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Surface incompressibility from semiclassical relativistic mean field calculations
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By using the scaling method and the Thomas-Fermi and extended Thomas-Fermi approaches to relativistic
mean field theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility
KA has been self-consistently computed. The validity of the simplest expansion, which contains volume,
volume-symmetry, surface, and Coulomb terms, is examined by comparing it with self-consistent results ofKA

for some currently used nonlinears-v parameter sets. A numerical estimate of higher-order contributions to the
leptodermous expansion, namely, the curvature and surface-symmetry terms, is made.
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The curvature of the nuclear matter equation of state,
the nuclear matter incompressibilityK` is a key quantity in
nuclear physics because it is related to many propertie
nuclei ~such as radii, masses, and giant resonances!, heavy-
ion collisions, neutron stars, and supernova collapses.
important source of information onK` is provided by the
study of the isoscalar giant monopole resonance~GMR!
~breathing mode! in finite nuclei. In the nonrelativistic frame
theoretical microscopic calculations based on the rand
phase approximation@1# and approximations to it such as th
scaling method@2–4# or constrained calculations@3–5# us-
ing Skyrme @3# and Gogny@6# effective forces lead to a
nuclear matter incompressibility coefficientK` of 215615
MeV @6,7#. A similar analysis carried out within the relativ
istic mean field~RMF! theory with nonlinears-v effective
Lagrangians gives a value ofK` slightly higher, that is, 250–
270 MeV @8#.

The nuclear matter incompressibiltyK` is not a directly
measurable quantity; what is measured is, actually, the
ergyEM of the GMR of finite nuclei. It is convenient to write
this energy in terms of the incompressibilityKA for a finite
nucleus of mass numberA as

EM5A \2KA

M ^r 2&
, ~1!

where^r 2& is the rms matter radius andM the nucleon mass
The finite nucleus incompressibiltyKA can be parametrized
by means of a leptodermous expansion@2# that is similar to
the liquid drop mass formula

KA5K`1Ks fA
21/31KvsI

21KcoulZ
2A24/31•••, ~2!

whereI 5(N2Z)/A is the neutron excess. Equation~2! sug-
gests that it is possible to fit the coefficients of the expans
to the experimental data in a model independent way.
though some effort along these lines has been made in
past @9#, the fact that a fit of the parameters of Eq.~2! to
experimental data does not lead to a unique determinatio

*Present address: Institute of Physics, Sachivalaya M
Bhubaneswar-751 005, India.
0556-2813/2002/65~4!/044304~7!/$20.00 65 0443
.,

of

ne

-

n-

n
l-
he

of

the parameters is well established@6,10,11#. Rather, the
nuclear matter incompressibility has to be determined fr
effective forces that reproduce, in a microscopic calculati
the experimental values of the GMR excitation energy
heavy nuclei@6#.

It is also possible to fitKA calculated microscopically
within the scaling model for a given effective interaction
the leptodermous expansion Eq.~2!. This has been done, fo
example, in the nonrelativistic frame using Skyrme forc
@12#. In this case the coefficients entering Eq.~2! can be
expressed through infinite and semi-infinite nuclear ma
properties calculated with the Hartree-Fock approximat
for each considered interaction. In particular, the volum
symmetry (Kvs) and Coulomb (Kcoul) coefficients depend
on some parameters of the liquid droplet model@13# com-
puted only using nuclear matter properties@2#. The surface
coefficientKs f , also derived in@2#, can be written as@14#

Ks f54pr 0
2F S 221

54

K`
r0

3ê`~r0! Ds~r0!19r0
2s̈~r0!G .

~3!

