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Abstract

When a holomorphic function is iterated, it generates a dynamic system on the complex

plane. In this project, we describe both the local and global behavior of the different orbits

of a rational map on the complex plane (or the Riemann sphere). We mainly concentrate

in the study of the dynamical plane (where initial conditions and orbits live) although we

briefly discuss one parameter families of polynomials and their bifurcation loci, like the well

known Mandelbrot set. Towards the end, we experiment with a singular perturbation of a

family of cubic polynomials and explore the drastic changes that occur in the topology of

their Julia sets.
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Preface

The main motivation for doing this project is my interest in dynamical systems and fractal-

like structures, aside from the fact that the courses I enjoyed the most studying are ”Complex

analysis” and ”Mathematical models and dynamic systems”. It has evolved a lot from the

initial idea to what it has been in the end, as new subjects of interest kept appearing while

studying the originally planed topics.
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1 INTRODUCTION

1 INTRODUCTION

All throughout the history of mankind, both the admiration and interrogation about natural

phenomena and the structure of natural objects have been a common trait. Most of the

ancient civilizations were already fascinated by classical geometrical forms, such as circles

and triangles, and tried to give a rational and reasoned description of natural objects taking

as a starting point these classical forms. Two of the most renowned examples of their

interest and knowledge in classical geometry are the The Elements, a geometry treaty written

by Euclid in the IV century b.C, or the famous welcoming sentence written in Plato 's

academy : ”Let no one ignorant of geometry enter”. However, nature often lacked the most

estimated properties of classical geometry like symmetry, proportion and harmony, making

it impossible to describe the world around us by the only use of classical figures, provided

not extreme simplifications were made, and also leading to errors, such as the assumption

that celestial orbits were perfectly circular. Although it it is true that in the following

centuries some of these errors were corrected, only classical geometry forms were considered

when addressing these problems. It was not until the XIX century, when mathematicians

like Weierstrass1, Koch2 or Cantor3 explored objects whose properties were not explained

by traditional geometry; these objects are known nowadays as fractals. Their studies, due

to the lack of technological means of visualization, and the lack of mathematical knowledge

and background in this area, made their works very abstract.

In the XX century, Poincaré4, Schröder5, Fatou or Julia did the first incursions in the world

of iteration in both the euclidean and the complex plane, discovering what we call dynamical

systems, some of which behaved in a chaotic way, that is, similar initial conditions gave place

to very different outcomes when iterated. These dynamical systems, sometimes generated

geometrical objects with properties similar to the fractals studied by Cantor or Koch. How-

ever, the lack of technology, specially computers, proved a liability, as they were not able

1Karl Weierstrass (1815 - 1897) was a German mathematician, who made very important contributions

to the field of analysis, like the definitions of continuity and limit of a function or the proof of the mean

value theorem.
2Niels Helge von Koch (1870 - 1924) was a Swedish mathematician, and although he made contributions

to number theory, his most known result is the description of the fractal known as Koch snowflake.
3Georg Cantor (1845 - 1918) was a German mathematician. He invented set theory, and among other

results, he announced the theory of transfinite number, which was widely criticized at the time.
4Henri Poincaré (1854 - 1912) was a French mathematician and theoretical physicist. He is considered by

many ”The Last Universalist”, since he made important contributions to all fields of mathematics. Among his

many results are the Poincaré Conjecture, which remained unproven until 2002, and laying the foundations

of chaos theory.
5Ernst Schröder (1841 - 1902) was a German mathematician, mostly known by his works in algebraic

logic.
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1 INTRODUCTION

to see the objects they were facing. The appearance of computers, halfway into the XX

century, and with them the capacity of doing millions of numerical operations by second and

to visualize some of the obtained results, was the top expression of the technological revo-

lution which had started a century earlier with the industrial revolution. These objects, far

from being only an academical curiosity, kept appearing when studying natural phenomena

and the universe that surrounds us, such as snow flakes, thunderbolts or drought-produced

cracks, substituting the interest for classical geometrical objects, and opening a new world of

possibilities. However, the balance was lost again, and many researchers classified as fractals

a lot of objects which, although they presented one of the main properties of a fractal object,

self-similarity, were not fractals.

When referring to iterative methods, Newton’s method is probably the best known of them,

and it is used to compute approximate solutions, either real or complex, of an equation

f(z) = 0

provided f is differentiable. It was described by Isaac Newton in his 1669 book ” De analysi

per aequationes numero terminorum infinitas”. Although Newton’s method and other itera-

tive procedures (some of which were variations of Newton’s method) had been already used

earlier, the first mention of iteration of holomorphic functions is found in a study made by

Schröder about Newton’s method. The greatest difference between his work and the previous

ones is the consideration of the method as the iteration of the map

N(z) = z − f(z)
f ′(z)

in the complex plane. In doing so, he observed that the iterating holomorphic functions could

be very useful towards the objective of finding better root-finding methods; in fact, Schröder

proved the result known as Fixed Point Theorem, which explained why Newton’s method

worked, seeing that the roots of f(z) are attracting fixed points of N(z), when considered

as a dynamical system.

Another problem which was studied by Schröder, and also by Cayley6, was that of the itera-

tion of Newton’s Method far from the roots of the original function f. It could be seen as the

first discernment between local and global theory in dynamical systems. They considered

polynomials of degree 2, and tried to divide the complex plane, taking as differentiation cri-

teria to which root of this polynomial did a point, under iteration, converge to. In general, if

α is an attracting fixed point of the map φ(z), the basin of attraction of α is defined as the set

6Arthur Cayley (1821 - 1895) was a British mathematician. He postulated the Cayley - Hamilton theorem

and gave the modern definition of a group.
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1 INTRODUCTION

of points of the plane which produce a convergent sequence to α; therefore, the problem they

faced was to determine which points belong to each of the two basin of attractions. They

achieved success for polynomials of degree 2, but were not able to do the same for polyno-

mials of degree 3 or more. Looking back, it is easy to see why, as it was later seen that the

boundaries between the basins of attraction for these polynomials of degree 3 or more are

complicated fractal curves, nowadays known as Julia sets. Other mathematicians such as

Koenigs, Böttcher and Siegel made further development and contribution to the local theory.

It was not until the works of Pierre Fatou and Gaston Julia in the decades of 1910-1920

when global theory was systematically studied. In particular, they studied the iteration of

holomorphic functions in the Riemann sphere, that is, C ∪ {∞}. Fatou proved that, under

certain conditions, which are quite general, there is always an invariant set, J, of initial con-

ditions in the complex plane which is perfect. The most important innovation in the works

of Fatou and Julia is the use of the theory of normal families to divide the Riemann Sphere

into two completely invariant sets of different behavior: the Fatou set, F, and the Julia

Set, J. Intuitively, points of the Fatou set are those whose dynamics are somewhat stable,

that is, the ones which, when iterated, behave the same as their neighboring points. The

complementary of the Fatou set is the Julia set, and it is composed by orbits with chaotic

dynamics (in a certain sense); when referring to Newton’s method, orbits in the Julia set

do not converge to any of the roots of the function. Fatou and Julia were intrigued by the

fact that the Julia set, in many cases, looked like a very peculiar and complicated set, even

more if we compare it to the geometrical objects known and studied at the time. Actually,

Fatou had already described some cases for which J was totally disconnected and perfect,

but he also proved other properties which showed the geometrical complexity of this set.

Although these two mathematicians described in a wide and detailed way both the Fatou set

and the Julia set, they also left a lot of open problems, such as the classification of connected

components of the Fatou set.

A more ambitious goal than studying the dynamic space of a particular holomorphic map, is

to consider one (or more) parameter families of such functions. The best known example of

this is the Mandelbrot Set, which is the parameter space of the family of polynomials z2 + c,

c ∈ C, which has somewhat become an iconic symbol for fractal-like objects and dynamical

systems, and is an active focus of investigation to this day.

Different families and classes of maps can be found in the literature which present particular

interesting topological as invariant objects in their dynamical planes. A particularly rich

source of examples is given by families of singularly perturbated simple maps; the first
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mathematician to consider such phenomena was Curtis T. McMullen in 1988, who introduced

a perturbation to the map z 7→ z2, obtaining the family of functions

fc(z) = z2 + c
z2

for c small enough. He proved that for such small values of c, the Julia set of f consisted of

a Cantor set of quasicircles (non differentiable Jordan curves), many of which were not part

of the boundary of any particular Fatou component. Later on, Devaney, Look and other

authors studied similar singular perturbations and located topologically interesting Julia

sets, homeomorphic to Sierpinski carpets, and other uncommon topological objects, some of

which had never appeared outside of a purely theoretical environment.

In the very last section of this manuscript we explore a new singular perturbation obtained

by adding a pole on the superattracting fixed point of certain cubic polynomials. We explore

numerically..........

STRUCTURE

This project is divided in five sections.

In the first section, we list a number of important results of complex analysis and topology

which will be used later on, so as not to list them every time we need them and interrupt

the flow of the explanation.

The second section is a study of the local theory of holomorphic dynamic systems. We study

the behavior of orbits in neighborhoods of periodic points, and also give some results about

conjugations.

In the third section, we study the global behavior of these dynamical systems, focusing

mainly in the study of critical points and Fatou components.

Both the second and third section are a study of the phase space of holomorphic maps. In

the fourth section, however, we introduce the parameter space of a family of holomorphic

maps, giving special emphasis to the quadratic family and the Mandelbrot Set.

While these four sections are focused on the selection, understanding and writing of existing

literature, the last one is dedicated to a more personal approach of the subject. We introduce

the concept of Milnor cubic polynomials, after which we consider the family which results

from adding a pole singularity at z = 0 for these polynomials.

In this manuscript, not all the included results are proven, either because I thought that the

proof did not give any extra insight on the concept, or because they were above the intended
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1 INTRODUCTION

level of this project. However, should the reader be interested, all proofs can be found in [3],

[5] or [13].

Throughout the work, there are some words accompanied by the symbol (∗). These words

are included in a glossary at the end, listed in alphabetical order, intended to explain some

concepts which may not be familiar to everyone.

There is also some brief biographic data of the authors that appear in the text, as it is both

important and interesting to have a context for the results given, and their authors.

5
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2 PRELIMINARIES AND TOOLS

In this section we include a selection of results that will be used as tools throughout the

manuscript, but are not part of the goals of this project.

The first block of definitions and statements deal with normal families of holomorphic func-

tions.

Definition 2.0.1 (Normal family). A set, F, of holomorphic functions defined in a complete

metric space X ⊂ C with values in another complete metric space Y ⊂ C, is said to be normal

if every sequence of functions in F contains a subsequence which converges uniformly on

compact subsets of X to an holomorphic function from X to Y.

The following theorem gives a convenient way to check whether a family of maps is normal

or not.

Theorem 2.0.2 (Montel's7 Theorem). Let F be a family of holomorphic functions on a

domain D. If there are two fixed values omitted by every f ∈ F, then F is a normal family.

Here, we will prove a weaker version of the theorem. In order to do so we will first present

some useful results.

Theorem 2.0.3 (Arzela8-Ascoli9). A set F ⊂ C(X, Y ), where X is a compact topological

space, Y is a complete metric space, and C(X,Y) is the space of continuous functions between

X and Y, is normal iff the following conditions are satisfied:

1. for each z ∈ X, {f(z), f ∈ F} has a compact closure in Y.

2. F is equicontinuous(∗) at each point of X.

Theorem 2.0.4 (Cauchy's10 formula). Let f be an analytic function over a closed path(∗) γ,

and consider z0 /∈ γ. Then

7Paul Montel(1876 - 1975) was a French mathematician, whose main field of study was complex analysis

and holomorphic functions. His most important contribution was the systematic development of the notion

of normal family of functions.
8Cesare Arzela(1847 - 1912) was an Italian mathematician, whose main contributions to mathematics

are in the field of the theory of functions. In particular, he is mostly known for his generalization of the

characterization of continuous functions, given previously by Giulio Ascoli.
9Giulio Ascoli(1843 - 1896) was an Italian mathematician. He made contributions to the theory of

functions of real variable and to Fourier Series. One of his most known results, is the concept of equicontinuity.
10Augustin-Louis Cauchy(1789 - 1857) was a French mathematician, considered by many a pioneer of

analysis. He was one of the first mathematicians to prove calculus theorems rigorously. Although he found

results in various areas, one of his most important achievements was the foundation of complex analysis.
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2 PRELIMINARIES AND TOOLS

f(z0) = 1
2πi·Iγ(z0) ·

∮
γ
f(w)
w−z0 · dw

where Iγ(z0) is the winding number(∗) of γ with respect to z0.

