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The nucleon spectral function in nuclear matter fulfills an energy weighted sum rule. Comparing two
different realistic potentials, these sum rules are studied for Green’s functions that are derived self-consistently
within the T matrix approximation at finite temperature.
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I. INTRODUCTION

The microscopic study of the single-particle properties in
nuclear matter requires a rigorous treatment of the nucleon-
nucleon (NN) correlations[1,2]. In fact, the strong short-
range and tensor components, which are needed in realistic
NN interactions to fit theNN scattering data, lead to impor-
tant modifications of the nuclear wave function. A clear in-
dication of the importance of correlations is provided by the
observation that a simple Hartree-Fock calculation for
nuclear matter at the empirical saturation density using such
realisticNN interactions typically results in positive energies
rather than the empirical value of −16 MeV per nucleon[2].

Correlations do not only manifest themselves in the bulk
properties but also modify the single-particle properties in a
substantial way. Several recent calculations have shown
without ambiguity how theNN correlations produce a partial
occupation of the single-particle states which would be fully
occupied in a mean field description and a wide distribution
in energy of the single-particle strength. These two features
have also been empirically founded in the analysis of the
se,e’ pd nucleon knockout reactions[3]. The theoretical stud-
ies have been conducted both in finite nuclei[4] and also in
nuclear matter[5–7].

An optimal tool to study the single-particle properties is
provided by the self-consistent Green’s function technique
(SCGF) [8]. This method gives direct access to the single-
particle spectral function, which should be self-consistently
determined at the same time than the effective interactions
between the nucleons in the medium. Enormous progress in
the SCGF applications to nuclear matter have been reported
in the last years, both at zero[7] and finite temperature
[9–11].

The efforts atT=0 have mainly been addressed to provide
the appropriate theoretical background for the interpretation
of the se,e’ pd experiments while the investigation at finiteT
is mainly oriented to describe the nuclear medium in astro-
physical environments or to the interpretation of the dynam-
ics of heavy ion collisions.

In any case, the key quantity is the single-particle spectral
function, i.e., the distribution of strength in energy when one
adds or removes a particle of the system with a given mo-
mentum. A possible way to analyze the single-particle spec-

tral function is by means of the energy weighted sum rules.
They are well established in the literature and have been
numerically analyzed in the case of zero temperature[12].

The analysis of the energy weighted sum rules can give
useful insights not only on the numerical accuracy of the
many-body approach used to calculate them but also can
help to understand the properties and structure of theNN
potential.

This paper is devoted to study the physical implications of
the fulfillment of these sum rules for single-particle spectral
functions in nuclear matter at finiteT. This investigation is
based on the framework of SCGF employing a fully self-
consistent ladder approximation in which the complete spec-
tral function has been used to describe the intermediate states
in the Galistkii-Feynman equation.

After a brief summary of the definitions of the single-
particle spectral function, we give a simple derivation of the
sum rules. Then we analyze the results for two types of re-
alistic potentials, the CDBONN and the Argonne V18, and
discuss the different behaviors based on the different
strengths of the short-range and tensor components of both
potentials.

II. SUM RULES

For a given HamiltonianH, the Green’s function for a
system at finite temperature can be defined in a grand-
canonical formulation:

igskt;k8t8d = TrhrTfakstdak8
† st8dgj. s1d

T is the time ordering operator that acts on a product of
Heisenberg field operatorsakstd=eitHake−itH in such a way
that the field operator with the largest time argumentt is put
to the left. The trace is to be taken over all energy eigenstates
and all particle number eigenstates of the many-body system,
weighted by the statistical operator,

r =
1

Z
e−bsH−mNd. s2d

b and m denote the inverse temperature and the chemical
potential, respectively.N is the operator that counts the total
number of particles in the system,
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N = o
k

ak
†stdakstd. s3d

N is independent of time, since it commutes withH. The
normalization factor in Eq.s2d is given by the grand partition
function of statistical mechanics,

