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A isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei
(*%0), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived
for various realistic models of the baryon-baryon interaction are compared to each other. These include local
(V28) and nonlocal meson exchange potentials (Bggghbut also a model recently derived by the Salamanca
group accounting for quark degrees of freedom. The characteristic differences which are obtainedNfor the
andAA correlation functions are related to the approximation made in deriving the matrix elements for the
baryon-baryon interaction.
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[. INTRODUCTION isobar configurations are included explicitly one finds that a

It has always been one of the basic challenges of theoretarge part of the medium range attraction in thsl interac-
ical nuclear physics to derive the basic properties of nuclefion originates from the coupling to tiéA andAA configu-
from realistic models of the nucleon-nucledN ) interac-  rations.
tions. Very sophisticated approximation schemes have been Both kinds of models, with and without the explicit con-
developed to solve the many-body problem of strongly intersideration of isobar configurations, yield essentially the in-
acting nucleons. As examples we mention Brueckner holeteraction for two nucleons in the vacuum, since they are
line expansior{1], the coupled-cluster or “exponenti&l’ adjusted to reproduce tHéN phase shifts. Remarkable dif-

approach2], the self-consistent evaluation of Green’s func-ferences show up, however, if the different kinds of interac-
tions [3], variational approaches using chain summationt'_ons are c0n3|dere_d for the_ interaction of two nucleons in-
(FHNC/SOQ methods[4], and recent developments em- side a nuclear medium. While the exchange of ¢shmeson
ploying quantum Monte éarlo techniquEs). (See, e.g., the is essentially the same in the vacuum and in the nuclear
recent review[6] on these many-body app.roachés. v medium, the formation of virtuaNA andAA configurations

A major ingredient for such investigations is the definitioniS suppressed in nuclear mattatue to Pauli effects and
Jor Ingred . gatio e binding of the nucleonsas compared to the vacuum. This
of a realisticNN interaction. Here we define a realistitN

. : . . leads to a loss of attraction for the effective interaction of
interaction to be a model for the nucleon nucleon interaction,, ; ucleons in the medium. which results in a smaller cal-

in which the parameters have been adjusted to obtain & veryjated binding energy. This effect has been investigated by
good fit of the experimentalN scattering data at energies \arious groups using the Brueckner-Hartree-Fock approxi-
up to the threshold foer production. As examples for mod- mation, which means that correlations between nucleons are
ern realistic interactions we refer the reader to REfs:9].  taken into account by means of the effective interaction, the
The central assumption of such investigations is that thes matrix [12—14.
nucleons can be considered as inert particles interacting by The isobar degrees of freedom may of course also be
two-body forces, which are identical in the vacuum and inconsidered explicitly in the solution of the nuclear many-
the nuclear medium. Itis of course well known that nucleonshody problem, i.e., one allows for many-body wave func-
are not elementary particles. At short distances, nucleongons which contain isobar configurations. Such investiga-
will polarize each other, which will lead to virtual excita- tions have been made, e.g., for the three-nucleon problem
tions. These subnucleonic degrees of freedom are effective[15,16 and for nuclear mattel4]. Presently, there is a re-
taken into account in the realistéN interaction as the pa- newed interest in the study of these isobar configurations in
rameters are adjusted to the data. the nuclear wave function. One reason is the attempt to ex-
As an example we mention the processes of the type thajlore the isobar components in the nuclear wave function by
two nucleons interact with each other exchanging ar p  means of different experiments. This includes the photopro-
meson leading to AIA or AA state[10]. After the exchange duction of pions[17] and the isobar current contribution to
of a second meson the two baryons may be returned into @xclusive €,e’NN) reactions[18]. Another reason is the
NN state such that this process contributes to the amplituddevelopment of new models for the baryon-baryon interac-
for elasticNN scattering. A theoretical approach which ac- tion including isobar configuratior{d9-21].
counts for interacting nucleons only parametrizes this pro- In this study we would like to investigate the predictions
cess with intermediate isobar excitations by adjusting, e.gfor the isobar components in the nuclear wave functions de-
the coupling constant of ther meson in a one-boson- rived from various models for the baryon-baryon interaction.
exchange model for th N interaction[11]. If, however, the  We are going to compare the isobar amplitudes calculated
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for the Argonne V28 potentidl19] with those derived from considering a meson-exchange model for the baryon-baryon
a recent updatg€21] of model | in Table B.1 of Ref[22], interaction. The most important isovector meson contributing
which we will denote as Bongge. Both of these models are to such transitions is of course the pion. ThE/70) has a
based on the meson exchange picture of the baryon-baryamonsiderable effect, too, but mainly for large momentum
interaction. This means that, e.g., the transition potentiatransfers between the interacting baryons.
NN—NA is dominated by the contribution fromr ex- In this section we would like to compare the one-pion-
change. While the Bongggapproach considers the complete exchangéOPB contribution as it is included in the Bogyg,
relativistic structure of this term, the V28 model reduces thisinteraction with the corresponding term in the Argonne V28
7 exchange contribution to a local potential. Thisex-  interaction. As an example we consider the transition poten-
change contribution is supplemented by fhexchange in  tial NN—AA, in particular we will focus the attention to the
the Bonnyy, model. The V28 approach, on the other hand,central component as it shows up i8, partial waves. This
adds a phenomenological contribution of short range. In RefOPE transition amplitude has been formulated in a helicity
[23] it has been observed that the reduction of meson extepresentation in which the quantization axis of the particle
change interactions to the local approximation yields characspins are the directions of the relative moment@ndq’ for
teristic differences. Can such differences also be observetthe initial and final state, respectivelg5],
for the isobar contributions?