Theorem 2.0.5 (Weaker version of Montel's theorem). A family F of holomorphic functions

on a domain D is normal iff F is locally bounded, i.e, for each compact set K ⊂ D, there is

a constant M such that

|f(z)| ≤M , ∀z ∈ D and ∀f ∈ F

Proof. Firstly, suppose that F is normal but not locally bounded, i.e, there is a compact

set K ⊂ D such that sup{f(z), z ∈ K, f ∈ F} =∞. Equivalently, there is a a sequence {fn}
in F such that sup{fn(z), z ∈ K} ≥ k, ∀k ∈ N. Since F is normal, there is an holomorphic

function in D, f, and a subsequence {fnk} of {fn} such that fnk 7→ f . However this gives us

that sup{|fnk(z)− f(z)|, z ∈ K} 7→ 0 when k 7→ ∞. If |f(z)| ≤M for z ∈ K, then

|fnk | ≤ |fnk − f(z) + f(z)| ≤ sup{|fnk − f(z)|, z ∈ K}+M

and since the right hand side converges to M, we reach contradiction.

Now suppose F is locally bounded. We see that the first condition of theorem 2.0.3 is clearly

satisfied, and therefore it suffices to show that F is equicontinuous to prove that it is normal.

We fix a point a ∈ D and ε > 0, and as F is locally bounded, there is r > 0 and M > 0

such that B(a, r) ⊂ D and |f(z)| ≤M , ∀z ∈ B(a, r), ∀f ∈ F. Let |z− a| ≤ 1
2
· r and f ∈ F,

then, by using Cauchy’s Formula with γ(t) = a+ r · eit, 0 ≤ t ≤ 2 · π

|f(a)− f(z)| ≤ 1
2·π |

∫
γ

f(w)·(a−z)
(w−a)·(w−z)dw| ≤

|z−a|
2π
· long(γ) · supw∈γ| f(w)

(w−a)·(w−z) | ≤

≤ |z − a| ·M · r · supw∈γ| 1
(w−a)·(w−z) | ≤ |z − a| ·M · supw∈γ|

1
(w−z) | ≤

2·M
r
· |a− z|

Letting δ ≤ min{1
2
· r, r

2·M · ε}, it follows that |a− z| < δ gives |f(a)− f(z)| < ε ∀f ∈ F. �

The second block of results deals with properties of univalent maps(i.e. holomorphic and

injective, and therefore conformal).

Theorem 2.0.6 (Area Theorem). Let g(z) = 1
z

+ b0 + b1 · z + · · · be univalent in ∆ (with a

pole(∗) singularity at z = 0). Then
∑∞

n=0 n · |b2n| ≤ 1.

Proposition 2.0.7 (Dimensioning of a2). If f = z+
∑∞

n=2 an ·zn is a conformal(∗) function

in the open unit disk, then |a2| ≤ 2.

7



2 PRELIMINARIES AND TOOLS

Proof. We define g(z) = 1√
f(z2)

= 1
z
− a2 · z2 + · · · . We have that g is univalent, because

if g(z1) = g(z2), then f(z21) = f(z22) ⇔ z21 = z22 ⇔ z1 = ±z2. But g is an odd function, so

z1 = z2. All in all, we can apply the area theorem to g(z), with b1 = −a2
2

, and therefore we

get |a2| ≤ 2, in order to have
∑∞

n=0 n · |b2n| ≤ 1. �

Theorem 2.0.8 (Koebe's11 one quarter theorem). Let S be the collection of conformal

functions in the open unit disk, ∆, such that f(0) = 0 and f ′(0) = 1, ∀f ∈ S. If f ∈ S, then

f(∆) ⊃ D(0, 1
4
).

Proof. Fix a point c ∈ C and suppose f 6= c in ∆. Then

c·f(z)
c−f(z) = z + (a2 + 1

c
) · z2 + · · ·

belongs to S. Applying 2.0.7 twice, we obtain

1
|c| ≤ |a2|+ |a2 + 1

c
| ≤ 2 + 2 = 4.�

Theorem 2.0.9 (Riemann12 Mapping Theorem). Let D be a simply connected region which

is not the whole plane C, and let a ∈ D. There is a unique analytic function, f : D 7→ C
which satisfies :

1. f(a) = 0 and f ′(a) > 0.

2. f is one-one (injective).

3. f(D) = {z ∈ C; |z| ≤ 1}.

Proof. Here we will only prove the uniqueness. Suppose there is an analytic function, g,

with the same properties as f. Then, f ·g−1 : D 7→ D is analytic and bijective, and it satisfies

f · g−1(0) = f(a) = 0 so, by applying Koenig’s linearization theorem, we get that there is

a constant c, |c| = 1 and f · g−1(z) = c · z, ∀z ∈ D. This gives f = c · g, and therefore

0 < f ′(a) = c · g′(a), and since g′(a) > 0, we get c = 1, and f = g. �

Theorem 2.0.10 (Carathéodory13). Let D be a simply connected(∗) domain in C whose

boundary has at least two points. Then δD is locally connected if and only if the Riemann

mapping ψ : ∆ 7→ D extends continuously to the closed disk ∆.

11Paul Koebe(1882 - 1945) was a Germany mathematician. His only field of study was complex numbers,

and his most important result is the uniformization of Riemann Surfaces.
12Bernhard Riemann(1826 - 1866) was a German mathematician who made key contributions to analysis,

number theory and differential geometry. Some of his most important results are the rigorous formulation

of the Riemann integral, the introduction of Riemann surfaces, and Riemann's hypothesis in number theory.
13Constantin Carathéodory(1873 - 1950) was a Greek mathematician. He made contributions to the theory

of functions of a real variable, the calculus of variations and measure theory.
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2 PRELIMINARIES AND TOOLS

Proposition 2.0.11. A conformal mapping of ∆ on to itself has the form

w = ei·θ · (z−a)
(1−a·z) , 0 ≤ θ ≤ 2π, |a| < 1

Theorem 2.0.12. Every conformal automorphism, g, of C can be expressed as a Möbius

transformation(∗)

g(z) = a·z+b
c·z+d

where a, b, c, d ∈ C, and ad− bc 6= 0. Every non-identity automorphism of C either has two

distinct fixed points or one double fixed point in C.

Proposition 2.0.13. If A and B are two conformal self-maps of the open unit disk ∆ which

commute, and A is not the identity, then B belongs to the one-parameter subgroup generated

by A.

Proof. There are three cases to be considered:

1. Suppose A has a fixed point in ∆. We may assume the fixed point is z0 = 0, so that

A(z) = ei·θ · z. Then ei·θ ·B = (AB)(0) = (BA)(0) = B(0). Since A is not the identity,

B(0) = 0, and B has the form ei·θ · z.

2. Suppose A has two fixed points on {|z| = 1}, which are different. We can map this

problem to the right half-plane, with the fixed points going to 0 and∞, and A(z) = λ·z
for some λ > 0, λ 6= 1. As above, either B fixes 0 and ∞, or interchanges them. In

the second case, B(z) = µ
z

for some µ > 0 and does not commute with A. Therefore,

B fixes these points and B(z) = µ · ζ.

3. Suppose A has one fixed point on {|z| = 1}. Again, we map the problem to the right

half-plane, with ∞ fixed. Then we have A(z) = z + λ · i for some real λ 6= 0 and

B(z) = z + i · µ, for some µ ∈ R.

Möbius transformations corresponding to these three cases are called elliptic, hyperbolic,

and parabolic respectively. Every such transformation preserving the disk is one of these

three cases.

Theorem 2.0.14 (Argument Principle). Let f be a meromorphic(∗) map defined in a con-

nected open set Ω ⊂ C enclosed by a closed path γ. Let M be the number of zeros of f in γ

and let P be the number of poles of f in γ, with each zero and pole counted as many times as

its multiplicity and order respectively. Then

M − P = 1
2πi
·
∫
γ
f ′(z)dz
f(z)

9
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Now we will consider hyperbolic metric, which is very important in complex dynamics, as

every holomorphic function is a contraction with respect to this metric (this result is known

as the Schwarz-Pick lemma).

Definition 2.0.15 (Hyperbolic metric).

By 2.0.12., a conformal self-map of ∆ is of the form

w = ei·θ · (z−a)
(1−a·z) , 0 ≤ θ ≤ 2π, |a| < 1

And operating

|dw
dz
| = 1−|z|2

1−|w|2

and therefore

dρ = 2·|dz|
1−|z|2 = 2·|dw|

1−|w|2

is invariant under the mapping. We call the metric dρ hyperbolic metric.

Definition 2.0.16 (Riemann Surface). A connected complex analytic manifold of complex

dimension one is called a Riemann Surface.

Proposition 2.0.17 (Uniformization theorem). There are only three Riemann surfaces, up

to isomorphism. That is, any simple Riemann surface is conformally isomorphic to

1. the whole plane C.

2. the open unit disc, ∆.

3. the Riemann sphere C, consisting of C together with a point at infinity.

Theorem 2.0.18. Let D be a domain in C, and for z ∈ D, let δ(z) denote the distance

from z to ∂D. Then, if D is simply connected

1
2
· |dz|
δz
≤ dρD(z) ≤ 2 · |dz|

δ(z)

10
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3 INTRODUCTION AND LOCAL THEORY

3.1 INTRODUCTORY RESULTS

Given a continuous function f : C 7→ C, the set of all the iterates, {fn(z0)}, n ≥ 0, for the

various points z0 ∈ C is a dynamical system where a ”force”, f, for each period, n, changes

z0 into fn(z0). From this point of view, the main question is where will z0 be when iterated

by f many times. Mathematically, our aim is to study the asymptotic behavior of fn(z0)

when n 7→ ∞ for every z0 ∈ C. In this same line of thinking we may also ask ourselves about

the previous states of a given point; Due to the nature of functions, the question about the

future states of an initial seed is uniquely determined (that is, if we can find the solution),

but, on the other hand, the question about the previous states of a point does not have, in

general, a unique answer, unless the map, f, is globally invertible.

To accomplish our goal we first characterize some types of points which have a special

behavior and characteristics:

Definition 3.1.1 (Fixed point). An element z ∈ C is said to be a fixed point of f : C 7→ C
if f(z) = z.

Definition 3.1.2 (Periodic point). An element z ∈ C is said to be a periodic point of period

p of f if fp(z) = z and fn(z) 6= z, ∀n < p, n, p ∈ N. In this case, the orbit of z0, called

periodic orbit, is given by the finite set {z0, z1, . . . , zp−1}.

There is a strong relation between the fixed points of fp and the periodic points of f: a fixed

point of fp is either a fixed point of f, or a periodic point of period d of f, for some d|p.

Definition 3.1.3 (Preperiodic point). An element z ∈ C is said to be a preperiodic point of

f if z is not periodic, but a point in its orbit is periodic.

We have only considered two types of special orbits, but, taking benefit from the special

nature of periodic points, we can determine, in some cases, how will nearby points (points

in a neighborhood of the periodic point) behave when iterated by the same function f.

Definition 3.1.4 (Classification of fixed points). Given a fixed a point, z0, of an holomorphic

function f, we call λ = f ′(z0) its multiplier. We can classify the fixed point according to λ:

1. if |λ| < 1, the fixed point is attracting (if λ = 0, we say the fixed point is superattract-

ing).

11



3 INTRODUCTION AND LOCAL THEORY

2. if |λ| > 1, the fixed point is repelling.

3. if |λ| = 1 and λn = 1, for some n ∈ Z, the fixed point is rationally neutral.

4. if |λ| = 1 and λn 6= 1, for every n ∈ Z, the fixed point is irrationally neutral.

As its name states, an attracting point is a fixed point that attracts nearby points when

they are iterated by f. Indeed, if |λ| < ρ < 1 then, in a neighborhood of z0, |f(z) − z0| <
ρ · |z − z0| ⇒ |fn(z) − z0| < ρn · |z − z0| and therefore fn(z) uniformly converges(∗) to z0

on such neighborhood; this concept opposes to that of a repelling fixed point. In the case

of |λ| = 1, the nature of the fixed point is not as obvious, and requires a further study to

determine the behavior of nearby points.

Definition 3.1.5 (Basin of attraction). Given an attracting fixed point z0 ∈ C, we define its

basin of attraction as A(z0) = {z ∈ C such that fn is defined for all n ≥ 1 and fn(z)→ z0,

when n→∞ }, where fn is the n-fold iterate of f.

Observation. A(z0) is open, because it is the union of the backwards iterates f−n(D(z0, ε)),

for a given small ε > 0.

Definition 3.1.6 (Classification of periodic points). Given a periodic orbit {z0z1 . . . zp−1}
for the function f, we may see z0 as a fixed point of g(z) = fp(z), and therefore we define

the multiplier of the periodic orbit

g′(z0) =
∏i=p−1

i=0 f ′(zi)

which determines its local nature.

The same results given for a fixed point stand true for a periodic orbit, using the new concept

of multiplier that we have just defined. Therefore, periodic orbits can be classified the same

way as fixed points.

