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D„1232… isobar excitations in nuclear many-body systems derived from variousNN interactions
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D isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei
( 16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived
for various realistic models of the baryon-baryon interaction are compared to each other. These include local
~V28! and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca
group accounting for quark degrees of freedom. The characteristic differences which are obtained for theND
and DD correlation functions are related to the approximation made in deriving the matrix elements for the
baryon-baryon interaction.
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I. INTRODUCTION

It has always been one of the basic challenges of theo
ical nuclear physics to derive the basic properties of nu
from realistic models of the nucleon-nucleon (NN) interac-
tions. Very sophisticated approximation schemes have b
developed to solve the many-body problem of strongly int
acting nucleons. As examples we mention Brueckner h
line expansion@1#, the coupled-cluster or ‘‘exponentialS’’
approach@2#, the self-consistent evaluation of Green’s fun
tions @3#, variational approaches using chain summat
~FHNC/SOC! methods@4#, and recent developments em
ploying quantum Monte Carlo techniques@5#. ~See, e.g., the
recent review@6# on these many-body approaches.!

A major ingredient for such investigations is the definiti
of a realisticNN interaction. Here we define a realisticNN
interaction to be a model for the nucleon nucleon interact
in which the parameters have been adjusted to obtain a
good fit of the experimentalNN scattering data at energie
up to the threshold forp production. As examples for mod
ern realistic interactions we refer the reader to Refs.@7–9#.

The central assumption of such investigations is that
nucleons can be considered as inert particles interacting
two-body forces, which are identical in the vacuum and
the nuclear medium. It is of course well known that nucleo
are not elementary particles. At short distances, nucle
will polarize each other, which will lead to virtual excita
tions. These subnucleonic degrees of freedom are effecti
taken into account in the realisticNN interaction as the pa
rameters are adjusted to the data.

As an example we mention the processes of the type
two nucleons interact with each other exchanging ap or r
meson leading to aND or DD state@10#. After the exchange
of a second meson the two baryons may be returned in
NN state such that this process contributes to the amplit
for elasticNN scattering. A theoretical approach which a
counts for interacting nucleons only parametrizes this p
cess with intermediate isobar excitations by adjusting, e
the coupling constant of thes meson in a one-boson
exchange model for theNN interaction@11#. If, however, the
0556-2813/2001/64~1!/014309~9!/$20.00 64 0143
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isobar configurations are included explicitly one finds tha
large part of the medium range attraction in theNN interac-
tion originates from the coupling to theND andDD configu-
rations.

Both kinds of models, with and without the explicit con
sideration of isobar configurations, yield essentially the
teraction for two nucleons in the vacuum, since they
adjusted to reproduce theNN phase shifts. Remarkable dif
ferences show up, however, if the different kinds of intera
tions are considered for the interaction of two nucleons
side a nuclear medium. While the exchange of thes meson
is essentially the same in the vacuum and in the nuc
medium, the formation of virtualND andDD configurations
is suppressed in nuclear matter~due to Pauli effects and
binding of the nucleons! as compared to the vacuum. Th
leads to a loss of attraction for the effective interaction
two nucleons in the medium, which results in a smaller c
culated binding energy. This effect has been investigated
various groups using the Brueckner-Hartree-Fock appro
mation, which means that correlations between nucleons
taken into account by means of the effective interaction,
G matrix @12–14#.

The isobar degrees of freedom may of course also
considered explicitly in the solution of the nuclear man
body problem, i.e., one allows for many-body wave fun
tions which contain isobar configurations. Such investig
tions have been made, e.g., for the three-nucleon prob
@15,16# and for nuclear matter@14#. Presently, there is a re
newed interest in the study of these isobar configuration
the nuclear wave function. One reason is the attempt to
plore the isobar components in the nuclear wave function
means of different experiments. This includes the photop
duction of pions@17# and the isobar current contribution t
exclusive (e,e8NN) reactions@18#. Another reason is the
development of new models for the baryon-baryon inter
tion including isobar configurations@19–21#.

