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Role of deformation in the nonmesonic decay of light hypernuclei

K. Hagino* and A. Parren˜o†

Institute for Nuclear Theory, Department of Physics, University of Washington, Seattle, Washington 98195
~Received 28 April 2000; published 19 March 2001!

We discuss the nonmesonic decay of deformedp-shell hypernuclei. The Nilsson model with angular mo-
mentum projection is employed in order to take into account the deformation effects. The nonmesonic decay
rate and the intrinsicL asymmetry parameter decrease as a function of the deformation parameter, while the
ratio of the neutron- to proton-induced decay rates increases. We find that the deformation effects change these
observables by about 10% forL

9 Be from the spherical limit.
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I. INTRODUCTION

One of the main issues of nuclear physics is to underst
the nucleon-nucleon (NN) interaction. TheuDSu51 NN in-
teraction is particularly important in this respect, since
change of strangeness can be used as a signature to
both the parity-conserving~PC! and the parity-violating~PV!
amplitudes. This is in clear contrast to theDS50 weakNN
interaction, where the weak PC signal is masked by
strong interaction.

Due to the lack of stableL-particle beams, the weak de
cay of L hypernuclei has been the only source of inform
tion on the weak four-baryonuDSu51 interaction. Single
L-hypernuclei are typically produced via either hadronic
actions, as (K2, p2) @1,2# or (p1, K1) @3#, or electropro-
duction mechanisms, as (e,e8 K1) @4#. These hypernucle
are typically produced in an excited state and reach t
ground state by electromagneticg and/or particle emission
Once they are stable against strong decay, they decay
weak interaction mechanisms that are nonleptonic in na
and violate isospin, parity, and strangeness. Since the
sonic decay mode,L→pN, is Pauli blocked in the nuclea
medium, hypernuclei with A*5 predominantly decay
through the nonmesonic decay~NMD! mode,LN→NN.

In order to learn about the weakLN→NN interaction
from the theoretical side, one has to take into account dif
ent inputs as accurately as possible. These include the
scription of nuclear structure, the choice of the stro
baryon-baryon~BB! potential model@5,6#, DI 51/2 viola-
tions @7# and the importance of the 3N emission channel
Lnp→nnp @8,9#. In Refs. @10,11#, a one-meson-exchang
~OME! model was applied to calculate the nonmesonic
cay observables of thep-shell L

11B and L
12C and thes-shell

L
5 He andL

3 H hypernuclei. We included the virtual exchang
of the ground-state pseudoscalar and vector mesonsr, h, v,
K, andK* , in addition to the long-ranged pion. Except f
the hypertriton, where the hypernuclear wave function w
calculated exactly using the Faddeev formalism, the struc
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of the initial hypernucleus was described in a shell-mo
framework that assumed spherical configuration. In th
calculations, the strongBB interaction was accounted fo
using the NijmegenBB potential model@5#. Monopole form
factors at each vertex were included in order to regularize
weak potential, while the weak baryon-baryon-meson c
pling constants were derived based on SUw(6) and soft-
meson theorems. The total NMD rate and the asymmetr
the distribution of emitted protons from the decay of pola
ized hypernuclei were in good agreement with the exp
mental data. However, the theoretical values for the neutr
to-proton ratio were found to be very small compared to
experimental data. Several attempts have been made to
oncile this discrepancy@7–9,12–14#, but none of them has
solved this problem yet.

Our aim in this paper is to investigate how much the
observables depend on the deformation of hypernuclei.
previous calculations were performed using the spher
configuration with no mixing, however, it is well known tha
many p-shell nuclei are deformed in the ground state. F
instance, the quadrupole deformation parameter extra
from the experimental quadrupole moment@15# is b250.65
for 10B and20.71 for 11C. It may be important to take thes
deformation effects into account in order to describe qua
tatively the nonmesonic decay ofp-shell hypernuclei. De-
formed hypernuclei can be described using several mo
such as thea-cluster model@16# or the deformed self-
consistent Hartree-Fock method. In fact, one can also
realistic wave functions obtained by a diagonalization o
shell-model Hamiltonian forp-shell nuclei, as in Ref.@17#.
In the present paper, however, in order to perform a syst
atic study, we use instead the Nilsson model@18,19# as a
simplified Hartree-Fock method.

