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Isotopic and isotonic chains of superheavy nuclei are analyzed to search for spherical double shell closures
beyondZ=82 andN=126 within the new effective field theory model of Furnstahl, Serot, and Tang for the
relativistic nuclear many-body problem. We take into account several indicators to identify the occurrence of
possible shell closures, such as two-nucleon separation energies, two-nucleon shell gaps, average pairing gaps,
and the shell correction energy. The effective Lagrangian model predictsN=172 andZ=120 andN=258 and
Z=120 as spherical doubly magic superheavy nuclei, whereasN=184 andZ=114 show some magic character
depending on the parameter set. The magicity of a particular neutron(proton) number in the analyzed mass
region is found to depend on the number of protons(neutrons) present in the nucleus.
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I. INTRODUCTION

In the last thirty years a continuing effort has been de-
voted to the investigation of superheavy nuclei both in ex-
periments and in theoretical research. A fascinating challenge
in the study of these nuclei is the quest for the islands of
stability where the next magic numbers beyondN=126 and
Z=82 may be located. Experiments made at GSI, Dubna and
Berkeley have allowed the synthesis and detection of some
superheavy nuclei. For instance, light isotopes of the ele-
mentsZ=110, 111, and 112 have been obtained at GSI and
Dubna[1–3]. They have been identified by their characteris-
tic a-decay chains which lead to already known isotopes.
These new nuclei are expected to be deformed, consistently
with the predicted occurrence of a deformed magic shell clo-
sure atZ=108 andN=162 (see, e.g., Refs.[4–6]). First data
of some heavier and more neutron-rich isotopes of atomic
number Z=112 sN=171d, Z=114 sN=173–175d, and Z
=116 sN=176d produced by means of fusion reactions have
also been measured at Dubna[7].

Theoretical predictions made at the end of the sixties
pointed towards the existence of an island of long-lived su-
perheavy elements(SHE) centered aroundN=184 andZ
=114 [8–11]. The nuclei around the hypothetical doubly
magic element298114 were expected to be nearly spherical
with longer half-lives. Such superheavy nuclei, having a neg-
ligible liquid-drop fission barrier, would be stabilized mostly
by quantal shell effects. Many of the more recent theoretical
works on superheavy nuclei are based on the nuclear mean
field approach and can be classified in two main groups. On
the one hand, we have the macroscopic-microscopic models
which include a liquid-drop contribution for the part of the
energy which varies smoothly with the numberA of nucle-
ons, and a shell correction contribution obtained from a suit-
able single-particle potential for the fine tuning. On the other
hand, there are the self-consistent Hartree-Fock or Hartree
calculations based on Skyrme forces or on the relativistic
nonlinears−v model, respectively.

The nuclei in the range aroundZ<110 already detected
in experiments bridge the gap between the known actinides

and the unknown superheavy elements. With the advent of
more experimental data, a commendable endeavor has been
undertaken in nuclear structure research[6,12–25] aimed at
verifying the reliability of the present theoretical models in
the regime of the heavier actinides and of the discovered
superheavy nuclei aroundZ=110, which requires deformed
calculations. The fact that many of the observed data for
SHE are for odd-even decay chains renders the calculations
and the comparison with experiment even more complicated,
since the deformed level density is high and the observed
nuclei may be in isomeric states. Calculations with self-
consistent models of somea-decay chains[20], deformation
energy curves along the fission path[25], and shell structures
[6] find that there is a gradual transition from well-deformed
nuclei around the deformedZ=108 andN=162 shell clo-
sures to spherical shapes approaching larger superheavy nu-
clei around the putativeN=184 magic neutron gap, in quali-
tative agreement with the earlier studies in mac-mic and
semiclassical models. Still, the Hartree-Fock model mass
formula of Ref.[26] predicts large deformations in many of
the isotopes ofZ=114 and in almost all of theZ=120 iso-
topes. As pointed out in some recent works, the description
of deformed SHE may require to consider triaxial deforma-
tions and reflection-asymmetric shapes[25,27,28] (Ref. [29]
pioneered the relativistic mean field triaxial calculations). It
is even possible that there exist isolated islands of stability
associated with exotic(semibubble, bubble, toroidal, and
bandlike) topologies in nuclei with very large atomic num-
bers[20,30,31].

Another long-standing goal of the nuclear structure stud-
ies in the field of superheavy nuclei has been to establish the
location in N and Z of the nextspherical doubleshell clo-
sures for elements heavier than208Pb, and of the largest shell
effects which are a necessary condition for the stability of
SHE against fission. In this context, most of the calculations
published in the literature are performed in spherical symme-
try. It is well established that the macroscopic-microscopic
calculations predict spherical shell closures atZ=114 and
N=184 [4]. In self-consistent calculations, however, the pro-
ton and neutron shell structures strongly affect each other
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and otherN andZ values can appear as candidates for shell
closures depending on the model interaction. For example,
Hartree-Fock calculations with a variety of Skyrme forces
show the most pronounced spherical shell effects atZ
=124,126, andN=184[32–36]. As an exception to this rule,
Skyrme parametrizations such as SkI3 and SkI4 which have
a modified spin-orbit interaction preferZ=120 andZ=114,
respectively, for the proton shell closure[33,34]. Hartree-
Fock-Bogoliubov calculations with the finite range Gogny
force predictZ=120,126 andN=172,184 as possible spheri-
cal (or nearly spherical) shell closures[30,31]. At variance
with Skyrme Hartre-Fock, the relativistic mean field(RMF)
theory with the conventional scalar and vector meson field
couplings typically prefersZ=120 andN=172 as the best
candidates for spherical shell closures[32–36]. Of course,
the different nature of the spin-orbit interaction in the
Skyrme and RMF models is pivotal in deciding the location
of the stronger shell effects. Detailed comparisons between
Skyrme Hartree-Fock and RMF calculations of SHE can be
found in Refs.[33] and [35].

