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Magnetic moments of theL„1405… and L„1670… resonances
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By using techniques of unitarized chiral perturbation theory, where theL(1405) andL(1670) resonances
are dynamically generated, we evaluate the magnetic moments of these resonances and their transition mag-
netic moment. The results obtained here differ appreciably from those obtained with existing quark models.
The width for theL(1670)→L(1405)g transition is also evaluated, leading to a branching ratio of the order
of 231026.
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I. INTRODUCTION

The evaluation of static properties of baryonic resonanc
like the magnetic moment, is a standard exercise when
has a wave function for the states. This is the case of
quark models where a thorough investigation of magn
moments and other static properties@1#, such as masses an
couplings to thepN system@2#, has been done.

The introduction of unitary chiral techniques has allow
one to show that the octet of the lowest energyJP51/22

baryonic resonances can be generated dynamically from
lowest order chiral Lagrangian and by the use of natural s
cutoffs or regularizing scales to make the divergent loop
tegrals finite. These findings allow one to classify tho
states as quasibound meson baryon states or, equivale
ordinary multiple scattering resonances in coupled chann
The L(1405) was one of the first resonances to receive
tention from the chiral unitary perspective@3–5#. The
N* (1535) was also generated within chiral unitary schem
in @6–8# and has been recently revised in@9# with the inclu-
sion of ppN channels. Recently theL(1670) andS(1620)
@10# and theJ(1620) states@11# have also been obtaine
within the same scheme, thus completing the octet of
namically generated states.

The chiral unitary approach, or unitarized chiral perturb
tion theory UxPT, uses the same chiral Lagrangians as ch
perturbation theory (xPT), but makes use of unitarity in
coupled channels which provides the imaginary part of
inverse of the scattering amplitude independently of the
namics of the problem. Since ImT21 is given by unitarity, it
is most natural to expand ReT21 in powers of the momen
tum, rather thanT, which is done inxPT. This is the essenc
of the inverse amplitude method which was used with o
channel in @12# and generalized to coupled channels
@13,14#. The method automatically enlarges the radius
convergence of the series expansion with respect toxPT and
provides the meson resonances up to 1.2 GeV. The basi
this new series expansion is the same as in the effec
range formula in quantum mechanics, except that the se
expansion in the meson meson interaction is done in pow
of p2 rather than in the momentum of the particle moving
a potential@15#. This gives us a hint of the merit of thi
0556-2813/2002/66~2!/025203~10!/$20.00 66 0252
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expansion, since, after years, the effective range formula
remained as the standard low energy expansion of the s
tering matrix in quantum mechanics.

The interest of this new approach goes beyond the
that it gives a good reproduction of the data up to mu
higher energies thanxPT. The method also allows one t
distinguish between dynamically generated and genu
resonances. What makes this distinction possible is the fi
ing of the work@16#, commonly known as resonance satur
tion hypothesis, that the terms in the second order Lagra
ian of Gasser and Leutwyler@17# can be obtained from the
exchange of, essentially, vector mesons. These vector
sons are assumed to be genuine states of QCD, in the s
that they would remain in the theory in the limit of largeNc .
On the other hand, in@18# it was found that, by explicitly
allowing the exchange of the bare vector meson resona
and scalar meson resonances and unitarizing the problem
means of theN/D method, the fit to the data demanded
clear coupling of the bare vector mesons to the meson me
states while the coupling of the bare scalar mesons was c
patible with zero. Yet the scalar resonances were neverthe
generated in the unitary scheme, which implied the resu
mation of a subseries of infinite loops. Since the loops
subleading in the largeNc counting, these states would dis
appear in the limit of largeNc , distinguishing them from the
genuine states which would still remain in the same lim
Hence, this would justify the name of dynamically genera
mesons by the multiple scattering of the mesons implied
the unitarized scattering matrix. This also means that th
dynamically generated states should be generated by m
of a reasonable unitary scheme with the input of only
lowest order chiral Lagrangian, with a scale of regularizat
of the natural size, around 1 GeV. This was indeed the c
and it was found that the Bethe Salpeter equation with
lowest order chiral Lagrangian reproduced perfectly well
meson meson scattering in the scalar sector as well as
scalar resonances up to 1.2 GeV@19–22#.