The paper is organized as follows. In Sec. II, we pres
the relevant formulas to evaluate the NMD observables i
OME model. In Sec. III, we briefly review the deforme
shell model based on the Nilsson model. Section IV prese
the deformation dependence of the nonmesonic observa
for the decay ofL

9 Be, whose8Be core is known to be largely
deformed. Although there are no experimental data for t
hypernucleus at present, we choose this system as the
plest nonsphericalp-shell hypernucleus and as a represen
tive example of deformedp-shell nuclei. We compare ou
theoretical predictions with the typical experimental data
otherp-shell hypernuclei. Section V summarizes the pape

to
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II. NONMESONIC WEAK DECAY IN A ONE-MESON-
EXCHANGE MODEL

Assuming that the initial hypernucleus is at rest, the NM
rate is

Gnm5E d3k1

~2p!3E d3k2

~2p!3 (
$1%$2%

MI $R%
~2p!d~MH2ER2E12E2!

3
1

~2J11!
uM f i u2, ~1!

where Mf i is the hypernuclear transition amplitude. Th
quantitiesMH , ER , E1, andE2 are the mass of the hype
nucleus, the energy of the residual (A22)-particle system,
and the total asymptotic energies of the emitted nucleo
respectively. The integration variableskW1 andkW2 are the mo-
menta of the two baryons in the final state. The momentu
conservingd function has been used to integrate over
momentum of the residual nucleus. The sum, together w
the factor 1/(2J11), indicates an average over the initi
hypernucleus spin projections,MI , and a sum over all quan
tum numbers of the residual (A22)-particle system,$R%, as
well as the spin and isospin projections of the exiting p
ticles, $1% and $2%. In general, one can write the total no
mesonic decay rate asGnm5GLN→NN5Gn1Gp , whereGn
(Ln→nn) stands for the neutron-induced decay andGp
(Lp→np) for the proton-induced one.

In addition to the total and partial decay rates, we a
calculate the intrinsicL asymmetry parameter. When work
ing with polarized hypernuclei and in combination with c
incidence measurements of the decay particles, one can s
the angular distribution of particles coming from theLN
→NN weak decay. Due to the interference between the
and PC amplitudes, the distribution of the emitted protons
the weak decay displays an angular asymmetry with res
to the polarization axis. The asymmetryA, defined by

A5Py

3

J11

Tr~Mf iSyM f i
†!

Tr~Mf iM f i
†!

, ~2!

is expressed in terms of the hypernuclear polarization cre
in the strong production reaction,Py , the J-spin operator
along the polarization axis,Sy , and the total spin of the
initial hypernucleus,J. In Ref.@20# it is shown that the asym
metry follows a simple cosx dependence, i.e.,A
5PyAp cosx, wherex stands for the angle between the d
rection of the proton and the polarization axis. The hyp
nuclear asymmetry parameterAp is characteristic of the hy
pernuclear weak decay process and depends onJ and the
intensity of protons exiting along the quantization axis
the different spin projections of the hypernucleus. Atx
50°, the asymmetry in the distribution of protons is th
determined by the productA5PyAp . In the following, we
assume a weak coupling scheme where theL hyperon is
coupled only to the ground state of the (A21)-particle core.
In this scheme, simple angular momentum algebra relates
hypernuclear polarizationPy to the L polarizationpL and
04431
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relates the hypernuclear asymmetry parameterAp to the in-
trinsic L asymmetry parameteraL , such thatA5pLaL