A quite different approach has recently been developed b9q’AN1AN2|V”|qAAlAA2)
the Salamanca groy0]. They derive aNN interaction in

the framework of the chiral quark clust&2QC) model. The Ar T2, , , 2,

problem of two interacting clustergaryong of quarks is - (2m)° m2 c(M(a,~9.)(a,~a,)Fz(a" —a)
solved by means of the resonating group method. The Pauli &

principle between the interacting quarks is an important T—a’ Py i v

source for the short-range repulsion of the\ interaction Xu( a7 An U= As Jula’ Anyu (q’AAl)_
[24]. At large distances the exchange between the quarks V@' —q)2+ m2[ V(g — )%+ m2+my—my]

in the two clusters evolves to the exchange between two &
baryons. At shorter distances, however, this nonlocal model

for the baryon-baryon interaction might yield results that arec(T) s the isospin factor that remains from isospin matrix
quite different from a meson-exchange picture. This Salagiements and corresponds ¢¢T)=—+2 in this channel.
manca potential does not give such a perfect fit toM¥  The energy denominator in this expression contains the
slcatterlnsg phgse shﬁs as the Begyp or the V28. For the | asses of the piom_, the nucleonmy, and them,. It

Sp and°S, —*D, partial waves of thé&IN system, however, geyiates from a simple pion-exchange propagator, as it has
the agreement with the empirical data is rather good. been derived from time-dependent perturbation theory ac-

We are going to compare correlated two-baryon WaV&:ounting for the mass difference betwesg andm, [26].

functions in the deuteron®O and infinite nuclear matter The functionF . represents the form factor for eaetNA
derived from these three models of the baryon-baryon interye ey The initial relative momentugpand the final relative

action. While the deuteron wave functions are obtained fro”?nomentumq’ are chosen along theaxis,q=(0,0,0q), and
an exact diagonalization in momentum space, the wave funGy, the x-z plane, g’ =(0q’ sin 6,04’ C(;SH) r,es'peciively

. 16 .
tions for *°O and nuclea_lr matter are calculated in t.he frame'wheree is the angle betweeg andq’. A labels the helic-
work of the “exponentialS” approach[2], generalized to '

include isobar degrees of freedom and evaluated in momeﬁty_quantum_ numbers 9f the SpInors. For m_esobars these
tum representation. spinors fulfill the Rarita-Schwinger equations and can be

After this introduction we discuss some differences be_constructed explicitly by coupling a vector fietsipin 1) and

- . - l
tween the transition potentials for V28 and Beggyg in the a Dirac field(spin 2)
next section. The wave functions of the deuteron derived
from these three models are compared in Sec. IIl, while the u,(a,A)=2 Chabe.(a.M)u(a,s), 2)
correlation functions for*®0 and infinite nuclear matter are NS
presented in Sec. IV. A summary and conclusions are adde\ﬁith
in the final section.

