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By using techniques of unitarized chiral perturbation theory, where\ifiel05) andA (1670) resonances
are dynamically generated, we evaluate the magnetic moments of these resonances and their transition mag-
netic moment. The results obtained here differ appreciably from those obtained with existing quark models.
The width for theA (1670)— A (1405)y transition is also evaluated, leading to a branching ratio of the order

of 2x 1078,
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I. INTRODUCTION expansion, since, after years, the effective range formula has

remained as the standard low energy expansion of the scat-
The evaluation of static properties of baryonic resonancesgering matrix in qguantum mechanics.
like the magnetic moment, is a standard exercise when one The interest of this new approach goes beyond the fact
has a wave function for the states. This is the case of théhat it gives a good reproduction of the data up to much
quark models where a thorough investigation of magnetihigher energies thaiwPT. The method also allows one to
moments and other static propert[dd, such as masses and distinguish between dynamically generated and genuine

couplings to therN system[2], has been done. resonances. What makes this distinction possible is the find-
The introduction of unitary chiral techniques has alloweding of the work[16], commonly known as resonance satura-
one to show that the octet of the lowest enedjy=1/2" tion hypothesis, that the terms in the second order Lagrang-

baryonic resonances can be generated dynamically from than of Gasser and Leutwylg¢f.7] can be obtained from the
lowest order chiral Lagrangian and by the use of natural sizexchange of, essentially, vector mesons. These vector me-
cutoffs or regularizing scales to make the divergent loop insons are assumed to be genuine states of QCD, in the sense
tegrals finite. These findings allow one to classify thosethat they would remain in the theory in the limit of lartye .
states as quasibound meson baryon states or, equivalentn the other hand, ifil8] it was found that, by explicitly
ordinary multiple scattering resonances in coupled channelallowing the exchange of the bare vector meson resonances
The A(1405) was one of the first resonances to receive atand scalar meson resonances and unitarizing the problem by
tention from the chiral unitary perspectiviB—5]. The  means of theN/D method, the fit to the data demanded a
N* (1535) was also generated within chiral unitary schemeglear coupling of the bare vector mesons to the meson meson
in [6—8] and has been recently revised[8] with the inclu-  states while the coupling of the bare scalar mesons was com-
sion of w7N channels. Recently th&(1670) andX(1620) patible with zero. Yet the scalar resonances were nevertheless
[10] and theZ(1620) stateg1l] have also been obtained generated in the unitary scheme, which implied the resum-
within the same scheme, thus completing the octet of dymation of a subseries of infinite loops. Since the loops are
namically generated states. subleading in the larghl, counting, these states would dis-
The chiral unitary approach, or unitarized chiral perturba-appear in the limit of largé\., distinguishing them from the
tion theory UyPT, uses the same chiral Lagrangians as chirafjenuine states which would still remain in the same limit.
perturbation theory ¥PT), but makes use of unitarity in Hence, this would justify the name of dynamically generated
coupled channels which provides the imaginary part of thenesons by the multiple scattering of the mesons implied in
inverse of the scattering amplitude independently of the dythe unitarized scattering matrix. This also means that these
namics of the problem. Since I ! is given by unitarity, it dynamically generated states should be generated by means
is most natural to expand Re ! in powers of the momen- of a reasonable unitary scheme with the input of only the
tum, rather tharT, which is done inyPT. This is the essence lowest order chiral Lagrangian, with a scale of regularization
of the inverse amplitude method which was used with oneof the natural size, around 1 GeV. This was indeed the case,
channel in[12] and generalized to coupled channels inand it was found that the Bethe Salpeter equation with the
[13,14. The method automatically enlarges the radius oflowest order chiral Lagrangian reproduced perfectly well the
convergence of the series expansion with respegPt® and meson meson scattering in the scalar sector as well as the
provides the meson resonances up to 1.2 GeV. The basics s¢alar resonances up to 1.2 GEM—22.
this new series expansion is the same as in the effective Turning back to the present subject of baryon resonances,
range formula in quantum mechanics, except that the serigsne computes scattering transition amplitudes between all
expansion in the meson meson interaction is done in powemmeson baryon channels, and one searches for poles for reso-
of p? rather than in the momentum of the particle moving innances in the second Riemann sheet. The poles provide the
a potential[15]. This gives us a hint of the merit of this mass and width of the resonance states and, in addition, the
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residues at the poles provide the product of the couplings of ™~ 7" | ™
the resonance to the initial and final states of the considerea—
transition scattering matrix element. In this method, it is not FiG. 1. Diagrammatic representation of the Bethe-Salpeter
straightforward to evaluate other properties of the resonancequation in Egs(1) and (2). Dashed and solid lines denote the
like magnetic moments, since, unlike ordinary quantum memeson and the baryon, respectively.