5PyAp .
The nonmesonic decay of hypernuclei proceeds throug

two-body mechanism. Therefore in order to evaluate
transition amplitude in Eq.~1!, one has to decompose th
(A21)-core wave function into a set of states in which
nucleon couples to the residual (A22)-particle state. This
can be done using the coefficients of fractional parent
~CFP!, which are defined by

uJM,TTz&5 (
JR ,TR , j

^JT{ uJRTR , j t &@ uJRTR& ^ u j t &] JM,TTz
,

~3!

where JR and TR are the spin and isospin of the residu
nucleus. The weak potential responsible for this transit
can be obtained by making a nonrelativistic reduction of
free Feynman amplitude depicted in Fig. 1. In Table I w
show the strong and weak Hamiltonians for pseudosc
~PS! and vector~V! mesons.A, B, a, b, ande stand for the
appropriate baryon-baryon-meson weak coupling consta
while g (gV,gT) represents the strong~vector, tensor! cou-
pling. Details of the derivation of the transition potential c
be found in Ref.@10# and here only the final expression wi
be presented. For pseudoscalar mesons, the potential is

Vps~qW !52GFmp
2 g

2M S Â1
B̂

2M̄
sW 1•qW D sW 2•qW

qW 21m2
, ~4!

FIG. 1. Free Feynman diagrams for theLN→NN transition
mediated by the exchange of the nonstrangep,h,r,v ~left! and
strangeK,K* ~right! mesons. The shaded circle~filled! stands for
the weak~strong! vertex.
8-2
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whereGFmp
2 52.2131027 is the Fermi coupling constant,qW

is the momentum carried by the meson directed towards
strong vertex,m is the meson mass, andM (M̄ ) is the aver-
age of the baryon masses at the strong~weak! vertex ~and
vice versa for the exchange of strange mesons!. For vector
mesons, the potential is

Vv~qW !5GFmp
2 S gVâ2

~ â1b̂ !~gV1gT!

4MM̄
~sW 13qW !•~sW 23qW !

2 i
«̂~gV1gT!

2M
~sW 13sW 2!•qW D 1

qW 21m2
. ~5!

The values of the strong and weak couplings are listed
Table III of Ref.@10#. In Eqs.~4! and~5! the operatorsÂ, B̂,
â, b̂, and«̂ contain, apart from the weak coupling constan
the specific isospin dependence of the potential, which
tW1•tW2 for the isovectorp andr mesons, 1ˆ for the isoscalarh
andv mesons, and a combination of both operators for
isodoubletK andK* . In order to derive Eqs.~4! and~5! we
assumed the validity of theDI 51/2 rule, which is known to
experimentally dominate the decay ofL ’s into pions. DI
53/2 transitions for vector mesons (r and K* ) are easily
accommodated@7# in the formalism, and the results w
present here account for suchDI 51/2 violations.

We obtain a regularized potential by including a mon
pole form factor at each vertex,F(qW 2)5(L22m2)/(L2

1qW 2), where the value of the cutoff,L, different for each
meson, is taken from the Ju¨lich hyperon-nucleon interaction
@6#. To incorporate the effects of the strongNN interaction,
we solve aT-matrix scattering equation in momentum spa
for the outgoing nucleons using the Nijmegen@5# potential
models. For the initial bound two-baryon system we us
spin independent parametrization of the type

f ~r !5~12e2r 2/a2
!n1br2e2r 2/c2

, ~6!

with a50.5 fm, b50.25 fm22, c51.28 fm, andn52.
The results obtained with this parametrization@21# lay be-
tween those obtained with a microscopic finite-nucle
G-matrix calculation@22# using the soft-core and hard-co
Nijmegen@23# models.

TABLE I. Weak and strong Hamiltonians for pseudoscalar~PS!
and vector~V! meson exchanges. The weak Hamiltonians are
units of GFmp

2 andC (F) stands for the baryon~meson! field.