The surface tensions is calculated in symmetric semi
infinite nuclear matter and is defined as

s~rc!5E
2`

1`

$H~r!2e`~rc!r%dz, ~4!

wherer is the density profile whose central value is given
rc5r(2`), H is the energy density, ande` is the energy
per particle in nuclear matter at densityrc . In Eq. ~3! dots
indicate the derivatives with respect to the central den
and all the quantities are evaluated at a central density e
to the nuclear matter saturation densityr0, which is related
to the radius constantr 0 through 4pr 0

3r0/351.
The key quantity entering Eq.~3! is s̈, which is the sec-

ond derivative ofs(rc) with respect torc calculated atrc
5r0. The determination ofs̈ also requires knowledge o
how the density profiler is modified during compression
@15#. In the study of the breathing mode a scaling transf
mation of the densities is assumed. Actually, the coefficie
entering the parametrization~2! can be derived under thi

g,
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hypothesis@2#. The scaling transformation means that t
density changes according to the transformationr→lr and
consequently

rl~r !5l3r~lr !. ~5!

Thus, in the scaling approach

s̈~r0!5Fd2s~rc!

drc
2 G

r0

5
1

9r0
2 Fd2s

dl2G
l51

. ~6!

To obtain the surface incompressibility coefficientKs f for a
given effective interaction, it is necessary, first of all, to c
culate the scaled surface tensionsl by replacing the densi
ties by the scaled densities given by Eq.~5! in Eq. ~4!. In the
nonrelativistic frame this can be easily done within t
Hartree-Fock scheme using zero-range Skyrme forces a
simple analytical expression forsl is obtained@12,14#.

The self-consistent calculation ofKs f within the RMF ap-
proximation using thes-v model is more involved due to th
problem of the change in the meson fields induced by
scaled nuclear densities@16#. To our knowledge, only ap
proximate calculations ofKs f have been developed in th
past for the relativistic model. This is the case of the rela
istic Thomas-Fermi~RTF! calculations of Refs.@16,17#
where a local density approximation of the meson fields w
used. Another approach is related with the study of nu
under an external pressure. Starting from a schematic en
density functional and adding a density-dependent constr
that simulates the pressure, analytical expressions for the
face tensions as a function of the bulk densityrc can be
derived for a wide class of compression modes, in particu
for the scaling mode@15#. This way one obtains the follow
ing formula for s̈ in the scaling mode

s̈~r0!52
19

81

K`a

r0
, ~7!

wherea is the surface diffuseness parameter of a symme
Fermi density. This pocket formula has been employed
estimateKs f in the RMF model for several nonlinears-v
parameter sets@19#. A symmetric Fermi function that repro
duces in the best way the density profile obtained from
Hartree calculation of semi-infinite nuclear matter has b
used in Ref.@19# to determine thea parameter of Eq.~7!.

Very recently, the scaling method applied to the RM
theory in the RTF and relativistic extended Thomas-Fe
~RETF! approaches has been used to self-consistently ob
the excitation energy of the GMR of finite nuclei@20,21#.
Our aim in the present paper is, first to obtain the surf
coefficient Ks f self-consistently in the RTF and RETF a
proaches developed in Ref.@20,21# for some linear and non
linear s-v parameter sets. On the other hand, we wan
check whether the leptodermous expansion of the fi
nucleus incompressibility Eq.~2! can reproduce the corre
sponding fully self-consistent value obtained in the RE
approach@21# with some selected nonlinears-v parameter
sets.
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The key point of our semiclassical approach is that
local Fermi momentumkF and the effective massm* scale
as @20,21#

kFl5lkF~lr !, ml* ~r !5lm̃* ~lr !, ~8!

wherem̃* is still a function ofl. With the help of Eq.~8!,
the nuclear part of the energy and the scalar density inc
ing \2 corrections, which are functionals ofkF andm* , scale
as

El~r !5l4Ẽ~lr !, rsl~r !5l3r̃s~lr !. ~9!

Again Ẽ and r̃s are functions of the collective coordinatel
because of their dependence onm̃* . Thus the scaled surfac
tension can be written as@20–22#

sl5E @l4Hl~lz!2e`~l3r0!l3r~lz!#
d~lz!

l

5E d~lz!H l3Ẽ1l2gvVlr2
1

2
lF ~“Vl!21

mv
2

l2
Vl

2G
1

1

2
lF ~“fl!21

ms
2

l2
fl

2G
1

bfl
3

3l
1

cfl
4

4l
2l2e`~l3r0!rJ , ~10!

where all densities and fields depend on the variablelz.
With the help of the Klein-Gordon equations for the scal
vector and scalar fields derived from Eq.~10!, the scaled
surface tension can be recast as

sl5E d~lz!H l3Ẽl1
1

2
l2gvVlr1

1

2
l2gsflr̃s

2
bfl

3

6l
2

cfl
4

4l
2l2e`~l3r0!rJ . ~11!