In this study we would like to investigate the predictio
for the isobar components in the nuclear wave functions
rived from various models for the baryon-baryon interactio
We are going to compare the isobar amplitudes calcula
©2001 The American Physical Society09-1
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T. FRICK, S. KAISER, H. MÜTHER, AND A. POLLS PHYSICAL REVIEW C64 014309
for the Argonne V28 potential@19# with those derived from
a recent update@21# of model I in Table B.1 of Ref.@22#,
which we will denote as Bonn2000. Both of these models ar
based on the meson exchange picture of the baryon-ba
interaction. This means that, e.g., the transition poten
NN→ND is dominated by the contribution fromp ex-
change. While the Bonn2000 approach considers the comple
relativistic structure of this term, the V28 model reduces t
p exchange contribution to a local potential. Thisp ex-
change contribution is supplemented by ther exchange in
the Bonn2000 model. The V28 approach, on the other han
adds a phenomenological contribution of short range. In R
@23# it has been observed that the reduction of meson
change interactions to the local approximation yields cha
teristic differences. Can such differences also be obse
for the isobar contributions?

A quite different approach has recently been developed
the Salamanca group@20#. They derive aNN interaction in
the framework of the chiral quark cluster~CQC! model. The
problem of two interacting clusters~baryons! of quarks is
solved by means of the resonating group method. The P
principle between the interacting quarks is an import
source for the short-range repulsion of theNN interaction
@24#. At large distances thep exchange between the quar
in the two clusters evolves to thep exchange between tw
baryons. At shorter distances, however, this nonlocal mo
for the baryon-baryon interaction might yield results that
quite different from a meson-exchange picture. This Sa
manca potential does not give such a perfect fit to theNN
scattering phase shifts as the Bonn2000 or the V28. For the
1S0 and 3S123D1 partial waves of theNN system, however
the agreement with the empirical data is rather good.

We are going to compare correlated two-baryon wa
functions in the deuteron,16O and infinite nuclear matte
derived from these three models of the baryon-baryon in
action. While the deuteron wave functions are obtained fr
an exact diagonalization in momentum space, the wave fu
tions for 16O and nuclear matter are calculated in the fram
work of the ‘‘exponentialS’’ approach @2#, generalized to
include isobar degrees of freedom and evaluated in mom
tum representation.

After this introduction we discuss some differences b
tween the transition potentials for V28 and Bonn2000 in the
next section. The wave functions of the deuteron deriv
from these three models are compared in Sec. III, while
correlation functions for16O and infinite nuclear matter ar
presented in Sec. IV. A summary and conclusions are ad
in the final section.

II. TRANSITION POTENTIALS IN DIFFERENT MODELS

The key for an understanding of isobar components in
many-body wave function of nuclear systems is the tran
tion potential, i.e., the matrix elements of the baryon-bary
interaction connecting two-nucleon states toND and DD
configurations. A transitionN↔D implies the change o
both spin and isospin from1

2 to 3
2 . As isospin conservation

has to be fulfilled at each vertex, such a transition requ
the emission or absorption of an isovector meson, if on
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considering a meson-exchange model for the baryon-bar
interaction. The most important isovector meson contribut
to such transitions is of course the pion. Ther(770) has a
considerable effect, too, but mainly for large momentu
transfers between the interacting baryons.

In this section we would like to compare the one-pio
exchange~OPE! contribution as it is included in the Bonn2000
interaction with the corresponding term in the Argonne V
interaction. As an example we consider the transition pot
tial NN↔DD, in particular we will focus the attention to th
central component as it shows up in3S1 partial waves. This
OPE transition amplitude has been formulated in a helic
representation in which the quantization axis of the parti
spins are the directions of the relative momentaq andq8 for
the initial and final state, respectively@25#,

^q8LN1
LN2

uVpuqLD1
LD2

&

5
4p

~2p!3

f NDp
2

mp
2

c~T!~qm8 2qm!~qn82qn!Fp
2 ~q82q!

3
ū~2q8,LN2

!um~2q,LD2
!ū~q8,LN1

!un~q,LD1
!

