region
depopulated and new states with another Fermi momen
pF are occupied. In this case the distribution function f
each nucleus is given by

f I~R,p8!5Q@pFI
~vp8 ,R!2p8#, ~20!

where the new Fermi momentapFI
5pFI

(vp8 ,R) depend on
their orientation inp space. The DM’s for the truncate
Fermi-spheres averaged over the direction ofs are obtained
as

r I~R,s!5
gpFI

3

12p2\3 F ĵ 1~pFI
s/\!~12x0!

1
3\3

~pFI
s!3

@x0 sin~pFI
s/\!2sin~x0pFI

s/\!#G ,

~21!

where ĵ 1(x)5(3/x) j 1(x) is normalized to unity atx
50, j 1(x) is the spherical Bessel function of order 1,x0
5cos(u) is the cosine of the angle that is determined by
point where the new Fermi spheres cross~see Fig. 1!, andg
stands for the degeneracy in spin and isospin. Ats50 we
obtain the local densities that correspond to the trunca
Fermi spheres

r I~R!5
gpFI

3

24p2\3
~223x01x0

3!. ~22!

One can see that if there is no overlap we havex0521.
Then Eqs.~21! and ~22! give the usual formulas for the ful
Fermi spheres. By changing the DM~and to some extent the
local density! we will change the intrinsic energies of th
1-7
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V. B. SOUBBOTIN et al. PHYSICAL REVIEW C 64 014601
nuclei for a given distanceD. The kinetic energy densitie
enter into the intrinsic energy term~15! of the PDDFM po-
tential ~14!. For the ground state at the TF level the kine
energy density reads

t I0~R!5
gpFI0

5

10p2\5
.

To calculate the kinetic energy density of the excited st
t I , the integration of the TF distribution function~20! is
taken over the truncated Fermi sphere of radiuspFI

:

t I~R!5
g

~2p!3\5E dpp2f I~R,p!, ~23!

and we obtain

t I~R!5
gpFI

5

80p2\5
~425x01x0

5!, ~24!

where again the sign ofx0 is chosen to bex0521 if there is
no overlap.

It is interesting to note that in both the QAA or the FD
cases the proposed model needs no new parameters: a
quantities that enter into the final formulas are determin
within the framework of the present formalism. The diffe
ence between the FDA and the QAA approaches app
only in the definition of the Fermi momentapFI

: in FDA
they are taken from the condition that the densities of nu
do not change~conservation of the Fermi volume in mome
tum space!, while in QAA they are determined self
consistently. In both cases the formalism in calculating
distorted Fermi spheres can be used.

To this end we would like emphasize the difference b
tween the method proposed in Ref.@3# and our semiclassica
PDDFM. First, no explicit shell model is used in our a
proach in contrast to the harmonic shell model of Ref.@3#.
This allows us to use realistic nucleon densities and effec
forces, which is important for the calculation of nucleu
nucleus potentials. Second, the FDA in Ref.@3# means that
the mean fields of the nuclei do not change during the in
action, while in our approach the FDA implies that the loc
densities of nuclei are frozen and the densities over
Third, our semiclassical PDDFM is defined only in the cla
sically allowed region whereP2(D).0 and one can separa
Fermi spheres in momentum space. Thus it can be use
high enough energies and with effective forces, which g
attractive potentials consistent with the semiclassical con
of PDDFM. Hence a direct comparison of the results o
tained in Ref.@3# and here is not possible. The relation b
tween these two approaches will be discussed elsewher

IV. DISCUSSION OF THE 16O ¿16O SYSTEM

In order to judge the reliability of the present approach
apply our PDDFM in the FDA to the16O116O system. In
these reactions the nuclear rainbow phenomena in the el
scattering are observed in a wide energy range. This case
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been successfully described with the DFM potential us
the BDM3Y1 ~Paris! effective nucleon-nucleon force. Th
main conclusion from this analysis is that deep potentials
needed over the full energy range fromElab51150 MeV to
75 MeV. Actually, the depth of DFM potentials has to b
renormalized by a factorNR(E) that tends to unity at high
energies and approaches a value of 0.7 at lower ener
This behavior of theNR(E) factor can be considered as a
‘‘experimental’’ fact. One part of this renormalization is con
sidered to occur due to the ‘‘polarization’’ potential intro
duced by inelastic couplings, which are rather weak in
present case. It appears now that these renormalizations
be understood if we consider the present solution to the p
lem of the Pauli distortion in the DFM. Actually, we expe
that this distortion becomes significant~Fermi spheres over
lap in momentum space! at low energies and consequent
reduces the depth of the DFM potential.