e (a0 &-d .  de&-9

II. TRANSITION POTENTIALS IN DIFFERENT MODELS uA\ M m, ’ mA(\/q2+mi+mA) !

()

The key for an understanding of isobar components in the (32 o )
many-body wave function of nuclear systems is the transiwhere theCiy(i ¢ are Clebsch-Gordan coefficients in the
tion potential, i.e., the matrix elements of the baryon-baryorfiotation of Ref.[27] and u(p,s) is a Dirac spinor in spin
interaction connecting two-nucleon statesNd and AA states. e, , e,, ande_ are the circular polarization vectors.
configurations. A transitiorN«< A implies the change of From both the Dirac spinors for the nucleons and the
both spin and isospin from to 3. As isospin conservation Rarita-Schwinger spinors for the deltas, the complex mo-
has to be fulfilled at each vertex, such a transition requiresnentum structure is now removed by taking their value at
the emission or absorption of an isovector meson, if one ig)=q’=0. It is straightforward to obtain the helicity Feyn-
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man graph structurél) for all 2X2xX4X4=64 combina- 4 — .

tions of helicity projection numbers in this “static” approxi- (\ Bonn

mation. Most of them can be derived from symmetry ——- m-range

relations[25], and one only needs to evaluate ten matrix \ e local

elements explicitly. 2 b\ —-— contact rem. 1
The helicity amplitudes are then projected onto states with \ O0—OV28

definite total relative angular momentuin

(@'3% Ay Ay V7la 38 AL Ay )

1
:27-rfild(cose)dJAyA,(0)(q’AN1AN2|V”|qAA1AA2).

Matrixelements [MeV ]

(4

Here, dJA’A,(e) are the reduced rotation matrices with
=Aj,— Ay, andA’=Ay —Ay,. In the next step one per-

forms the transformation into the basis of the partial wave 0 1000 T 2000
states, in which orbital angular momentlrand spinS are q,, [MeV]
coupled toJ:

FIG. 1. Matrix elements for the one-pion exchange contribution
to the transition potentia{q’3S\™|V7|q 3S}*) assuming various
approximations as discussed in the text. Results are displayed as a
function of the momenturg in the AA state. The momentum of the

<q/ ZS'+1L7‘|;IN|V77|q ZS+1L\']AA>

VL +1)(2L+1)

2]+1 NN state has been fixed tg=100 MeV. All values have been
multiplied with a common factor of £0
% cn S'A! . . . .
L70S' A"~ (12)Ay (112)— Ay This expression can be compared with the local transition
ANlANzAAlAAZ 1 2

potential as defined for the Argonne V28 interaction

2 -m_r
fNATrmﬂ')e &

127 m,.r

3NN 3cAA
The transformation coefficients have been taken from Ref. XSS5 (TaT2) 17817,
[28]. (7)
In order to compare these matrix elements for the transi-
tion potential in the Bongyy, model with the corresponding with S and T; denoting the transition operator for spin and
one for the V28, we consider two approximations. isospin. Note that comparing this expression with the local
In evaluating the helicity amplitudes of E@L) the non-  approximation to the Bongyy model in Eqg.(6), the contact
relativistic static limit is considered, i.e., the Dirac spinors asterm is removed and the form factor is replaced in V28 by a
well as the Rarita-Schwinger are considered derq’ =0. Gaussian cutoff to regularize the matrix elements for small
The energy denominator in E€L) is replaced by the usual interparticle distances.
pion propagator by ignoring the mass differemag—my. Matrix elements of the one-pion-exchan@@PE contri-
Using these approximations an analytical expression ibution to the transition potential in the partial wave
obtained for (q' 38N V7| q 3S}4) for these different approaches are dis-
played in Fig. 1. The relative momentum of thiN pair g’
472 40 fﬁ,M 1 is fixed at 100 MeV and the matrix elements are presented as
2732 9 ml f_ld(coso) a function of the relative momentum for theA state.
g The mass differencen, —my in the pion propagator of
2

XA I Ay Ay VT 3N Ay Ay

(r 3NV 3s)y = (1-e ")