The discrepancies in the predicted spherical shell closures
for SHE motivate us to reinvestigate them using the more
general RMF model derived from the chiral effective La-
grangian proposed by Furnstahl, Serot, and Tang[37–39]. In
this first attempt to apply the effective field theory(EFT)
model to the region of superheavy nuclei we will restrict
ourselves to analyze the occurrence of double shell closures
and the shell stabilizing effect in spherical symmetry, as
done, e.g., in Refs.[32–36]. We want to learn whether in this
respect the EFT approach shows a different nature compared
to the usual RMF theory or not. The possible extension of the
calculations to deformed geometries and the subsequent ap-
plication of the EFT model to the heavier actinides and the
lighter transactinides where experimental data have been
measured is left for future consideration.

The relativistic model of Refs.[37–39] is a new approach
to the nuclear many-body problem which combines the mod-
ern concepts of effective field theory and density functional
theory (DFT) for hadrons. An EFT assumes that there exist
natural scales to a given problem and that the only degrees of
freedom relevant for its description are those which can un-
ravel the dynamics at the scale concerned. The unresolved
dynamics corresponding to heavier degrees of freedom is
encoded in the coupling constants of the theory, which are
determined by fitting them to known experimental data. The
Lagrangian of Furnstahl, Serot, and Tang is intended as an
EFT of low-energy QCD. As such, its main ingredients are
the lowest-lying hadronic degrees of freedom and it has to
incorporate all the infinite(in general nonrenormalizable)
couplings consistent with the underlying symmetries of
QCD. To endow the model with predictive power the La-
grangian is expanded and truncated. Terms that contribute at
the same level are grouped together with the guidance of
naive dimensional analysis. Truncation at a certain order of
accuracy is consistent only if the coupling constants eventu-
ally exhibit naturalness(i.e., if they are of order unity when
in appropriate dimensionless form). In the nuclear structure
problem the basic expansion parameters are the ratios of the
scalar and vector meson fields and of the Fermi momentum
to the nucleon massM, as these ratios are small in normal

situations. To solve the equations of motion that stem from
the constructed effective Lagrangian one applies the relativ-
istic mean field approximation in which the meson fields are
replaced by their classical expectation values.

EFT and DFT are bridged by interpreting the expansion of
the effective Lagrangian as equivalent to an expansion of the
energy functional of the many-nucleon system in terms of
nucleon densities and auxiliary meson fields. The RMF
theory is then viewed as a covariant formulation of DFT in
the sense of Kohn and Sham[40]. That is, the mean field
model approximates the exact, unknown energy functional of
the ground-state densities of the nucleonic system, which
includes all higher-order correlations, using powers of auxil-
iary classical meson fields. This merger of EFT and DFT
provides an approach to the nuclear problem which retains
the simplicity of solving variational Hartree equations with
the bonus that further contributions, at the mean field level or
beyond, can be incorporated in a systematic and controlled
manner.

If the chiral effective Lagrangian is truncated at fourth
order, in mean field approach one recovers the same cou-
plings of the usual nonlinears−v model plus additional
nonlinear scalar-vector and vector-vector meson interactions,
besides tensor couplings[38,39]. The free parameters of the
resulting energy functional have been fitted to ground-state
observables of a few doubly magic nuclei. The fits, param-
eter sets named G1 and G2[38], do display naturalness and
are not dominated by the last terms retained; an evidence
which confirms the usefulness of the EFT concepts and vali-
dates the truncation of the effective Lagrangian at the first
lower orders. The ideas of EFT have been fruitful[41],
moreover, to elucidate the empirical success of previous
RMF models, like the originals−v model of Walecka[42]
and its nonlinear extensions with cubic and quartic scalar
self-interactions[43]. However, these conventional RMF
models truncate the effective Lagrangian at some level with-
out further physical rationale or symmetry arguments. The
introduction of new interaction terms in the effective model
pursues an improved representation of the relativistic energy
functional [38,39].

Previous works have shown that the EFT model is able to
describe in a unified manner the properties of nuclear matter,
both at normal and at high densities[44,45], as well as the
properties of finite nuclei near and far from the valley ofb
stability [46,47], with similar and even better quality to stan-
dard RMF force parameters. With this positive experience at
hand, in the present paper we want to investigate the predict-
ability of the new effective Lagrangian approach to the
nuclear many-body problem in extrapolations to superheavy
nuclei. Concretely, we shall focus on analyzing the model
predictions for spherical shell closures. Our calculations will
be performed in spherical symmetry. Though deformation is
an important degree of freedom for SHE[5,6,14,18,25], we
are searching for spherical shell stability around184

298114 and

172
292120 where deformation is expected to be small and where
the shell structure has often been analyzed in the spherical
approximation[5,32–36]. For exploration, we also compute
hyperheavy nuclei aroundN,258 which spherical calcula-
tions have found to correspond to a possible region of in-
creased shell stability[36]. Deformation would certainly
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change the picture in the details and add deformed shell clo-
sures, e.g., like those predicted aroundZ=108 andN=162
[4–6], but it should not change drastically the predictions for
the values ofN andZ where the strongest shell effects show
up already in the spherical calculation. Of course, for a quan-
titative discussion, one needs to account for deformation ef-
fects which will serve to extend the island of shell stabilized
superheavy nuclei and to decide on the specific form of the
ground-state shapes of these nuclei.