3.2 LOCAL THEORY

In some cases, it might be difficult to determine the basin of attraction of an attracting fixed

point for a given function, or the dynamics of points in a neighborhood of periodic points.

To solve this problem, we can sometimes use other simpler functions that we already know

the behavior of, and obtain results of the original functions from them. We do this by using

conjugations.

12
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Definition 3.2.1 (Conformal conjugations). We say that a function f : U ⊂ C 7−→ U is

conformally conjugate to g : V ⊂ C 7−→ V if there is a conformal map(∗) φ : U 7−→ V such

that

φ(f(z)) = g(φ(z)),∀z ∈ U

We may consider f and g to be the same map expressed in different coordinates. Note that φ

maps fixed points to fixed points, and the multipliers associated to those fixed points remain

equal by φ. It also maps a basin of attraction by f to a basin of attraction by g.

This definition also implies that the iterates fn and gn are also conjugated by φ, i.e :

gn = φ · fn · φ−1.

We have only defined, and will only be considering, conformal conjugations. However, there

are also other types of conjugations: if instead of considering a conformal map φ : U 7→ V

conjugating f and g, we consider a map φ : U 7→ V which is continuous (C1) we get a

continuous (C1) conjugation.

These other conjugations also map fixed points to fixed points, periodic orbits to periodic

orbits, . . . . However, the difference between them and a conformal conjugation is that the

latter does not alter the multiplier of the periodic orbits.

Example: The polynomial P (z) = z2 − 2 has a superattracting fixed point at z = ∞.

Consider the conformal map h(z) = z+1
z

of {z > 1} onto C[−2, 2]. We see that P (h(z)) =

h(z)2 − 2 = h(z2), which gives h−1 · P · h = z2, and thus P is conjugate to z2 on {|z| > 1}.
Therefore, the dynamics of P (z) on C[−2, 2] are the same as those of z2 on {|z| > 1}.
Since the iterates of any z, |z| > 1 under z2 tend to ∞, so do the iterates under P of any

z ∈ C[−2, 2]. Evidently, [−2, 2] is invariant under P, so the basin of attraction of ∞ for P is

A(∞) = C[−2, 2].

Theorem 3.2.2 (Koenigs14 linearization theorem). Suppose f has an attracting fixed point

at z0, with its multiplier, λ, satisfying 0 < |λ| < 1 (not superattracting). Then, there is a

conformal map ζ = φ(z) of a neighborhood of z0 onto a neighborhood of 0, which conjugates

f(z) to the linear function g(ζ) = λ · ζ. Furthermore, the conjugating function is unique, up

to multiplication by a nonzero scalar factor.

Proof. We suppose z0 = 0 and define φn = λ−n · fn(z). Then, φn satisfies

14Gabriel Xavier Paul Koenigs(1858 - 1931) was a French mathematician who worked on analysis and

geometry.

13
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φn · f = λ−n · fn+1 = λ · φn+1

Therefore, if φn 7→ φ, then φ · f = λ · φ, so φ · f · φ−1 = λ · ζ ⇒ φ is a conjugation. To show

convergence note that for δ > 0 small,

|f(z)− λ · z| ≤ C · |z|2, |z| ≤ δ

Thus |f(z)| ≤ |λ| · |z|+ C · |z|2 ≤ (|λ|+ C · δ) · |z| and, by induction, with |λ|+ C · δ < 1,

|fn(z)| ≤ (|λ|+ C · δ)n · |z|, |z| ≤ δ

We choose δ > 0 so small that ρ = (|λ|+C·δ)2
|λ| < 1, and we obtain

|φn+1(z)− φn(z)| = |f
n(f(z))−λ·fn(z)

λn+1 | ≤ C·|fn(z)|2
|λ|n+1 ≤ ρn·C·|z|2

|λ|

for |z| ≤ δ. Therefore φn(z) converges uniformly for |z| ≤ δ, and the conjugation exists.

Now we will prove the uniqueness:

Suppose there are two such conjugations, φ1 and φ2. Then, the composition

φ2 · φ−11 (z) = a1 · z + a2 · z2 + . . . , for some ai ∈ C, i ∈ N

would commute with the map s(z) = λ ·z, and comparing the coefficients of the two resulting

power series we get λ · an = an · λn, ∀n ∈ N. Since λ is not zero nor a root of the unity,

a2 = a3 = · · · = 0, and therefore φ2 · φ−11 (z) = a1 · z, or equivalently φ2 = a1 · φ1. �

Proposition 3.2.3 (The repelling case). The existence of a conjugating map for a repelling

fixed point follows from the attracting case, because if f(z0) = z0, f ′(z0) = λ > 1, we know

that f ′(z) 6= 0, ∀z ∈ U, where U is a neighborhood of z0. Therefore, there is a branch of

f−1, g(z), in U for which z0 is a fixed point. Applying the inverse function theorem, we

know that g′(z0) = 1
λ

= µ, µ < 1, and there is a conformal conjugation ζ = φ(z) such that

ζg(z) = µ · ζ = ζ
λ

And this same map also conjugates f(z) to λ · ζ.

In the case of superattracting fixed points we can also prove the existence of a conjugation.

Proposition 3.2.4 (Böttcher15 coordinates). Suppose f has a superattracting fixed point at

z0
15Lucjan Böttcher(1872 - 1937) was a Polish mathematician. His most important result was in the iteration

of rational mappings of the Riemann sphere.
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f(z) = z0 + ap(z − z0)p + · · · , ap 6= 0, p ≥ 2.

Then there is a conformal map ζ = φ(z) of a neighborhood of z0 onto a neighborhood of 0

which conjugates f(z) to ζp. Furthermore, the conjugation is unique, up to a multiplication

by a (p-1)th root of the unity.

Proof. Suppose z0 = 0. For z small enough, there is a constant C > 1 such that |f(z)| ≤
C · |z|p. By induction, writing fn+1 = fn · f , and using p ≥ 2, we obtain

|fn(z)| ≤ (C · |z|)pn , z ≤ δ

and therefore limn→+∞ f
n(z) = 0.

If we change variables by setting w = c · z, where cp−1 = 1
ap

, we get f(w) = wp + · · · , and

therefore we can assume ap = 1. Our aim is to find a conjugating map φ(z) = z + · · · such

that φ(f(z)) = φ(z)p, which is equivalent to the condition φ · f · φ−1 = ζp. Let

φn(z) = fn(z)p
−n

= (zp
n

+ · · · )p−n = z · (1 + · · · )p−n

which is well defined in a neighborhood of the origin. Every φn in the succession satisfies

φn−1 · f = (fn−1 · f)p
−n+1

= φpn

So, if limn→+∞ φ
n = φ, then φ satisfies φ · f = φp, and is a solution. To show that {φn}

converges, we write fn+1 = f · fn and note that

φn+1

φn
= (φ1·f

n

fn
)p
−n

= (1 + o(|fn|))p−n = 1 + o(p−n) · o(|z|pn · Cpn) = 1 + o(p−n)

if |z| ≤ 1
C

. Therefore the product

∏∞
n=1

φn+1

φn

converges uniformly for |z| ≤ c < 1
C

, and this implies {φn} converges. Hence, φ exists. �

We have proved the existence of conjugations for attracting, repelling and superattracting

fixed points, so all that is left to consider is the case where |λ| = 1, that is, λ = e2πiθ. The

two options to be considered are:

1. θ is rational (parabolic case).

2. θ is irrational (irrational case).

15
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Suppose λ = e2πiθ, with θ rational. As θ is rational, θ = p
q
, for some p, q ∈ Z, we may

consider f q, which satisfies λ = 1, because if φ is a conformal conjugation between f and g,

it is also a conformal conjugation of f q and gq.

Definition 3.2.5 (Order or multiplicity of a fixed point). The order of z0 as a fixed point

of f : U 7→ C is the order or multiplicity of z0 as a zero of f(z) − z, that is, the degree

of the first non-vanishing term of the Taylor 's expansion of f - Id at z0(in any set of local

coordinates centered at z0).

Considering the Taylor's expansion, we therefore take maps of the form

f(z) = z + a · zm+1 + o(zm+2), m > 0 and a 6= 0

where m is the order of z0.

Definition 3.2.6 (Attracting and repelling petals). Suppose f is defined and univalent in a

neighborhood, U, of the origin. An open set P ⊂ U is called an attracting petal for f at the

fixed point if

1. f(P) ⊂ P ∪ {0}.

2.
⋂
n f

n(P) = {0}.

An open set P ⊂ U is called a repelling petal for f at the fixed point if P is an attracting

point for f−1 : f(U) 7→ U, where f−1 denotes the branch of the inverse of f fixing the origin.

Theorem 3.2.7 (Parabolic Flower Theorem). Suppose f has a parabolic fixed point with

multiplier λ = 1 at the origin of multiplicity m + 1. Then, there are 2m petals, {Pj}j=2m
j=1 ,

numbered cyclically around the origin and such that Pj is attracting or repelling according to

whether j is even or odd. Each petal, Pj, intersects only its two immediate neighbors, Pj−1

and Pj+1, and is disjoint from the rest. The petals can be chosen so that the union

P1 ∪P2 ∪ · · · ∪P2m ∪ {0}

form an open neighborhood of the origin.

If the iterates of a point z 6= 0 converge to 0, it needs to belong to one of the attracting

petals, P, from an iterate onward. We then say that the orbit converges to 0 through P.

Therefore, it makes sense to consider the (parabolic) basin of attraction of P.

Definition 3.2.8 (Parabolic basin of attraction). If z0 is a parabolic fixed point of f with

multiplier λ = 1, and P is an attracting petal at z0, we define the parabolic basin of attraction

of z0 associated to P as

16
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Figure 1: Distribution of the invariant petals around a parabolic point with multiplicity 5.

Figure 2: Distribution of the invariant petals around a parabolic point with multiplicity 3.

17
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Ap = {z ∈ S \
⋃
n>0 f

−n(z0)|fn(z) 7→ z0 through P when n 7→ ∞}

If the parabolic point has multiplicity m + 1, then it has exactly m disjoint parabolic basins.

Although we can not find a conjugation to its linear part as we have for attracting, repelling

and superattracting fixed points, some kind of linearization is possible inside each petal.

Theorem 3.2.9 (Fatou16 Coordinates). For every attracting and for every repelling petal

P, there is a conformal embedding

φ : P 7→ C

mapping 0 to ∞, called the Fatou coordinate in P, which conjugates f to the translation

z 7→ z + 1 on P ∩ f−1(P ).

Consider now the case where λ = e2πiθ, with θ irrational. Our aim is to find a solution to

the Schröder17 equation φ(f(z)) = λφ(z), normalized by φ′(0) = 1. If we write h = φ−1, the

equation becomes

f(h(ζ)) = h(λ · ζ), h′(0) = 1

Theorem 3.2.10 (Uniqueness of solutions). A solution to the Schröder equation in any disk

{|ζ| > r} is unique.

Proof. Suppose h(ζ1) = h(ζ2) ⇒ h(λn · ζ1) = h(λn · ζ2) for all n > 0, n ∈ N. Since {λn} is

dense in the unit circle (as θ is irrational), h(ζ1 · ei·θ) = h(ζ2 · ei·θ) for every θ. This implies

h(ζ1 · z) = h(ζ2 · z) for |z| < 1, and since h′(0) = 1, ζ1 = ζ2. �

Theorem 3.2.11 (Existence of solution ). A solution h of the Schröder equation exists if

and only if the sequence of iterates {fn} is uniformly bounded in some neighborhood of the

origin.

Proof. If h exists, then fn(z) = h(λn · h−1(z)) is obviously bounded. On the other hand, if

|fn(z)| ≤M , for some M ∈ R and ∀n ≥ 1, we can define:

φn(z) = 1
n

∑j=n−1
j=0 λ−j · f j(z)

16Pierre Fatou(1878 - 1929) was a French mathematician and astronomer. He made important contribu-

tions to the field of analysis. As seen in this project later, he gives name to the Fatou Set.
17Ernst Schröder(1841 - 1902) was a German mathematician, mostly known by his work in algebraic logic.
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Then {φn} is a uniformly bounded sequence of analytic functions, and therefore contains a

convergent subsequence. Since φn · f = λ · φn + o( 1
n
), any limit of the sequence φn satisfies

φ · f = λ · φ. From λ = f ′(0), we get φ′n(0) = 1 and so φ′(0) = 1. All in all, h = φ−1 is a

solution of the Schröder equation. �

Theorem 3.2.12 (Condition for non existence of solutions). There exists a λ = e2πiθ so that

the Schröder equation has no solution for any polynomial f.