Turning back to the present subject of baryon resonan
one computes scattering transition amplitudes between
meson baryon channels, and one searches for poles for
nances in the second Riemann sheet. The poles provide
mass and width of the resonance states and, in addition
©2002 The American Physical Society03-1
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residues at the poles provide the product of the coupling
the resonance to the initial and final states of the conside
transition scattering matrix element. In this method, it is n
straightforward to evaluate other properties of the resona
like magnetic moments, since, unlike ordinary quantum m
chanical problems, in the present approach we do not h
wave functions and operators manifestly. Therefore, we n
to explore an alternative method to compute resonance m
netic moments from scattering matrices. This is the sub
of the present work. We compute the magnetic moment
the L(1405) andL(1670) resonances, as well as the tran
tion magnetic moment from theL(1670) to theL(1405),
which allows us to determine the partial decay width for t
decay L(1670)→L(1405)g. We also compare the resul
obtained here with those of ordinary quark models show
that there are appreciable differences between them. Thi
fers evidence that the nature of these states as dynami
generated from the multiple scattering of coupled chann
of mesons and baryons differs from an ordinary quark mo
description.

The paper is organized as follows. In Sec. II, we brie
describe the model that we use and show in detail the me
to compute scattering matrices. In Sec. III, we compare
scattering matrices with a resonance dominant form and
tract the magnetic moments. In Sec. IV, we present our
merical results, which are compared with quark model
sults in Sec. V. The final section summarizes our finding

II. EVALUATION OF THE MAGNETIC MOMENT

The procedure to evaluate the magnetic moment of
resonances proceeds in an analogous way to that for
N* N* p coupling in @7#. We evaluate theT matrix for the
processMB→M 8B8g using the chiral Lagrangian for th
coupling of the mesons and baryons and for the photon to
mesons and baryons. We sum the Feynman diagrams w
generate the resonance both on the left and on the right o
photon coupling. Isolation of resonance poles from these
grams then allows us to evaluate the resonance mag
moment.

The L(1405) resonance is generated in@4# by means of
the Bethe-Salpeter equation with a cutoff to regularize
loop integrals. The Bethe-Salpeter equation is given by

T5V1VGT, ~1!

where in the present method the termVGT is given as a
matrix product of the potentialV, the meson baryon propa
gator G, and theT matrix. The diagonal matrixG contains
the loop integral of a meson and baryon propagators. In g
eral, the productVGT involves an integral over off-shel
momenta. In the present approach that integral is gre
simplified, reducing the problem to a matrix product due
the on-shell factorizations ofV andT. The on-shell factoriza-
tion in @4# was done by incorporating the off-shell part of th
loops into renormalization of couplings of the lowest ord
Lagrangian, in analogy to what was done in the meson
son interaction in@19#. An explicit demonstration of the can
cellation of these terms with tadpole corrections can also
02520
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seen in@23# for thep-wave meson meson interaction in ther
channel. The on-shell factorization allows one to solve E
~1! to give

T5@12VG#21V, ~2!

in a simple matrix inversion. This has also been derived
ing theN/D unitarization method and dispersion relations
@5#. In this latter paper@5# the regularization of the loops i
done by means of dimensional regularization with subtr
tion constants in theG function. The same method was use
in @10# to obtain theL(1405) andL(1670) resonances
which is the one we follow here. The Feynman diagra
summed by Eqs.~1! and ~2! are given in Fig. 1.

The s-wave meson baryon interaction potentialV is de-
rived from the second order terms in the meson field of
chiral Lagrangian@24,25#:

Vi j 52Ci j

1

4 f 2 ~2As2Mi2M j !S Mi1E

2Mi
D 1/2S M j1E8

2M j
D 1/2

,

~3!

where the coefficientsCi j (5Cji ) are given in@4# and the
meson decay constantf is taken as an average valuef
51.123f p . The G function for each meson baryon chann
is given by

Gl~As!5 i2MlE d4q

~2p!4

1

~P2q!22Ml
21 i e

1

q22ml
21 i e

5
2Ml

16p2 H a~m!1 ln
Ml

2

m2 1
ml

22Ml
21s

2s
ln

ml
2

Ml
2

1
q̄l

As
$ ln@s2~Ml

22ml
2!12q̄lAs#

1 ln@s1~Ml
22ml

2!12q̄lAs#

2 ln@2s1~Ml
22ml

2!12q̄lAs#

2 ln@2s2~Ml
22ml

2!12q̄lAs#%J , ~4!