A~q82q!21mp
2 @A~q82q!21mp

2 1mD2mN#
.

~1!

c(T) is the isospin factor that remains from isospin mat
elements and corresponds toc(T)52A2 in this channel.
The energy denominator in this expression contains
masses of the pionmp , the nucleonmN , and themD . It
deviates from a simple pion-exchange propagator, as it
been derived from time-dependent perturbation theory
counting for the mass difference betweenmN and mD @26#.
The functionFp represents the form factor for eachpND
vertex. The initial relative momentumq and the final relative
momentumq8 are chosen along thez axis,q5(0,0,0,q), and
in the x-z plane, q85(0,q8 sinu,0,q8 cosu), respectively,
whereu is the angle betweenq andq8. LBi

labels the helic-

ity quantum numbers of the spinors. For theD isobars these
spinors fulfill the Rarita-Schwinger equations and can
constructed explicitly by coupling a vector field~spin 1! and
a Dirac field~spin 1

2 )

um~q,L!5(
l,s

C1l(1/2)s
(3/2)L em~q,l!u~q,s!, ~2!

with

em~q,l!5S êl•q

mD
,2êl2

q~ êl•q!

mD~Aq21mD
2 1mD!

D , ~3!

where theC1l(1/2)s
(3/2)L are Clebsch-Gordan coefficients in th

notation of Ref.@27# and u(p,s) is a Dirac spinor in spin
states. ê1 , ê0, andê2 are the circular polarization vectors

From both the Dirac spinors for the nucleons and
Rarita-Schwinger spinors for the deltas, the complex m
mentum structure is now removed by taking their value
q5q850. It is straightforward to obtain the helicity Feyn
9-2
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man graph structure~1! for all 2323434564 combina-
tions of helicity projection numbers in this ‘‘static’’ approx
mation. Most of them can be derived from symme
relations @25#, and one only needs to evaluate ten mat
elements explicitly.

The helicity amplitudes are then projected onto states w
definite total relative angular momentumJ

^q8JL8LN1
LN2

uVpuq JLLD1
LD2

&

52pE
21

1

d~cosu!dL,L8
J

~u!^q8LN1
LN2

uVpuqLD1
LD2

&.

~4!

Here, dL,L8
J (u) are the reduced rotation matrices withL

5LD1
2LD2

andL85LN1
2LN2

. In the next step one per
forms the transformation into the basis of the partial wa
states, in which orbital angular momentumL and spinS are
coupled toJ:

^q8 2S811L8J
NNuVpuq 2S11LJ

DD&

5
A~2L811!~2L11!

2J11

3 (
LN1

LN2
LD1

LD2

CL80S8L8
JL8 C(1/2)LN1

(1/2)2LN2

S8L8

3^q8JL8LN1
LN2

uVpuq JL LD1
LD2

&

3C(3/2)LD1
(3/2)2LD2

SL CL0SL
JL . ~5!

The transformation coefficients have been taken from R
@28#.

In order to compare these matrix elements for the tra
tion potential in the Bonn2000 model with the corresponding
one for the V28, we consider two approximations.

In evaluating the helicity amplitudes of Eq.~1! the non-
relativistic static limit is considered, i.e., the Dirac spinors
well as the Rarita-Schwinger are considered forq5q850.
The energy denominator in Eq.~1! is replaced by the usua
pion propagator by ignoring the mass differencemD2mN .

Using these approximations an analytical expression
obtained for

^q8 3S1
NNuVpuq 3S1

DD&52
4p2

~2p!3

A40

9

f NDp
2

mp
2 E

21

1

d~cosu!

3F12
mp

2

~q82q!21mp
2 GFp

2 ~q82q!

~6!

that depends on the momentum transferq82q only. This
means that the interaction is local. Transforming this expr
sion for the central part of the transition potential into co
figuration space, we can identify a Yukawa term and a c
tact term, both multiplied by the form factor.
01430
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This expression can be compared with the local transit
potential as defined for the Argonne V28 interaction

^r 3S1
NNuVpur 3S1

DD&5S f NDp
2 mp

12p De2mpr

mpr
~12e2cr2

!