Proof. We will use a reduction to absurdity argument. Let f(z) = zd + · · · + λ · z, and

suppose there is a conjugation h defined on ∆(0, δ). We consider the dn fixed points of fn,

which are the roots of

fn(z)− z = zd
n

+ · · ·+ (λn − 1) · z

One root is z = 0, and we label the others z1, . . . , zdn−1. Since fn(z) = h(λn · h−1(z)) has

only one zero on ∆(0, δ), we get zj /∈ ∆(0, δ) for j = 1, . . . , dn − 1. Therefore

δd
n ≤

∏j=dn−1
j=1 |zj| = |1− λn|

We now construct a λ for which this is impossible, therefore contradicting the hypothesis

of the existence of h. Let {qn} be a sequence of integers such that q1 < q2 < . . . , and let

θ =
∑∞

k=1 2−qk and λ = e2·π·i·θ. Then

|1− λ2qk | ≈ 2qk−qk+1

and taking logarithms

qk+1 ≤ C(δ) · d2qk

If we define inductively the qk’s to grow very rapidly, say with log(qk+1) ≥ k · 2qk , the

inequality does not hold for any d and δ > 0. �

Definition 3.2.13 (Cremer Point). Let f : C 7→ C be an holomorphic function, and let z0

be a fixed point of f. If its multiplier, λ, satisfies |λ| = 1, λ = e2·π·i·θ, with θ irrational, and

there is not a solution to the Schröder equation for λ, we say that z0 is a Cremer Point.

Definition 3.2.14 (Diophantine numbers). A real number θ is Diophantine if it can be badly

approximated by rational numbers, that is if there exist c > 0 and µ <∞ so that

|θ − p
q
| ≥ c

qµ
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If we write λ = e2πiθ, this condition is equivalent to

|λn − 1| ≥ c · n1−µ, n ≥ 1

Proposition 3.2.15 (Existence of Diophantine numbers). For a fixed µ > 2, the condition

|θ − p
q
| ≥ c

qµ
holds for almost every real number θ. Indeed, if E is the set of θ ∈ [0, 1], such

that |θ − p
q
| < 1

qµ
infinitely often, then

|E| ≤
∑∞

q=n 2 · q−µ · q = o(n2−µ) 7→ 0

In particular, almost all real numbers are Diophantine.

The first theorem about the existence of linearizable points is due to Siegel, and it was an

important breakthrough at the time. Since then, the conditions used by Siegel have been

improved by other mathematicians such as Herman18 or Bruno19. We conclude this section

by stating Siegel's original theorem.

Theorem 3.2.16 (Siegel20). If θ is Diophantine, and if f has a fixed point at 0 with multiplier

e2πiθ, then there is a solution to the Schröder equation. In other words, f can be conjugated

near 0 to multiplication by e2πiθ.

18Michael Herman(1942 - 2000) was a French-American mathematician. He was one of the most known

figures in dynamical systems. One of his most important results was the introduction of Herman Rings in

1979.
19Alexander Bruno(1940) is a Russian mathematician who has made contributions to the normal forms

theory.
20Carl Ludwig Siegel(1896 - 1981) was a German mathematician. His main field of work was number theory

and celestial mechanics. His most known results are his contribution to the Thue-Siegel-Roth theorem for

Diophantine approximation and the Siegel Mass Formula for quadratic forms. He is considered one of the

most important mathematicians in the XX century.
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4 GLOBAL THEORY

We will now study the phase space of holomorphic functions as a whole, not just locally, so

we can determine the behavior of points anywhere on the plane.

4.1 GENERAL RESULTS

Definition 4.1.1 (Fatou and Julia21 Set). Let S be a Riemann surface, f : S 7→ S a non-

constant holomorphic mapping, and let fn : S 7→ S be its n-fold iterate. Given a fixed z0 ∈ S,

if there exists a neighborhood of z0, U, so that the sequence of iterates {fn}n restricted to U

forms a normal family, then we say that z0 is a normal point, or that it belongs to the Fatou

Set of f. On the other hand, if such neighborhood does not exist, we say that z0 belongs to

the Julia Set of f.

Therefore, by definition, the Julia Set is a closed set and the Fatou Set is open. We may

think of the Fatou Set as the set or orbits which are in some sense stable, and the Julia Set

as the set of chaotic orbits.

Example: Consider the map f : C 7→ C, f(z) = z2. The entire open disk, ∆, is contained

in the Fatou Set of f, since successive iterates on any compact subset converge uniformly

to zero. Likewise, the set C \ ∆ is contained in the Fatou Set of f, since the iterates of f

converge to ∞. On the other hand, if z0 is a point of the unit circle, in any neighborhood of

this point, any limit of iterates would have a jump discontinuity as we cross the unit circle.

This shows that J = S1.

However, not all Julia Sets are as easy to compute and draw as this one. The next example

shows a more complicated Julia Set:

Example: Consider the map f : C 7→ C, f(z) = z2−1. In this case, f has two repelling fixed

points, z± = 1±
√
5

2
and an attracting two cycle : {0,−1} (actually, it is a superattracting

cycle). The Julia Set corresponding to this map is actually a fractal, and it has infinitely

many connected components.

We present some properties of both sets to further characterize them.

21Gaston Julia(1893 - 1978) was a French mathematician who devised the formula for the Julia Set. His

work gained a lot of popularity with the use of the computer for mathematical research, as it could then be

visualized.
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Figure 3: The Julia Sets of f(z) = z2 (top left), f(z) = z2 − 1 (top right) and h(z) =

z2 + (0.3, 0.5) (bottom center)

Definition 4.1.2 (Grand Orbit). We call grand orbit of a point z under f : S 7→ S the set

GO(z,f), consisting of all the points z′ ∈ S whose orbits eventually intersect the orbit of z.

It is clear that z and z′ have the same grand orbit iff fm(z) = fn(z′) for some n,m ∈ Z.

Proposition 4.1.3 (Invariance of Julia Set). The Julia Set of a holomorphic map f : S 7→ S

is fully invariant under f. That is, if z belongs to J(f), then the entire grand orbit GO(z,f)

is contained in J(f).

Proof. We need to show that z ∈ J(f) iff f(z) ∈ J(f). It is equivalent to prove that the

Fatou Set is fully invariant under f, which is what we will do. We consider both implications:

1. If z ∈ F(f), then there is a neighborhood, U, of z for which fn|U forms a normal family;

in other words, {fn}n contains a subsequence which converges in compact subsets of

U to a holomorphic function g. Since f is a holomorphic map, it is, in particular,

22



4 GLOBAL THEORY

open and therefore f(U) is an open neighborhood of f(z). If we consider fn|f(U), it is

also normal, because f(f(z)) = f 2(z), f 2(f(z)) = f 3(z), etc... And therefore if fnk

converges in compact subsets of U to g, then fnk−1 converges in compact subsets of

f(U), and is therefore normal in f(U). All in all, f(z) ∈ F(f).

2. Let u ∈ S such that f(u) = z, and u ∈ F(f). We want to see that z ∈ F(f). Again,

because f is holomorphic, it is in particular continuous, and therefore f−1(U) is an open

neighborhood of u. As above, we see that f 2(z) = f 3(f−1(z)), f 3(z) = f 4(f−1(z)), etc...

Therefore, if fnk+1 converges in compact subsets of f−1(U) to g, then fnk converges in

compact subsets of U, and is therefore normal in U. All in all, z ∈ F(f). �

Proposition 4.1.4. For any n > 0, n ∈ N, the set J(fn) = J(f).

Proof. Again, it is equivalent to prove that F(fn) = F(f). We will prove both inclusions:

1. Suppose z ∈ F(f) and we want to see that z ∈ F(fn). If z ∈ F(f), there is a

neighborhood, U, such that fp|U is normal, that is fpk contains a subsequence which

converges in compact subsets of U to a holomorphic function g. But, since every

subsequence of fpnk is also a subsequence of fpk , the result is clear.

2. Suppose z ∈ F(fn) and we want to see that z ∈ F(f). We know that if {fp} is normal,

then {fp+j} is also normal, for every j ∈ N(we have seen this in the previous theorem).

We can express

{fp} =
⋃
r{f rp} ∪ {f rp+1} ∪ ... ∪ {f rp+(r−1)}

so any partial of {fp}must contain infinite terms of the form f rp, f rp+1, ..., or f rp+(r−1),

as it can not have finitely many of all of them. Therefore, if a subsequence of fnp is

convergent, there is also a convergent subsequence of fp, which is what we wanted to

prove.�

Theorem 4.1.5 (Periodic orbits and Fatou Set). Every attracting, periodic orbit of a map

is contained in its Fatou Set. In fact, the whole basin of attraction, Ω, of that periodic orbit

is contained in the Fatou Set. However, its boundary, ∂Ω is contained in the Julia Set, as is

every repelling orbit.

Proof. We only need to consider the case of a fixed point, f(z0) = z0, as the previous

proposition states that J(fn) = J(f), for every n > 0, n ∈ N (in this particular case we take

n to be the period of the orbit). If z0 is attracting, it follows from Taylor’s Theorem that

the successive iterates of f , restricted to a neighborhood of z0, converge uniformly to the

constant function
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g : S 7→ S

z 7→ z0

We can apply this to any compact subset of the basin of attraction, Ω. On the other hand,

if z ∈ Ω, but z /∈ Ω, it is clear that no sequence of iterates can converge to a continuous

limit. Finally, if z0 is repelling, then no sequence of iterates can converge uniformly near z0,

since the derivative dfn(z)
dz

takes the value λn (with λ > 1) and therefore diverges to infinity

as n 7→ ∞. �

Theorem 4.1.6. If z0 ∈ J(f), then the set of all iterated pre-images

A = {z : fn(z) = z0 for some n ≥ 0, n ∈ N}

is everywhere dense in J(f). In particular, it follows that the corresponding grand orbit,

GO(z0,f) is everywhere dense in J(f).

This theorem is specially important, as it gives us an effective way of computing images of

Julia Sets: starting with any z0 ∈ J(f), we compute all pre-images of such point, that is,

A = {z1 ∈ C such that f(z1) = z0}; then we compute all the pre-images of the points in A,

and so on. Eventually, we will be coming arbitrarily close to every point of J(f).

Corollary 4.1.7. For generic(∗) z ∈ J(f), the forward orbit

{z, f(z), f 2(z), · · · }

is everywhere dense in J(f).

Proof. Let {Bj}n be a countable collection of open sets forming a basis for the topology of

C. For each Bj which intersects J(f), let Uj be the union of the iterated pre-images f−n(Bj)

for n ≥ 0, n ∈ N. Then it follows from the previous theorem that the closure of Uj ∩ J(f)

is equal to the entire Julia Set, J(f), and the conclusion follows. �

The results given up to this point are valid for any function. From here we will focus on

rational functions and give a deeper characterization of them.

4.2 RATIONAL FUNCTIONS

Let R(z) be rational, R = P
Q

, where P and Q are polynomials with no common factors and

d = max(degP, degQ) ≥ 2.
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Theorem 4.2.1. The Julia Set is nonempty.

Proof. Suppose J = ∅. Then, {Rn} is a normal family on all of C, and so there is a

subsequence {nk}, k ∈ N, such that Rnk 7→ f(z) for some analytic function f : C 7→ C. Since

f is analytic on all of C, it is a rational function, as it can not have infinitely many poles and

zeros. If f is constant, the image of Rnk is eventually contained in a small neighborhood of

the constant value, which is impossible since Rnk covers C. If f is not constant, eventually

Rnk has the same number of zeros as f(this follows from the argument principle), which is

also impossible, since the number of zeros of Rn grows monotonically. �

Theorem 4.2.2. The Julia Set, J, contains no isolated points, that is, J is a perfect set.

Proof. Take z0 ∈ J and U an open neighborhood of z0. First assume z0 is not periodic and

choose z1 with R(z1) = z0. Then R(z0) 6= z1 for all n. Since z1 ∈ J, backward iterates of z1

are dense in J, so there is a ζ ∈ U with Rm(ζ) = z1. Thus ζ ∈ J ∩U and ζ 6= z0.

Next, suppose Rn(z) = z0. Then z0 would be a superattracting fixed point for Rn, con-

tradicting z0 ∈ J. Hence there is z1 6= z0 with Rn(z1) = z0. Furthermore Rj(z0) 6= z1

for all j, since otherwise it would hold for some 0 ≤ j < n (by periodicity) and therefore

Rj(z0) = Rn+j(z0) = Rn(z1) = z0, contradicting the minimality of n. As before, z1 must

have a preimage in U ∩ J which cannot be z0. �

Theorem 4.2.3. The Julia Set of a rational map of degree d ≥ 2 is equal to the closure of

its set of periodic points.