where m and M are taken to be the observed meson a
baryon masses, respectively, andm is a regularization scale
which is chosen to be 630 MeV as in@10#. This value for the
cutoff of the three-momentum of the intermediate states w
obtained in@4# by fitting the data ofK2N scattering into
different channels plus the properties of theL(1405) reso-
nance. Actually, since this was the only free parameter of
theory, it was fitted to reproduce the position of that res
nance and this was sufficient to reproduce its width plus
low energy cross sections ofK2p to its different coupled
channels. In@10#, since one is using dimensional regulariz
tion and subtraction constants, the choice ofm is of course

FIG. 1. Diagrammatic representation of the Bethe-Salpe
equation in Eqs.~1! and ~2!. Dashed and solid lines denote th
meson and the baryon, respectively.
3-2
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arbitrary, but it was chosen to be the same as the cuto
@4#, as was also done in@5#, to facilitate comparison of the
works.

The subtraction constantsal are of the order of22,
which is a natural size as shown in@5#. The values chosen in
@10#, which reproduce the results of@4# calculated with just
one cutoff, are

aK̄N521.84, apS522.00, apL521.83,

ahL522.25, ahS522.38, aKJ522.67. ~5!

Note that, as mentioned in@10#, the use of physica
masses in the former equations is introducing effectiv
some contributions of higher orders in the chiral counting.
the standard chiral approach one would be using the ave
mass of the octets in the chiral limit and higher ord
Lagrangians involving SU~3! breaking terms would generat
the mass differences. By introducing the physical masses
guarantees that the phase space for the reactions, thresh
and unitarity in coupled channels are respected from the
ginning.

The elementary couplings of the photon to the com
nents of the meson baryon amplitude at lowest order of
chiral expansion are shown in Fig. 2. Now, if we want
generate the resonance on the left and right sides of the
ton coupling, we must consider the diagrams shown in F
3. The diagrams of row~b! in Fig. 3 vanish, given thes-wave
nature of the meson baryon vertices and theeW•qW L coupling of
the photon to the mesons, which makes the integral over
loop variableqL vanish. The remaining couplings are tho
of the photon to the baryons and the analogous ones with
extra meson lines. The spin dependent part of these
plings needed for the evaluation of magnetic moments
given by @26#, where a chiral perturbative calculation of th
baryon magnetic moments was done, continuing work in
ated in@27#, and read as

FIG. 2. The elementary couplings of the photon to the com
nents of the meson baryon amplitude. The wavy line denotes
photon.

FIG. 3. Diagrams for the coupling of the photon to the res
nance dynamically generated in meson baryon scattering.
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i

4M p
b6

F^B̄@Sm,Sn#@Fmn
1 ,B#&

2
i

4M p
b6

D^B̄@Sm,Sn#$Fmn
1 ,B%&, ~6!

with

Fmn
1 52e~u†QFmnu1uQFmnu†!, ~7!

Fmn5]mAn2]nAm , ~8!

whereM p is the mass of proton,Am is the electromagnetic
field, and b6

F and b6
D are parameters to be fitted so as

reproduce the magnetic moments of the ground state b
ons. In Eq.~6!, ^•••& means the trace over flavor indices,B
is the SU~3! matrix for the baryon field@24,25#, andSm are
spin matrices as explained below. In Eq.~7!, Q is the charge
matrix for the u,d,s quarks:Q5 1

3 diag(2,21,21) and u2

5U5exp(iA2F/ f ) where F is the SU~3! matrix of the
pseudoscalar meson field@24,25,28#. In the baryon rest frame
the operatorSm becomessW /2 and, then,

@Sm,Sn#Fmn→2~sW 3qW !•eW ~9!

in the Coulomb gauge (e050,eW•qW 50) and for an outgoing
photon. Thus the vertex from the Lagrangian of Eq.~6! can
be written as

L→e
sW 3qW

2M p
•eW S 2

i

2
b6

F^B̄@~u†Qu1uQu†!,B#& ~10!

2
i

2
b6

D^B̄$~u†Qu1uQu†!,B%&). ~11!