Our analysis uses the EFT parameter sets G1 and G2[38].
The results are compared with those obtained with the NL3
parameter set[48], taken as one of the best representatives of
the usual RMF model with only scalar self-interactions. The
paper is organized as follows. In Sec. II we briefly summa-
rize the RMF model derived from EFT and our modified
BCS approach to pairing. Section III is devoted to the study
of several properties of superheavy nuclei such as two-
particle separation energies and shell gaps, average pairing
gaps, single-particle energy spectra, and shell corrections.
The summary and conclusions are laid in Sec. IV.

II. FORMALISM

A. The model

The EFT model used here has been developed in Ref.
[38]. Further insight into the model and the concepts under-
lying it can be gained from Refs.[37,39,41,49]. For our pur-
poses, the basic ingredient is the EFT energy density func-
tional for finite nuclei. It reads[38,39]
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The coupling constants have been written so that in the
present form they should be of order unity according to the
naturalness assumption. The indexa runs over all occupied
nucleon stateswasr d of the positive energy spectrum. The
meson fields areF;gsf0sr d, W;gvV0sr d, andR;grb0sr d,
and the photon field isA;eA0sr d. Variation of the energy
densitys1d with respect towa

† and the meson fields gives the
Dirac equation fulfilled by the nucleons and the Klein-
Gordon equations obeyed by the mesonsssee Refs.f38,44g

for the detailed expressionsd. We solve the Dirac equation in
coordinate space by transforming it into a Schrödinger-like
equation.

In this work we shall employ the EFT parameter sets G1
and G2 of Ref.[38] that were fitted by a least-squares opti-
mization procedure to 29 observables(binding energies,
charge form factors, and spin-orbit splittings near the Fermi
surface) of the nuclei 16O, 40Ca, 48Ca, 88Sr, and 208Pb. A
satisfactory feature of the set G2 is that it presents a positive
value ofk4, as opposed to G1 and to most of the successful
RMF parametrizations such as NL3. We note that the value
of the effective mass at saturationM`

* /M in the EFT sets
s,0.65d is somewhat larger than the usual value in the RMF
parameter setss,0.60d, which is due to the presence of the
tensor couplingfv of the v meson to the nucleon[46,50].
Also, the bulk incompressibility of G1 and G2 isK
=215 MeV, while the NL3 set hasK=271 MeV.

B. Pairing

In order to describe open-shell nuclei the pairing correla-
tions have to be explicitly taken into account. The most
popular approach for well-bound isotopes has been the BCS
method. However, the BCS approximation breaks down for
exotic nuclei near the drip lines because it does not treat the
coupling to the continuum properly. This difficulty is dis-
posed of either by the nonrelativistic Hartree-Fock-
Bogoliubov theory, with Skyrme[51] and Gogny[52] forces,
or by the relativistic Hartree-Bogoliubov(RHB) theory
[53–56].

Pairing correlations are another important ingredient in
the study of superheavy elements. Furthermore, some of the
predicted regions of shell stability in superheavy nuclei lie
close to the drip point and a suitable treatment is required.
Many calculations of SHE have often used a zero-range two-
body pairing force Vpair=V0,p/ndsr −r 8d, with adjustable
strengths for protons and neutrons(see Refs.[33,35]). A
study of SHE using the RHB approach, with the NL-SH
parameter set, was carried out in Ref.[57].

To deal with the pairing correlations we use here a sim-
plified prescription which we have previously found to be in
acceptable agreement with RHB calculations[46]. The pro-
cedure is similar to the one employed for Skyrme forces in
Ref. [58]. For each kind of nucleon we assume a constant
pairing matrix elementGq, which simulates the zero range of
the pairing force, and we include quasibound levels in the
BCS calculation as done in Ref.[58]. These levels of posi-
tive single-particle energy, retained by their centrifugal bar-
rier (neutrons) or by their centrifugal-plus-Coulomb barrier
(protons), mock up the influence of the continuum in the
pairing calculation. The wave functions of the considered
quasibound levels are mainly localized in the classically al-
lowed region and decrease exponentially outside it. As a con-
sequence, the unphysical nucleon gas which surrounds the
nucleus if continuum levels are included in the normal BCS
approach is eliminated[46]. We restrict the space of states
involved in the pairing correlation to one harmonic oscillator
shell above and below the Fermi level, to avoid the unreal-
istic pairing of highly excited states and to confine the region
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of influence of the pairing potential to the vicinity of the
Fermi level.