Using the explicit RTF or RETF expressions for the nucle
part of the energy and for the scalar density@20–23# together
with the Klein-Gordon equations forVl , fl , ]Vl /]l, and
]fl /]l derived from Eq.~10!, after some algebra the firs
and second derivatives of the scaled surface tensionsl with
respect tol at l51 read~see Refs.@20,21# for more details!

dsl

dl
ul5152s1E

2`

1`

dzH E2rsm* 2ms
2f22

1

2
gsrsf

2
1

2
bf32

1

4
cf41

1

2
gvrV1mv

2V2J 50 ~12!

and
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TABLE I. Values of s̈ ~in MeV fm4) andKs f ~in MeV! calculated with the RTF and RETF approach
and the scaling method for several parameter sets. The nuclear matter incompressibility modulusK` ~in
MeV! and the2Ks f /K` ratio are also listed.

RTF RETF

K` s̈ Ks f 2Ks f /K` s̈ Ks f 2Ks f /K`

NL-Z2 172.2 2113.9 285.2 0.49 2131.2 2182.5 1.06

NL1 211.1 2170.3 2170.6 0.81 2171.8 2225.4 1.07

NL3 271.5 2224.2 2310.4 1.14 2209.3 2313.7 1.16

NL-RA1 285.3 2235.5 2335.4 1.18 2216.6 2326.7 1.15

NL-SH 355.0 2292.7 2469.8 1.32 2258.2 2429.6 1.21

NL2 399.2 2295.9 2521.0 1.31 2279.0 2482.8 1.21

HS 546.8 2521.5 2996.7 1.82 2424.9 2804.2 1.47

L1 625.6 2422.6 21024.6 1.64 2320.6 2787.1 1.26
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hile
d2sl

dl2
ul51526s1E

2`

1`

dzH bf32~bf212ms
2f!

]fl

]l Ul51

13ms
2f212mv

2V
]Vl

]l U
l51

23mv
2V2

1m
drs

dm*
S m* 1gs

]fl

]l Ul51D2K`rJ . ~13!

The first derivative ofe`(l3r0) at l51 is just three times
the pressure calculated at saturation density and thus it
ishes, while the second derivative givesK`r @21,26#. On the
other hand, since in the self-consistent RTF and RETF
culations the inputs for computing Eqs.~12! and ~13! are
quantities obtained from the solution of the variational eq
tions associated with the surface tension~10! at l51, the
so-called ‘‘sigma dot’’ theorem is rigorously fulfilled@27#.
The method, therefore, allowss̈ and consequentlyKs f to be
computed on top of a self-consistent RTF or RETF calcu
tion of the surface tension in symmetric semi-infinite nucle
matter. This is similar to what happens in the nonrelativis
frame with Skyrme forces@14#, although in the relativistic
case additional Klein-Gordon equations for]Vl /]l and
]fl /]l at l51 have to be solved.

Now we shall discuss the results obtained from the s
consistent RTF and RETF methods in the scaling approxi
tion. Table I collectsK` , s̈, and Ks f for the nonlinear
NL-Z2 @28#, NL1 @29#, NL3 @30#, NL-RA1 @31#, NL-SH
@32#, and NL2 @33# and the linear HS@34# and L1 @33# pa-
rameter sets. One observes that in both the RTF and R
calculationss̈ and Ks f decrease~become more negative!
with increasing bulk incompressibilityK` . The RTF and
RETF values ofs̈ andKs f for a given parameter set are,
general, rather different from one another, which means
the precise value of these quantities is model dependent.
is known to happen also with other quantities related w
the nuclear surface. For example, such is the case of
surface energy coefficient of the leptodermous expansio
the binding energy of a nucleus, which is calculated
4pr 0