By expandingu in terms of the meson field we obtain th
expressions for both thegBB8 andgBB8MM 8 vertices. By
taking u51 we obtain the magnetic moments of the grou
state octet baryons,

m i5dib6
D1 f ib6

F , ~12!

where the coefficientsdi and f i are given in Table I. One
immediately realizes that by settingb6

D50 andb6
F51 one

obtains the ordinary magnetic moments of the baryons w
out anomalous contributions. Fitting the values of Eq.~12! to
the observed magnetic moments of the baryons one obt

b6
D52.40, b6

F51.82, ~13!

-
e

-

TABLE I. di and f i coefficient of Eq.~12!.

p n S1 S2 S0 L (LS0) J2 J0

di
1
3

2
2
3

1
3

1
3

1
3

2
1
3

1

A3

1
3

2
2
3

f i 1 0 1 21 0 0 0 21 0
3-3
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TABLE II. Xi j coefficient of Eq.~14!. Xi j 5Xji .

K2p K̄0n p0L p0S0 hL hS0 p1S2 p2S1 K1J2 K0J0

K2p 0 2
1
2

2
1

4A3

1
4

2
1
4

3

4A3
0 1 0 0

K̄0n 0 0 0 0 0 2
1
2

0 0 0

p0L 0 0 0 0 1

A3

1

A3
2

1

4A3
0

p0S0 0 0 0 0 0
1
4

0

hL 0 0 0 0 2
1
4

0

hS0 0 0 0
3

4A3
0

p1S2 0 0 1 0

p2S1 0 0 2
1
2

K1J2 0 2
1
2

K0J0 0
a
te
tre

o

tio
a

f-
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very similar to those given in@26#, and b6
D52.39, b6

F

51.77, when including the unity inb6
F to account for the

ordinary magnetic moment. One word of caution is called
this point. The values quoted here for these two parame
correspond to the fit to the magnetic moments at the
level. If loops are taken into account then the fitted values
these two parameters are different@26#. The important thing
to realize here is that the loops considered in the evalua
of the magnetic moments of the ground state baryons
vertex corrections in theBBg couplings, and, hence, are di
ferent than the loops of the meson baryon interaction con
ered here. We could have chosen the option of taking dif
ent values of theb6

D ,b6
F together withBBg vertex loop

corrections. Yet what one wishes in our approach is to g
realistic value for the baryon magnetic moments in diagra
like the one in Fig. 2~c!, and thus, the use of the tree lev
approximation, with the parameters fitted to the baryon m
netic moments at the tree level, is good enough for our p
poses since it reproduces the magnetic moments of
ground state baryons quite fairly, with some discrepancie
at most 20%.

By expanding nowu up to two meson fields we obtain th
vertices of diagram~a! of Fig. 2 with the result

2 i t i j
(a)5

e

2M p
~sW 3qW !•eW

1

2 f 2 @Xi j b6
D1Yi j b6

F#, ~14!

where the coefficientsXi j andYi j are given in Tables II and
III.

The evaluation of the amplitudes corresponding to
diagrams of Fig. 3~the magnetic part! is straightforward. We
obtain
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g 52 i t̃ i j

e

2M p
~sW 3qW !•eW ~15!

and

2 i t̃ i j 5S (
lm

t il GlAlmGmtm j1(
l

t i l G̃l t l j mBl D . ~16!

In this equationt i j is the scattering amplitude from the cha
nel i to j,

Alm5
1

2 f 2
@Xlmb6

D1Ylmb6
F# ~17!

and

G̃l~p!5 i E d4k

~2p!4
D~k!G~p2k!G~p2k!, ~18!

with D and G the meson and baryon propagators. Here,
keeping up to linear terms inq, we have neglected the sma
momentum of the photon in the second baryon propaga
Therefore, we can write

G̃l~As!52
]

]As
Gl . ~19!

This approximation allows us to obtain an analytic expr
sion for G̃l(As). In Eq. ~16!, we omit writing contributions
from the L-S0 transition magnetic moment. The contribu
tions are negligible since theL-S0 transition changes the
3-4
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TABLE III. Yi j coefficient of Eq.~14!. Yi j 5Yji .

K2p K̄0n p0L p0S0 hL hS0 p1S2 p2S1 K1J2 K0J0

K2p 22 2
1
2

2
3

4A3
2

1
4

2
3
4

2
3

4A3
0 21 0 0

K̄0n 0 0 0 0 0
1
2

0 0 0

p0L 0 0 0 0 0 0 3

4A3
0

p0S0 0 0 0 1 21
1
4

0

hL 0 0 0 0
3
4

0

hS0 0 0 0 3

4A3
0

p1S2 2 0 1 0

p2S1 22 0 2
1
2

K1J2 2
1
2

K0J0 0
u
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isospin; therefore, either the left or right resonances m
have isospin 1, which is not the present case.