SA IA
X Cain, (312)-4, Closh - 5

(a' 3SNV7q syt = -

w

x| 1

2 ’
> |F=(a"—a)

(@' —q)?+mZ

(6)

that depends on the momentum transfigr-q only. This

Eg. (1) has a remarkable effect on the calculated transition
potential. This can be seen in Fig. 1 from the comparison of
the solid line (Bonn), which represents the complete OPE
contribution in the Bongyy potential, with the long dashed
line (7 range, which exhibits the results obtained after re-
placing the pion propagator of E(l) by the conventionatr

means that the interaction is local. Transforming this exprespropagator. The inclusion of the mass differemg—my
sion for the central part of the transition potential into con-leads to a quenching of the transition potential by about a
figuration space, we can identify a Yukawa term and a confactor two for small momenta, while the two curves ap-

tact term, both multiplied by the form factor.

proach each other at large valuesmf, . This means that
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) . ) FIG. 3. Matrix elements for the transition potential
FIG. 2. Matrix elements for the transition potenthiN— AA in (q’3SQ‘N|V|q 7D%A> assuming the Bongg, Argonne V28, and

3 . .
the °S, central partial wave assuming the Bogyy, Argonne V28, ggiamanca quark model approaches. For further details see Fig. 1.
and Salamanca quark model approaches. For further details see Fig.

1. we study as a third examp]&0] cannot be considered as an
entirely realistic potential because it does not fit liphase
shifts for NN scattering with good accuracy; the phase shifts
" the 1S, and 3S, — 3D, channels are reproduced very well,
however. In the CQC model, the long-range interaction is
generated by OPE as well. In the core region, the potential is
determined by gluon exchange and the Pauli principle. The
latter requires total antisymmetry of the six-quark wave
tunction and this leads to a dependence of the baryon-baryon

; . potential on the initial kinetic energl;,, of two interacting
(r:%sr,]uslgr:ﬁ? :Eg ?ﬁg:ﬁ;ﬁlﬂ%OIGE((?;S";m;ﬁ)Onm?Sitenr(r;:'e;he_rhnucleons. For the results displayed in Fig. 2 we assume a
P ' 9 - MWalue E;,=0 for this energy.

removal of this contact term has a very strong effect on the The matrix elements for the transition potential of the

transition potentia}I in this central partial wave \.NiHEFO' Salamanca model exhibit values in between the two ap-
Only after removing this conta_lct terr_n, we obtam_ an .OPEproaches discussed above. The shape is similar to the one of
component of the Bor_m POteF‘“a" which is essentially Iden'the Bonn potential, however, approaching the value of zero
tical to the OPE contribution in the Argonne V28 model. with increasing momenta much faster than the Bonn poten-

The comparison of these various approximations in Fig. 1. . S . .
makes it rather obvious that the different treatment of thanl. This might be an indication that the Pauli effects in the

o i : uark model provide a much stronger cutoff at high mo-

OPE contribution to th&NN— A A transition potential leads ?nenta than thg form factor used in tﬁe Bonn potenti%l
to quite different matrix elements in the relativistic Bonn As another example we compare results obtained fo.rthese
model, defined in momentum space, as compared to the Iocﬂ"ree models also for the caetqe’3SNN|V|q 7DM) in Fig. 3
treatment in the Argonne V28. This OPE contribution is the.l_he differences between Bogg 1and V28 lcan agaiﬁ be
most Important |n.g.red|ent to the transm(_)n potential in bOthtraced back to the different trea?tment of the OPE. For this
gg:els. Tmhg dz(ljdllgggsmt;h?nﬁ):)crhzrlltgh%&n ht hfloﬁiz ?If }Elee partial wave, however, one does not obtain any contact term

fhooo . 9 NEYUIIV'E - ontribution. This implies that the V28 is stronger at small
modifications. This can be seen from the comparison of Fig

1 with Fig. 2, which shows matrix elements of the total tran—migrr]nep;aaazt'ér'%%ﬂi;g&ﬂﬁ;i glfferear:nﬁ—hmr,:]cl)r%g;]eta
sition potential. In addition to the results for the Bggyaand pion propag o6 9