Proof. We have just seen that J(f) has no isolated points, and therefore we can exclude

finitely many points of J(f) without affecting the argument. Let z0 be any point of J(f)

which is not a fixed point nor a critical value, that is, we assume that there are d preimages

z1, ..., zd which are distinct from each other and from z0, where d ≥ 2 is the degree of

f. By the Inverse Function Theorem, we can find d holomorphic functions, z 7→ φj(z),

0 ≤ j ≤ d− 1, which are defined throughout some neighborhood, V, of z0 and which satisfy

f(φj(z)) = z, with φj(z0) = zj. We claim that for some n > 0, n ∈ N, and for some z ∈ N,

the function fn(z) must take one of the three values z, φ1(z) or φ2(z). For otherwise, the

family of holomorphic functions

gn = (fn(z)−φ1(z))·(z−φ2(z))
(fn(z)−φ2(z))·(z−φ1(z))

on V would avoid the three values 0, 1 and ∞, and therefore be a normal family. But this

is a contradiction, since then {fn|V } would also be normal, contradicting the hypothesis that

V intersects the Julia Set. Therefore, we can find z ∈ V so as to satisfy either fn(z) = z or

fn(z) = φj(z). Then, z is a periodic point of period n, or n + 1 respectively.
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This shows that every point in J(f) can be approximated arbitrarily close by periodic points.

�

We shall see later that all but finitely many points must repel, so, in fact, the Julia Set,

J(f), of a rational map of degree d ≥ 2 is equal to the close of its set of repelling periodic

points.

If R has an attracting fixed point z0, its basin of attraction, A(z0) is contained in the Fatou

Set. On the other hand, since the iterates of R do not converge to z0 on the complement of

A(z0), these iterates can not be normal on any open set meeting ∂A(z0).

Definition 4.2.4 (Siegel Disk). A simply connected component of the Fatou Set in which R

is conjugate to an irrational rotation is called a Siegel Disk.

Definition 4.2.5 (Herman Ring). A periodic component of period n, U, of the Fatou Set is

called a Herman Ring if it is doubly connected(∗) and Rn is conjugate to either a rotation on

an annulus or to a rotation followed by an inversion.

Theorem 4.2.6. The Julia Set contains all repelling periodic points and all neutral periodic

points which do not correspond to Siegel Disks. The Fatou Set contains all attracting periodic

points and all neutral periodic points corresponding to Siegel Disks.

Proof. As we have seen that F (f) = F (fn), we can assume without loss of generality that z0

is a fixed point, instead of a periodic point. If z0 is a neutral fixed point, by 3.2.11 we know

that {fn} is bounded in a neighborhood of z0 iff z0 ∈ F (f)( and in this case, z0 corresponds

to a Siegel disk). If instead z0 is a Cremer point, then there is not a solution to the Schröder

equation for λ, where λ is the multiplier of the periodic point z0, and therefore {fn} is not

bounded in a neighborhood of z0, hence z0 ∈ J(f).

If z0 is an attracting fixed point, fn is obviously bounded in a neighborhood of z0, and fn

contains a subsequence which converges uniformly to the constant function g(z) = z0(z0 ∈
F (f)). If instead z0 is a repelling fixed point, |fn(z0)| 7→ ∞ when n 7→ ∞, and therefore no

limit function can exist for any subsequence(z0 ∈ J(f)). �

4.2.1 FATOU COMPONENTS, NON-REPELLING CYCLES AND CRITI-

CAL POINTS

Here we will see the relation between the critical points of a map and its Fatou Set.

Definition 4.2.7 (Exceptional points). A point z ∈ C is called exceptional under a map f

if its grand orbit, GO(z, f) ⊂ C is a finite set.
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Proposition 4.2.8 (Number of exceptional points). If f is a rational map of degree two

or more, then the set E(f) of exceptional points can have, at most, two elements. These

exceptional points, if they exist, must be critical points of f, and they must belong to the

Fatou Set of f.

Proof. First we must notice that f maps any grand orbit onto itself, and therefore any finite

grand orbit must constitute a single periodic orbit under f. Each point in this orbit must

be critical, since otherwise f(z) would have two or more pre-images. We conclude then that

such an orbit must be superattracting, and therefore contained in the Fatou Set.

If there were three different grand orbit finite points, then the union of the grand orbits of

these points would form a finite set whose complement, U, in C would be hyperbolic, with

f(U) = U. By Montel's Theorem, the set of iterates of f restricted to U would be normal,

and therefore both U and its complement would be contained in the Fatou Set, contradicting

the previous theorem. �

Proposition 4.2.9. If z0 is an attracting or parabolic periodic point, then the immediate

basin of attraction A∗(z0) contains at least one critical point.

Proof. If z0 is an attracting point, its multiplier, λ, satisfies 0 < |λ| < 1. Let U0 =

φ−1(∆(0, ε)) be a small disk, invariant under R, on which the analytic branch, f, of R−1

satisfying f(z0) = z0 is defined. The branch f maps U0 into A∗z0 and is one-to-one. Therefore,

U1 = f(U0) is simply connected, and U0 ⊂ U1, if U0 is appropriately chosen. If we do not

encounter any critical point, we keep on doing this process, constructing Un+1 = f(Un),

Un ⊂ f(Un), and extending f analytically to Un+1. If this process does not end, we obtain a

sequence fn : U0 7→ Un of analytic functions on U0 which omits J, and is therefore normal

on U0. But this is impossible, since z0 ∈ U0 is a repelling fixed point for f. Then, eventually,

we reach a Un to which we can not extend f. Then there is a critical point p ∈ A∗(z0) such

that R(p) ∈ Un.

If z0 is periodic with period n > 1 and |(Rn)′(z0)| < 1, this argument shows each component

of A∗(z0) contains a critical point of Rn. Since (Rn)′(z) =
∏
R′(Rj(z)), A∗(z0) must also

contain a critical point of R. The same result is true for a parabolic basin, and can be proved

using a similar argument. �

Theorem 4.2.10. If U is a Siegel disk or a Herman ring, then the boundary of U is

contained in the closure of the post-critical set of R, CL.

Proof. Let U be a rotation domain that is invariant under R, and suppose that CL does not

contain ∂U . Let D be an open disk disjoint from CL which meets ∂U . We also assume that

D is disjoint from some open invariant subset V 6= ∅ of U. We define fn to be the branch
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of R−n which maps D ∩U to U. Since fn(D) omits a periodic orbit of period p ≥ 3, they

form a normal family on D ∩ U, and therefore a partial subsequence converges uniformly

to a function g which is holomorphic. This functions, g can not be constant on D ∩ U,

since gn(D ∩U) does not shrink to a single point, since R is a rotation of U, and we know

that a holomorphic function is either constant or open. Therefore, g(D) contains an open

set W. Therefore, for n large enough, fnk(D) ⊂ W′ ⊂ W, for some open set W′. Hence,

Rnk(W′) ⊂ D !! Because W′ contains points of ∂U ⊂ J(f).�

We can use similar arguments to show this result for Cremer points. A refinement of the

results and arguments above is the Fatou-Shishikura inequality.

Theorem 4.2.11 (Fatou - Shishikura inequality). Let R be a rational function of degree

d ≥ 2. We note

1. Att(R) = number of attracting cycles of R.

2. Par(R) = number of immediate parabolic basins of R.

3. Irr(R) = number of irrationally indifferent cycles of R.

4. HR(R) = number of cycles of Herman rings of R.

Then, Att(R) + Par(R) + Irr(R) + HR(R) ≤ 2d − 2, and HR(R) ≤ d − 2. This two in-

equalities are optimal.

Once we have seen the relation between the critical points of a map and its Fatou Set, we

focus on the structure of these Fatou Set components. Since the Julia Set is invariant, the

image of any component of the Fatou Set under R is a component of the Fatou Set.

Proposition 4.2.12. Let U be a fixed component of F. There are several possibilities for

the orbit of U under R

1. If R(U) = U, we call U a fixed component of F.

2. If Rn(U) = U for some n ≥ 1, n ∈ N, we call U a periodic component of F.

3. If Rm(U) is periodic for some m ≥ 1, we call U a preperiodic component of F.

4. Otherwise, all {Rn(U)} are distinct, and we call U a wandering domain.
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I.N Baker22 proved that some entire functions do have wandering domains, and our aim is

to show that this is not possible for rational functions.

A very special type of components are those which are fully or completely invariant

Proposition 4.2.13. If D is a union of components of F which is completely invariant,

then J = ∂D.

Theorem 4.2.14. If U is a completely invariant component of F, then ∂U = J, and every

other component of F is simply connected. There are, at most, two completely invariant

components of F.

Proof. If U is completely invariant, then ∂U = J, by the previous proposition . Moreover

the sequence {Rn} omits the open set U on C \U, so {Rn} is normal on such domain,

and C \U ∪ F. Since U is connected, each component of C \U is simply connected. If

U is furthermore simply connected, then, since R is a d-to-1 mapping, U must contain d-1

critical points. Since there are only 2d - 2 critical points altogether, there can be, at most,

two simply connected completely invariant components. �

Theorem 4.2.15. The number of components of the Fatou Set can be 0, 1, 2 or ∞, and all

cases occur.

Proof. Suppose F has only finitely many components and let U0 be one of them. Consider

a chain of inverse images R(U−1) = U0, R(U−2) = U−1, . . . . Eventually, we reach Un such

that R(U−n) = U−k, 0 ≤ k < n. Then, U0 = Rn(U−n) = Rn(U−k) = Rn−k(U0). Therefore

each component of U0 of F is periodic, and since there are only finitely many, there is some

N ∈ N such that RN(U) = U for every component U. Hence, every component is completely

invariant by RN , and by the preceding theorem there are at most two components.

To see there may also be infinite components, we choose P (z) = λ · z+ z2 to correspond to a

Siegel Disk. Let U0 and U∞ be the components corresponding to 0 and∞ respectively. Since

R is conjugate to a rotation of U0, there are no critical points on U0 and R is one-to-one on

U0. Therefore, U0 has a different from itself preimage, U1, which is also distinct from U∞, so

F has infinitely many components. �

Theorem 4.2.16 (Sullivan). A rational map has no wandering domains

Once we know that it can not be a wandering domain, we get that every component of the

Fatou Set is either periodic or preperiodic.

Definition 4.2.17 (Parabolic component). A periodic component of period n, U, of the

Fatou Set is called parabolic if there is a neutral fixed point on the boundary of U, ζ, for Rn

and with multiplier 1 such that all points in U converge to ζ under iteration by Rn.

22Irvine Noel Baker(1932 - 2001) was an Australian mathematician.
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The next theorem is due to Pierre Fatou, and was an important breakthrough at the time.

Theorem 4.2.18 (Classification of Fatou components). Suppose U is a periodic component

of the Fatou Set F. Then, exactly one of the following holds:

1. U is contained in a basin of attraction.

2. U is parabolic.

3. U is a Siegel Disk.

4. U is a Herman Ring.

We may assume U is fixed by R, and since J has more than two points, U is hyperbolic. To

prove this theorem, we will be using a set of propositions. From now on, let ρ = ρU denote

the hyperbolic metric on U.

Proposition 4.2.19. Suppose U is hyperbolic, f : U 7→ U is analytic and f is not an

isometry with respect to the hyperbolic metric. Then, either fn(z) 7→ ∂U for all z ∈ U, or

else there is an attracting fixed point for f in U to which all orbits converge.

Proof. Since f is not an isometry, ρ(f(z), f(w)) < ρ(z, w), for all z, w ∈ U. In particular,

for any compact set K ∪U, there is a constant k ∈ R, k(K) < 1, such that

ρ(f(z), f(w)) < k · ρ(z, w), z, w ∈ K.

Suppose there is a z0 ∈ U whose iterates zn = fn(z0) visit some compact subset of U, L,

infinitely often. Take K to be a compact neighborhood L ∪ f(L). Then ρ(zm+2, zm+1) ≤
k ·ρ(zm+1, z) whenever zm ∈ L, and this occurs infinitely often, so ρ(zn+1, zn) 7→ 0. Therefore,

by continuity, any cluster point ζ ∈ L of the sequence {zn} is fixed by f, and is actually an

attracting fixed point, since ρ(f(z), ζ) ≤ k · ρ(z, ζ) in some neighborhood of ζ. Since the

iterates of f form a normal family, they converge on U to ζ. �

Proposition 4.2.20 (Analytic maps in hyperbolic components). Suppose U is hyperbolic,

f : U 7→ U is analytic, and f is an isometry with respect to the hyperbolic metric. Then,

exactly one of the following holds:

1. fn(z) 7→ ∂U, for all z ∈ U .

2. fm(z) = z for all z ∈ U and some fixed m ≥ 1, m ∈ N.

3. U is conformally a disk, and f is conjugate to an irrational rotation.
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4. U is conformally an annulus and f is conjugate to an irrational rotation or to a reflec-

tion followed by an irrational rotation.

5. U is conformally a punctured disk, and f is conjugate to an irrational rotation.

Proof. Since f is an isometry with respect to the hyperbolic metric, f is a conformal self-map

to U.

Suppose first U is simply connected. Let φ map U conformally to the open unit disk ∆.