3^ 3S1
NNu~S1S2!†~T1T2!†u 3S1

DD&,

~7!

with Si andT i denoting the transition operator for spin an
isospin. Note that comparing this expression with the lo
approximation to the Bonn2000 model in Eq.~6!, the contact
term is removed and the form factor is replaced in V28 b
Gaussian cutoff to regularize the matrix elements for sm
interparticle distances.

Matrix elements of the one-pion-exchange~OPE! contri-
bution to the transition potential in the partial wav
^q8 3S1

NNuVpuq 3S1
DD& for these different approaches are d

played in Fig. 1. The relative momentum of theNN pair q8
is fixed at 100 MeV and the matrix elements are presente
a function of the relative momentum for theDD state.

The mass differencemD2mN in the pion propagator of
Eq. ~1! has a remarkable effect on the calculated transit
potential. This can be seen in Fig. 1 from the comparison
the solid line ~Bonn!, which represents the complete OP
contribution in the Bonn2000 potential, with the long dashed
line (p range!, which exhibits the results obtained after r
placing the pion propagator of Eq.~1! by the conventionalp
propagator. The inclusion of the mass differencemD2mN
leads to a quenching of the transition potential by abou
factor two for small momenta, while the two curves a
proach each other at large values ofqDD . This means that

FIG. 1. Matrix elements for the one-pion exchange contribut
to the transition potential̂q83S1

NNuVpuq 3S1
DD& assuming various

approximations as discussed in the text. Results are displayed
function of the momentumq in theDD state. The momentum of the
NN state has been fixed toq5100 MeV. All values have been
multiplied with a common factor of 106.
9-3
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the inclusion of the mass difference leads to a transition
tential that is generally weaker and of shorter range, a fea
which has already been observed, e.g., in Ref.@29#.

If one furthermore employs the nonrelativistic limit, on
obtains the local representation of the OPE of Eq.~6!, which
is given in Fig. 1 by the dashed line~local!. The removal of
the relativistic features yields a sizable effect at larger m
menta in particular. The dashed-dotted line~contact rem.!
results from the expression of Eq.~6! if the contact term, the
constant in the momentum representation, is ignored.
removal of this contact term has a very strong effect on
transition potential in this central partial wave withl 50.
Only after removing this contact term, we obtain an O
component of the Bonn potential, which is essentially ide
tical to the OPE contribution in the Argonne V28 model.

The comparison of these various approximations in Fig
makes it rather obvious that the different treatment of
OPE contribution to theNN→DD transition potential leads
to quite different matrix elements in the relativistic Bon
model, defined in momentum space, as compared to the
treatment in the Argonne V28. This OPE contribution is t
most important ingredient to the transition potential in bo
models. The addition of ther exchange in the case of th
Bonn2000 model leads to minor although non-negligib
modifications. This can be seen from the comparison of F
1 with Fig. 2, which shows matrix elements of the total tra
sition potential. In addition to the results for the Bonn2000and
V28 models, this figure also shows the corresponding va
for the quark model of the Salamanca group@20#. We see
again the huge differences between the V28 and the Bonn2000
model, which even lead to a difference in sign. From o
discussion above we know that the main part of differen
can be traced back to the different treatment of the O
contribution.

The Salamanca chiral quark cluster~CQC! model, which

FIG. 2. Matrix elements for the transition potentialNN→DD in
the 3S1 central partial wave assuming the Bonn2000, Argonne V28,
and Salamanca quark model approaches. For further details se
1.
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we study as a third example@20# cannot be considered as a
entirely realistic potential because it does not fit theP-phase
shifts forNN scattering with good accuracy; the phase sh
in the 1S0 and 3S12 3D1 channels are reproduced very we
however. In the CQC model, the long-range interaction
generated by OPE as well. In the core region, the potentia
determined by gluon exchange and the Pauli principle. T
latter requires total antisymmetry of the six-quark wa
function and this leads to a dependence of the baryon-ba
potential on the initial kinetic energyEin of two interacting
nucleons. For the results displayed in Fig. 2 we assum
valueEin50 for this energy.