- . because of the nonlocalities included in the Bonn model. The
V28 models, this figure also shows the corresponding Valuersnatrix elements for the Salamanca model are similar to those
for the quark model of the Salamanca grd@®]. We see

again the huge differences between the V28 and the Bggin of the Bonnpggy potential at small momenta but exhibit fea-
: . o tures of a stronger cutoff at high momenta.

model, which even lead to a difference in sign. From our

discussion above we know that the main part of differences

can be traced back to the different treatment of the OPE

contribution. Solutions of the bound state two-particle problem have

The Salamanca chiral quark clust€QC) model, which  been obtained for the Argonne V28, the Beggyg, and the

the inclusion of the mass difference leads to a transition po
tential that is generally weaker and of shorter range, a featu
which has already been observed, e.g., in R&9].

If one furthermore employs the nonrelativistic limit, one
obtains the local representation of the OPE of @&} which
is given in Fig. 1 by the dashed lirocal). The removal of
the relativistic features yields a sizable effect at larger mo
menta in particular. The dashed-dotted li@@ntact remn).

Ill. THE WAVE FUNCTIONS OF THE DEUTERON
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TABLE I. Contributions to the kinetic and potential energy of the deuteron originating from the different
parts of the wave function. The kinetic eneffy;, is the sum of the kinetic energies originating from Ml
wave function in®S; (Tg‘) and®D; (Tg) partial waves plus the kinetic energy?) from the AA compo-
nents. The ternT2 also accounts for thBlA mass difference. The potential energy contains contributions
from the various parts of thdN— NN potential \V), theNN—AA terms VM%), and theAA —AA terms
(V2%). Results are given for the three models with isobar configurations. Note that the interaction model
Bonmygg does not consider any* interaction terms. For comparison we also show results from pure
nucleonic interaction models V14 and CD-Bonn. All entries are given in MeV.

Arg. V28 Bonnggg Sal. CQC Arg. V14 CD-Bonn
Total 23.75 22.29 17.82 19.22 15.48
Viota —25.97 —24.51 —20.04 —21.44 —-17.70
T 10.32 10.25 10.84 10.54 9.79
™ 8.95 5.35 5.13 8.68 5.69
TA 4.48 6.69 1.85
VAN 7.08 1.52 —-5.67 -1.83 -4.77
A 5.86 1.80 0.70 1.99 1.34
VAN —-29.22 —14.38 —-11.64 —21.60 —14.27
vha —10.40 —13.44 —3.16
VAl 0.71 -0.28

Salamanca CQC potential. The nucleonic part of the deuNote that the ternT® sums up the kinetic energy from all
teron wave function contains componer$;— 3D, partial  partial wave components in theA wave function and in-
waves. IfA degrees of freedom shall be taken into accountludes the contribution from thid— A mass difference. The
explicitly, one has to extend the two coupled nucleonic chanpotential energy can be split into

nels by fourAA partial waves, namel}s:*, 2p2*, 7p2*  and . . . .

G2 No NA states can occur because the deuteron is an Vioa= (NN *Si|VINN *S;) +(NN “D4|V|NN “D;)

isospinT=0 state and the isospins NfandA cannot couple +2(NN 3S,|V|NN 3D;)+2(NN|V|AA)

to zero. The problem to determine the baryonic wave func-

tion in the 6 coupled channels has been solved in a spherical +(AAIV|AAY=VEY+ VEE+ Vap+ VNA L VAL,
box with radiusR,,,= 20 fm. The spherical Bessel functions )

with the boundary condition
(K Ry = 0 The contributions of these various terms to the energy of
I bo the deuteron are listed in Table I, while the norm of the

can be used to construct a complete basis of orthonormalizeégrious partial wave contributions to the wave function are
states for the bound state wave functions within the sphericdiresented in Table Il for the three interaction models with
box [30]. The coupled channel Hamiltonian was calculated - )
in this basis of momentum eigenstates of the box and diago- TABLE II. Probability for D state andAA components in the

nalized numerically. Up to 300 discrete momenta Weredeu?ero_n for different models of the baryon-baryon interaction. All
needed to get stable results for the binding energy. The ré&ntres in percent.