In the present analysis we use the density-depend
BDM3Y1 force with both the Paris and the Reid-Elliott form
factors. The parameters of these interactions are taken f
Ref. @33#. In Fig. 2 the intrinsic excitation of the16O nuclei
due to Pauli distortion atElab575 MeV ~index a) and
Elab5750 MeV ~index b) is plotted as a function of the
separation distanceD. We use the two possible definitions o
the relative momenta as discussed in the main text: the
bal asymptotic~index 1 in Fig. 2! and the local~index 2 in
Fig. 2! values. In the second case the problem of the s
consistency of the equations for the final potential has b
solved. One can see that the effect of the Pauli distortion
the global case is stronger then in the local case. This is
to the increase of the relative momenta in the inner regi
where the depth of the potential is more than 100 MeV. O
can see that at high enough energies~750 MeV! the distor-
tion of the intrinsic state is rather weak and gives a sm
contribution to the total energy for all distancesD. At small
energy~75 MeV! the situation is different and the intrinsi
excitations in the local case reach up to 18 MeV at z
separation. However, at these small distances the FDA
not be valid and one must consider the QAA approach.

In Figs. 3 and 4 the changes of the PDDFM potent
relative to the DFM potential are plotted at different energ
for the Paris and Reid-Elliott M3Y forces. The effect of th
Pauli distortion would be very strong~see Fig. 3! if one uses
the asymptotic value of the momenta~i.e., global definition
of the relative momentum! resulting in up to a 50% differ-
ence in the potentials atElab575 MeV. This difference has
a rather monotonic dependence that decreases at large
ration distances. Figure 3 also illustrates the result obtai
with the local~self-consistent! definition of the relative mo-
menta p(D): the large difference between the DFM an
PDDFM is now suppressed by the increase ofp(D) in the
interior. Apart from the trivial result that the Pauli distortio
decreases when the incident energy increases, one ca
that a prominent maximum for the contribution of the Pa
blocking appears at some distanceRPB ~Fig. 4!. The position
of this maximum tends to smaller radial distances in
interior for higher energies. In order to understand this
havior, we look into the local definition of the relative mo
mentum p(D). If the potential is deep enough, it wil
1-8
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FIG. 2. The intrinsic excitation
of the 16O nuclei due to the Paul
effect, calculated for two energie
Elab575 MeV ~a! and 750 MeV
~b!, with the ‘‘global’’ definition
~1! and with the local definition
~2! of the relative momenta of the
nucleons with the BDM3Y1
~Reid! and BDM3Y1 ~Paris!
nucleon-nucleon forces.
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strongly increase the momentump(D). With these large
relative momenta we will have effectively a ‘‘repulsion’’ o
the Fermi spheres at small distances. The smaller overla
momentum space will reduce the Pauli distortion. Still it
interesting to note that the maximum of the Pauli distort
appears in the range of distances between 3 and 6 fm, w
the deep potential determines the occurrence of nuclear
bow scattering.

Another important quantity associated with the nucle
nucleus potential is its volume integralJV . We have calcu-
lated the volume integrals for both DFM and PDDFM pote
tials at different energies using the BDM3Y1~Paris! as well
as the BDM3Y1 ~Reid! versions of the nucleon-nucleo
force. The results are presented in Fig. 5. The ‘‘experim
tal’’ values ofJV have been obtained by fits of experimen
angular distributions with the optical potential, whose re
part was taken to be of the Woods-Saxon square type or f
the DFM with the proper renormalization@12,16# as men-
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tioned before. One can see that at high enough energy
two approaches, PDDFM and DFM, give similar values
JV , and that they reasonably agree with the ‘‘experimenta
values. At lower energies a significant difference appea
the DFM gives increasing values ofJV , while the PDDFM
gives a smooth maximum at an energy around 100 MeV
fact the data from Ref.@12# exhibit almost constant values o
JV in the energy range of 75 MeV,Elab,124 MeV,
which can be considered as in agreement with our PDD
results. At small energies they still overestimate the ‘‘expe
mental’’ values, a fact that can be a consequence of the F
violation. Two comments may be added here:~a! the ‘‘ex-
perimental’’ absolute values ofJV may depend on the mini
mization procedure~the shape of potentials, the imagina
parts, and other details; see for exampleJV for SW2 and
DFM in Ref. @16#! and~b! our DFM potential slightly differs
from the one used in Refs.@12,16#, where the authors hav
used the CB-DM. This last DFM also contains some unc
t