Z = Tr e−bsH−mNd. s4d

For a homogeneous system, the Green’s function is diagonal
in momentum space and depends only on the absolute value
of k and on the differencet= t8− t. Starting from the defini-
tion of the Green’s function, we first focus on the caset.0.
In order to recover the expression for the ensemble average
of the occupation numbernskd for t=0+, the following defi-
nition of the correlation functiong, includes an additional
factor of −i with respect to the definition of the Green’s
function g,

g,sk,td = TrhreitHak
†e−itHakj. s5d

g,sk,td can be expressed as a Fourier integral over all fre-
quencies,

g,sk,td =E
−`

+` dv

2p
e−ivtA,sk,vd s6d

if A,sk,vd is defined byf13g

A,sk,vd = 2po
nm

e−bsEm−mNmd

Z
ukCnuakuCmlu2dfv − sEm − Endg.

s7d

This can be easily checked by inserting the eigenstatesuCnl
into the expression of the trace in Eq.s5d. It is important to
note thatuCnl are simultaneous eigenstates of both the num-
ber operator and the Hamiltonian.

A similar analysis can be conducted fort,0, yielding a
function

A.sk,vd = ebsv−mdA,sk,vd. s8d

The spectral function at finite temperature is defined as the
sum of the two positive functions,A, andA.,

Ask,vd = A,sk,vd + A.sk,vd. s9d

Expressions7d, for A,, can be compared to the result for the
hole spectral function at zero temperature, which was re-
ported in Ref.f12g,

Ahsk,vd = 2po
n

ukCn
A−1uakuC0

Alu2dfv − sE0
A − En

A−1dg,

s10d

where uC0
Al is the ground state of anA particle system and

uCn
A−1l labels the excited energy eigenstates of a system that

contains one particle less. The physical interpretation of the
hole spectral function in a system at zero temperature is the
following: Ahsk,vd is the probability to remove a particle
from the ground state of theA-body system, such that the
residual system is left with an excitation energyEn

A−1=E0
A

−v. E0
A is the ground state energy of theA particle system. It

is clear that the lowest possible energy of the final state is the
ground state energy of theA−1 particle system, so that there
is an upper limit for the hole spectral function atv=E0

A

−E0
A−1=m. In a similar fashion, the particle spectral function

Ap can be defined as the probability to attach a further
nucleon to the system in such a way that the excitation en-
ergy of the compound system with respect to the ground
state energy of the initial system isv=EA+1−E0

A. In this case,
one can argue that, to add a further particle, one has to pay at
least the chemical potential, so thatm is a lower bound forv.
At zero temperature, this behavior causes a complete separa-
tion of the particle and the hole spectral function.

The situation is quite different in a grand-canonical for-
mulation at finite temperature. To illustrate these changes,
the full spectral functionA, as well asA. andA, are shown
in Fig. 1 for three momenta around the Fermi momentum of
a zero temperature system at the same density,r=0.2 fm−3.
Numerical values for the integrated strength ofA, are listed
in Table I. Since thermally excited statesuCml are always
included in the grand-canonical ensemble average according
to their weight factore−bsEm−mNmd, one can take out a particle
from a thermally excited state and end up in a weakly excited
state close to the ground state of the residual system. This
leads to a contribution toA, for an energyv larger thanm.

Similarly, a particle can be added to a thermally excited
state, leaving the compound system in a state close to its

FIG. 1. (Color online) Spectral function for a density ofr
=0.2 fm−3 and a temperature ofT=10 MeV (solid line). Various
momenta are considered as indicated in the three panels.A,

(dashed line) andA. (dash-dotted line) are also displayed.

TABLE I. Strength distribution ofA,. The numbers give the
fraction of the integrated strength above and below the chemical
potentialm. The last column reports the occupation number of the
respective state. The parameters are the same as in Fig. 1.

ksMeVd Below m s%d Above m s%d nskd

230 98 2 0.706

275 77 23 0.481

320 33 67 0.191

400 71 29 0.025

500 95 5 0.006
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ground state, so thatA.sk,vd extends to the region belowm.
In any case, there is no longer a separation betweenA. and
A,, and the maxima of both functions can even coincide.
This is also quite obvious from the relation(8).