chanical problems, in the present approach we do not have i o

wave functions and operators manifestly. Therefore, we need€en in 23] for the p-wave meson meson interaction in the

to explore an alternative method to compute resonance ma%hanne." The on-shell factorization allows one to solve Eq.
netic moments from scattering matrices. This is the subjectt) © 9ive

of the present work. We compute the magnetic moments of T=[1-VG] v, 2)
the A (1405) andA (1670) resonances, as well as the transi- ) o ) . .

tion magnetic moment from tha (1670) to theA(1405), in @ simple matrix inversion. This has also been derived us-
which allows us to determine the partial decay width for theiNd theN/D unitarization method and dispersion relations in
decay A (1670)— A (1405)y. We also compare the results [5]. In this latter papg[S] the regularization of the loops is
obtained here with those of ordinary quark models showing!on€ Py means of dimensional regularization with subtrac-

that there are appreciable differences between them. This o] ion constants in th& function. The same method was used

fers evidence that the nature of these states as dynamicalI [10] to obtain theA(1405) andA(1670) resonances,

. . hich is the one we follow here. The Feynman diagrams
generated from the multiple scattering of coupled channel : A
of mesons and baryons differs from an ordinary quark mode?ummed by Eqs(1) and(2) are given in Fig. 1. o
The sswave meson baryon interaction potentialis de-

description. . . .
The paper is organized as follows. In Sec. Il, we brieflygﬁgl flr_?agr;r:;ized%angﬂqrder terms in the meson field of the

describe the model that we use and show in detail the metho

to compute scattering matrices. In Sec. Ill, we compare the 1 M+ E\2 M;+E’ 12
scattering matrices with a resonance dominant form and ex-Vi;= —Cj; W(Z\/g— Mi=Mp| 5 oM. :
tract the magnetic moments. In Sec. IV, we present our nu- : ) &)

merical results, which are compared with quark model re-
sults in Sec. V. The final section summarizes our findings. where the coefficient€;;(=Cj;) are given in[4] and the
meson decay constarftis taken as an average valde

Il. EVALUATION OFE THE MAGNETIC MOMENT =1.12% .. The G function for each meson baryon channel

is given by

The procedure to evaluate the magnetic moment of the g4 1 1
resonances proceeds in an analogous way to that for theG,(\/§)=i2M|f q : :
N*N* 7 coupling in[7]. We evaluate th& matrix for the 2m* (P—q)?—M{+ie g>*—mi+ie
processMB—M'B’y using the chiral Lagrangian for the ) 5 5 )
coupling of the mesons and baryons and for the photon to the _ 2My LI mi — Mj +S| m-
mesons and baryons. We sum the Feynman diagrams which 1677 alp) n,uz 2s anz
generate the resonance both on the left and on the right of the .
photon coupling. Isolation of resonance poles from these dia- of 5 o —
grams then allows us to evaluate the resonance magnetic +${In[s—(M, —m{)+2q,s]
moment.

The A(1405) resonance is generated[4 by means of +In[s+(M2—m2)+ 2q; Vs]
the Bethe-Salpeter equation with a cutoff to regularize the ! ! !
loop integrals. The Bethe-Salpeter equation is given by —In[—s+(M|2—m,2)+ZE\/§]