FIG. 3. The relative deviation
of the PDDFM potential with re-
spect to the DFM potential for the
16O216O system calculated a
two energiesElab575 MeV ~a!
and 750 MeV~b!, with the ‘‘glo-
bal’’ ~1! and local definitions~2!
of relative momentum of the
nucleons calculated with
BDM3Y1 ~Reid! and BDM3Y1
~Paris! nucleon-nucleon forces.
1-9
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FIG. 4. The relative deviation
of the PDDFM potential with re-
spect to the DFM potential for the
16O216O system with the local
definition of the relative momen-
tum calculated with BDM3Y1
~Reid! and BDM3Y1 ~Paris!
nucleon-nucleon forces at differ
ent energies in the laboratory.
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tainties because CB-DM depends on the quantal kinetic
ergy density that is unknown. Therefore the empirical e
pression for the kinetic energy density was used in R
@12,16#. Our analysis shows that the DFM potential with t
semiclassical kinetic energy density in CB-DM is systema
cally deeper and can differ locally within 10% from those
Refs.@12,16#. This difference can be found in the values
volume integrals, where it amounts to approximately 5%~see
below!. In contrast we have used in the present work
semiclassical Thomas-Fermi approximation, which is s
consistent with the semiclassical result for the nucle
nucleus potential.

The experimental systematics for the volume integralJV
confirm our result obtained with the microscopic DFM p
tential. To describe the experimental data with the DFM
normalization factor smaller than unityNR(E),1 has been
introduced in Refs.@12,16#. In the PDDFM this reduction is
understood as a consequence of Pauli blocking.

To illustrate the validity of the approach we present h
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some preliminary results for the analysis of16O116O elastic
scattering data. A systematic analysis of the experime
data in a wide energy region within the PDDFM approa
will be given in forthcoming publications. Our aim here is
illustrate the Pauli distortion effect in the nucleus-nucle
potential. It was already shown that the difference betwe
the two approaches, DFM and PDDFM, become larger
smaller energies. At the same time one can expect that
FDA will not be valid at very small energies. Thus w
present here the analysis of data at ‘‘intermediate’’ energ
of Elab5124 MeV and 145 MeV. The imaginary part of th
optical potential was taken in the standard way as the sum
the Woods-Saxon~WS! volume shapes and the derivative f
the WS surface term@12#. The parameters of the imaginar
part were fitted to minimize thex2 value calculated with a
uniform 10% error for the data points. The result is shown
Fig. 6. The solid lines represent the best fit with the opti
model using the PDDFM potential for the real part togeth
with the renormalization constantNR as indicated in the fig-
-

-
h
f
,

l-
t
n

FIG. 5. The volume integrals
of the PDDFM and DFM poten-
tials calculated with BDM3Y1
~Reid! and BDM3Y1 ~Paris!
forces at different energies to
gether with the ‘‘experimental’’
results. The open circles corre
spond to the results obtained wit
the real part of optical potential o
the squared Woods-Saxon form
the closed ones with the renorma
ized DFM potential. The data a
energies 124–704 MeV are take
from Ref. @16# and at energies
75–124 MeV from Ref.@12#.
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ure, while dotted lines represent the result for the DF
There are still ambiguities within the parameters of t
imaginary part, but the factorNR is well determined, and can
be determined with high accuracy. We note that at 124 M
it is necessary to reduce the PDDFM potential by a fac
0.96, while for the DFM potential the reduction fact
needed is 0.86. At 145 MeV the best fit was obtained w
the unrenormalized PDDFM potential, while the correspo
ing DFM potential has to be reduced by a factorNR50.9.
These results completely agree with our discussion of
volume integrals presented in the Fig. 5. Comparing our v
ues with the those reported in Ref.@16# one can also see tha
the present version of the DFM differs from the DFM of Re
@16# by approximately 5% with respect to the volume int
grals ~both with renormalization or without! and gives prac-
tically the same angular distributions~with the proper renor-
malization!. We note that the values for the volume integra
JV corresponding to the fit with the PDDFM shown in Fig.
are 344 and 360 MeV fm3, respectively. These values diffe
slightly from the values of Ref.@16# ~which are 336 and 340
MeV fm3, respectively!. This illustrates the range of amb
guities in the determination of the ‘‘experimental’’ values
JV .