2s. The quality of the RTF and RETF approximation
04430
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for semi-infinite nuclear matter and finite nuclei with respe
to the RMF Hartree approach, and its dependence on
effective interaction, was investigated in Refs.@22,24,25#
by analyzing the results obtained with many different para
eter sets. It was noticed that the RTF results fluctuate aro
the corresponding Hartree results. Due to this fact th
exist parametrizations for which the RTF approximati
agrees by chance with the Hartree result. The behavio
RETF results in comparison with the Hartree solutions w
found to be less dependent on the parameters of the f
than in the RTF case, and it turned out that on the average
RETF results are in better agreement with the Hartree o
@22,24,25#.

The first contribution toKs f in Eq. ~3! comes from the
surface tension, let us call itKs f

s . The deviation found in the
value of the surface tension from RTF calculations with
spect to the corresponding RMF Hartree calculations
strongly correlated with the value of the effective mass
nuclear matterm*̀ /m @22,25#. For small values ofm*̀ /m the
RTF surface tension is larger than the Hartree one, it pra
cally agrees with the Hartree result form*̀ /m;0.65, and it
becomes smaller than the Hartree result for largerm*̀ /m. On
the other hand, the RETF result for the surface tension
consistently lower than the Hartree result and much less
pendent on the specific value ofm*̀ /m. ~A similar situation
is found for the total energy of finite nuclei@22,24,25#.!
These trends, of course, are also reflected inKs f

s . For ex-
ample, for NL1 (m*̀ /m50.57) we haveKs f

s 5402.6, 377,
and 429.3 MeV in the Hartree, RETF, and RTF approach
respectively. For NL2 (m*̀ /m50.67) it isKs f

s 5479.6, 439.1,
and 465.7 MeV in the Hartree, RETF and RTF calculatio
respectively.

The second contribution toKs f in Eq. ~3! is due to the
second derivative of the surface tension. The results fors̈ in
the RTF approach decrease withK` faster than in the RETF
calculation. At small values ofK` the RTF value ofs̈ is less
negative than that computed in the RETF approach, w
the opposite happens for higher values ofK` . Both ap-
proaches predict the same value ofs̈ for an incompressibility
around that of NL1~211 MeV!. A similar behavior is dis-
4-3
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S. K. PATRA, M. CENTELLES, X. VIÑAS, AND M. DEL ESTAL PHYSICAL REVIEW C65 044304
played by the self-consistent values ofKs f , although the
crossing point between the RTF and RETF predictions
shifted to a larger value ofK` ~around 280 MeV! due to the
fact that the contribution proportional tos (Ks f

s ) is larger in
the RTF approach than in the RETF approach for the par
eter sets considered here.

The s̈ values obtained from the pocket formula Eq.~7!
using the surface diffuseness of the RTF or RETF se
infinite nuclear matter density profiles also decrease w
K` , though the estimate provided by Eq.~7! does not repro-
duce, in general, the self-consistent values very precis
The approximates̈ is always smaller when calculated fro
the RTF approach than from the RETF approach for the
rametrizations of Table I. Using Eq.~7! to estimate the value
of Ks f in first approximation, one finds that the RETF res
is closer to the Hartree value than the RTF result for the
NL-Z2, NL1, NL3, and NL-RA1. For NL2 and L1 it is the
RTF estimate that lies closer to the Hartree estimate.
NL-SH and HS the approximate Hartree prediction l
roughly in between of the approximate RTF and RETF v
ues. To the extent that Eq.~7! is applicable, it provides a hin
of where the unknown exact Hartree value forKs f should lie
with respect to the self-consistent RTF and RETF res
presented in Table I.