As described in Ref.[46], the solution of the pairing equa-
tions allows us to find the average pairing gapDq for each
kind of nucleon. We write the pairing matrix elements as
Gq=Cq/A. We have fixed the constantsCq by looking for the
best agreement of our calculation with the known experi-
mental binding energies of Ni and Sn isotopes for neutrons,
and ofN=28 andN=82 isotones for protons[46]. The values
obtained from these fits areCn=21 MeV and Cp
=22.5 MeV for the G1 set,Cn=19 MeV andCp=21 MeV
for the G2 set, andCn=20.5 MeV andCp=23 MeV for the
NL3 interaction.

In Ref. [46] we applied this improved BCS approach with
the G1 and G2 parametrizations to study one- and two-
neutron (proton) separation energies for several chains of
isotopes(isotones) from stability to the drip lines. We found
a reasonable agreement with the available experimental data,
similar to the one obtained using the NL3 set. The analysis
showed that the parameters sets based on EFT are able to
describe nuclei far from theb-stability valley when a pairing
residual interaction is included.

III. RESULTS AND DISCUSSION

Traditionally a large gap in the single-particle spectrum
has been interpreted as an indicator of a shell closure, at least
for nuclei of atomic numberZ,100. However, for a large
nucleus such as a superheavy element, it may not be suffi-
cient to simply draw the single-particle level scheme and to
look for the gaps, due to the complicated structure of the
spectrum and the presence of levels with a high degree of
degeneracy. Moreover, in a self-consistent calculation, a
strong coupling between the neutron and proton shell struc-
ture takes place. Therefore, when dealing with SHE it is
imperative to look for other quantities to reliably identify the
shell closures and magic numbers, apart from the analysis of
the single-particle level structure.

Here we shall consider the following observables as indi-
cators for shell closures.

(1) A sudden jump in the two-neutron(two-proton) sepa-
ration energies of even-even nuclei, defined as

S2q = EsNq − 2d − EsNqd, s2d

whereNq is the number of neutronssprotonsd in the nucleus
for q=n sq=pd. A sharp drop inS2q means that a very small
amount of energy is required to remove two more nucleons
from the remnant of the parent nucleus. Thus, the parent
nucleus is more stable which is a character of magicity. This
observable is an efficient tool to quantify the shell effect
because of the absence of odd-even effectsf33g.

(2) The size of the gap in the neutron(proton) spectrum
is determined by half of the difference in Fermi energy when
going from a closed shell nucleus to a nucleus with two
additional neutrons(protons). This quantity is very well ac-
counted for by the two-neutron(two-proton) shell gap which
is defined as the second difference of the binding energy
[32,33]:

d2qsNqd = S2qsNqd − S2qsNq + 2d

= EsNq + 2d − 2EsNqd + EsNq − 2d. s3d

This quantity measures the size of the step found in the two-
nucleon separation energy and, therefore, it is strongly
peaked at magic shell closures.

(3) The neutron and proton average pairing gapsDq of
open-shell nuclei can be related to the odd-even mass differ-
ence, from where the empirical lawD,12/ÎA can be de-
rived [59]. However, for closed shell nucleiDq should van-
ish. Thus, we shall use the vanishing of the average pairing
gap obtained from our calculations as another signal for
identifying closed shell nuclei.

We next calculate the above observables for the isotopic
chain of Z=120 and for several isotonic chains, assuming
spherical symmetry. We employ the parameter sets G1 and
G2 due to the EFT formalism and compare the results with
those obtained from the standard RMF parametrization NL3,
which is well established as a successful interaction for nu-
clei at and away from the line ofb stability.

It is to be mentioned that the previous indicators corre-
spond to energy differences between neighboring nuclei.
However, they do not have a direct connection with the shell
corrections which stabilize a givensN,Zd superheavy
nucleus against fission[35]. The shell corrections are related
to the difference between the nuclear binding energies and
the predictions of a liquid-drop model. As a complementary
study, after our search for spherical shell closures, we shall
analyze the shell corrections for the discussed chains of SHE.

A. Isotopic chain of Z=120

We first consider the chain of isotopes with atomic num-
ber Z=120, which is found as a magic number in recent
relativistic mean field calculations of nuclei in the super-
heavy mass region[32–35]. Figure 1 collects the results ob-
tained with the EFT parameter set G2. The two-neutron sepa-
ration energiesS2n are displayed in the upper panel of this
figure. TheS2n graph shows a smooth decrease with increas-
ing neutron numberN throughout the whole chain except for
the sudden jumps after the neutron numbersN=172, 184,
and 258. These jumps indicate the possible occurrence of a
shell closure at these neutron numbers. Using Eq.(3) we
calculate the two-nucleon shell gap for neutrons for the same
isotopic chain, and present the result in the middle panel of
Fig. 1. Sharp peaks ind2n are found at the same neutron
numbers 172, 184, and 258. It is seen that the peaks ofN
=172 andN=258 are more marked than the peak ofN
=184. Actually, the height of the peak atN=184 is around
only one third of that of the peak atN=172. One may note
that the amplitude of the jumps ind2n for shell closures is
smaller in the SHE region than in the region of normal mass
nuclei. This is expected due to the increase of the single-
particle level density with increasing mass number. For ex-
ample, for208Pb and for the doubly magic isotopes of tin and
calcium we find values ofd2n between some 5 and 10 MeV.