T=V+VGT, 1 _
W —In[—s—(M}—m?)+2q,\s]} 1, @

where in the present method the teMGT is given as a

matrix product of the potentiaV, the meson baryon propa- wherem and M are taken to be the observed meson and
gator G, and theT matrix. The diagonal matrixc contains  baryon masses, respectively, ands a regularization scale
the loop integral of a meson and baryon propagators. In gerwhich is chosen to be 630 MeV as|ih0]. This value for the
eral, the productVGT involves an integral over off-shell cutoff of the three-momentum of the intermediate states was
momenta. In the present approach that integral is greatlpbtained in[4] by fitting the data ofKk N scattering into
simplified, reducing the problem to a matrix product due todifferent channels plus the properties of th¢1405) reso-
the on-shell factorizations &f andT. The on-shell factoriza- nance. Actually, since this was the only free parameter of the
tion in [4] was done by incorporating the off-shell part of the theory, it was fitted to reproduce the position of that reso-
loops into renormalization of couplings of the lowest ordernance and this was sufficient to reproduce its width plus the
Lagrangian, in analogy to what was done in the meson melow energy cross sections & p to its different coupled
son interaction if19]. An explicit demonstration of the can- channels. 1{10], since one is using dimensional regulariza-
cellation of these terms with tadpole corrections can also béon and subtraction constants, the choiceuofs of course
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Jﬁ,ﬁ‘ TABLE I. d; andf; coefficient of Eq.(12).
N V p n S+ S 30 A (AEO) == EO
@ (b ©
4 1 2 1 1 1 1 1 1 2
FIG. 2. The elementary couplings of the photon to the compo- = 3 3 3 3 3 3 J3 3 3
nents of the meson baryon amplitude. The wavy line denotes the. 1 0 1 -1 0 0 0 -1 0
photon.
arbitrary, but it was chosen to be the same as the cutoff in [ — B
[4], as was also done ifB], to facilitate comparison of the L=— - Pe(BISSIF,, B])
works. P
The subtraction constants; are of the order of-2, i b= S
which is a natural size as shown([i]. The values chosen in B 4Mpb6<B[gL'S HF,.,.Bh, ©®)
[10], which reproduce the results p4] calculated with just
one cutoff, are with
+ — _amt t
an=—184, a,s=-2.00, a, =183 Fuy=—e(UQF,,u+uQF,,u’), @)
F,uV:a,u,AV_aVA,u ’ (8)

a,=-225 a,=-238, axz=-267. (5
whereM,, is the mass of protom, is the electromagnetic
field, andbl and by are parameters to be fitted so as to

Note Fha:’h an mentlonedt_lﬁlo],_ thet uze .Of ph%/s";.a' | reproduce the magnetic moments of the ground state bary-
masses 1n the Tormer equations 1S Introgucing enectively, ,q -, Eq.(6), (- - -) means the trace over flavor indicés,

some contributions of higher orders in the chiral counting. In. . )
the standard chiral approach one would be using the averagi5 the SU3) matrix for the baryon field24,25, andS* are

mass of the octets in the chiral limit and higher order %m matrices as explained below. In Ed), Qs the charge

: A1 1 2
Lagrangians involving S(3) breaking terms would generate matrix for theu,d,s quarks:Q=sdiag(2;-1,~1) andu

the mass differences. By introducing the physical masses on?zU =exp(2®/f) where @ is the SU3) matrix of the

guarantees that the phase space for the reactions, thresholag?udoscalar meson f'dJ?4’25’28' In the baryon rest frame
and unitarity in coupled channels are respected from the bdh€ operatolS* becomesy/2 and, then,
ginning. o

The elementary couplings of the photon to the compo- [$#S"]F,——(oXq)-€ 9
nents of the meson baryon amplitude at lowest order of the ..
chiral expansion are shown in Fig. 2. Now, if we want toin the Coulomb gaugeef=0,e-q=0) and for an outgoing
generate the resonance on the left and right sides of the phphoton. Thus the vertex from the Lagrangian of Eg).can
ton coupling, we must consider the diagrams shown in Fighe written as
3. The diagrams of rob) in Fig. 3 vanish, given the-wave

nature of the meson baryon vertices and&hé,_ coupling of £_>e0>< q
the photon to the mesons, which makes the integral over the 2M,
loop variableq, vanish. The remaining couplings are those

of the photon to the baryons and the analogous ones with two i 5=

extra meson lines. The spin dependent part of these cou- —§b6<B{(uTQu+ uQu"),B})). (11)
plings needed for the evaluation of magnetic moments is

given by[26], where a chiral perturbative calculation of the

: e o'~ By expandingu in terms of the meson field we obtain the
baryon magnetic moments was done, continuing work 'n't"expressions for both theBB' and yBB'MM’ vertices. By
ated in[27], and read as