III. COMPARISON TO THE RESONANCE DESCRIPTION

In order to extract a resonance magnetic moment from
scattering amplitude, Eq.~15! or ~16!, we assume that reso
nances are dynamically generated on the left and right of
photon coupling. First we parametrize the meson bar
scattering amplitudet i j as shown in Fig. 4~b! by the reso-
nance dominant Breit-Wigner form:

2 i t i j 52 igi

i

As2MR1 iG/2
~2 ig j* !. ~20!

Here we have introduced the resonance massMR , the total
decay widthG, and the decay constant to the channeli,gi .
Then the photon coupling amplitudet i j

g is parametrized as
shown in Fig. 4~a! by the expression

2 i t i j
g 52 igi

i

As2MR1 iG/2

emL*
2M p

~sW 3qW !•eW

3
i

As2MR1 iG/2
~2 ig j* !. ~21!

FIG. 4. ~a! Diagrammatic representation of the photon coupli
to an explicit resonance.~b! Diagrammatic representation of meso
baryon scattering through the explicit resonance.
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Dividing 2 i t i j
g by t i j and by (e/2M p)(sW 3qW )•eW we cancel

the coupling constants and one propagator. Thus by eva
ing this ratio at theL* pole, where the amplitudes are dom
nated by the resonance, and recalling Eq.~15!, we have

mL* 5 lim
z→zR

~z2zR!
2 i t̃ i j ~z!

t i j ~z!
5Res

2 i t̃ i j ~z!

t i j ~z!
U

z5zR

, ~22!

wherezR denotes the position of the pole in the second R
mann sheet,zR[MR1 iG/2. In fact, there exist two poles
around the region of theL(1405) @5#, located atzR51426
116i and 1390166i MeV. The former pole largely couple
to the K̄N state, whereas the latter one couples predo
nantly to thepS state. Both poles may contribute to th
resonanceL(1405). We evaluate the magnetic moment
both poles. For theL(1670) the pole position iszR51680
120i MeV.

Similarly, we can also evaluate the transition amplitu
between theL(1670) andL(1405) resonances. This is ac
complished by putting different energiesAs1 andAs2 on the
transition amplitudest i j appearing on the left and right of th
photon coupling in Eq.~16!. Then by takingAs1[z1R for the
first resonance@L(1670)# andAs2[z2R for the second reso
nance@L(1405)#, we would find

mL(1670)→L(1405)5 lim
z1→z1R
z2→z2R

2 i t̃ i j ~z1 ,z2!gi~1670!gj* ~1405!

t i i ~z1!t j j ~z2!
.

~23!

The analysis in the complex plane has the advantag
making the background contributions negligible since
3-5
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evaluations are done exactly at the poles of the resonan
The magnetic moment evaluated in the complex plane, h
ever, has a complex value, which might induce uncertain
since one is extrapolating from the real axis to the comp
plane. Hence, to avoid these uncertainties, we also calcu
the amplitudes on the real axis in the first Riemann sh
The magnetic moments are then defined by

mL* 5
2 i t̃ i j ~As!

2
]

]As
ti j ~As!

, ~24!

where both the coupling constants and the resonance pr
gators cancel to provide the magnetic moment of the re
nance. In order to eliminate background we choose exte
channels which have a large coupling to the resonances
furthermore, we take theI 50 isospin combination. In par
ticular, we take theK̄N state withI 50 for L(1405) and the
KJ state withI 50 for L(1670) because of their large cou
plings to the corresponding channels@10#. For L(1405) we
also calculate the magnetic moment in theK̄N→gpS chan-
nel, since this channel may be used in the experiment
determine the magnetic moment of theL(1405). Indeed, in
@29# it was shown that this reaction produced clearly t
L(1405) in the final state and parts of the amplitude for t
reaction involved the magnetic moment of this resonanc

We show the numerator and the denominator of Eq.~24!

in Fig. 5 with the K̄N channel, in Fig. 6 with theK̄N
→gpS for the L(1405), and in Fig. 7 with theKJ channel
for the L(1670). We take the ratio of these amplitud
around the energy close to the resonance where the rea
of the two functions has maximum strength. In order to
timate uncertainties we also evaluate the ratio at the p
where either the imaginary part of the numerator or deno
nator becomes zero, as well as the ratio of the dominant
parts. In principle, in the absence of background contam
tion, these evaluations should give the same value.