PS V

Strong igC̄g5Cf C̄FgVgm1 i
gT

2M
smnqnGCf

Weak i C̄(A1Bg5)Cf C̄Fagm2bi
smnqn

2M̄
1«gmg5GCf
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III. DEFORMED SHELL MODEL

As we mentioned in the previous section, we use a w
coupling scheme for theL hyperon in the initial hyper-
nucleus. To this end, we must describe the ground stat
the core nucleus which may be deformed. The Nilsson mo
provides a simple and convenient framework to describe
formed nuclei, and has been widely used in the literat
@18,19,24–27#. It is based on an anisotropic harmonic osc
lator and its Hamiltonian reads

H5H02
4

3
Ap

5
dmv0

2Y20~u!, ~7!

52
\2

2m
¹21

1

2
mv0

2r 21ClW•sW1D~ lW22^ lW2&N!

2
4

3
Ap

5
dmv0

2Y20~u!. ~8!

Here d is a deformation parameter,lW and sW are the single-
particle orbital and the spin angular momenta, andC andD

are adjustable parameters.^ lW2&N5N(N13)/2 is the expecta-
tion value oflW2 averaged over one major shell with quantu
numberN. The relation betweend andb2 is given by@28#

b25
4

3
Ap

5

d

122d/3
. ~9!

Since the Nilsson Hamiltonian~8! violates rotational invari-
ance, the total angular momentumjW5 lW1sW is not a good
quantum number. However, the projection ofjW onto thez
direction, k, is conserved, and the single-particle levels a
characterized byk and other quantum numbers. We expand
Nilsson single-particle level,ck(q) , in terms of the eigen-
functions of the spherical harmonic oscillator Hamiltoni
H0 , fnl jk , as

ck(q)5(
nl j

xnl jk
(q) fnl jk , ~10!

where q are quantum numbers other thank. We choose
xnl j 2k

(q) 5(21) j 2kxnl jk
(q) so that the eigenvalues of the Nilsso

Hamiltonian do not depend on the sign of the projection
total angular momentum@27#. We denote the creation opera
tor of ck asak

† and that off jk asbjk
† . We explicitly express

only the j andk quantum numbers to simplify the notation
Intrinsic wave functions, i.e., eigenfunctions of the Nilss
Hamiltonian~8!, are given by

uxK&5ak1

† ak2

†
•••akn

† u0&5)
i 51

n S (
j

xjki
bjki

† D u0&, ~11!

where theK quantum number is the sum over allki . The
intrinsic wave function~11! is not an eigenstate of the tota
angular momentumJW , and thus has to be projected out to
good angular momentum state. This can be achieved by
ing the projector given by@19,24,25#

n

8-3
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P̂MK
J 5

2J11

8p2 E dVDMK
J ~V!R̂~V!, ~12!

whereV are Euler angles andDMK
J (V) and R̂(V) are the

Wigner D function and the rotation operator, respectively
For systems with a single Nilsson level, such as8Be

which we discuss in the next section, the CFP can be a
lytically obtained@26,27#. Note that a single Nilsson leve
can accommodate up to four nucleons, i.e., two protons
two neutrons. For three-particle systems~two neutrons and
one proton, for example!, the wave function is given by

CJM5@N~3!J#
21P̂M ,K5k

J akn
† a2kn

† akp
† u0& ~13!

5@N~3!J#
21 (

j 1 , j 2 , j 3
(
J12

xj 1kxj 22kxj 3k

3^ j 1k j22kuJ120&^J120 j 3kuJk&

3~@aj 1n
† aj 2n

† #J12
aj 3p

† !JMu0&, ~14!

wherep stands for proton andn for neutron. The normaliza
tion factorN(3)J is given by@26#

@N~3!J#
25 (

j ,J12

dJ12 ,even~xjk!2U~J12,k!^J120 jkuJk&2,

~15!

where

U~J,k!52 (
j 1 , j 2

~xj 1k!
2~xj 2k!

2^ j 1k j22kuJ0&. ~16!

The isospin of this system is 1/2. For four-nucleon syste
the wave function reads

CJM5@N~4!J#
21P̂M ,K50

J akn
† a2kn

† akp
† a2kp

† u0& ~17!