takingu=1 we obtain the magnetic moments of the ground
state octet baryons,

N
€| — 5b5(B[(u'Qu+uQu"),B]) (10

~~~~~~~~~~~~~~~
\\\\\\\\\\\

{ \‘, \‘,’ \‘l' .
: : pi=dibg +fibg, (12)

where the coefficientsl; and f; are given in Table I. One

e e e e immediately realizes that by settiftf =0 andbg=1 one
N N Y AV e N NN obtains the ordinary magnetic moments of the baryons with-
© — 3 L : 3 L — 3 L out anomalous contributions. Fitting the values of B¢) to
the observed magnetic moments of the baryons one obtains
FIG. 3. Diagrams for the coupling of the photon to the reso- D E
nance dynamically generated in meson baryon scattering. bg=2.40, bg=1.82, (13
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TABLE IlI. X;; coefficient of Eq.(14). Xj;=X;; .

K'p K 7oA a0 A 3% #tYT a3t KFET KOEC

1 1 1 1 3
K- o -z - = = = 0 1 0 0
P 2 43 4 4 43
K 0 0 0 0 0 —% 0 0 0
7oA 0 0 0 0 L -t o
V3 V3 43
w030 0 0 0 0 0 % 0
A 0 0 0 0 ! 0
7 "2
3
5.0 0 0 0 — 0
7 ™G
at3" 0 0 1 0
1
s _z
T3 0 0 3
1
o L
K™= 0 3
KOEO 0
very similar to those given if26], and bg=2.39, bg P
=1.77, when including the unity i to account for the It =it —ZMP(U>< q)-€ (15

ordinary magnetic moment. One word of caution is called at

this point. The values quoted here for these two parametergnd

correspond to the fit to the magnetic moments at the tree

level. If loops are taken into account then the fitted values of ~ ~

these two parameters are differ¢@6]. The important thing It = % tiIGIAImetmiJrzl: tiGitij mg,

to realize here is that the loops considered in the evaluation

of the magnetic moments of the ground state baryons arg, hjg equatiort;; is the scattering amplitude from the chan-

vertex corrections in thBBy couplings, and, hence, are dif- o {0 ]

ferent than the loops of the meson baryon interaction consicﬁ ’

ered here. We could have chosen the option of taking differ- 1

ent values of theb?,bf together withBBy vertex loop Ayn=—=[Ximb8 + Y, b5 ] (17)

corrections. Yet what one wishes in our approach is to get a 2f2

realistic value for the baryon magnetic moments in diagrams

like the one in Fig. &), and thus, the use of the tree level and

approximation, with the parameters fitted to the baryon mag-

netic moments at the tree level, is good enough for our pur- & (p)—if
(p)=

(16)

4

D(k)G(p—k)G(p—k), (18

poses since it reproduces the magnetic moments of the y

ground state baryons quite fairly, with some discrepancies of

at most 20%. _ _ with D and G the meson and baryon propagators. Here, by

By expanding novu up to two meson fields we obtain the eening up to linear terms ig, we have neglected the small

vertices of diagranta) of Fig. 2 with the result momentum of the photon in the second baryon propagator.

Therefore, we can write
e . . .1
() _ D F
—Iti(ja)—ZMp(O'Xq)-eW[Xijbfs-i—Yibe], (14) o
Gi(\s)=— —=G/. (19
s

where the coefficientX;; andY;; are given in Tables Il and _ S ) )
M. This approximation allows us to obtain an analytic expres-

The evaluation of the amplitudes corresponding to thesion for G,(v/s). In Eq. (16), we omit writing contributions
diagrams of Fig. 3the magnetic partis straightforward. We from the A-3° transition magnetic moment. The contribu-
obtain tions are negligible since tha-3° transition changes the

025203-4



MAGNETIC MOMENTS OF THEA (1405) AND A(1670) ... PHYSICAL REVIEW C 66, 025203 (2002

TABLE IlI. Y;j; coefficient of Eq.(14). Y;;=Yj; .

Kp Kn 7°A  #%20 A 730 #tST a3t KYET KOEO

1 3 1 3 3
K p -2 -z - = - -z __= 0 -1 0 0
2 4.3 4 4 43
Kn 0 0 0 0 0 % 0 0 0
oA 0 0 0 0 0 0 3 0
443
1
7030 0 0 0 1 -1 7 0
A 0 0 0 0 3 0
4
730 0 0 0 3 0
4\3
e 2 0 1 0
T3t -2 0 —1
1
= -
K™= 2 5
KOE0 0

isospin; therefore, either the left or right resonances muspividing —it} by t;; and by @IZMp)(5><G)~2 we cancel
have isospin 1, which is not the present case. the coupling constants and one propagator. Thus by evaluat-
ing this ratio at the\* pole, where the amplitudes are domi-
nated by the resonance, and recalling Bd), we have

In order to extract a resonance magnetic moment from the
scattering amplitude, Eq15) or (16), we assume that reso-