Then, S = φ · f · φ−1 is a conformal self-map of ∆, a Möbius transformation. If S has fixed

points on the unit circle, then |Sn| 7→ 1 and (i) holds. If S has a fixed point in the disk, we

may assume it is the origin, so S is a rotation and either (ii) or (iii) holds.

Now assume U is not simply connected. Let ψ : ∆ 7→ U be the universal covering map, and

let G be the associated group of covering transformations, that is the group of conformal

self-maps, g, of ∆ satisfying ψ · g = ψ. The lift of f to the unit disk via ψ is a Möbius

transformation F, which satisfies ψ · F = f · ψ. Let Γ be the group obtained by adjoining F

to G.

We first assume that Γ is discrete (orbits accumulate only on ∂∆). Since no iterate fk of f is

the identity on U, no iterate F k of F belongs to G. Γ being discrete implies gFK(0) 7→ ∂∆

uniformly in g ∈ G, so fk(z0) 7→ ∂U and (i) holds.

Suppose now Γ is not discrete. Let Γ be the closure of Γ in the Lie23 group(∗) of conformal

self-maps of ∆, and let Γ0 be the connected component of Γ containing the identity. If g ∈ G
then also FgF−1 ∈ G, since

ψ · (F · g · F−1) = f · ψ · g · F−1 = f · ψ · F−1 = f · f−1 · ψ = ψ.

It follows that Γ, and hence Γ0, also conjugates G to itself. Since G is discrete and Γ0 is

connected, hgh−1 = g for all h ∈ Γ0 and g ∈ G, and every g ∈ G commutes with every

h ∈ Γ0.

Choose h ∈ Γ0 which is not the identity. Since G commutes with h, it belongs to the one-

parameter group generated by h. Since G is discrete and infinite, we conclude that G has

the form {gn}∞−∞. This means that the fundamental group of U is isomorphic to Z, and U

is doubly connected. Since U is hyperbolic, U can not be a punctured plane, and U is either

an annulus or a punctured disk. All in all one of the (ii), (iv) or (v) must hold. �

Proposition 4.2.21 (Boundary of hyperbolic components). Suppose U is hyperbolic, f :

U 7→ U is analytic on U and across ∂U, and fn(z0) 7→ ∂U for some z0 ∈ U. Then, there

23Marius Sophus Lie (1842 - 1899) was a Norwegian mathematician. He created the theory of continuous

symmetry and applied it to the study of differential equations and geometry.
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is a fixed point ζ ∈ ∂U for f such that fn(z) 7→ ζ for all z ∈ U. Either ζ is an attracting

fixed point, or ζ is a parabolic fixed point with multiplier f ′(ζ) = 1.

Proof. By 2.0.18, the spherical distances between the iterates zn and zn+1 of z0 tend to 0.

Therefore the limit set of {zn} is a connected subset of ∂U, and furthermore, by continuity

of f, any limit point is a fixed point for f. Since the fixed points of f are isolated, we conclude

that zn 7→ ζ for some fixed point ζ ∈ ∂U of R. The orbit of every other z ∈ U also converges

to ζ, since it remains at a bounded hyperbolic distance from the orbit of z0. The fixed point

ζ is not repelling, since zn 7→ ζ.

Suppose f ′(ζ) = e2πiθ, where θ is rational. Then U is contained in the basin of attraction

associated with one of the petals of ζ. Since the local rotation f at ζ induces a cyclic

permutation of the petals at ζ, and since f leaves U invariant, in fact f induces the identity

permutation and f ′(ζ) = 1.

Suppose f ′(ζ) = e2πiθ, where θ is irrational. Assume ζ = 0. Let z0 ∈ U, and let V be a

relatively compact subdomain of U such that V is simply connected and z0 and z1 = f(z0)

belongs to V. Since f is univalent near 0, and fn 7→ 0 uniformly on V, we can assume each

fn is univalent on V. Then

φn(z) = fn(z)
fn(z0)

, z ∈ V.

is also univalent on V, φn(z0) = 1, and 0 /∈ φn(V). Let ψ be the Riemann map from ∆ to

V, ψ(0) = z0. Then hn(ζ) = φn(ψ(ζ))− 1 univalent on ∆, hn(0) = 0, h′n(0) = φ′n(z0) · ψ′(0),

and hn omits -1. Therefore, the function hn
h′n(0)

belongs to S and omits −1
h′n(0)

. The Koebe

one quarter theorem implies |h′n(0)| ≤ 4. Since S is a normal family, the sequence { hn
h′n(0)
} is

normal on ∆, as is {hn}. Consequently, {φn} is normal on V.

We claim that all limit functions of {φn} are non-constant. For if |φn − 1| < δ, then fn(V)

would be included in a narrow angle with vertex 0, and if this angle would be smaller

than θ
3

then since f(z) ∼= eiθ · z near 0, fn+1(V ) would be disjoint from fn(V), contrary

to hypothesis. Thus φ′n(z0) is bounded away from 0. Applying again Koebe's one quarter

theorem we deduce that there is ρ > 0 such that φn(V) contains a disk centered at 1 of

radius ρ. Therefore, fn(V) contains a disk centered at zn of radius ρ|zn|.

Choose N so that the disks of radius ρ
2

centered at e2πimθ, 0 ≤ m ≤ N , m ∈ N, cover an

annulus containing the unit circle. Since zm+1 = e2πiθ · zm + o(|zm|), the disks centered at zm

of radius ρ|zm|, n ≤ m ≤ n + N , cover an annulus containing zn and zn+1 for n sufficiently

large. Therefore, ∪fn(V) contains a punctured neighborhood of 0, and 0 is an isolated

point of ∂U. But then theorem 3.2.11 implies that f is conjugate to a rotation about 0,

contradicting fn(z) 7→ 0. We conclude that f ′(ζ) can not be irrational.
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To end the proof, we observe that since Rn has degree > 1, no power of R can coincide with

the identity and case (ii) of 4.2.20 is ruled out. Since J has no isolated points, case (v) of

4.2.20 is also impossible for R. Finally, since there are no attracting periodic points in J,

4.2.21 produces a parabolic fixed point in ∂U whenever fn(z) 7→ ∂U . �

4.3 POLYNOMIALS

For d ≥ 2, g ∈ N, let f ∈ pold, that is

f(z) = ad · zd + ...+ a1 · z + a0

with ad 6= 0. Note that f(∞) = f−1(∞) = ∞. Therefore, f has d − 1 critical points when

counted with multiplicity and one critical point of multiplicity d− 1 at infinity. This point

at infinity is superattracting, and its basin of attraction

Af (∞) = {z ∈ C|fn(z) 7→ ∞, when n 7→ ∞}

is always connected, since f has no poles.

Definition 4.3.1. The complement

Kf = C \ Af (∞)

is called the filled Julia Set of f, and is compact and completely invariant. The common

boundary

Jf = ∂Af (∞) = ∂Kf .

is called the Julia Set, Jf . Finally, the Fatou Set, Ff , consists of the connected component

Af (∞) and all connected components of the interior of Kf , if there is any.

Definition 4.3.2 (Green’s function). Set A∗f (∞) = Af (∞) \ {∞} and U∗ = U \ {∞}. The

Green’s function for Kf is the real continuous harmonic function g : A∗f (∞) 7→ R+ which

extends log|φ| : U∗ 7→ (log(r),∞) as follows:

g(z) =

{
log|φ(z)| if z ∈ U∗

1
dk
g(fk(z)) if fk(z) ∈ U∗
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Definition 4.3.3 (Equipotential). Since g(f(z)) = d ·g(z) for z ∈ U∗, the function g is well

defined in all of A∗f (∞). It may also be extended to the whole plane by defining g ≡ 0 on

Kf . For ρ > 0, the level set

gρ = g−1(ρ) = {z ∈ A∗f (∞)|g(z) = ρ}

is called the equipotential of potential ρ. If eρ > r, it is a simple closed curve which surrounds

the Julia Set.

Let φ conjugate P (z) to ζd near ∞, with P (z) = z + o(1) at ∞. We have that log|φ(z)|
coincides with Green’s function, G(z), for A(∞) with pole at∞. The equation for φ(z) gives

an equation for Green’s function:

G(P (z)) = d ·G(z), z ∈ A(∞)

Therefore, P maps level curves of G to level curves, increasing d-fold the value of Green’s

function so that this function provides a precise measure of the escape to ∞. The exterior

{G > r} of the level curve is invariant under P, and P maps it d-to-one onto {G > r · d}.
For r large enough, φ(z) is defined on {G > r}, and maps it conformally onto {|ζ| > er}.
The equation φ(z) = (φ(P (z)))

1
d allows us to extend φ(z) to {G > r

d
}, provided no critical

point of P belongs to this domain.

Now, there are two cases to consider:

1. If there is no critical point of P in A(∞), we can continue φ indefinitely to all of A(∞),

and φ maps A(∞) conformally onto the complement {|ζ| > 1} of the closed unit disk

in the ζ-plane. In particular, A(∞) is simply connected, and the Julia set J = ∂A(∞)

is connected.

2. Otherwise, we extend φ until we reach a level line {G = r} of Green’s function that

contains a critical point of P. This situation is then as follows: the domain {G > r} is

simply connected, and mapped by φ conformally onto {|ζ| > er}. The domain forms

several cusps at the critical point, and φ(z) approaches different values, as z approaches

the critical point through different cusps. The level line {G = r} consists of at least

two simple closed curves which meet at the critical point. Each of these curves are of

J, or else G would be harmonic and positive, and therefore constant within the curve.

Therefore, J is disconnected. In fact, in this case J has uncountably many connected

components. This can be seen by noting that the critical points of G are the critical

points of P and all their inverse iterates, and by following the splitting of level curves

at each such critical point.
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What we have stated here, can be summarized in the following theorem.

Theorem 4.3.4 (Connectivity of polynomial Julia Sets ). Let f ∈ Pold, then:

1. Kf is connected iff Crit(f) ⊂ Kf . In this case, the restriction of f to C \ Kf is

conformally conjugate to z 7→ zd on C \D.

2. Kf is totally disconnected if Crit(f) ⊂ Af (∞). In this case, Jf is a Cantor Set and

Jf = Kf .

3. if, at least, one critical point of f belongs to Af , then both Kf and Jf are disconnected

and have uncountably many connected components.

As there is a superattracting fixed point at infinity, it follows from the Böttcher coordinates

theorem that there exists a neighborhood, U, of ∞ and φ : U 7→ C a local conformal conju-

gation which conjugates f to zd in U. If the polynomial f is monic, we call the conjugation

determined by the condition f(z)
z
7→ 1 when z 7→ ∞ Böttcher coordinate of f around ∞.

Assume f is monic, and let φ : U 7→ C \D be the Böttcher coordinate which conjugates f to

z 7→ zd in U, and which is mapped outside of Dr for the maximum r ≥ 1. If r = 1, by the

previous theorem Kf is connected, and if Kf is disconnected, then r > 1 and ∂U contains a

critical point.

Definition 4.3.5 (External rays). Suppose Kf is connected. Then, for t ∈ T = R \ Z, the

curve

Rf (t) = {z ∈ C \Kf |arg(φ(z)) = 2 · π · t}

is called the external ray of argument t. Note that Rf (t) is mapped bijectively under f to

Rf (d · t) with arguments in T. In particular, if dp · t ≡ t(mod 1), then the ray Rf (t) is

p-periodic.

Definition 4.3.6 (Landing point). If the limit

γ(t) = limφ−1(r · e2·π·i·t), r 7→ 1+

exists, we say that Rf (t) lands at the point γ(t), which necessarily belongs to the Julia Set.

All rays of rational argument land at a repelling or parabolic periodic point. If Rf (t) lands

at γ(t), then Rf (d · t) lands at f(γ(t)). Therefore, the landing points of a k-cycle of rays,

must form a periodic orbit of a period dividing k.

Conversely, every repelling or parabolic point z0 is the landing point of, at least, one periodic

ray. If k is the period of z0, only finitely many rays, say q’, land at z0 and these rays are all
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periodic and of the same period. They are transitively permuted by fk, and this permutation

must preserve their circular order, since f is a local homeomorphism at z0; therefore, the

permutation, must send each ray to the one which is p’ further counterclockwise for some

p′ < q′. We call p
q

the combinatorial rotation number of f at z0, with p
q

= p′

q′
with the lowest

common terms.

There are polynomials for which not all rays land. However, Fatou showed that the set of

arguments t ∈ T for with Rf (t) does not land measures zero.

Theorem 4.3.7 (Continuous landing of rays). For any polynomial f with connected Julia

Set, the following conditions are equivalent:

1. every external ray Rt lands at a point γ(t) which depends continuously on the argument

t.

2. the Julia Set is locally connected.

3. the Filled Julia Set is locally connected.