As for the transition magnetic moment, in order to can
the couplings and propagators, we take the ratio

mL(1670)→L(1405)
2

5
@2 i t̃ KJ→gK̄N~As1,As2!#@ i t̃ K̄N→gKJ~As2,As1!#

S 2
]

]As
tKJ~As1!D S 2

]

]As
tK̄N~As2!D

~25!

and we proceed as before to evaluate the ratio and the
certainties. We show in Fig. 8 the numerator and the deno
nator of Eq.~25! for fixed As251681 MeV as a function of
As1 in the left panels and for fixedAs151423 MeV as a
function of As2 in the right panels.

Experimentally, magnetic moments of resonances may
extracted from bremsstrahlung processes, which are care
compared with theoretical models. On the other hand,
transition magnetic moment betweenL(1670) andL(1405)
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could be directly investigated from the decayL(1670)
→L(1405)g. The width for this transition is given by

G5
1

p

ML(1405)

ML(1670)
q3S emL(1670)→L(1405)

2M p
D 2

, ~26!

with q the photon momentum in theL(1670) rest frame.

IV. RESULTS

Comparison of the numerator and denominator in Eq.~24!

for the L(1405) with theK̄N→gK̄N andK̄N→gpS chan-
nel and performing the ratios discussed in the former sec
we obtain a value

mL(1405)51~0.24–0.45! ~27!

in units of the nuclear magnetonmN5e/2M p . The large un-
certainty in the result obtained comes from the energy ra
where the amplitudes of the ratio of Eq.~24! are evaluated.
As seen in Figs. 5 and 6 the value of this energy, wh
signals the position of the resonance in the real axis, lie
the range 1418–1422 MeV for theK̄N channel and in the
range 1403–1416 MeV for thepS channel. The evaluation
in the K̄N channel givesmL(1405)510.4460.06, while the

FIG. 5. Real and imaginary parts of~a! the numerator2 i t̃ K̄N in
Eq. ~24! and ~b! the denominator2]t K̄N /]As in Eq. ~24! around
the L(1405) resonance region in units ofmp

22 .
3-6



pl

is

n
y
in
le

t
t

7

g

the

ows

tor

MAGNETIC MOMENTS OF THEL(1405) AND L(1670) . . . PHYSICAL REVIEW C 66, 025203 ~2002!
K̄N→gpS channel produces a value10.2660.07. We also
evaluate the magnetic moment using the ratio of Eq.~22! at
the pole in the second Riemann sheet, which gives a com
number with the module 0.4160.01 for the case ofzR
51426116i and 0.3060.01 forzR51390166i . All possible
isospin I 50 combinationsK̄N, pS, hL, andKJ provide
approximately the same value~the channel dependence
shown in the small error bar of the presented value!. This
channel insensitivity in the evaluation in the complex pla
implies that the ratio of Eq.~22! at the pole is dominated b
the resonance and is not affected by background contam
tions. It is interesting to note that the values in the comp
plane are comparable with the value of Eq.~27!. In addition,
recalling that the pole atzR51426116i couples largely to
K̄N and that atzR51390166i to pS, the channel~or en-
ergy! dependence of the magnetic moment evaluated on
real axis stems from a different contribution of each pole
the values of the amplitudes in the real axis.

For the case of theL(1670) the ratio obtained from Fig.
with the KJ channel gives us

mL(1670)520.2960.01, ~28!

with small uncertainty, and we find that the ratio of Eq.~24!
is stable around the resonance region. It is also interestin

FIG. 6. Real and imaginary parts of~a! the numerator

2 i t̃ K̄N→gpS in Eq. ~24! and ~b! the denominator2]t K̄N→pS /]As
in Eq. ~24! around theL(1405) resonance region in units ofmp

22 .
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note that the analysis in the complex plane in the pole in
second Riemann sheet@Eq. ~22!# gives in this case a value
for the modulus of 0.23, which is similar to that of Eq.~28!.
As in the preceding case, the analysis in the real plane all
us to obtain a real magnetic moment with a given sign.