nances are dynamically generated on the left and right of the
photon coupling. First we parametrize the meson baryon
scattering amplitude;; as shown in Fig. &) by the reso-
nance dominant Breit-Wigner form:

[ll. COMPARISON TO THE RESONANCE DESCRIPTION

L _ _iYij(Z): F_iTij(Z)
MA*_ZILTR(Z Zr) tij(2) Res tij(2)

. (22)

Z=1Zp

wherezg denotes the position of the pole in the second Rie-
mann sheetzg=Mg+il'/2. In fact, there exist two poles
i around the region of thé (1405) [5], located atzg=1426
—itj=—igi————(— igr)_ (20 + 16i aﬂd 1396-661 MeV. The former pole largely couples
‘/E_MR“L'F/2 to the KN state, whereas the latter one couples predomi-
Here we have introduced the resonance nigs the total nantly to thew3 state. Both poles may cont_ribute to the
decay widthT', and the decay constant to the chaning). resonance\ (1405). We evaluate the ma_g_netlp moment at
Then the photon coupling amplitudg is parametrized as both poles. For the\(1670) the pole position igz=1680

shown in Fig. by the expression +200 Mev.
g 4a) by P Similarly, we can also evaluate the transition amplitude
_ . i eUAx - o between theA (1670) andA (1405) resonances. This is ac-
—itj=—ig; (0Xq)-€ complished by putting different energigs, and/s, on the

_ i 2M
\/§ Mp+il'/2 P transition amplitudes;; appearing on the left and right of the
i photon coupling in Eq(16). Then by takingy's; =z, for the

—(—ig¥). (21)  first resonanc@A (1670)] and/s,=z,x for the second reso-
J
Vs—Mg+il'/2 nance[ A (1405)], we would find
¥
N N —iT(21,2,)9,(1670 ] (1405
A AN A M A (1670 A (1405~ lIM
B B B B 2215 ti(z1)t;5(z2)
@) (b 227 22R
(23

FIG. 4. (a) Diagrammatic representation of the photon coupling o
to an explicit resonancéb) Diagrammatic representation of meson ~ The analysis in the complex plane has the advantage of
baryon scattering through the explicit resonance. making the background contributions negligible since the
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evaluations are done exactly at the poles of the resonance:
The magnetic moment evaluated in the complex plane, how- KN — RN (a)
ever, has a complex value, which might induce uncertainties 100 1
since one is extrapolating from the real axis to the complex _— )
plane. Hence, to avoid these uncertainties, we also calculat 's o T
the amplitudes on the real axis in the first Riemann sheet E T
The magnetic moments are then defined by o~ \\ /
100 N \ /
—it ij ( \/g) N /
Popx =, (24) N/
J -200 ]
- a_\/gti i(Vs) Re: ———
Im: ~———
'3001390 1400 1410 1420 1430
where both the coupling constants and the resonance props . ‘ ‘
gators cancel to provide the magnetic moment of the reso: 200 | b)) 1
nance. In order to eliminate background we choose externa —
channels which have a large coupling to the resonances an¢ '§ 100 1
furthermore, we take thé=0 isospin combination. In par- Ao 0 F—
ticular, we take thé&KN state withl =0 for A(1405) andthe 3|~ T~
KE state withl =0 for A(1670) because of their large cou- -100 ¢ ™~ 1
plings to the corresponding channéid]. For A (1405) we 200 N — BN \\ 2
also calculate the magnetic moment in 8 — y#> chan- \\ /
nel, since this channel may be used in the experiments t -300 ¢ / ]
determine the magnetic moment of th€1405). Indeed, in a0 | g \\ .
[29] it was shown that this reaction produced clearly the 1r2~ 77777777777777 N
A(1405) in the final state and parts of the amplitude for that 500 . : ‘ ‘ .
reaction involved the magnetic moment of this resonance. 1390 1400 1410 1420 1430
We show the numerator and the denominator of @24) c.m. Energy v [MeV]

in Fig. 5 with the KN channel, in Fig. 6 with theKN
—ym>, for the A (1405), and in Fig. 7 with th&E channel FIG. 5. Real and imaginary parts &) the numerator-ity in
for the A(1670). We take the ratio of these amplitudesEq. (24) and (b) the denominator- oty /d+/s in Eq. (24) around
around the energy close to the resonance where the real pae A(1405) resonance region in units wf, 2.
of the two functions has maximum strength. In order to es-
timate uncertainties we also evaluate the ratio at the pointould be directly investigated from the decay(1670)