At this point the following remark has to be made. T
calculated nucleus-nucleus potentials may strongly dep

FIG. 6. Angular distributions of the elastic16O216O scattering
at energiesElab5124 MeV and 145 MeV, calculated within th
optical model with renormalized potentials for the real part
nucleus-nucleus potential with the PDDFM~solid lines! and DFM
~dotted lines! approaches, respectively, together with the exp
mental data from Ref.@34#.
01460
.
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on the choice of the density-dependent effective nucle
nucleon force. The DFM as a mean-field approach to
nucleus-nucleus potential needs a realistic nucleon-nuc
interaction, which is able to describe nuclear matter prop
ties ~e.g., the saturation point!. It is known that M3Y forces
produce DFM potentials with two parts, the purely repulsi
direct part and the strong attractive exchange part, and
total DFM potential is very deep and thus reduces the P
distortion effects. In contrast, the Brink-Boeker force give
shallower potential. In this case the Pauli distortion is stro
However, it is deeper in our approach than the one obtai
in Ref. @3#, due to differences in the methods~see comments
above!. This latter force has no density-dependence and d
not reproduce the saturation properties of nuclear matter.
density dependent Gogny force gives a deeper potential,
it is still shallower than that obtained with the M3Y force
The Pauli distortion in this case is also stronger than in
M3Y case. The concept of deep local potentials is confirm
also by the semiclassical RGM analysis of Ref.@35#, where it
has to be deep enough to account for the Pauli forbid
states into the discrete spectrum of the effective Hamilton

V. SUMMARY

In the present paper we have proposed the Pauli disto
double folding model~PDDFM! for the nucleus-nucleus po
tential. It coincides with the usual DFM asymptotically, i.e
at high energies and~or! at large distances. In order to com
ply with the Pauli principle at lower energies and for larg
density overlap, one has to modify the Fermi spheres of
interacting nuclei in order to prevent their overlap in mome
tum space. The corresponding density matrices of the nu
are defined at the semiclassical Thomas-Fermi level. The
rameters of the new truncated Fermi spheres can be d
mined uniquely within the framework of the frozen dens
or the quasiadiabatic approximations. Thus, no new par
eters are introduced in the PDDFM relative to the origin
version of the DFM.

The local definition of the relative momenta of the nuc
ons that are used in the DFM implies that the Pauli effects
the nucleus-nucleus potential have to be calculated s
consistently in the same way as the exchange term ente
in the DFM potential as in Ref.@11#. The potential created by
the mean-field increases the relative momentum of the nu
ons in the region of density overlap, which suppresses
Pauli distortion significantly. In fact, the mean field ener
of the two overlapping nuclei obtained in the DFM approa
produces a very deep potential already at moderate ove
In the self-consistent approach the contribution from this
tential is comparable to the Fermi momenta of the nucleo
resulting in a ‘‘repulsion’’ of the two Fermi spheres. Such
repulsion of the momentum spheres has also been discu
in a mean-field approach for collisions at much higher en
gies in Ref.@36#. It has been shown in the present approa
that the nucleus-nucleus potential remains rather deep d
to the lowest energies of 6–10 MeV/nucleon giving rise
refractive scattering, and higher order Airy structures
thus observed down to these low energies. This result ca
considered as an explanation for the success of the wi

f

i-
1-11
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used DFM. We note that in the calculations of potentials
DFM or PDDFM no free parameters~except for the imagi-
nary part! are needed to reproduce the data.

The Pauli distortion discussed in the present approach
lead to excitations of the two fragments, inducing a loss
flux from the elastic channel~absorption!. However, the
transformation of the distortion in momentum space into r
energy excitations of the nuclei depends on their struc
and excitation energy spectrum. If no energy can be tra
ferred the scattering process may remain elastic. Actually
partial waveS-matrix elements contributing to the rainbo
angles are of the order of 1023 or even below for the16O
116O case. Scattering systems with nuclei with closed sh
or with alpha clustering have large energy gaps for partic
hole excitations, and are therefore particularly suited to
serve refractive scattering, because of the reduced abs
tion. The PDDFM approach thus also gives insight into
observation that refractive scattering~with reduced absorp
tion in the interior! is mostly observed for heavy ion system
consisting of strongly bound nuclei.

The Pauli distortion effect gives a maximum contributi
cl.

. C

.

er

01460
n

an
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e

at some intermediate distance, which tends to the interior
decreases when the energy increases. The analysis o
volume integrals of the real part of the nucleus-nucleus
tentials shows that the PDDFM gives flat maxima at lo
energy. In order to check this behavior one has to compa
with the values obtained from the phenomenological opti
model analysis of data at lower energies. However, low
ergy data on rainbow scattering are scarce and their ana
shows some ambiguities. Therefore, new measurem
should be done in order to get a more detailed test of
present model at the lower energies.
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