4. the inverse of the Böttcher coordinate φ−1 : C \D 7→ C \Kf extends continuously to

∂D and therefore induces a continuous parametrization γ : T 7→ Jf of the Julia Set,

given as γ(t) = φ−1(e2·π·i·t).
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5 QUADRATIC POLYNOMIALS AND THE

MANDELBROT SET

In this section, we consider holomorphic families of rational maps

{fλ : C 7→ C, λ ∈ Λ} ⊂ Rat

where the parameter space, Λ, is a complex manifold of dimension n ≥ 1, n ∈ N so that the

map r : Λ× C 7→ C, r(λ, z) = fλ(z) is holomorphic, that is, the coefficients of fλ(z) depend

holomorphically on λ.

Given a quadratic polynomial, P (z) = a · z2 + b · z + d, we can conjugate it by z′ = a · z
to Q(z) = z2 + α · z + β. Furthermore, if we make this polynomial centered (the sum of its

critical values is 0), we obtain a polynomial of the form Mc = z2 + c, for some c ∈ C, which

is conjugated to the original polynomial P (z). Apart from its simplicity, the study of the

quadratic family is very interesting, as universal concepts arise when doing so.

Proposition 5.0.1. Given Qc(z) = z2 + c, and R = max{2, |c|}, if a point z0 satisfies

|z| ≥ R, |z| > 2, then

lim Qn
c (z) =∞

Proof. If |z| > R,then |z| > 2 and |z| > |c|, and therefore

|z2+c|
|z| ≥ |z| −

|c|
|z| ≥ |z| − 1 = 1 + ε, ε > 0, ε ∈ R.

In the first inequality, we have used that |a+ b| ≥ ||a| − |b||. All in all, |Qc(z)| > |z| and the

succession |Qn
c (z)| tends to infinity. In particular, this proposition shows that the basin of

attraction of the infinity point always exists. �

Corollary 5.0.2. (Localization criterium): The filled Julia Set, Kc, of the polinomial Qc is

contained in the disk of center 0 and radius R, where R = max{2, |c|}.

Theorem 5.0.3. If P n
c (0) 7→ ∞, then the Julia Set, Jc is totally disconnected. Otherwise,

if P n
c (0) is bounded, the Julia Set is connected.

Definition 5.0.4. The set of parameters values c such that P n
c (0) is bounded is called Man-

delbrot24 Set, and denoted by M. Therefore, c ∈ M iff 0 does not belong to the basin of

attraction of the superattracting point ∞.

24Benôıt Mandelbrot(1924 - 2010) was a Polish mathematician, mostly known by his work with fractals.

He used a great technological breakthrough on the 1970 's, the computer, to visualize the fractals already

known at that time and to show his results.
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5 QUADRATIC POLYNOMIALS AND THE MANDELBROT SET

Theorem 5.0.5 (Structure of Mandelbrot Set). The Mandelbrot Set is a closed, simply

connected subset of of the disc {|c| ≤ 2}, intersecting the real axis in the interval [−2, 1
4
].

Furthermore, M consists of the parameters c such that |P n
c (0)| ≤ 2, ∀n ≥ 1.

Figure 4: Mandelbrot Set

Proof. Suppose |c| > 2, and we will see by induction that |P n
c (0)| ≥ |c| · (|c| − 1)2

n−1
, and

in this case P n
c (0) 7→ ∞, and therefore c /∈ M.

1. |P 1
c (0)| = |c|, and |c| ≥ |c| · 1 = |c|, n = 1.

2. We suppose the statement is true up to a certain n ∈ N, and we check if it is also true

for the next natural number. |P n+1
c (0)| = |(P n

c (0))2 + c| ≥ (|c| · (|c| − 1)2
n−1

)2 − |c| =
(|c|2 · (|c| − 1)2

n
)− |c|, and (|c|2 · (|c| − 1)2

n
)− |c| ≥ (|c| · (|c| − 1)2

n
), because |c| > 2,

and therefore (|c| − 1) > 1.

To prove the second part of the theorem, suppose |Pm
c (0)| = 2 + δ, for some δ > 0, m ≥ 1.

We consider two different cases:
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5 QUADRATIC POLYNOMIALS AND THE MANDELBROT SET

1. if |c| = |Pc(0)| > 2, then c /∈ M

2. if |c| ≤ 2, then |Pm+1
c (0)| ≥ (2+δ)2−2 ≥ 2+4 ·δ, and by induction we get |Pm+k

c (0)| ≥
2 + 4k · δ 7→ ∞, and again c /∈ M

From these second part of the theorem, it follows that M is closed.

As for the final statement, if c is real, Pc(0)− x has no real roots if c > 1
4
, one root at x = 1

2

if c = 1
4

and two real roots for each c < 1
4
. Therefore, if c > 1

4
, P n

c (0) is increasing, and tends

to infinity, since any finite limit should satisfy P n
c (0) = x, for some n ≥ 1, so c /∈ M. Now, if

f c ≤ 1
4
, we consider a = 1+

√
1−4·c
2

the larger root of Pc(0)− x, and if c also satisfies c ≥ −2,

then a ≥ |c| = Pc(0). Then, P n
c (0) ≤ a implies |P n+1

c (0)| = |P n
c (0)2 + c| ≤ a2 + c = a, and

the sequence is bounded. All in all, M ∩ R = [−2, 1
4
]. �

Theorem 5.0.6. For each λ, |λ| < 1, there is a unique c = c(λ) such that Pc has a fixed

point with multiplier λ. The values, c, for which Pc has an attracting fixed point form a

cardioid C ⊂M, and ∂C ⊂ ∂M. If c ∈ C, then Jc is a quasicircle(∗).

Proof. The fixed points of Pc are zc = 1±
√
1−4c
2

, with multiplier λ(c) = 2·zc. Since c = λ
2
− λ2

4
,

the condition |λ(c)| < 1 corresponds in the c-plane to the cardioid:

C = {λ
2
− λ2

4
: λ < 1}

It is a subset of M called the main cardioid of M. Since the function λ
2
− λ2

4
is one-to-one in

the closed unit disk, we get the uniqueness.

Let W be the component of the interior of M containing C. By theorem 5.0.5 the polynomials

fn(c) = P n
c (0) are uniformly bounded in W, and they converge to the attracting fixed point

zc on C. However, if c /∈ C, then zc is a repelling fixed point, and we can not have P n
c (0) 7→ zc

unless P n
c (0) = zc for some n large enough. As this can occur only in a countable set, we

conclude that W = C �

Theorem 5.0.7. Suppose there is an attracting cycle of length m for Pa. Then a belongs to

the interior of M. If W is the component of the interior of M containing a, then Pc has an

attracting cycle {z1(c), ..., zn(c)} of length m for all c ∈W, where each zj(c), j ∈ {1, ...,m}
depends analytically on c.

Proof. Let z1(a) be an attracting periodic point of period m for a. Applying the implicit

function theorem to Q(z, c) = Pm
c (z) − z, we obtain an attracting periodic point z1(c) for

Pc of period m, which depends analytically on c in a neighborhood of a. In particular,

a belongs to the interior of M, and we name W the component of M containing a. The
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5 QUADRATIC POLYNOMIALS AND THE MANDELBROT SET

sequence fj(c) = P jm
c (0) is bounded, and therefore normal, in W, and it converges at a to

some point in the cycle z1(a), say to z1(a) itself.

Since z1(c) is attracting, fj(c) converges to z1(c) for c near a. By normality, fj(c) converges

on W to some analytical function, g(c) which satisfies

Q(g(c), c) = 0 near a(and therefore in W)

We know that g(c) can be a repelling periodic point for a fixed c ∈W only if P jm
c (0) actually

coincides with g(c) for j sufficiently large. This occurs a set which is at most countable. Since

the multiplier, λ(c), of the cycle is analytic, we conclude that |λ| < 1 on W, that is, the

cycle of g(c) is attracting for all c ∈W. �

The components of the interior of M associated with attracting cycles are called hyperbolic

components of the interior of M. This name comes from the fact that Pc is hyperbolic when

c /∈ M or Pc has an attracting cycle. It is not known whether the hyperbolic components

completely fill out the interior of M, but it do is known that they are dense in the interior

of M.

Definition 5.0.8. A point c ∈M is called a Misiurewicz25 point if 0 is strictly preperiodic,

that is, P n
c (0) = P k

c (0) for some n > k > 0, but P n
c (0) 6= 0 for all n ≥ 1

A polynomial Qc can have, at most, one attracting cycle in C. It follows that Qc is hyperbolic

iff Qc has an attracting cycle in C, or if the orbit of the critical point is attracted to the

superattracting fixed point at ∞. In this case, the c-value is called a hyperbolic parameter.

If Qc0 has an attracting p-cycle in C, it follows from the Implicit Function Theorem that this

p-cycle moves holomorphically for parameter values close to c0 and the cycle is still attracting.

As a consequence, c0 ∈ int(M). The maximal open set containing c0, Ω, of parameter for

which a p-cycle exists and remains attracting, is called a hyperbolic component of M.

It is not known yet if all the components of int(M) are hyperbolic. However, there is a

conjecture, which has been proved true for parameters in the real line:

Conjecture 5.0.9 (Hyperbolic Conjecture). The interior of M is equal to the union of all

the hyperbolic components:

int(M) =
⋃

Ω

for every Ω which is a hyperbolic component.

25Michael Misiurewicz(1948 - ) is a Polish mathematician who is known for his contributions to dynamical

systems and fractal geometry.
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Definition 5.0.10 (Multiplier map). Given a hyperbolic component, Ω, of period p, the

multiplier map is defined as

Λ : Ω 7→ D

satysfing Λ(c) = (Qp
c)
′(z(c)), where z(c), for each c ∈ Ω, denotes a point in the attracting

p-cycle so that c 7→ z(c) is holomorphic. It follows then that Λ is holomorphic.

Theorem 5.0.11 (Multiplier map). Let Ω be a hyperbolic component of M of period p. Then,

the multiplier map is a conformal isomorphism which extends continuously to Λ : Ω 7→ D.

It follows from this theorem that all hyperbolic components are topological discs, each with a

center, that is, the unique parameter value for which the attracting cycle is superattracting,

i.e. Λ−1(0).

Definition 5.0.12. The boundary of Ω has a unique point, called the root of Ω, for which

the multiplier of the p-cycle is exactly 1.

Attached to every boundary parameter for which the multiplier of the cycle has derivative

e2·π·i·
r
s we find a new hyperbolic component of period p · s. This explains part of the fractal

structure which we encounter near any point of the boundary of M.

Theorem 5.0.13 (Parameters in ∂M). For the boundary of the Mandelbrot Set, we have

the following results:

1. Misiurewicz points are dense in ∂M.

2. For each c ∈ ∂M there exists a sequence {cn}n of centers of hyperbolic components

such that cn 7→ c as n 7→ ∞.

3. If Qc has a parabolic, Siegel or Cremer cycle, then c ∈ ∂M.

Of special interest are the parameter values of c for which Pc has a superattracting cycle.

The critical point 0 must be in this set, so these are precisely the c's for which 0 is periodic,

that is, the solutions of P n
c (0) = 0.

Theorem 5.0.14. The values of c ∈ M corresponding to superattracting cycles cluster on

the entire boundary ∂M. In particular, the interior of M is dense in M.

Proof. Let U be a disk that meets ∂M and such that 0 /∈ U. Suppose U contains no value c

for which 0 is periodic and consider the branch of
√
−c defined on U. We have P n

c (0) 6=
√
−c,

or else P n
c (0) = 0 and 0 is periodic. Therefore, fn(c) = Pnc (0)√

−c omits the values 0, 1 and ∞
on U, hence is a normal sequence on U. But, since U meets ∂M, it contains both values c

with fn(c) bounded and with fn(c) 7→ ∞, so the sequence can not be normal.�
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The most important conjecture about the Mandelbrot Set is about a topological property:

Conjecture 5.0.15 (MLC). The Mandelbrot Set, M, is locally connected.

This conjecture would imply the HC conjecture as well, and is the focus of many studies

currently.
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6 SINGULAR PERTURBATIONS OF CUBIC

MILNOR POLYNOMIALS

In the previous section, we have studied the parameter space of the map

f(z) = z2 + c, c ∈ C

And now we want to take a look at the changes that this, and other families of polynomial

maps, experience when we add a pole singularity.

6.1 SINGULAR PERTURBATIONS

Robert Devaney, Daniel Look and David Uminsky studied the behavior of the Julia Set of

functions in the family of rational maps given by

Fλ(z) = zn + λ
zd

where n, d ∈ Z and n ≥ 2, d ≥ 1. For λ = 0, we get the map z 7→ zn, which has a known

and well understood behavior, and for which the Julia set is also clear.