5@N~4!J#
21 (

j 1 , j 2
(
j 3 , j 4

(
J12 ,JR

xj 1kxj 22kxj 3kxj 42k

3^ j 1k j22kuJ120&^J120 j 3kuJRk&^JRk j42kuJ0&

3$@~aj 1n
† aj 2n

† !J12
aj 3p

† #JR
aj 4p

† %JMu0&, ~18!

with the normalization given by@26#

@N~4!J#
25 (

J12 ,J34

dJ12 ,evendJ34 ,evenU~J12,k!U~J34,k!

3^J120J340uJ0&2. ~19!

The isospin of this wave function is 0. Comparing Eqs.~14!
and ~18!, the CFP for the four-particle system reads

C~ j !5^JT{ uJRTR , j t &52A2xj 2k^JRk j2kuJ0&
N~3!JR

N~4!J
.

~20!
04431
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d

s,

IV. NONMESONIC DECAY OF L
9 Be

Let us now apply the deformed shell model of Sec. III
the nonmesonic decay ofL

9 Be. The quadrupole moment o
the neighbor nucleus9Be was measured to be 5.86e fm2

@15#, from which we extract the quadrupole deformation p
rameterb251.00 using the radius parameterr 051.2 fm.
Several theoretical calculations suggest that the core nuc
8Be and theL

9 Be hypernucleus also have similar deform
tion parameters with the same sign@16#. Our interest is to
discuss such deformation effects on nonmesonic decay
servables.

As is discussed in Sec. II, the use of the CFP allows u
write the hypernuclear transition amplitudeMf i in terms of
elementary two-body amplitudes. Therefore, our first task
to compute these coefficients for the core nucleus8Be. We
assume the inert spherical4He core and explicitly work with
only the four valence nucleons. Diagonalizing the Nilss
Hamiltonian~8!, one finds that the lowest Nilsson level fo
the valence nucleons hask51/2 for prolate deformation
@19#. We diagonalize the Nilsson Hamiltonian in theDN
50 states. Contributions from theDN52 can be neglected
unless the deformation is large. Thek51/2 state is thus

uck51/2&5xufp3/2,1/2
&1yufp1/2,1/2

&, ~21!

wherex and y are determined by diagonalizing the Nilsso
Hamiltonian within this configuration space and depe
upon the deformation of8Be. Using Eq.~20!, the CFP’s are
found to be

@C~p3/2!#
25

3x813x6y219x4y4

3x814x6y2118x4y4110y8
~22!

for the p3/2 state, and

@C~p1/2!#
25

x6y219x4y4110y8

3x814x6y2118x4y4110y8
~23!

FIG. 2. The nonmesonic decay observables forL
9 Be as a func-

tion of the deformation parameterb2.
8-4
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ROLE OF DEFORMATION IN THE NONMESONIC DECAY . . . PHYSICAL REVIEW C63 044318
for the p1/2 state. Note that@C(p3/2)#21@C(p1/2)#251. In the
spherical limit, x51 and y50, so the CFP’s becom
@C(p3/2)#251 and @C(p1/2)#250. The CFP for the deeply
bound 1s1/2 state is just equal to 1 since4He is a spin-isospin
saturated nucleus.

Our results for the nonmesonic decay rate,Gnm, in units of
the freeL decay rate,GL53.83109 s21, the neutron-to-
proton ratio,Gn /Gp , and theL asymmetry parameter,aL ,
are shown in Fig. 2 as a function of the deformation para
eterb2. We use an oscillator lengthbN of 1.65 fm for nucle-
ons, so that the experimental root mean square radius of9Be
is reproduced. Following Refs.@18,19#, the parametersC
and D in the Nilsson Hamiltonian~8! are taken to be
20.16\v0 and 0, respectively. As for the oscillator leng
bL for the 1s1/2 wave function of theL hyperon, we estimate
it to be 1.5 fm in order to reproduce its binding energy

L
9 Be (56.7160.04 MeV@16#!. From the figure, we see tha
Gnm/GL is a decreasing function ofb2, while Gn /Gp andaL

are increasing functions. As we have already mentioned,
deformation parameter of8Be is expected to be close to 1
We notice that the nonmesonic decay observables are al
by about 10% from the spherical limit atb251.