FIG. 7. Real and imaginary parts of~a! the numerator2 i t̃ KJ in
Eq. ~24! and ~b! the denominator2]tKJ /]As in Eq. ~24! around
the L(1670) resonance region in units ofmp

22 .

FIG. 8. Real and imaginary parts of the numerator~a!,~c! and
the denominator~b!,~d! in Eq. ~25! in units of mp

24 . In ~a! and~b!,
As1 is fixed at 1680 MeV and the numerator and the denomina
are functions ofAs2. In ~c! and ~d!, As2 is fixed at 1420 MeV and
the numerator and the denominator are functions ofAs1.
3-7
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Finally for the case of the transition magnetic moment
obtain the value from Eq.~25! and Fig. 8:

umL(1670)→L(1405)u50.02360.009. ~29!

We also evaluate the transition magnetic moment from
~23! in the complex plane, which gives the modulus 0.0
60.002 with z1R51680120i ,z2R51426116i and 0.093
60.003 with z1R51680120i ,z2R51390166i . The values
obtained in the complex plane are less reliable in this c
because they involve an extrapolation of two variables to
complex plane, each of which induces uncertainties. E
then, the agreement with the evaluation on the real axi
fair if we take into account the fact that, given the smallne
of these numbers, their differences are of the same orde
magnitude than those for theL(1405) case. The results dis
cussed here are summarized in Table IV.

With the value of the transition magnetic moment of E
~29! and using Eq.~26! we obtain a partial width for the
L(1670)→L(1405)g decay which corresponds to a branc
ing ratio 231026.

V. QUARK MODEL RESULTS

In this section we compute the resonance magnetic
ments in the nonrelativistic quark model. This demonstra
that the nature of the resonances differ appreciably from
chiral unitary description. In the SU~6! quark model, the
L(1405) andL(1670) resonances are described asp-wave
excitations of the 70-dimensional representation, wh
SU(2)3SU(3) decomposition is given by

705281481211210. ~30!

Here, in the notation on the right-hand side,2 j 11D, j repre-
sents the resonance spin andD the dimension of the flavo
SU~3! representation.

Since theL particles are isosinglet, their wave function
are spanned by the flavor octet and singlet states. Explic
these states are given as@31#

u28; jm&5
1

2
$@c~rW !,xr# jmfl1@c~rW !,xl# jmfr

1@c~lW !,xr# jmfr1@c~lW !,xl# jmfl%,

TABLE IV. Magnetic moments obtained by the chiral unita
approach in units of the nuclear magneton. The values without s
denote the modules.

L(1405) L(1670) Transition

Real axis 10.4460.06a 20.2960.01 0.02360.009
10.2660.07b

Complex plane 0.4160.01c 0.23 0.01960.002c

~absolute value! 0.3060.01d 0.09360.003d

aCalculation in theK̄N→gK̄N channel.
bCalculation in theK̄N→gpS channel.
cTaking zR51426116i for L(1405).
dTaking zR51390166i for L(1405).
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u48; jm&5
1

A2
$@c~lW !,xS# jmfl1@c~rW !,xS# jmfr%,

~31!

u21; jm&5
1

A2
$@c~lW !,xr# jm2@c~rW !,xl# jm%fA .

Here we have employed standard notations

rW 5
1

A2
~xW22xW1!, lW 5

1

A6
~xW21xW122xW3!,

c~xW !: p-wave orbital wave functions,

xr,l,S : flavor wave functions ofr, l, and S symmetry,

fr,l,A : flavor wave functions ofr, l, and A symmetry.

Furthermore, in Eq.~31!, orbital and spin wave functions ar
coupled to the total spinjm.

In the nonrelativistic description, the magnetic mome
operator is given by the sum of twice spin and orbital angu
momentum:

mW 5(
i 51

3

@ms~ i !sW ~ i !1m l~ i ! lW~ i !#. ~32!

Herems( i ) andm l( i ) are spin and orbital magnetons of th
i th quark. If constituent quarks are considered to be sim
Dirac particles, they arems( i )5m l( i )5mu , md , andms for
u, d, ands quarks, where

mu5
2

3

1

2mu
,

md52
1

3

1

2md
,

ms52
1

3

1

2ms
.