sults for energies and the wave functions obtained with thé

0
Argonne V28 and for the Salamanca potential are in good % V28 Bonfioo cQc
agreement with the values given in Ref§9] and[20], re- 3gNN 93.341 94.685 95.199
spectively. A NN
All NN interactions, which we consider, are adjusted to fit D1 6.133 4.705 4.567
the total energy of the deuteron, which can be written as a 3gta 0.043 0.223 0.107
sum of the kinetic energyl iy @and potential energyq
with 3paa 0.020 0.022 0.004
7TRHAA
Ta=(NN *S{[TINN *Sy)+ (NN *Dy| TINN D) i . . e
T (AA[T|AA) e 0.045 0.005 0.006
Total AA 0.524 0.611 0.241
=Tg+Tp+T2 ®)
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isobar components of the wave function can be seen in the
33, AA channel. While the Bonn and Salamanca models
yield occupation probabilities, which are of similar size as
those for the’D,, AA channel, the probability for this chan-
nel derived from the V28 potential is much weaker. A quali-
tative difference can also be observed from the inspection of
the wave function in this channékee Fig. 4 The wave
function obtained for the Bonn and Salamanca potential
show a maximal amplitude far— 0, while the correspond-
ing wave function deduced from the V28 potential is sup-
0 pressed at small relative distances. These differences in the
2 o 1 2 o 1 2 s wave function reflect the fact that the contact term in the
r [fm] r [fm] r [fm] OPE contribution to the transition potent[asee Eq.(6) and
FIG. 4. Isobar components in the deuteron wave function usin diSCU.SSion theﬂa‘.s removed in the local reprgsentation of th?
- ) . DPE in V28, while the nonlocal representation of the OPE in
the three different models for the baryon-baryon interaction. The[he other models keeps a strong short range component
scale on the left-hand side of the figure refers to the left and middle . ; )
graph, while the scale on the right-hand side refers to the right part The companson of thaa components_ n the deuteron
only. wave function thereforg re_flects the main differences be-
tween the local approximation of the V28 and the nonlocal
inclusion of isobars. For a comparison Table | also shows th@pproaches of the Bonn and Salamanca model: The V28 con-
result for two NN interaction models without the explicit tains a OPE component of longer range and suppresses the
treatment of isobar configurations: the Argonne potentiashort range components much stronger than the other two
model V14[19] and the charge-dependent Bonn potentialmodels. Furthermore, the quark model approach leads to a
[7]. stronger reduction than the typical cutoff that is used in the
Although the sum of these various energy contributionsneson exchange models of the Bonn group. This leads to
yields the same energy of the deuteron for all the interactiofinuch weakeA A components in the deuteron wave function
models, there are remarkable differences in the individuafor the Salamanca model.
terms. The inclusion of isobar components in the wave func- It is worth noting that the contributions of8 to the
tion yields a contribution to the binding energy ef5.21, potential energy of the deuterdisee Table )l are signifi-
—6.75, and—1.59 MeV for the V28, the Bongy, and the  cantly larger for the local Argonne potentials V14 and V28,
Salamanca interaction, respectively. This means that V2&an for the various versions of the Bonn potential and the
and Bonpgg predict an unbound deuteron, if theA com-  Salamanca potential. This observation suggests that the local
ponents in the wave function would be suppressed, while theepresentation of the tensor components of N interac-
Salamanca interaction leads to a much weaker contributiotion, in particular the contribution originating fromr ex-
of the isobar configurations. These differences also show uphange yields matrix elements which are significantly larger
in the norm of the various partial wave components in thethan those evaluated within the nonlocal approacise®
deuteron wave function listed in Table Il. Comparing thesealso Refs[23,31)).
occupation probabilities one finds that all interactions predict

101

"

o
S

wave function [fm ]
wave function [fm~

—-— Salamanca

the largest contribution to thAA probability in the ‘D, IV. CORRELATIONS IN NUCLEAR MATTER AND 160
partial wave. The largest probability for this partial wave is . o
obtained for the V28 potential, while Bogya,and the Sala- The wave functions of many-body systems are studied in

manca interaction in particular yield much smaller probabili-the framework of the coupled-cluster theofg]. In the

ties in this channel. The origin of these differences can bé&oupled-cluster approach one starts assuming an appropriate

deduced from Fig. 4, which exhibits theA wave functions. ~ Slater determinan® and writes the exact eigenstate for