The matrix elements for the transition potential of t
Salamanca model exhibit values in between the two
proaches discussed above. The shape is similar to the on
the Bonn potential, however, approaching the value of z
with increasing momenta much faster than the Bonn pot
tial. This might be an indication that the Pauli effects in t
quark model provide a much stronger cutoff at high m
menta than the form factor used in the Bonn potential.

As another example we compare results obtained for th
three models also for the case^q83S1

NNuVuq 7D1
DD& in Fig. 3.

The differences between Bonn2000 and V28 can again be
traced back to the different treatment of the OPE. For t
partial wave, however, one does not obtain any contact t
contribution. This implies that the V28 is stronger at sm
momenta as it ignores the mass differencemD2mN in the
pion propagator and weaker than Bonn2000 at high momenta
because of the nonlocalities included in the Bonn model. T
matrix elements for the Salamanca model are similar to th
of the Bonn2000 potential at small momenta but exhibit fea
tures of a stronger cutoff at high momenta.

III. THE WAVE FUNCTIONS OF THE DEUTERON

Solutions of the bound state two-particle problem ha
been obtained for the Argonne V28, the Bonn2000, and the

ig.

FIG. 3. Matrix elements for the transition potenti
^q83S1

NNuVuq 7D1
DD& assuming the Bonn2000, Argonne V28, and

Salamanca quark model approaches. For further details see Fi
9-4
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TABLE I. Contributions to the kinetic and potential energy of the deuteron originating from the diffe
parts of the wave function. The kinetic energyTtotal is the sum of the kinetic energies originating from theNN
wave function in3S1 (TS

N) and 3D1 (TD
N) partial waves plus the kinetic energy (TD) from theDD compo-

nents. The termTD also accounts for theND mass difference. The potential energy contains contributi
from the various parts of theNN→NN potential (VNN), theNN→DD terms (VND), and theDD→DD terms
(VDD). Results are given for the three models with isobar configurations. Note that the interaction
Bonn2000 does not consider anyVDD interaction terms. For comparison we also show results from p
nucleonic interaction models V14 and CD-Bonn. All entries are given in MeV.

Arg. V28 Bonn2000 Sal. CQC Arg. V14 CD-Bonn

Ttotal 23.75 22.29 17.82 19.22 15.48
Vtotal 225.97 224.51 220.04 221.44 217.70

TS
N 10.32 10.25 10.84 10.54 9.79

TD
N 8.95 5.35 5.13 8.68 5.69

TD 4.48 6.69 1.85
VSS

NN 7.08 1.52 25.67 21.83 24.77

VDD
NN 5.86 1.80 0.70 1.99 1.34

VSD
NN 229.22 214.38 211.64 221.60 214.27

VND 210.40 213.44 23.16

VDD 0.71 20.28
e

un
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All
Salamanca CQC potential. The nucleonic part of the d
teron wave function contains components3S12 3D1 partial
waves. IfD degrees of freedom shall be taken into acco
explicitly, one has to extend the two coupled nucleonic ch
nels by fourDD partial waves, namely,3

S1
DD , 3D1

DD , 7D1
DD , and

7G1
DD . No ND states can occur because the deuteron is

isospinT50 state and the isospins ofN andD cannot couple
to zero. The problem to determine the baryonic wave fu
tion in the 6 coupled channels has been solved in a sphe
box with radiusRbox520 fm. The spherical Bessel function
with the boundary condition

j l~kil Rbox!50

can be used to construct a complete basis of orthonorma
states for the bound state wave functions within the spher
box @30#. The coupled channel Hamiltonian was calculat
in this basis of momentum eigenstates of the box and dia
nalized numerically. Up to 300 discrete momenta we
needed to get stable results for the binding energy. The
sults for energies and the wave functions obtained with
Argonne V28 and for the Salamanca potential are in go
agreement with the values given in Refs.@19# and @20#, re-
spectively.