For the T matrix approximation to the self-energy re-
ported in Ref.[11], one can determine the single-particle
Green’s function as the solution of Dyson’s equation for any
complex value of the frequency variablez,

gsk,zd =
1

z−
k2

2m
− Ssk,zd

. s11d

Using the analytical properties of the finite temperature
Green’s function along the imaginary time axis, an important
relation between the spectral function and the Green’s func-
tion can be derived and analytically continued to slightly
complex valuesf14g:

gsk,v + ihd =E
−`

+` dv8

2p

Ask,vd
v − v8 + ih

. s12d

One can extract sum rules from the asymptotic behavior at
largev by expanding the real part of both expressions for the
Green’s function, Eqs.s11d ands12d, in powers of 1/v. This
yields

Re gsk,vd =
1

v
H1 +

1

v
F k2

2m
+ lim

v→`
Re Ssk,vdG + ¯J

s13d

and

Re gsk,vd =
1

vHE−`

+`

dv8 Ask,v8d

+
1

v
E

−`

+`

dv8v8Ask,v8d + ¯J . s14d

By comparing the first two expansion coefficients, one finds
the m0 and them1 sum rules,

E
−`

+` dv

2p
Ask,vd = 1 s15d

and

E
−`

+` dv

2p
Ask,vdv =

k2

2m
+ lim

v→`
Re Ssk,vd. s16d

Similar sum rules can be obtained from the higher order
terms, as it was done in Ref.f12g for m2. Thinking of an
arbitrary approximation scheme forSsk,vd, it might be in-
teresting to ask whether or to what extend such a scheme
fulfills the sum rules. This is, however, not the point we want
to address in this paper. In theT matrix approximation, the
real part of the self-energy can be computed from the imagi-
nary part, using a dispersion relation,

Re Ssk,vd = S`skd −
P
p
E

−`

+`

dl
Im Ssk,l + ihd

v − l
. s17d

In the derivation of Eq.s17d, the spectral decomposition of
the Green’s function was already used, so it is a property of
the T matrix approach that it automatically fulfills the sum
rules. Nevertheless, besides providing a useful consistency
check for the numerics, it is interesting to use the sum rules
to compare the importance of short-range correlations for
different realistic potentials on a quantitative level. The first
term on the right-hand side of Eq.s17d is the energy inde-
pendent part of the self-energy,

S`skd =E d3k8

s2pd3kkk 8uVukk 8lAnsk8d, s18d

which can be identified with limv→`Re Ssk,vd, since the
dispersive part decays like 1/v for v→ ±`. Equations18d
looks like a Hartree-Fock potential, however,nskd is the
momentum distribution that is determined from a non-
trivial spectral functionA, in Eq. s6d, assumingt=0. In
contrast, the Hartree-Fock self-energy at finite tempera-
ture must be determined from an energy spectrumeskd and
a momentum distributionnHFskd= f(eskd), where fsvd is
the Fermi function. UnlikenHFskd, the nontrivialnskd ac-
counts for depletion effects of the bound states due to
short-range correlations. In this sense,S` is a generaliza-
tion of a Hartree-Fock potential. Figure 2 illustrates the
difference between the two pictures with the correspond-
ing Feynman diagrams.

III. RESULTS AND DISCUSSION

All results in this paper have been obtained using the
iteration procedure that was described in Ref.[11]. Fully
self-consistent spectral functions were calculated for two re-
alistic potentials, the stiffer Argonne V18 and the softer
CDBONN.

The m0 sum rule is fulfilled better than 0.1% in the com-
plete momentum range. Results for them1 sum rule are given
in Fig. 3 for a temperature ofT=10 MeV and a density of
r=0.2 fm−3. It is satisfied better than 1%. Both right-hand
side and left-hand side are plotted, but the curves lie on top
of each other and cannot be distinguished(solid lines). The
lower dash-dotted line shows them1 contribution fromA,,
which is always negative and goes to zero for high momenta,
since thereA, is strongly suppressed. The probability to re-
move a high-momentum particle from the system is simply
very small. The upper dash-dotted line displays the contribu-
tion from A.. Due to the short-range correlations, there is a
high-energy tail present in the spectral function, and so this
contribution is already positive at low momenta, further-

FIG. 2. Diagrammatic representation of the HF approximation
(left) and the energy independent part of the self-consistently
dressed self-energy(right).
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more, it is nearly constant in this range, reflecting the fact
that the high-energy strength distribution is momentum inde-
pendent. As soon as the quasiparticle peak of the spectral
function is located at energies greater thanm, theA. contri-
bution increases steadily, following the position of this peak.
Both contributions add up tom1. It is interesting to remind
the fact that for free particles, the sum rules are automatically
fulfilled. In this case,A, andA. ared peaks that are located
at the same position and their strength adds up to 1. Their
relative strength is given by the ratio of the phase space
factors f(eskd) and f1− f(eskd)g, respectively, whereeskd
=k2/2m in the free case.