The Argonne potential leads to a wave function in thetheA-particle system as

'D,, AA channel, which is of longer range than those de- S

rived from the other two interactions. The main reason for V=e0, (10

this feature is the fact that the OPE contribution to b )

— AA transition potential neglects ti— A mass difference  With San operator of the form

in the pion propagatdrsee Eq(1)], which leads to a transi- A

tion potential of longer range. Comparing the wave functions

in this channel derived from the Bogyggand the Salamanca S= n; Sh (11

interaction, one observes that the latter is strongly suppressed

at short relative distances as compared to _the former, Whicalheresn is ann-particle operator which can be written for

supports the argument presented already in the comparisQfle case of= 2

of the matrix elements of the interaction, that the quark

model leads to a much stronger effective cutoff at short dis- 1

tances than thg c_u_toffs uged in the_ meson ex_ch.ange model. SZ:Z 2 <plp2|SZ|y1y2>aj;la;2a LA, (12
The most significant difference in the predictions for the V1,V2,P1.P2
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In this equationa;i stand for fermion creation operators in Nuclear Matter, =0, AA

states which are unoccupied dn, while a, represent anni- \ ' D
— . . . 1 1 i
hilation operators for the nucleon single-particle states which !

;o\

. . . I

are occupied in the Slater determinaint Note that thea;;i ~ob
I}

may also represent the creationfdfisobar states. Therefore
the S, amplitudes describe two-particle two-hole excitations
relative to® but alsoNA andAA excitations.

For our present investigation of nuclear matter we will
assumed to be the Slater determinant defined in terms of
plane waves, occupying all states with momenta up to the s
Fermi momentunke=1.36 fm . As an example for a finite —-— Salamanca ||
nucleus, we will also considet®O. In this case we will K
assumed to be the Slater determinant, defined in terms of . . . . . .
harmonic oscillator statesi(w=14 MeV) with nucleons oc- "0t 2 0 1 2 o0 1 2 3
cupying the states of¥)and the @ shell. If one assumes that rfm] ¥ fm] r fm]
these single-particle states represent an optimal single- g, 5. |sobar components in the relative wave functions of two
particle basis, i.e., the amplitud&s in Eq. (11) vanish, and  particles in nuclear matter with isospir=0 andj=1. The scale on
ignores the contributions of linked-particle correlations the left-hand side of the figure refers to the left and middle graph,

with n=3 (S,=0 for n=3), one obtains integral equations while the scale on the right-hand side refers to the right part only.
for amplitudes

101

1 0.05

-0.05

wave function [fm 7]

Bonn

The results obtained for the V28 and the Bonn potential yield

wave functions of rather similar shape in the deuteron and in

, , ) nuclear matter also for this channel. The wave functions de-
Wh_'Ch are solved in momentum spa@2]. In this FEPresen-rived from the Salamanca CQC interaction are rather differ-

tationb,b, stand foNN, NA, andAA statesk(1S)] denote ot i nyclear matter as compared to the deuteron. At short
the momentum, spin, and orbital quantum numbers for thejisiances they even have a different sign. This reflects a large
partial wave basis of the relative motion of the two baryons'nonlocality or momentum dependence of the short range
K'andL represent the center of mass gtate _amd 7 refer_ component for theNN— AA transition potential derived in

to the total angular momentum and isospin of the pair ofy,, CQC model.

baryons.

The S, amplitudes can be considered as correlation funcy,, ,nd states of two baryons in states with isospinl. As
tions describing the difference between the correlated anan example of such configurations we dischis and AA
uncorrelated wave function of two particles in the nuclearComponents of two-particle wave functions #0 as dis-
medium. As the uqcorrelqted Slater determindntin EO_I' played in Fig. 6. The comparison of the results obtained for
(10) does not contain any isobar components, $a@mpli-  the" gifferent interaction models leads to observations which
tudes can be interpreted directly as & andAA compo- 5.0 rather similar to those discussed for the states with
nent of the two-particle wave function, if;b, in Eq. (13)  _q apove. The difference in the range of the transition po-
refers tON.A andAA states. . . . tentialsNN—NA for V28 and the other two interactions is