All NN interactions, which we consider, are adjusted to
the total energy of the deuteron, which can be written a
sum of the kinetic energyTtotal and potential energyVtotal
with

Ttotal5^NN 3S1uTuNN 3S1&1^NN 3D1uTuNN 3D1&

1^DDuTuDD&

5TS
N1TD

N1TD. ~8!
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Note that the termTD sums up the kinetic energy from a
partial wave components in theDD wave function and in-
cludes the contribution from theN2D mass difference. The
potential energy can be split into

Vtotal5^NN 3S1uVuNN 3S1&1^NN 3D1uVuNN 3D1&

12^NN 3S1uVuNN 3D1&12^NNuVuDD&

1^DDuVuDD&5VSS
NN1VDD

NN1VSD
NN1VND1VDD.

~9!

The contributions of these various terms to the energy
the deuteron are listed in Table I, while the norm of t
various partial wave contributions to the wave function a
presented in Table II for the three interaction models w

TABLE II. Probability for D state andDD components in the
deuteron for different models of the baryon-baryon interaction.
entries in percent.

% V28 Bonn2000 CQC

3S1
NN 93.341 94.685 95.199

3D1
NN 6.133 4.705 4.567

3S1
DD 0.043 0.223 0.107

3D1
DD 0.020 0.022 0.004

7D1
DD 0.417 0.361 0.124

7G1
DD 0.045 0.005 0.006

Total DD 0.524 0.611 0.241
9-5
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inclusion of isobars. For a comparison Table I also shows
result for two NN interaction models without the explic
treatment of isobar configurations: the Argonne poten
model V14 @19# and the charge-dependent Bonn poten
@7#.

Although the sum of these various energy contributio
yields the same energy of the deuteron for all the interac
models, there are remarkable differences in the individ
terms. The inclusion of isobar components in the wave fu
tion yields a contribution to the binding energy of25.21,
26.75, and21.59 MeV for the V28, the Bonn2000 and the
Salamanca interaction, respectively. This means that
and Bonn2000 predict an unbound deuteron, if theDD com-
ponents in the wave function would be suppressed, while
Salamanca interaction leads to a much weaker contribu
of the isobar configurations. These differences also show
in the norm of the various partial wave components in
deuteron wave function listed in Table II. Comparing the
occupation probabilities one finds that all interactions pred
the largest contribution to theDD probability in the 7D1
partial wave. The largest probability for this partial wave
obtained for the V28 potential, while Bonn2000 and the Sala-
manca interaction in particular yield much smaller probab
ties in this channel. The origin of these differences can
deduced from Fig. 4, which exhibits theDD wave functions.
The Argonne potential leads to a wave function in t
7D1 , DD channel, which is of longer range than those d
rived from the other two interactions. The main reason
this feature is the fact that the OPE contribution to theNN
→DD transition potential neglects theN2D mass difference
in the pion propagator@see Eq.~1!#, which leads to a transi
tion potential of longer range. Comparing the wave functio
in this channel derived from the Bonn2000 and the Salamanc
interaction, one observes that the latter is strongly suppre
at short relative distances as compared to the former, w
supports the argument presented already in the compa
of the matrix elements of the interaction, that the qua
model leads to a much stronger effective cutoff at short d
tances than the cutoffs used in the meson exchange mo

The most significant difference in the predictions for t

FIG. 4. Isobar components in the deuteron wave function us
the three different models for the baryon-baryon interaction. T
scale on the left-hand side of the figure refers to the left and mid
graph, while the scale on the right-hand side refers to the right
only.
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isobar components of the wave function can be seen in
3S1 , DD channel. While the Bonn and Salamanca mod
yield occupation probabilities, which are of similar size
those for the7D1 , DD channel, the probability for this chan
nel derived from the V28 potential is much weaker. A qua
tative difference can also be observed from the inspectio
the wave function in this channel~see Fig. 4!. The wave
function obtained for the Bonn and Salamanca poten
show a maximal amplitude forr→0, while the correspond-
ing wave function deduced from the V28 potential is su
pressed at small relative distances. These differences in
wave function reflect the fact that the contact term in t
OPE contribution to the transition potential@see Eq.~6! and
discussion there# is removed in the local representation of th
OPE in V28, while the nonlocal representation of the OPE
the other models keeps a strong short range component