where either the imaginary part of the numerator or denomi-— A (1405)y. The width for this transition is given by
nator becomes zero, as well as the ratio of the dominant real
parts. In principle, in the absence of background contamina- 1 Mj(1405) 4
tion, these evaluations should give the same value. P q

As for the transition magnetic moment, in order to cancel
the couplings and propagators, we take the ratio with g the photon momentum in th&(1670) rest frame.

€U A (1670)— A (1405) 2
2M,

(26)

7 Magiero)

2
M A (1670)— A (1405)

[ =Tk ykn( V51, VS2) [Tk yk=(VS2,V/51)]

IV. RESULTS

Comparison of the numerator and denominator in(24)

P P for the A (1405) with theKN— yKN andKN— yzS, chan-
- _tKE(\/S—l) - —\/—tEN(\/S_z) nel and performing the ratios discussed in the former section
s Vs we obtain a value

(25

M A (1405~ 1 (0.24-0.4% (27)
and we proceed as before to evaluate the ratio and the un-
certainties. We show in Fig. 8 the numerator and the denomiln units of the nuclear magnetqny=e/2M . The large un-

nator of Eq.(25) for fixed Js,=1681 MeV as a function of certainty in the result obtained comes from the energy range

Js; in the left panels and for fixeds,=1423 MeV as a where the amplitudes of the ratio of E@4) are evaluated.
function of Vs, in the right panels As seen in Figs. 5 and 6 the value of this energy, which

Experimentally, magnetic moments of resonances may b
extracted from bremsstrahlung processes, which are careful

gignals the position of the resonance in the real axis, lies in
Hze range 1418-1422 MeV for tH€N channel and in the

compared with theoretical models. On the other hand, théange 1403-1416 MeV for theX channel. The evaluation

transition magnetic moment betwedAr{1670) andA (1405)

in the KN channel givesu , (1405= +0.44+0.06, while the
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B S (a)
80 | KNz S @ S N \
™ —
'R ! J—
& 60 | ] e 100 |
B 40 b iy TN w50 | S
g S i
£ 20 | _— '
I.T . — = \\ O
0 foomem -50
\ KE—yK=
20 F \ ] -100
Re: —— Re: ——
-40 Im e . . -150 ¢ Im: ——
1390 1490 14%0 142|0 1430 1670 1680 1690 1700
& 200 f KN—> = ) —_ R (b)
& TN Ve 200 | K==K=
= P g
K 150 e \ -
Hie e 5 2
E 2 0 P e \\ p S 0
= - 0 p
/'I\ e - \ ~ //
- os0 b \ ] 200 /7
0 . e 400 | \
Re: \ \ Re
50 [ Mmoo e , R e Im:
-600 ; ! !
1390 1400 1410 1420 1430 1670 1680 1690 1700

c.m. Energy Vs [MeV] c¢.m. Energy v s [MeV]

FIG. 6. Real and imaginary parts ofa) the numerator FIG. 7. Real and imaginary parts @ the numerator-it = in
—itin—yms In Eq. (24) and (b) the denominator- dticy_ s /dys  EQ. (24) and(b) the denominator- 5t+_<5/¢9\/2§ in Eq. (24) around
in Eq. (24) around theA (1405) resonance region in units of_2. the A(1670) resonance region in units wf_“.

— ., note that the analysis in the complex plane in the pole in the
KN— ym2 channel produces a value0.26+0.07. We also second Riemann shefEq. (22)] gives in this case a value

evaluate the magnetic moment using the ratio of @4) at 4 the modulus of 0.23, which is similar to that of E@8).

the pole in the second Riemann sheet, which gives a complexs i the preceding case, the analysis in the real plane allows

number with the module 0.410.01 for the case ofZr g {g optain a real magnetic moment with a given sign.
=1426+16i and 0.3@-0.01 forzg= 1390+ 66i . All possible

isospinl =0 combinationsKN, 73, A, andKE provide X9 g —— @ Xg’f ©
approximately the same valughe channel dependence is 02 ™ =™ — ' ’\\\\
shown in the small error bar of the presented valdeis 0.1 0 e B
channel insensitivity in the evaluation in the complex plane 0.1
implies that the ratio of Eq22) at the pole is dominated by /[ o2
the resonance and is not affected by background contamina_o2 o Re: T
tions. It is interesting to note that the values in the complex 1410 1420 1430 1680 1700
plane are comparable with the value of E2j7). In addition,  xi¢® - x10°
recalling that the pole atg=1426+16 couples largely to 90| Im: i 300 @
KN and that atzg=1390+ 66 to w2, the channelor en- 100 20
ergy) dependence of the magnetic moment evaluated on the | 100