However, when λ 6= 0, we produce several modifications to the initial map:

1. The map Fλ now has degree n+ d.

2. The origin is no longer a fixed point, but a pole instead.

3. There are n+ d new critical points, in addition to the original critical points at 0 and

∞. The orbits of the critical points at∞ and the origin are fixed, and eventually fixed

respectively, so their behavior is completely determined. As for the orbits of all the

other critical points, they behave symmetrically with respect to rotation through angle
2·π
n+d

, so essentially we have only one additional ”free” critical orbit for each of these

maps.

For the family Fλ, the point at ∞ is still a superattracting fixed point, and therefore it

still has an immediate basin of attraction, which we denote by B. However, this basin of

attraction may consist of infinitely many disjoint preimages of the immediate basin of∞. In

particular, the component of the basin that contains 0 may be disjoint from B, and in this

case we denote this component by T. The following result was established:

Theorem 6.1.1 (The escape Trichotomy). Suppose the orbits of the free critical points of

Fλ tend to ∞. Then
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1. If one of the critical values lies in B, then J(Fλ) is a Cantor Set and Fλ|J(Fλ) is a

one-sided shift on n+ d symbols. Otherwise, J(Fλ) is connected and the preimage T is

disjoint from B.

2. If one of the critical points lies in T, then J(Fλ) is a Cantor set of simple closed

curves(quasicircles).

3. If one of the critical values lies in a preimage of T, then J(Fλ) is a Sierpinski curve(∗).

Figure 5: The Julia Set for z4 + 0.3
z4

, which is a Cantor Set.

The proofs to all the results found by Devaney, Look and Uminsky can be found in [8].

6.2 MILNOR POLYNOMIALS

Any cubic polynomial is of the form P (z) = A·z3+B ·z2+C ·z+D, for some A,B,C,D ∈ R.

However, we can conjugate P (z) to S(z) = z3 + α · z2 + β · z + γ by a linear map, making

it monic. Furthermore, by an affine conjugacy, we can make S(z) centered (the sum of its

critical points is 0), therefore obtaining the condition α = 0, so that we get the polynomial

R(z) = z3+β ·z+γ. Its critical points are x± = ±
√
−12β
6

, and if we write β = −3 ·a2 for some

a ∈ R, the critical points become x± = ±a. All in all, we have obtainedQ(z) = z3−3·a2·z+γ,

conjugated to the original polynomial P (z). Their natural parameter space is C2, and one

way to try to understand it is by taking dynamically meaningful one-dimensional slices. In
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Figure 6: The Julia Set for z4 + 0.04
z4

, which is a Cantor Set of circles.

Figure 7: The parameter space for z4 + λ
z4

.

[14], Milnor considers the slice formed by those polynomials for which a is a fixed point, which

makes b = 2·a3+a, therefore resulting in polynomials of the from Pa(z) = z3−3·a2·z+2·a3+a.

If we move the superattracting fixed point to 0 with the transformation z 7→ z − a, and use

the conjugation z 7→ −1
3a
· z, we get Pa(z) = 9a2 · z2 · (z − 1). Finally, we can write b = 9a2,

so that the resulting polynomial has the form Pb(z) = b · z2 · (z− 1). The new critical points

are now located at z = 0 and z = 2
3
. We can observe that P ′b(0) = 0, and therefore 0 is
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actually a superattracting fixed point. We will denote by A(0) the basin of attraction of this

superattracting fixed point.

Similarly to the result shown at 4.3.4 we had for quadratic polynomials, we know that if

P n
b (2

3
) 7→ ∞ when n 7→ ∞, then its Julia set is disconnected. On the other hand, if P n

b (2
3
) is

bounded when n 7→ ∞, then its Julia set is connected. We can summarize this result in the

following two possibilities:

1. 2
3
∈ K(P ).

2. P n
b (2

3
) 7→ ∞ and K(P ) is disconnected, but not a Cantor Set.

In this same line of thinking, we can have three different situations when iterating the point

z = 2
3
:

1. 2
3
∈ A(0). We say that the point z = 0 captures the orbit of 2

3
.

2. P n
b (2

3
) 7→ ∞.

3. {P n
b (2

3
)} is bounded, but is not captured by the point z = 0.

Figure 8: Parameter space for b · z2 · (z − 1).

In Figure 8, when drawing the parameter space for Pb(z) = b ·z2 ·(z−1), we paint in blue the

values of a for which P n
b (2

3
) is captured by the superattracting fixed point z = 0, in black the

values of a for which P n
b (2

3
) does not escape to infinity, but is not captured by z = 0 either,

and in red(varying its tone depending on the number of iterations needed for the orbit to

escape to infinity) the rest of the values of b.
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6.3 SINGULAR PERTURBATIONS OF MILNOR CUBIC POLY-

NOMIALS

We add a pole singularity at z = 0 to the map Pb(z), controlling the size of the perturbation

with the parameter λ, obtaining a family of functions of the form

Pb,λ(z) = b · z2 · (z − 1) + λ
z3

Our aim is to a do a numerical exploration, looking for interesting topological objects in form

of Julia Sets. After adding a pole singularity, we now have a rational function of degree 6,

with 9 critical points, one of which is the point at infinity with multiplicity 3. By computing

P ′b,λ(z), we see that its critical points satisfy

b · z6 − 2
3
· b · z5 = λ

When λ = 0, this equation has 6 solutions: the origin with multiplicity 5, and z = 2
3

with

multiplicity 1. By continuity, for small enough values of |λ| the 6 solutions of the equation

become simple zeros of P ′b,λ(z) which are approximately symmetrically distributed around

the origin and 2
3
. Therefore, although we can not compute the exact value of the new critical

points, we will iterate z = 2
3
, because for |λ| small enough, the qualitative behavior of the

orbit P n
b,λ(z) is the same.

The point at∞ is a superattracting fixed point for Pb,λ(z), and, in a neighborhood of infinity,

Pb,λ(z) is conjugate to z 7→ z3, so we have an immediate basin of attraction, B, at ∞. Since

Pb,λ(z) has a pole of order 3 at 0, there is an open neighborhood of 0 that is mapped 3 to

1 onto a neighborhood of ∞ in B. If B does not contain this neighborhood, then there is a

disjoint open set T about 0 that is mapped 3 to 1 onto B. We call T the trap door since any

point whose orbit eventually enters B must pass through T en-route to B. Since the degree

of Pb,λ(z) is 6, all points in the preimage of B lie either in B or in T.

In Figure 9 we see that, when we add a pole singularity at the superattracting fixed point

z = 0 to Pb(z), for |λ| small, all the components previously painted in blue suffer a dramatic

change. On the other hand, both the components painted in black or red, suffer little to

no qualitative variation. This happens because this perturbation is only truly meaningful in

a neighborhood of 0, and therefore all the values of b for which P n
b,λ(

2
3
) does not visit such

neighborhood of 0, have the same behavior as before. We can see three examples of very

different parameter spaces, one of which is formed by Sierpisnki curves, and the other two

which are Cantor Sets of circles, and the trap doors can also be observed, in form of red
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Figure 9: Comparison between the parameter space for b · z2 · (z − 1) + 10−5

z3
(top left),

b · z2 · (z − 1) + 10−7

z3
(top right) and b · z2 · (z − 1) + 10−11

z3
(bottom center).

disks around z = 0. This image also shows that the iteration of z = 2
3

is a good enough

approximation, because the Mandelbrot-like shapes appear well shaped and detailed.

In figure 10, similarly to the Escape Trichotomy established by Devaney, Look and Uminsky,

we have included examples for each of the three type of Julia Sets described in that result:

a Cantor Set, a Cantor Set of circles and a Sierpinski curve.

One of the main reasons for choosing Milnor Cubic Polynomials as the object of study when

adding the pole singularity, was the fact that these functions already presented interesing

Julia Sets before the addition of the perturbation, and we wanted to see if such behavior

persisted afterward. In this direction, in figure 11 we see two examples of curious Julia Sets:

a disconnected Julia set which is not a Cantor Set and a structure very similar to a Sierpin-

ski carpet, but which can not be such object, because the boundaries of the complementary

domains are not Jordan Curves. We also see that not all critical points need to act in a

symmetrical way: here 4 of the critical points close to z = 0 form a periodic orbit of period

4, while the other converges to a fixed point.
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Figure 10: A Cantor set for b · z2 · (z − 1) + 0.01
z3

, b = 5 + 5i (top left), a Cantor set of circles

for b · z2 · (z − 1) + 10−5

z3
, b = 10−5 (top right) and b · z2 · (z − 1) + 10−5

z3
(bottom right), and a

Sierpinski carpet for b · z2 · (z − 1) + 10−5

z3
(bottom right).
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Figure 11: The Julia Set for b · z2 · (z − 1) + 5.32264·10−06

z3
, b = 5.55 (top left), and a zoomed

image of it (top right), and the Julia Set for b · z2 · (z − 1) + 10−5

z3
, b = −8 (bottom center).
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7 GLOSSARY

Conformal map A map f : U 7→ V is said to be conformal at a point u0 ∈ U if it pre-

serves oriented angles between curves through u0 with respected to their orientation.

In complex analysis, f is conformal ⇔ it is holomorphic and f ′(z) 6= 0 ∀z ∈ U .

Doubly connected A topological space, X, is said to be doubly connected if it is non-

empty, path-connected, and its first two homotopy groups vanish identically, that is,

if

πi(X) ' 0, i = 1, 2.

where the left-hand side denotes the i-th homotopy group.

Equicontinuous Let X and Y be metric spaces and let F be a set of maps

f : X 7−→ Y

We say that F is equicontinuous at a point a ∈ X if ∀ε > 0, there is some δ > 0 such

that if d(x, a) < δ, then d(f(x), f(a)) < ε, x ∈ X, ∀f ∈ F.

Generic point Given a topological space X, we say that a point p ∈ X is generic if the

closure of the singleton set {p} is X.

Lie group A Lie group is a group which is also a a differential manifold, with the property

that the group operations are compatible with the smooth structure.

Locally connected Let X be a topological space, and let x ∈ X. We say that X is locally

connected at x if, for every open set V containing x, there exists a connected, open set

U, x ∈ U ⊂ V .

Meromorphic function We say that a function f : U 7→ C is meromorphic, if it is holo-

morphic in all of U except for a set of isolated points(the poles of the function) at each

of which the function must have a Laurent series.
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Möbius transformation Let a ∈ C, |a| ≤ 1. Then,

φa(z) = z−a
1−a·z

is a Möbius transformation. φa is a conformal self-map of the unit disk for each a,

and any conformal self-map of the unit disk to itself is a composition of a Möbius

transformation with a rotation.

Path A path in a topological space X, is a continuous function from a closed interval to X,

i.e, a continuous function f : I = [a, b] 7→ X, for some a, b ∈ R.

Pole Suppose U ⊂ C is an open set, p ∈ U and f : U \ p 7→ C is an holomorphic function.

If there exists a holomorphic function g : U 7→ C such that g(p) 6= 0 and a positive

integer, n ≥ 0, n ∈ N such that for all z ∈ U \ p, f can be expressed as

f(z) = g(z)
(z−p)n

we say that p is a pole of f.

Quasicircle A quasicircle is the image of a circle by a quasiconformal mapping of the ex-

tended complex plane.

Quasiconformal mapping Let f : C 7→ C, and we define the dilatation of the mapping f

at the point z as

Df (z) = |fz |+|fz |
|fz |−|fz | ≥ 1

and we define the maximal dilatation of the mapping as

Kf = supzDf (z)

We say that f is quasiconformal if is absolutely continuous on lines, and its maximal

dilatation is finite.

Sierpinski curve A Sierpinski curve is a planar set that is homeomorphic to the Sierpinski

carpet fractal.
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Simply connected We say that a set is simply connected if it is path-connected, and it’s

fundamental group is the trivial group.

Uniform convergence A sequence of functions fn, n = 1, 2, 3, ... is said to be uniformly

convergent to f for a set, E, of values of x if, ∀ε > 0, there exists n0 ∈ N such that

|fn(x)− f(x)| < ε, ∀n ≥ n0, ∀x ∈ E

Winding number The winding number of a closed curve around a point is an integer show-

ing the number of counterclockwise travels of the curve around the point. Formally,

given a closed curve γ, and a point z0 /∈ γ, if such curve does not pass through the

origin (if it does, we can redefine the coordinate system), we can express γ in polar

coordinates, making it dependent of r(t), θ(t), 0 ≤ t ≤ 1, so that, as the curve is closed,

θ(1)− θ(0) = 2π · k, for some k ∈ Z. Finally we define the winding number as

winding number := θ(1)−θ(0)
2π
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[9] Garijo, Antonio; Godillon, Sébastien; On McMullen-like mappings. 2014.

[10] Garijo, Antonio; Marotta, Sebastian; Rusell, Elizaabeth. Singular perturbations in the

quadratic family with multiple poles. Journal od Difference Equations and Applications

Vol. 19, 2013.
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