The comparison of theDD components in the deutero
wave function therefore reflects the main differences
tween the local approximation of the V28 and the nonlo
approaches of the Bonn and Salamanca model: The V28
tains a OPE component of longer range and suppresse
short range components much stronger than the other
models. Furthermore, the quark model approach leads
stronger reduction than the typical cutoff that is used in
meson exchange models of the Bonn group. This lead
much weakerDD components in the deuteron wave functio
for the Salamanca model.

It is worth noting that the contributions ofVSD
NN to the

potential energy of the deuteron~see Table I! are signifi-
cantly larger for the local Argonne potentials V14 and V2
than for the various versions of the Bonn potential and
Salamanca potential. This observation suggests that the
representation of the tensor components of theNN interac-
tion, in particular the contribution originating fromp ex-
change yields matrix elements which are significantly lar
than those evaluated within the nonlocal approaches~see
also Refs.@23,31#!.

IV. CORRELATIONS IN NUCLEAR MATTER AND 16O

The wave functions of many-body systems are studied
the framework of the coupled-cluster theory@2#. In the
coupled-cluster approach one starts assuming an approp
Slater determinantF and writes the exact eigenstateC for
the A-particle system as

C5eSF, ~10!

with S an operator of the form

S5 (
n51

A

Sn , ~11!

whereSn is ann-particle operator which can be written fo
the case ofn52

S25
1

4 (
n1 ,n2 ,r1 ,r2

^r1r2uS2un1n2&ar1

† ar2

† an2
an1

. ~12!

g
e
le
rt
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In this equationar i

† stand for fermion creation operators

states which are unoccupied inF, while an i
represent anni-

hilation operators for the nucleon single-particle states wh
are occupied in the Slater determinantF. Note that thear i

†

may also represent the creation ofD isobar states. Therefor
the S2 amplitudes describe two-particle two-hole excitatio
relative toF but alsoND andDD excitations.

For our present investigation of nuclear matter we w
assumeF to be the Slater determinant defined in terms
plane waves, occupying all states with momenta up to
Fermi momentumkF51.36 fm21. As an example for a finite
nucleus, we will also consider16O. In this case we will
assumeF to be the Slater determinant, defined in terms
harmonic oscillator states (\v514 MeV) with nucleons oc-
cupying the states of 0s and the 0p shell. If one assumes tha
these single-particle states represent an optimal sin
particle basis, i.e., the amplitudesS1 in Eq. ~11! vanish, and
ignores the contributions of linkedn-particle correlations
with n>3 (Sn50 for n>3), one obtains integral equation
for amplitudes

^b1b2@k~ lS! j #KLJtuS2u~n1n2!Jt&, ~13!

which are solved in momentum space@32#. In this represen-
tationb1b2 stand forNN, ND, andDD states,k( lS) j denote
the momentum, spin, and orbital quantum numbers for
partial wave basis of the relative motion of the two baryo
K andL represent the center of mass state andJ andt refer
to the total angular momentum and isospin of the pair
baryons.

The S2 amplitudes can be considered as correlation fu
tions describing the difference between the correlated
uncorrelated wave function of two particles in the nucle
medium. As the uncorrelated Slater determinantF in Eq.
~10! does not contain any isobar components, theS2 ampli-
tudes can be interpreted directly as theND andDD compo-
nent of the two-particle wave function, ifb1b2 in Eq. ~13!
refers toND andDD states.