Another different approach to computingKs f was pro-
posed in Refs.@16,17#. It is based on the scaling metho
together with a local density approximation for the mes
fields within the RTF approach. In Ref.@17# a Ks f of ap-
proximately21000 MeV was reported for a linear set wi
K`5545 MeV ~similar to the HS set!. This result is in
good agreement with that of our self-consistent R
calculation for the HS set, though it is clearly larger in a
solute value than the RETF result forKs f obtained with the
HS set. On the other hand, our self-consistent RTF and R
surface incompressibilities differ considerably from t
estimate of Ref.@35# where approximateKs f values of
2333.1 and2610.1 MeV were reported for the NL1 an
NL-SH parametrizations calculated with the method used
Ref. @16#.

It should also be pointed out that in our self-consist
semiclassical calculations we find that the ratio between
surface and bulk incompressibilities increases withK` ~in
agreement with the results of Ref.@17#!. In the RETF case
this ratio is close to one, as happens for the nonrelativi
Skyrme forces@5#, provided that the bulk incompressibilit
K` of the interaction is not excessively high. In the RTF ca
the ratio between the surface and bulk incompressibili
increases much faster withK` than in the RETF calculations
and it considerably differs from unity for parametrizatio
with either a very low or a very high bulk incompressibilit
In Fig. 1 we plot2Ks f as a function ofK` for the parameter
sets considered in Table I. As in the nonrelativistic case@2#,
Ks f varies roughly linearly withK` . A linear fit of all the
points gives2Ks f51.47K`284 in the RETF model and
2Ks f52.19K`2295 in the RTF model. If only the nonlin
ear parametrizations are included in the fit one obta
2Ks f51.35K`254 and2Ks f51.96K`2238 in the RETF
and RTF cases, respectively.

The surface incompressibility coefficient is both large a
04430
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negative, thus its contribution considerably reduces the fi
nucleus incompressibilityKA with respect to the nuclea
matter limitK` . This result, although obtained in the scalin
model, illustrates the physical effect that the compression
the surface provides a considerable reduction ofKA , which
is also found in more fundamental RPA calculations@6#. In
Ref. @21# we have self-consistently computed the fin
nucleus incompressibilityKA using the RETF approach an
the scaling method that we have employed in the pres
work to obtainKs f . Thus we can now precisely check th
ability of the leptodermous expansion Eq.~2! in reproducing
the full calculation ofKA carried out in Ref.@21# for various
finite nuclei.

The coefficientsKvs andKcoul entering Eq.~2! are com-
puted using nuclear matter properties only. Explicit expr
sions for these coefficients in the nonlinears-v model are
reported in Ref.@18#. In our analysis we will use the NL1
NL3, and NL-SH parameter sets for which the numeric
values of these coefficients are given in Ref.@19#. The sur-
face incompressibility coefficient is the self-consistent va
taken from Table I. Table II collectsKA obtained from the

FIG. 1. Surface incompressibility coefficient versus the nucl
matter incompressibility modulus for the parameter sets of Tabl

TABLE II. Finite nuclei incompressibilities~in MeV! calculated
with the self-consistent RETF approach (KA) and with the lepto-
dermous expansion Eq.~2! @K(A,I )#. Results are presented for th
NL1, NL3, and NL-SH parameter sets.

NL1 NL3 NL-SH

KA K(A,I ) KA K(A,I ) KA K(A,I )

40Ca 108.2 128.1 145.3 161.0 196.8 208.6
48Ca 111.1 116.9 147.4 151.0 198.3 198.4
56Ni 115.0 130.8 153.2 166.0 207.1 216.7
90Zr 122.5 129.3 161.6 167.3 217.5 221.1
116Sn 124.3 126.3 163.4 165.4 219.8 220.4
132Sn 121.3 105.4 157.6 144.9 210.9 197.5
144Sm 125.4 125.3 164.5 165.3 221.6 221.5
208Pb 124.1 111.1 161.1 152.1 216.7 208.1
4-4
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SURFACE INCOMPRESSIBILITY FROM . . . PHYSICAL REVIEW C65 044304
full self-consistent RETF calculation@21# as well as the
value K(A,I ) given by Eq.~2! for 40Ca, 48Ca, 56Ni, 90Zr,
116Sn, 132Sn, 144Sm, and 208Pb. From this table it can be
seen that the leptodermous expansion with the terms give
Eq. ~2! fails to describe small nuclei and also very asymm
ric nuclei such as132Sn or 208Pb. In addition, some words o
caution should be said about the Coulomb term in Eq.~2!. In
the self-consistent scaling calculation of the finite nucle
incompressibility, the Coulomb energy does not particip
directly if the scaling Eq.~5! for the density is assumed t
apply @3,21#. Thus, the Coulomb term in Eq.~2! should be
related to the change inKA when the Coulomb interaction i
switched off in the self-consistent calculation. The Coulom
term in Eq.~2! overestimates this change by approximatel
MeV for NL1, 3 MeV for NL3, and 1 MeV for NL-SH.