The results in Fig. 3 show that the sum rulem1 is rather
sensitive to the differences in theNN potentials. Them1 re-
sult for the CDBONN interaction is about 65 MeV more
attractive than the Argonne V18 result. A closer examination
shows that this is predominantly due to theA. contribution,
which is almost 50 MeV more repulsive for the Argonne
V18. This means that the Argonne potential produces more
correlations in the sense that the strength that affectsm1 is
redistributed to higher energies.

From Fig. 3 one can also see that theA, contribution to
m1 is more attractive for the CDBONN potential than for the
Argonne interaction. Note that this contribution is related to
the internal energy by Koltun’s sum rule

E =
1

2
E d3k

s2pd3 E dv

2p
vA,sk,vd +

1

2
E d3k

s2pd3

k2

2m
nskd.

s19d

Therefore, this more attractive contribution originating from
A, together with a smaller value originating from the kinetic
energy leads to a more attractive internal energy for the
CDBONN potential. Indeed we obtain at the density

s0.2 fm−3d and temperaturesT=10 MeVd considered an in-
ternal energy of −13.4 MeV pernucleon for the CDBONN
interaction to be compared to −7.6 MeV for the Argonne
potential.

The dotted lines in Fig. 3 are the simple Hartree-Fock
estimate ofm1 for the same temperature and density. For
both potentials, the Hartree-Fock result makes up quite a
good approximation to the sum rule. This result is interest-
ing, since it permits a quantitative estimate of the amount of
correlations produced by any givenNN potential without a
sophisticated many-body calculation.

Figure 4 reports the exhaustion of the sum rulesm0 (left
panel) andm1 (right panel) versus the upper integration limit
v for a momentum ofk=500 MeV. At this momentum, the
quasiparticle peak is located around 100 MeV. For both in-
teractions that were considered, the main contribution tom0,
more than 80%, come from the quasiparticle peak of the
spectral function. In the region far above the peak, the
CDBONN saturates considerably faster. In Table II, the up-
per integration limits that have to be chosen to exhaust the
sum rule to a given percentage are reported form0 and m1
and compared for both potentials. In the case ofm0 and the
stiffer Argonne V18, one must integrate almost twice as far
as for the softer CDBONN. The saturation of them1 sum rule

FIG. 3. (Color online) Illustration of the energy weighted sum
rule m1 (solid lines) for the CDBONN potential(left panel) and the
Argonne V18 potential(right panel). Both right-hand side and left-
hand side are displayed, but the sum rule is so well fulfilled that
they are on top of each other. The contribution tom1 that comes
from A. andA, is indicated by the upper and the lower dash-dotted
lines, the latter approaching zero rapidly for high momenta. The
dotted line is the Hartree-Fock single-particle spectrum. Density
and temperature are the same as in Fig. 1.

FIG. 4. Saturation of the sum rulesm0 (right panel) andm1 (left
panel) for the CDBONN potential(solid line) and the Argonne V18
potential(dashed line). The momentum isk=500 MeV. Again, tem-
perature and density are the same as in Fig. 1.

TABLE II. Upper integration limits of the running integrals that
must be chosen to exhaust the sum rulem0 andm1 up to the fraction
given in the first column. The level of saturation in the first column
is given in percent, all other entries are in MeV. The parameters are
the same as in Fig. 4.

% saturation m0 CDB m0 V18 m1 CDB m1 V18

60 277 690

75 790 1518

90 215 311 2250 2860

95 403 725 3756 3740

99 1388 2277 8545 5720
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is different, because in this case, a somewhat higher energy
region of the spectral function is probed. In the right panel of
Fig. 4, one can observe that the quasiparticle peak contrib-
utes less than 50% tom1, and the high-energy tail becomes
much more important, since it is weighted by a factor ofv.
While both potentials behave qualitatively similar up to an
integration limit of about 700 or 800 MeV, wherem1 is al-
ready exhausted by about 75% for the CDBONN potential
(cf. Table II), a large contribution of about 40% is still above
this energy in the case of the Argonne V18. One can also
note that to exhaustm1 completely, one has to integrate up to
higher energies in the case of the CDBONN. However, these

contributions to the spectral function abovev<4000 MeV
are weak and yield no further repulsion.
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