In actual computations, it is sufficient to give matrix el
ments ofm3 in the basis ofu1&[u28&, u2&[u48&, and u3&
[u21&. It is straightforward to obtain

K (
i 51

3

ms~ i !s3~ i !L 5
1

9 S 2A 2B B

2B 5A 2B

B 2B 2A
D ,

ns
3-8
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K (
i 51

3

m l~ i !l 3~ i !L 5
1

3S A 0 2
B

2

0 2
2A1B

4
0

2
B

2
0 A

D ,

~33!

where A5mu1md1ms and B5mu1md22ms . From a
group theoretical point of view of flavor SU~3!, it is shown
that nine components of magnetic moments are expresse
terms of four independent quantities. Here two of them
come irrelevant due to the SU~6! construction of the quark
model wave function.

By writing a L state as

uL&5a1u1&1a2u2&1a3u3& , ~34!

where the coefficients must satisfy the normalization con
tion a1

21a2
21a3

351, we find the corresponding matrix ele
ment

^Lum3uL&5(
nm

anam^num3um&. ~35!

The coefficients are determined by assuming suitable in
actions between quarks. Here we employ two parameter
Isgur-Karl ~IK ! @1# and Hey-Litchfield-Cashmore~HLC!
@30#, the values of which are shown in Table V. We summ
rize the results for the magnetic moments in Table VI, wh
the transition magnetic moment is also shown. We u
quark massesmu5338 MeV, md5322 MeV, and ms
5510 MeV as taken from the Review of Particle Phys
@32#. We find that the magnetic moments of theL(1405) and
L(1670) states, as well as the transition magnetic mom
are sensitive to the coefficients of the wave functions. T
diagonal moments are small and change within&0.3. If
physical states are supplemented by another state@say,
L(1800)], then the sum of the three diagonal magnetic m
ments is invariant and is equal to the trace of the matrixm3
~sum rule!. If there is no mixing betweenu1&, u2&, and u3&

TABLE V. Expansion coefficients in Eq.~34!.

L(1405) L(1670)
a1 a2 a3 a1 a2 a3

IK 0.43 0.06 0.9 0.75 0.58 20.39
HLC 0.46 0.25 0.85 20.04 20.95 0.30

TABLE VI. Magnetic moments in the quark model in units o
nuclear magnetone/2mN .

L(1405) L(1670) uL(1405)-L(1670)u

IK 0.04 0.28 0.31
HLC 0.27 20.01 0.53
02520
in
-

i-

r-
ts,

-
e
d

t,
e

-

andL(1405) andL(1670) are regarded as pure singlet (u3&)
and octet (u1&), respectively, their magnetic moments vani
in the SU~3! symmetric limit,mu5md5ms , since they are
proportional to the factorA. This explains the relatively
small and unstable values of the diagonal matrix elemen

In contrast, the off diagonal magnetic moment takes
relatively large value. Typically, it is m„L(1670)
→L(1405)…;0.5, which is more than one order of magn
tude larger than the values of the chiral unitary approach
the SU~3! symmetric limit, the off-diagonal matrix elemen
survives as it is proportional to the factorB.

VI. CONCLUSION

We have introduced here the formalism to evaluate m
netic moments and the transition magnetic moment of
two L* resonances,L(1405) andL(1670), which are dy-
namically generated within UxPT. At the same time we hav
done the numerical evaluations and have determined the
tual value for these magnitudes. The values obtained
mL(1405)51(0.2–0.5)mN , smaller than that of the
L (;20.6mN) and of opposite sign. For theL(1670) we
obtainmL(1670);20.29mN , also smaller than that of theL
and with the same sign, while for the transition magne
moment we obtain a valueumL(1670)→L(1405)u;0.023mN ,
which leads to a branching ratio of theL(1670) to
L(1405)g channel of the order of 231026. The results of
the UxPT method are different from those obtained with t
quark models, reflecting the different nature attributed to
resonances in those models. One of the interesting res
obtained in this work is the abnormally small decay wid
for theL(1670)→L(1405)g transition, which differs in two
orders of magnitude from the quark model predictions. Sh
of a measurement of the transition, which could be diffic
given the small numbers predicted, even the determinatio
an upper bound would provide interesting information ab
the nature of these resonances.

From the theoretical point of view it would be interestin
to see results obtained for the magnitudes evaluated her
using chiral quark models@33–36#, which, although not uni-
tarized, would somehow incorporate elements of the me
baryon cloud present in the dynamically generated re
nances. Also, advances in the line of putting together e
ments of quark models together with unitarity@37# would be
most welcome.
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