real axis stems from a different contribution of each pole to 102
the values of the amplitudes in the real axis. T S
For the case of thd (1670) the ratio obtained from Fig. 7 0 a0 1420 w0 1680 1700
with the KE channel gives us sz [MeV] Vi [MeV]
FIG. 8. Real and imaginary parts of the numera@t(c) and
Ma(1670= —0.29£0.01, (28) the denominatotb),(d) in Eq. (25) in units ofm_*. In (a) and(b),

\Js; is fixed at 1680 MeV and the numerator and the denominator
with small uncertainty, and we find that the ratio of E&4)  are functions ofy/s,. In (c) and(d), Vs, is fixed at 1420 MeV and
is stable around the resonance region. It is also interesting the numerator and the denominator are functiong'sf
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TABLE IV. Magnetic moments obtained by the chiral unitary 1
approach in units of the nuclear magneton. The values without signs |48 my=—{[ l/,():) ,Xs]jm% +[ ,/,(5) 1XS]jm¢p}v
denote the modules. \/E
(31)
A(1405) A(1670) Transition
Real axis +0.44+0.060 —0.29-0.01 0.023-0.009 1 R R
+0.26+0.07 %1;jm) :E{[w()\)!)(p]jm_ [¢(p), X\ ]jm} &a -
Complex plane 0.4t0.01° 0.23 0.019-0.00Z
(absolute value  0.30+0.01 0.093+0.003

Here we have employed standard notations

3Calculation in theK N— yKN channel.
bCalculation in theK N— y#3, channel.

) X 1 1
‘Taking zg=1426+ 16 for A(1405). = —(Xo—X N= — (Xo+ X1 — 2X
4Taking zz= 1390+ 66i for A (1405). N (Xe=x0), J6 (Xzt %, 2%s),
Finally for the case of the transition magnetic moment we . . .
obtain the value from Eq25) and Fig. 8: ¥(x):  p-wave orbital wave functions,
|:UvA(1670)—>A(1405)| =0.023+0.009. (29)

Xon,s- flavor wave functions ofp, A, and S symmetry,

We also evaluate the transition magnetic moment from Eq.
(23) in the complex plane, which gives the modulus 0.019
+0.002 with z;g=1680+20i,z,g= 1426+ 16 and 0.093
+0.003 with z;g= 1680+ 20i,z,g= 1390+ 66i. The values
obtained in the complex plane are less reliable in this casEurthermore, in Eq(31), orbital and spin wave functions are
because they involve an extrapolation of two variables to th&oupled to the total spipm.
complex plane, each of which induces uncertainties. Even [N the nonrelativistic description, the magnetic moment
then, the agreement with the evaluation on the real axis i§perator is given by the sum of twice spin and orbital angular
fair if we take into account the fact that, given the smallnesgnomentum:
of these numbers, their differences are of the same order of
magnitude than those for the(1405) case. The results dis- 3
cussed here are summarized in Table IV. w=2> [po(a(i)+u (HI)]. (32)

With the value of the transition magnetic moment of Eq. i=1
(29) and using EQq.(26) we obtain a partial width for the
A(1670)— A (1405)y decay which corresponds to a branch- Here 4,7(i) and u'(i) are spin and orbital magnetons of the
ing ratio 2x 10"°. ith quark. If constituent quarks are considered to be simple

Dirac particles, they arg(i)=pu'(i)=pu,, g, andus for
V. QUARK MODEL RESULTS u, d, ands quarks, where

d,.a: flavor wave functions ofp, N, and A symmetry.

In this section we compute the resonance magnetic mo-
ments in the nonrelativistic quark model. This demonstrates 21
that the nature of the resonances differ appreciably from the Hu=3 2m,’
chiral unitary description. In the S8) quark model, the
A(1405) andA(1670) resonances are describedpasave

excitations of the 70-dimensional representation, whose 11
SU(2)X SU(3) decomposition is given by #d 32my’
70=28+48+21+210. (30)
11
Here, in the notation on the right-hand sidé!'D, j repre- Ms=™7 3 2m,’

sents the resonance spin abdhe dimension of the flavor

SU(3) representation. ) o N ) )
Since theA particles are isosinglet, their wave functions N actual computations, it is su2ff|C|ent to gve matrix ele-

are spanned by the flavor octet and singlet states. ExplicitlyM€Nts of uz in the basis ofl1)=|*8), [2)=[8), and|3)

these states are given [gi] = |21). It is straightforward to obtain
1 . . _
128:1m) =5 {4 (p) X, liméa + [¥(0) X0 Jim8, 3 L[ ~A BB
<Zl ,u"(i)0'3(i)> =5| 28 5~ 2B,
LN, X ljm b+ L) XaLjm b . B 2B -A