The average pairing gapDq is representative of the
strength of the pairing correlations. The curve for the neutron
pairing gaps, displayed in the bottom panel of Fig. 1, shows
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a structure of arches that vanish only atN=172, 184, and
258. Since the proton pairing gapDp is zero throughout the
wholeZ=120 chain, we have not plotted it. Although we use
a simplified prescription for the calculation of the pairing gap
[46], our value forDq can be considered as an average of the
different state-dependent single-particle gaps which would
be obtained if one had used a zero-range pairing force, as
done, e.g., in Refs.[33,35].

Therefore, all of the three analyzed observables are point-
ing to the same neutron numbers as the best candidates for
shell closures forZ=120 with the G2 parametrization. The
magic character of the proton numberZ=120 in combination
with N=172, 184, and 258 is tested in the calculations for
isotonic chains that we present in the following section. In
analyzing the shell effects from a spherical calculation it is to
be kept in mind that only for doubly magic nuclei one can
guarantee a spherical shape, when protons as well as neu-
trons experience a spherical shell closure. For open-shell nu-
clei the spherical solution does not always correspond to the
ground state. Inclusion of deformation might add extra sta-
bility for someZ=120 nuclei other than292120, 304120, and
378120, and perhaps additional peaks would develop with re-
spect to the neighboring background in the curve ford2n,
apart from the sudden jumps we have detected by means of

the spherical calculation. Only a deformed calculation could
definitively decide in such cases the appropriate ground-state
shape. Nevertheless, the spherical solution gives a first hand
and overall view of the sequence of spherical shell closures,
which we have obtained from indicators which imply differ-
ences of energies but not their absolute values.

In order to analyze the force dependence of the location of
the shell closures for the superheavy nuclei, we calculate the
quantitiesS2n, d2n, andDn with the EFT set G1 and with the
NL3 parameter set for the same isotopic chainZ=120 and
display the results in Fig. 2 and 3, respectively. As in the case
of the G2 set, the proton pairing gapDp vanishes for the
whole chain ofZ=120 isotopes and it is not drawn. The
global nature of the curves of Figs. 2 and 3 is quite similar to
that observed previously with the G2 set. Abrupt jumps in
S2n andd2n, and the vanishing of the average neutron pairing
gapDn, indicate shell closures atN=172 and 258 in both of
the G1 and NL3 sets. The height of the peaks ofd2n at N
=172 and 258 is very similar between the G1 and G2 sets,
while they attain the largest values in the NL3 set. For the
N=184 system,S2n and d2n show only a moderate jump in
both G1 and NL3, indicating a weaker shell closure than for
N=172 and 258. Moreover, the neutron pairing gapDn does
not vanish atN=184 with the G1 and NL3 sets, indicating
that the occupancy of the single-particle levels is diffused
across the Fermi level, contrarily to the case of G2.

One expects a relatively large energy gap to appear be-
tween the last occupied and the first unoccupied single-

FIG. 1. The change with the neutron numberN of the two-
neutron separation energyS2n, the two-neutron shell gapd2n, and
the neutron average pairing gapDn for Z=120 isotopes obtained
from spherical calculations with the relativistic parameter set G2.
The proton average pairing gapDp vanishes in the whole isotopic
chain.

FIG. 2. Same as Fig. 1 but for the relativistic parameter set
G1.
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particle levels for the neutron numbers corresponding to the
shell closures detected above. Let us now look into the neu-
tron single-particle spectra, displayed in Fig. 4, for the
292120,304120, and378120 nuclei. All the three parameter sets
G2, G1, and NL3 show a large gap above the Fermi energy
for N=172 and 258. But for the neutron numberN=184,
there appear only moderate gaps across the Fermi level for
the G2 and G1 sets, and the gap is still smaller for NL3. This

is in agreement with our previous discussions of the other
indicators.

Inspecting theN=258 level spectrum one can appreciate
another visible energy gap across the neutron numbersN
=228 (1k17/2 level) and N=198 (1j13/2 level) in all of the
parameter sets. In spite of this, no distinct indications for a
shell closure were found forN=228 orN=198 in the curves
of S2n, d2n, andDn in Figs. 1–3. If one compares the spectra
for the three systemsN=172, 184, and 258, it can be noted
that the gap between two particular levels is strongly modi-
fied along the isotopic chain. Consequently, an analysis of
the spectra alone would not suffice and the use of the dis-
cussed energy indicators becomes mandatory in order to
make predictions for shell closures in superheavy nuclei.

B. Isotonic chains

We now proceed to discuss the isotonic chains of the neu-
tron numbers which we have detected as candidates for
spherical shell closures in the preceding study of the isotopic
chain ofZ=120. We start with theN=172 isotonic chain in
Fig. 5, which displays the two-proton separation energyS2p,
the two-proton shell gapd2p, and the average pairing gapsDp
andDn in the superheavy region fromZ=100 up to the pro-
ton drip line, for the EFT model G2 and for the conventional
RMF model NL3. For brevity we do not present the results
from the G1 set, since the preceding section has shown that
the predictions of G2 differ from NL3 more than in the case
of G1.