An important question is whether this effect is significa
when comparing to the experimental data. We note that
typical experimental uncertainties for nonmesonic decay
p-shell hypernuclei are 7%–17.5% for the total decay r
@29–31#, 46.2%–84.2% for the neutron-to-proton rat
@30,31#, and 50%–1000% for the asymmetry@32#. These ex-
perimental uncertainties are much larger than the theore
one originating from the deformation effects. Thus we co
clude that the spherical approximation gives a good estim
of the nonmesonic decay ofp-shell nuclei, at least within the
present experimental precision.

Before we close this section, we would like to stress t
our conclusion is not altered qualitatively even if more re
istic wave functions are used instead of the present schem
ones. For instance, using the shell-model CFP of Cohen
Kurath @17# for the decay ofL

9 Be ~see Table II! we obtain
Gnm/GL50.65, Gn /Gp50.40 andaL520.37. Those num-

TABLE II. Shell model spectroscopic factors of Cohen a
Kurath @17# for pickup of p-shell nucleons in8Be.

nl j Energy SF nl j Energy SF

1p 1
2

0.000 0.8940 1p 3
2

21.979 3.1000
1p 1

2
9.321 0.0027 1p 3

2
9.066 0.0003

1p 1
2

10.222 0.0000 1p 3
2

9.929 0.0004
1p 1

2
14.868 0.0002 1p 3

2
12.734 0.0000

1p 1
2

19.862 0.0001 1p 3
2

14.726 0.0020
04431
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bers have to be compared with the spherical limit values
0.70, 0.35, and20.37, respectively. The same type of calc
lation for L

12C givesGnm/GL50.73 andGn /Gp50.27, to be
compared with the spherical values 0.71 and 0.32, resp
tively. As we see, the amount of deviation of those obse
ables with respect to the spherical limit is of the same or
as that obtained here using the Nilsson model.1

V. SUMMARY

We have discussed the role of nuclear structure in
nonmesonic decay ofp-shell hypernuclei, especially focus
ing on the effects of deformation. To this end, we have u
the Nilsson model with explicit angular momentum proje
tion. We have studied the nonmesonic decay ofL

9 Be as a
typical example of deformedp-shell hypernuclei. We have
shown that the deformation effects change the total NM
rate and the neutron-to-proton ratio by about 10% from
spherical limit, while theL asymmetry parameter shows le
sensitivity. Although this value is not negligible, it still i
smaller than the present typical experimental uncertainty
smaller than other theoretical uncertainties, e.g., the eff
of SU~3! symmetry breaking@10,13# or DI 51/2 violations
@7#. This indicates that the existing discrepancies between
experimental and theoretical values of hypernuclear w
decay observables cannot be attributed solely to deviat
from the spherical configuration and still remain an op
question. New experiments are urged in order to reduce
large experimental error bars, which prevent any defin
conclusion about the reliability of the theoretical models.

Our conclusions may not be the same for heavier hyp
nuclei such asL

238U @33,34#. There are a lot of intruder state
in such heavy deformed systems, unlikep-shell nuclei where
there is only a few, or maybe zero, intruder states. Theref
an interesting future work would be to discuss the nonm
sonic decay of heavy hypernuclei including the deformat
effects. For that purpose, the projected shell model de
oped in Refs.@24,25#, which also uses the Nilsson mod
with angular momentum projection, would provide a use
tool to describe the structure of deformed hypernuclei.
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1Note that the behavior of the observables forL
12C and L

9 Be is
opposite, due partly to the fact that the residual11C is oblate while
8Be is prolate.
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