025203-8



MAGNETIC MOMENTS OF THEA (1405) AND A(1670) ... PHYSICAL REVIEW C 66, 025203 (2002

TABLE V. Expansion coefficients in Eq34). andA (1405) andA (1670) are regarded as pure singl){
and octet [1)), respectively, their magnetic moments vanish

A(1405) A(1670) in the SU3) symmetric limit,m,=my=ms, since they are
a a2 a3 4 a2 a3 proportional to the factorA. This explains the relatively
IK 0.43 0.06 09 0.75 058 -039 Small and unstable values of the diagonal matrix elements.
HLC 046 0.25 085 —-004 -—095 0.30 In contrast, the off diagonql magnt_etic_moment takes a
relatively large value. Typically, it is u(A(1670)
— A (1405))~ 0.5, which is more than one order of magni-
B tude larger than the values of the chiral unitary approach. In
A 0 ) the SU3) symmetric limit, the off-diagonal matrix element
3 survives as it is proportional to the factBr
S iy 1, _AatB
i:lM(I) 3(') _3 4 ’
B VI. CONCLUSION
5 0 A

We have introduced here the formalism to evaluate mag-
netic moments and the transition magnetic moment of the
where A= uy+ g+ s and B=puy+ ug—2us. From a two {\* resonancesA(_14_05) andA (1670), wh_ich are dy-
group theoretical point of view of flavor S8), it is shown namically genergted within }_ADT. At the same time we have
that nine components of magnetic moments are expressed #¢ne the numerical evaluations and have determined the ac-
terms of four independent quantities. Here two of them befual value for these magnitudes. The values obtained are
come irrelevant due to the $6) construction of the quark #a(i405= +(0.2—=0.5uy, smaller than that of the

(33

model wave function. A (~—0.6uy) and of opposite sign. For th&(1670) we

By writing a A state as obtain w5 (1670~ —0.29uy, also smaller than that of th&
and with the same sign, while for the transition magnetic

[A)=ay|1)+a,|2)+a4(3) , (39 moment we obtain a valugu x(1s70) - A (1405 ~0.023uy,

o ) o ‘which leads to a branching ratio of tha(1670) to
vyherezthezcoe;‘f|C|ents m.ust satisfy the normallzatlorj COI’ldI-A(1405),y channel of the order of 210°6. The results of
tion a;+a;+az=1, we find the corresponding matrix ele- the Uy PT method are different from those obtained with the
ment quark models, reflecting the different nature attributed to the

resonances in those models. One of the interesting results
(Alus)AY=2 ananm(n|ws|m). (35)  obtained in this work is the abnormally small decay width
nm for the A (1670)— A (1405)y transition, which differs in two
orders of magnitude from the quark model predictions. Short

The coefficients are determined by assuming suitable INteI5t 2 measurement of the transition, which could be difficult

actions between quarks. Here we employ two parameter sets . N
Isgur-Karl (IK) [1] and Hey-Litchfield-CashmorgHLC) given the small numbers predicted, even the determination of
[3%] the values of which areyshown in Table V. We summa-2" uPper bound would provide interesting information about

rize the results for the magnetic moments in Table VI, WhereIhe natur(ra] ofr:hese .resl,ona.mcefs. L | . .
the transition magnetic moment is also shown. We used From the theoretical point of view it would be interesting
quark massesm,=338 MeV, my=322 MeV, and m, to see results obtained for the magnitudes evaluated here by

=510 MeV as taken from the Review of Particle Physics!Sing chiral quark models33—3@, which, although not uni-
[32]. We find that the magnetic moments of th¢1405) and tarized, would somehow incorporate elements of the meson

A(1670) states, as well as the transition magnetic momenf@yon cloud present in the dynamically generated reso-
o dances. Also, advances in the line of putting together ele-

ments of quark models together with unitaifig7] would be

diagonal moments are small and change witkif.3. If
most welcome.

physical states are supplemented by another disds,
A(1800)], then the sum of the three diagonal magnetic mo-

ments is invariant and is equal to the trace of the matrix

(sum rulg. If there is no mixing betweett), |2), and|3) ACKNOWLEDGMENTS
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