From Fig. 5 one realizes that all the indicators signal a
very robust shell closure atZ=120, and a much weaker shell
closure atZ=114. The proton gapd2p s,5 MeVd of the
nucleus292120 is nearly twice as large as the corresponding
neutron gapd2n (,3 MeV, Figs. 1 and 3). For the NL3 set,
in addition, a little jump inS2p and a small peaked structure
in d2p indicates the possibility of a weak shell closure taking
place atZ=106. It is nevertheless known that the region
aroundZ=106 is deformed[36] and thus the spherical solu-
tion does not correspond to the ground state. Moreover, from
the bottom panel of Fig. 5, we see that the neutron pairing

FIG. 3. Same as Fig. 1 but for the relativistic parameter set
NL3.

FIG. 4. Single-particle spectrum of neutrons
in the vicinity of the Fermi level for the super-
heavy isotopes292120, 304120, and378120 com-
puted with the relativistic interactions G1, G2,
and NL3.
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gapDn vanishes fromZ=110 till the proton drip point, but it
is nonzero for smaller atomic numbers. The nonvanishing
neutron pairing gap for thesN=172,Z=106d combination
tells us that this cannot be a doubly closed shell nucleus.
Therefore, the neutron numberN=172 exhibits a strong shell
closure for the proton numberZ=120 but this magicity is
washed out forZø110. In conclusion, in the region of su-
perheavy nuclei the magicity of a particular neutron number
depends on the number of protons present in the nucleus.

We next analyze the shell closures forN=184 andN
=258 in combination with different proton numbers. In Fig.
6 we display the results for theN=184 isotonic chain.
Curves are somewhat similar to those forN=172. In the G2
parametrization one identifiesZ=114 andZ=120 as possible
shell closures though the size of the jump ind2p, which is
similar for both proton numbers, is small if we compare it

with the jump observed forsN=172,Z=120d in Fig. 5. In the
case of the NL3 parameter set there is some evidence for a
weak shell closure atZ=114 only, because the neutron pair-
ing gap forZ=120 does not vanish which prevents the com-
binationsN=184,Z=120d from representing a doubly magic
nucleus. The results forN=258 neutrons are shown in Fig. 7.
We again find a strong signature for a shell closure atZ
=120 in both the G2 and NL3 parameter sets, whereas the
indications for a shell closure atZ=114 are much weaker.
One also observes prominent jumps inS2p and d2p at Z
=132 (NL3) and Z=138 (NL3 and G2). But in this region,
close to the proton drip line, the neutron pairing gap does not
vanish. This implies that only the combination ofN=258
with proton numbersZ=114 and Z=120 may exhibit a
double shell closure character.

Figure 8 depicts the proton single-particle spectra ob-
tained with the G2 and NL3 parametrizations for the illustra-
tive examples of the286114, 292120, 298114, and304120 nu-
clei. Looking at the proton spectra for the systems withN
=172, a very large gap can be observed for 120 protons
(between the 2f5/2 and 3p3/2 levels for G2, and between the
2f5/2 and 1i11/2 levels for NL3). Instead, practically no gap
exists for 114 protons(between the 2f7/2 and 2f5/2 levels),
specially for the NL3 set. This is consistent with the very
weak signals of magicity ofZ=114 in the case of theN
=172 isotonic chain shown by theS2p and d2p indicators in
Fig. 5.

With the addition of only 12 neutrons, the proton spectra
for the systems withN=184 exhibit a different pattern than
for N=172 near the Fermi energy(cf. Fig. 8). The gaps oc-
curring between the levels corresponding to 114 protons and
to 120 protons are now comparable in magnitude. This fact is
in agreement with the relatively magic character of the
298114 and304120 nuclei predicted by the indicators plotted
in Fig. 6. In any case, even forN=184, the magicity ofZ
=114 is always smaller than the one shown byZ=120, as
one can see from the comparison ofS2p and d2p in Figs. 5
and 6. This discussion shows again the strong dependence of
the proton(neutron) shell closures of SHE on the neutron
(proton) numbers and thus the importance of using the en-
ergy indicators.

FIG. 5. The change with the proton numberZ of the two-proton
separation energyS2p, the two-proton shell gapd2p, and the proton
Dp and neutronDn average pairing gaps forN=172 isotones ob-
tained from spherical calculations with the relativistic parameter
sets G2(left panels) and NL3 (right panels).

FIG. 6. Same as Fig. 5 but for the isotones ofN=184.

FIG. 7. Same as Fig. 5 but for the isotones ofN=258.
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C. Shell corrections

The stability of superheavy elements with an atomic num-
ber larger thanZ,100 is possible thanks to the shell effects.
In the liquid droplet model picture these superheavy nuclei
are unstable against spontaneous fission because the large
Coulomb repulsion can no longer be compensated by the
nuclear surface tension. However, SHE may still exist be-
cause the quantal shell corrections generate local minima in
the nuclear potential energy surface which provide additional
stabilization.

In our context the shell correction energy is also useful as
a different test for checking the robustness of the shell clo-
sures. For experimentally known shell closures, i.e., up to
Z=82 andN=126, the shell corrections are strongly peaked
around the magic numbers(see, e.g., Ref.[60]), providing
enhanced binding for magic nuclei. However, in the super-
heavy mass region, instead of displaying sharp jumps, the
shell corrections depict a landscape of rather broad areas of
shell stabilized nuclei[34,36]. Still, in these areas the closed
shell nuclei show a larger stabilization(i.e., more negative
shell corrections) than their neighbors. In the present section
we want to study the shell corrections around our selected
nuclei with Z=114 andZ=120, andN=172, 184, and 258.