As typical examples for these correlation functions in

| het A for th Iati not as significant as in the case of tR&N—AA [compare
nuclear matter, the\A components for the relative wave e giscussion of the propagator in E@)], which leads to
function of two ba'ryons ina statg W,'th isospin=0 and g qier differences in the tail of theD, NA wave function
angular momentunj=1 are given in Fig. 5. These compo-

h f th than in the correspondinyA state. A very significant model
nents co_rrespond to the components of the d_eute_ron Wavc?ependence is obtained in th&,, AA wave function.
function in the same partial waves displayed in Fig. 4. In

f h isob £th / ion f . The isobar-isobar relative wave functions derived for
act, these isobar components of the wave function for a paif ,cjear matter and finite nuclei are rather similar. Therefore

of baryons_in n_uclear matter is very sim_ilar to the _deuteror\Ne display only one of these examples for each channel. This
wave function if one compares the partial wave With2. — 4emonsirates that isobar admixtures correspond to correla-
The AA wave functions exh|b|t a ta|I. of Ionggr range in the s in the many-body wave function which are of short

case of the Argonne V28 interaction, which reflects thejznge Therefore they are not very sensitive to surface effects

longer range of theN\N—AA transition potential for this i, finite nuclei and a local density approximation should be
interaction as compared to the other two approaches. The,nqhriate to consider isobar effects in finite nuclei.
Salamanca CQC approach vyields amplitudes for tHese

waves which are considerably smaller. All these amplitudes
are enhanced as compared to the deuteron wave function,
which reflects the larger density of the nuclear matter system.
The situation is a little bit different if one compares the  Three different models for the baryon-baryon interaction,
33,, AA component of the nuclear matter wave functionwhich fit NN scattering data and explicitly account for isobar
with the corresponding part of the deuteron wave functiondegrees of freedom have been considered. These are the local

(010 k(1S)j IKLITS,|(v177)7), 13

In the nuclear many-body systems one also observes

V. CONCLUSIONS
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from these models. These differences can be related to the
assumptions made in determining the transition potential be-
tweenNN, NA, andAA states. The V28 interaction model
yields isobar wave functions of longer range than the other
two. This can be traced back to the approximations which are
made in reducing ther exchange contribution of the transi-
tion potentials to a local form. The most significant differ-
ences are observed in partial waves with0 at small dis-
tances. A main source of the discrepancies in these partial
waves is related to a removal of a contact term in the local
interaction model. The Bonpygand Salamanca CQC model

in particular exhibit important nonlocal features for the short
range part of the interaction model. The Salamanca model
predicts rather small isobar components in the nuclear many-

o 1 2 3 4 0 1 2 o0 1 2 3

body wave function. These different predictions for the iso-
r [fm] r [fm] r [fm]

bar components in the many-body wave function could be

very useful in distinguishing between different interaction

FIG. 6. Isobar components in the relative wave functions of twomodels.

particles in'®0 with isospinr=1 andj=0. The uncorrelated state
corresponds to two nucleons in the,f state. The scale on the
left-hand side of the figure refers to the left section of this figure
only, while the scale on the right-hand side must be considered for We thank D. Entem for providing us with the Salamanca
the middle and the right section of this figure. CQC potential and for useful discussions. We would also
like to thank Francesca Samarucca and Ruprecht Machleidt
Argonne V28 potentia[19], the Bonpgyy, [21] interaction  for useful discussions. One of the authéfsF.) would also
model based on the relativistic meson exchange model, arikke to thank the Dr.-Carl-Duisberg-Stiftung for supporting
an interaction based on the chiral quark clu$@®C) model  this work by a grant that enabled a stay at the Departament
which has recently been developed by the Salamanca groupEstructura i Constituents de la Mai@ in Barcelona,
[20]. The isobar components in the wave function of theSpain. We would like also to acknowledge financial support
deuteron and nuclear many-body systems including nuclegrom DGICYT (Spain under Contract No. PB98-1247 and

matter and'®0 as an example for a finite nucleus are evalu-from Generalitat de Catalunya under Grant No. SGR2000-
ated. Significant differences are observed in the predictiong4.
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