Now we would like to analyze whether the addition
some higher-order terms in the leptodermous expansion
~2! improves the agreement with theKA results calculated
self-consistently. In particular, we will focus our attention
the curvatureKcvA21/3 and the surface-symmetryKssI

2A21/3

terms. Although these terms could be derived by enlarg
the leptodermous expansion of Blaizot@2#, as has been don

FIG. 2. (KA2K`)A1/3 versusA21/3 computed for several un
charged and symmetric nuclei fromA5250 toA5300 000 for the
NL1, NL3, and NL-SH parameter sets.
04430
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in the nonrelativistic case@12#, it becomes more complicate
in the relativistic case. Thus, for a fast estimate of the c
vature and surface-symmetry terms, we perform a numer
fit. To do this, we follow the same strategy as in Ref.@12#.
First we consider symmetric nuclei with the Coulomb for
switched off. In this case the leptodermous expansion Eq.~2!
~adding the curvature term! reduces to

KA5K`1Ks fA
21/31KcvA22/3. ~14!

In Fig. 2 we plot@KA2K`#A1/3 versusA21/3 for the three
parameters sets used in this analysis. HereK` is the nuclear
matter incompressibility given in Table I andKA are the
self-consistent incompressibilities calculated forA ranging
from 250 to 300 000. In the linear fit of these curves t
y-axis intercept givesKs f of the corresponding force, while
the slope givesKcv . The surface terms obtained in this wa
are 2246.1,2328.4, and2435.8 MeV for the NL1, NL3,
and NL-SH parameter sets, which are very close to the
responding self-consistent values~see Table I!. The estimates
of the curvature term in the leptodermous expansion of

FIG. 3. (KA,I2KA,I 50)/I 2 versusA21/3 for several uncharged
nuclei fromA5200 toA5200 000 with a neutron excess 0.10 fo
the NL1, NL3, and NL-SH parameter sets.
3,

5
8

7
8

2
6

TABLE III. Finite nuclei incompressibilities~in MeV! for severalunchargednuclei calculated self-
consistently using the RETF approach (KA), with the leptodermous expansion Eq.~2! @K(A,I )# and includ-
ing the curvature and surface-symmetry contributions@K* (A,I )#. Results are presented for the NL1, NL
and NL-SH parameter sets.

NL1 NL3 NL-SH

KA K(A,I ) K* (A,I ) KA K(A,I ) K* (A,I ) KA K(A,I ) K* (A,I )

40Ca 118.6 145.2 118.1 160.1 179.8 160.2 213.4 229.4 213.
48Ca 119.6 130.3 121.2 159.7 165.8 161.8 215.1 214.7 213.
56Ni 129.3 152.2 130.5 172.7 189.6 173.9 230.5 242.7 230.0
90Zr 139.6 152.5 142.0 184.2 192.9 186.3 244.3 249.3 244.8
116Sn 144.0 152.0 146.3 189.0 193.9 191.1 250.1 251.8 250.
132Sn 137.2 127.1 137.4 179.3 168.9 180.2 236.8 223.9 236.5
144Sm 148.5 155.0 150.7 194.3 198.2 196.3 256.7 257.7 257.
208Pb 148.4 142.8 148.5 193.4 187.3 194.0 255.0 246.9 254.
4-5
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S. K. PATRA, M. CENTELLES, X. VIÑAS, AND M. DEL ESTAL PHYSICAL REVIEW C65 044304
finite nucleus incompressibility obtained with NL1, NL3
and NL-SH are2317.2,2229.8 and2185.6 MeV, respec-
tively.