The calculation of the shell correction energy is based on
the Strutinsky energy theorem[61] which states that the total
quantal energy can be divided in two parts:

E = Ẽ + Eshell. s4d

The largest pieceẼ is the average part of the energy which
depends in a smooth way on the number of nucleons
snamely, the part well represented by the liquid droplet
modeld. The smaller piece, the shell correctionEshell, has
instead an oscillating behavior. The oscillations are due to
the grouping of levels into shells and display maxima at
the shell closures. According to the idea of Strutinsky, the
average part of the ground-state energy of a shell model
potential can be obtained by replacing the Hartree-Fock
occupation numbersna s1 or 0 for occupied or empty

statesd with occupation numbersña smoothed by an aver-
aging functionf59g. The shell correctionEshell is computed
as the difference of the exact energy to that average part.

The Strutinsky smoothing procedure requires the use of
several major shells. This faces the problem of the treatment
of the continuum when realistic finite depth potentials are
employed[34,36,62,63]. Our strategy here, working in coor-
dinate space, and consistently with our approach to the treat-
ment of pairing, is to perform the Strutinsky smoothing in-
cluding the quasibound levels which are retained by their
centrifugal barrier(centrifugal-plus-Coulomb barrier for pro-
tons). We have taken seven major shells above the Fermi
energy (i.e., states up to around 50 MeV above the Fermi
level) and have considered curvature corrections up to 2M
=10 [59]. We have found that the plateau condition of the
averaged energy[59] is fulfilled for a smoothing parameter
g,1.3–1.6 MeV for both protons and neutrons. As we have
discussed, the quasibound levels included in our calculation
do not depend on the size of the box where the calculation is
performed. These levels, usually with high angular momen-
tum, lie close in energy to the RHB canonical levels[46]. Of
course, one limitation of our approach is that some resonant
levels with low angular momentum can be missed, more eas-
ily for neutrons, and then their contribution is shared among
the higher angular momentum levels which we include in the
calculation.

The total (neutron-plus-proton) shell corrections stem-
ming from our calculations for the isotopic chains withZ
=114 andZ=120 are displayed in Fig. 9. The equivalent
graph for the isotonic chains withN=172, 184, and 258 is
presented in Fig. 10. Again, we point out that our calculation
is performed in spherical symmetry and thus the calculated
shell corrections represent in general an upper bound to the
actual ones. Stronger shell stabilization could still be pro-
vided by deformation. The magnitude of the shell correction
energyEshell is dictated by the level density around the Fermi
level. A high level density in the vicinity of the Fermi energy
yields a positive shell correction reducing the binding en-
ergy, whereas a low level density gives a negative shell cor-
rection which increases the binding energy. The shell correc-

FIG. 8. Single-particle spectrum of protons in
the vicinity of the Fermi level for the superheavy
isotones 286114 and 292120 (left panel), and
298114 and304120 (right panel) computed with
the relativistic interactions G2 and NL3.
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tions obtained with the G2 and NL3 sets are rather similar
for the investigated isotopic and isotonic chains. This is so
because the single-particle levels around the Fermi surface
essentially show the same ordering with both parameter sets
and there are only small differences in the spin-orbit split-
tings, as it can be realized from Figs. 4 and 8. The results for
the set G1 are also similar to those of G2 and NL3 and thus
we do not display them in Figs. 9 and 10.

In Fig. 9 the isotopic chain ofZ=120 shows a large nega-
tive shell correction atN=172, due to the presence of low
angular momentum levels near the Fermi energy for both
neutrons(4s1/2, 3d3/2, and 3d5/2 levels) and protons(3p1/2
and 3p3/2 levels). These levels imply a comparatively lower
level density and thus a more negative shell correction. The
isotopic chain also shows another local minimum aroundN
=182–184, but in this case the shell correction energy is less
negative than forN=172. The pattern exhibited by the total
shell correction for theZ=120 isotopes looks very similar to
that of the neutron shell correction displayed in Fig. 5 of Ref.
[34] for the NL3 parameter set, which was computed by
means of the Green’s function procedure. Looking at the
curves for theZ=114 isotopic chain represented in Fig. 9 one
realizes that the shell corrections are globally weaker than
that for Z=120 chain, which means less stability. They also
present minima atN=172 and atN=184, although in this
case the situation is reversed and the largest corrections cor-
respond toN=184 instead ofN=172.

In the upper panel of Fig. 10 the shell corrections for the
N=172 isotonic chain clearly show only one minimum at
Z=120. TheN=184 chain(middle panel) displays one more
local minimum atZ=114, though the magnitude of the shell
correction obtained forZ=114 is smaller than forZ=120.
Our total shell corrections forN=172 andN=184 show simi-
lar patterns to the proton shell corrections of NL3 which are
depicted in Fig. 6 of Ref.[34] for these same isotonic chains.

The curves of the shell correction for theN=258 hyperheavy
nuclei (lower panel of Fig. 10) are overall very much flat in
comparison to those for the isotonic chains ofN=172 and
N=184. The absolute minimum again appears atZ=120.
There is also a very small kink atZ=114. The comparison of
the curves in the three panels reveals that atZ=120 all the
curves show the most prominent minima. AtZ=114, the
shell corrections forN=172 have no dip at all, but they dis-
play a small kink forN=184 andN=258.