As typical examples for these correlation functions
nuclear matter, theDD components for the relative wav
function of two baryons in a state with isospint50 and
angular momentumj 51 are given in Fig. 5. These compo
nents correspond to the components of the deuteron w
function in the same partial waves displayed in Fig. 4.
fact, these isobar components of the wave function for a
of baryons in nuclear matter is very similar to the deute
wave function if one compares the partial wave withl 52.
The DD wave functions exhibit a tail of longer range in th
case of the Argonne V28 interaction, which reflects t
longer range of theNN→DD transition potential for this
interaction as compared to the other two approaches.
Salamanca CQC approach yields amplitudes for thesD
waves which are considerably smaller. All these amplitu
are enhanced as compared to the deuteron wave func
which reflects the larger density of the nuclear matter syst

The situation is a little bit different if one compares th
3S1 , DD component of the nuclear matter wave functi
with the corresponding part of the deuteron wave functi
01430
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The results obtained for the V28 and the Bonn potential yi
wave functions of rather similar shape in the deuteron an
nuclear matter also for this channel. The wave functions
rived from the Salamanca CQC interaction are rather diff
ent in nuclear matter as compared to the deuteron. At s
distances they even have a different sign. This reflects a la
nonlocality or momentum dependence of the short ra
component for theNN→DD transition potential derived in
the CQC model.

In the nuclear many-body systems one also obser
bound states of two baryons in states with isospint51. As
an example of such configurations we discussND and DD
components of two-particle wave functions in16O as dis-
played in Fig. 6. The comparison of the results obtained
the different interaction models leads to observations wh
are rather similar to those discussed for the states witt
50 above. The difference in the range of the transition p
tentialsNN→ND for V28 and the other two interactions i
not as significant as in the case of theNN→DD @compare
the discussion of the propagator in Eq.~1!#, which leads to
smaller differences in the tail of the5D0 ND wave function
than in the correspondingDD state. A very significant mode
dependence is obtained in the1S0 , DD wave function.

The isobar-isobar relative wave functions derived
nuclear matter and finite nuclei are rather similar. Theref
we display only one of these examples for each channel. T
demonstrates that isobar admixtures correspond to cor
tions in the many-body wave function which are of sho
range. Therefore they are not very sensitive to surface eff
in finite nuclei and a local density approximation should
appropriate to consider isobar effects in finite nuclei.

V. CONCLUSIONS

Three different models for the baryon-baryon interactio
which fit NN scattering data and explicitly account for isob
degrees of freedom have been considered. These are the

FIG. 5. Isobar components in the relative wave functions of t
particles in nuclear matter with isospint50 andj 51. The scale on
the left-hand side of the figure refers to the left and middle gra
while the scale on the right-hand side refers to the right part on
9-7
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T. FRICK, S. KAISER, H. MÜTHER, AND A. POLLS PHYSICAL REVIEW C64 014309
Argonne V28 potential@19#, the Bonn2000 @21# interaction
model based on the relativistic meson exchange model,
an interaction based on the chiral quark cluster~CQC! model
which has recently been developed by the Salamanca g
@20#. The isobar components in the wave function of t
deuteron and nuclear many-body systems including nuc
matter and16O as an example for a finite nucleus are eva
ated. Significant differences are observed in the predicti

FIG. 6. Isobar components in the relative wave functions of t
particles in16O with isospint51 and j 50. The uncorrelated stat
corresponds to two nucleons in the 0s1/2 state. The scale on th
left-hand side of the figure refers to the left section of this figu
only, while the scale on the right-hand side must be considered
the middle and the right section of this figure.
.

p.

. C

. J

01430
nd

up

ar
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from these models. These differences can be related to
assumptions made in determining the transition potential
tweenNN, ND, andDD states. The V28 interaction mode
yields isobar wave functions of longer range than the ot
two. This can be traced back to the approximations which
made in reducing thep exchange contribution of the trans
tion potentials to a local form. The most significant diffe
ences are observed in partial waves withl 50 at small dis-
tances. A main source of the discrepancies in these pa
waves is related to a removal of a contact term in the lo
interaction model. The Bonn2000 and Salamanca CQC mode
in particular exhibit important nonlocal features for the sh
range part of the interaction model. The Salamanca mo
predicts rather small isobar components in the nuclear ma
body wave function. These different predictions for the is
bar components in the many-body wave function could
very useful in distinguishing between different interacti
models.
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