To obtain the surface-symmetry contribution, we ha
found it convenient to parametrize the difference between
self-consistent incompressibilitiesKA of a given nucleus
with neutron excessI and the corresponding symmetr
nucleus as

KA,I2KA,I 505KvsI
21KssI

2A21/3, ~15!

where again uncharged nuclei have been considered.
each parameter set and according to Eq.~15!, if @KA,I
2KA,I 50#I 22 is plotted versusA21/3 a unique curve should
be found which is independent of the value ofI. However,
one obtains a family of almost parallel lines whose slope
Kss. The splitting of these lines gives us information on t
higher-order symmetry contributions missed in the para
etrization~15!. Thus we will estimate the surface-symmet
term from a linear fit of the curve corresponding toI 50.1,
which roughly corresponds to an average asymmetry al
the periodic table. This curve is plotted in Fig. 3 forA rang-
ing from 200 to 200 000 for each considered parameter
The correspondingy-axis intercepts agree very well with th
Kvs values calculated in nuclear matter~2676.1, 2698.9,
and 2794.5 MeV for NL1, NL3, and NL-SH respectivel
@19#!. Our estimate of the surface-symmetry contribution
KA corresponds to the slopes of these linear fits, which
1951.4, 1754.0, and 1716.5 MeV for NL1, NL3, and NL-S
respectively.

Table III collects the self-consistent finite nuclei incom
pressibility KA ~without Coulomb! compared with the mac
roscopic parametrizationsK(A,I ) @Eq. ~2!# andK* (A,I ) that
contains the curvature and surface-symmetry contributi
obtained from the previously discussed fits. Again, the s
consistent incompressibilities corresponding to the ligh
nuclei and the very asymmetric nuclei are not well rep
duced by the simplest expansion Eq.~2!. If the curvature and
surface-symmetry corrections are included, the impro
macroscopic formulaK* (A,I ) reproduces the self-consiste
incompressibilities with an error, on average, smaller th
1.2%, 0.9%, and 0.3% for the NL1, NL3, and NL-SH p
rameter sets. In order to gain some insight into the accur
of our estimate of the curvature and surface-symmetry c
l.
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tributions, we fit the self-consistent results for the finite n
clei considered in Table III to a leptodermous expansion
cluding curvature and surface-symmetry terms. The volu
surface, and volume-symmetry coefficients are taken fr
self-consistent infinite and semi-infinite nuclear matter cal
lations. The results of this calculation show that the diff
ence of the curvature contribution obtained from the fit in t
asymptotic region and from finite nuclei is always less th
10%, whereas the difference in the surface-symmetry con
bution lies below 3%.

We have applied the scaling method in the Thomas-Fe
and extended Thomas-Fermi approximations to the relati
tic mean-field theory to self-consistently calculate the surf
coefficientKs f of the leptodermous expansion of the fini
nucleus incompressibility derived within the Blaizot mode
The ratio between the surface and bulk incompressibili
obtained in our semiclassical calculation increases with
nuclear matter incompressibility, more strongly in the RT
than in the RETF case. In the RETF calculations this ratio
close to one, as in the case of non-relativistic Skyrme forc
for the nonlinear parameter sets that have a nuclear m
incompressibility not larger than roughly 300 MeV.

For the analyzeds-v parameter sets, the leptodermo
expansion Eq.~2! is not able to reproduce very precisely th
finite nuclei incompressibilities obtained self-consistently.
particular, the macroscopic contribution of the Coulom
force can differ from the self-consistent contribution up to
MeV. We have numerically estimated higher-order contrib
tions to the leptodermous expansion, namely, curvature
surface-symmetry terms, in the asymptotic region~i.e., for
very large uncharged systems!. We have found that the finite
nuclei incompressibilities are reasonably well reproduced
an extended leptodermous expansion that includes curva
and surface-symmetry contributions.
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