From the analysis of the shell correction energy we see
that the location of the minima in the shell stabilized regions
of SHE is in good agreement with the conclusions about the
shell closures that we inferred from the study of the previous
indicators. Due to the fact that the minima in the shell cor-
rections for superheavy nuclei are often not very pro-
nounced, but rather shallow, we note the usefulness of ana-
lyzing the shell corrections as a complementary means to
assess the predictions made on the basis of the energy indi-
cators.

IV. SUMMARY AND CONCLUSIONS

We have investigated the predictions of the G1 and G2
parametrizations of Ref.[38] obtained from the modern ef-
fective field theory approach to relativistic nuclear phenom-
enology for the occurrence of spherical double shell closures

FIG. 10. The change of the total shell correction energy(sum of
the neutron and proton contributions) with the proton numberZ for
the isotonic chains ofN=172, N=184, andN=258 neutrons in
spherical calculations with the G2 and NL3 models.

FIG. 9. The change of the total shell correction energy(sum of
the neutron and proton contributions) with the neutron numberN
for the isotopes ofZ=114 andZ=120 in spherical calculations with
the G2 and NL3 models.
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and the shell stabilizing effect in superheavy nuclei. Within
an isotopic or isotonic chain of SHE the possible shell clo-
sures are identified by a simultaneous occurrence at a given
Z or N of a large jump in the corresponding two-nucleon
separation energyS2q, a pronounced peak in the two-nucleon
shell gapd2q, and the vanishing of the average pairing gaps
Dn and Dp. To treat the pairing correlations we have em-
ployed an improved BCS model that was used successfully
in Ref. [46] in calculations of isotopic and isotonic chains
with magic proton or neutron numbers.

First we have studied the isotopic chain ofZ=120, which
is found to be a magic number in previous RMF calculations.
Neutron shell closures arise atN=172 andN=258 in all the
considered parameter sets(G1, G2, and NL3). In the particu-
lar case of the G2 setN=184 appears as another possible
neutron shell closure, though it is not as robust as forN
=172 orN=258. The magic character ofZ=120 is supported
by the fact that the average proton pairing gap vanishes
along the whole isotopic chain. Next we have investigated
the isotonic chains withN=172, 184, and 258 forZ.100.
From this analysis the candidates to proton shell closures
have been found to beZ=114 (weakly) and Z=120
(strongly). Other possible candidates different fromZ=114
andZ=120 present a nonvanishing neutron pairing gap. We
conclude that the parameter sets G1 and G2 derived from the
effective field theory approach clearly point out towards the
doubly magic character of thesN=172,Z=120d and sN
=258,Z=120d combinations, which is in agreement with the
predictions of the NL3 set.

A minimum condition for a superheavy nucleus to be
stable against fission is that the shell effects must be able to
provide enough binding to compensate for the huge Cou-
lomb repulsion among protons. Compared to normal nuclei
where the large negative shell corrections are peaked at the
magic numbers, the SHE display broad areas of shell stabi-
lization around the possible shell closures. We have com-
puted the shell corrections for the analyzed superheavy nu-
clei by means of an Strutinsky smoothing. The continuum
has been parametrized by taking quasibound levels which in
coordinate space are retained by their centrifugal barrier.

We have found a region of shell stabilization for isotopes
of Z=114 andZ=120 in the range of neutron numbersN
,170–186. The shell corrections are larger forZ=120 than
for Z=114, and in both cases show peaks atN=172 andN
=184 which indicates the larger stability of these nuclei rela-
tive to their neighbors. For the isotonic chains ofN=172 and

N=184 the more negative shell corrections appear atZ
=120, although a smaller peak shows up atZ=114 pointing
out the relatively stable character of this nucleus, at least
compared with the immediate neighbors. The curve of the
shell corrections for the isotones ofN=258 is mostly flat, but
again a depression can be recognized aroundZ=120.

To summarize, in previous works[45,46] we showed that
the parameter sets derived from the effective field theory
approach to the low-energy nuclear many-body problem[38]
work nicely for bothb-stable andb-unstable nuclei. This is
in addition to their ability to yield a realistic equation of state
at densities above saturation which compares very favorably
with microscopic Dirac-Brueckner-Hartree-Fock calculations
[45]. In the present study we have applied the EFT model to
deal with the theoretical description of some properties of
superheavy nuclei. In particular, we have seen that the G1
and G2 parameter sets reproduce the strong double shell clo-
sure atN=172 andZ=120 predicted by the standard RMF
parametrizations, as well as a double shell closure atN
=258 andZ=120. Interestingly enough, the new parameter
set G2 shows some evidence for a double shell closure of the
N=184, Z=114 nucleus traditionally predicted by the
macroscopic-microscopic models, as well as by the Skyrme
interaction SkI4.

The results presented here are a first prospect of the per-
formance of the EFT model in the description of SHE. Our
calculations have been restricted to spherical shapes. As we
have discussed, this is not an impeding drawback for the
effects investigated in this work. However, for comparisons
with the measured data on the heavier actinides and the ex-
perimentally synthesized SHE aroundZ=110, one defini-
tively needs to perform deformed calculations. In future it
will be worthwhile trying to include deformation degrees of
freedom into the EFT model to extend the study to deformed
nuclei of the SHE island.
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