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The LL bond energyDBLL in LL hypernuclei is obtained from aG-matrix calculation which includes the
coupling between theLL, JN, andSS channels, as well as the effect of Pauli blocking to all orders. The
Nijmegen NSC97e model is used as bare baryon-baryon interaction in the strangenessS=−2 sector. TheLL-
JN coupling increases substantially the bond energy with respect to the uncoupledLL case. However, the
additional incorporation of theSS channel, which couples simultaneously toLL and JN states, has a sur-
prisingly drastic effect and reduces the bond energy down to a value closer to that obtained in an uncoupled
calculation. We find that a complete treatment of Pauli blocking reduces the repulsive effect on the bond energy
to about half of what was claimed before.
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I. INTRODUCTION

Double-strangeL hypernuclei are nowadays the best sys-
tems to investigate the properties of theS=−2 baryon-baryon
interaction. Emulsion experiments and subsequent analysis
[1–4] have reported the formation of a fewLL hypernuclei,

LL
6 He, LL

10 Be, andLL
13 B. From the resultingLL binding ener-

gies, a quite largeLL bond energy of around 4 to 5 MeV
emerged, contrary to expectations from SU(3) [5]. A series of
theoretical works, based either on phenomenologicalS=−2
baryon-baryon interactions or realistic ones, have studied the
properties of double-L hypernuclei for more than 30 years
[6–23].

The recent finding at KEK of a newLL
6 He candidate hav-

ing a LL bond energy of around 1 MeV[24] has injected a
renewed interest on this field. Unless new experiments for
the otherLL hypernuclei also give lower binding energies in
the future, it is now an open question to reconcile theoreti-
cally the weak attraction found inLL

6 He with the stronger
attraction in the other two heavier systems. Although some
progress has been made in Ref.[25], where both short- and
long-range correlations were simultaneously treated, further
investigations are needed to completely settle this question.
Filikhin and Gal[26–28] report Faddeev-Yakubovsky calcu-
lations, complementary to those carried out in the earlier
work of Ref. [16] but using the new Nijmegen interactions,
not finding a simultaneous description of theLL

10 Be and the
new LL

6 He binding energies. However, the nucleon Pauli
blocking effect affecting, through the coupling toJN states,
the LL interaction when the particles are embedded in the
nuclear medium has not been considered in most of the ear-
lier nor in these recent works[25–27]. As discussed in detail
in Ref. [17], Pauli blocking reduces substantially the addi-
tional attraction to theLL binding energy induced by the

LL→JN conversion. Recently, an attempt to incorporate
the Pauli suppression effect has been made in Ref.[29],
where a second order Pauli correcting term is introduced in
the intermediate states following theLL→JN transition.
The interaction used in that work is a two-channelsLL ,JNd
Gaussian model, which implicitly includes theSS coupling
not only in the effectiveLL interaction but also in theLL
→JN transition. In fact, the important role of the coupling
to SS states has been recently pointed out in Ref.[30] and
explicitly worked out for the Nijmegen interactions in the
variational calculation of Ref.[31].

The purpose of the present work is to present a careful
analysis of the role of coupled channels on theS=−2 baryon-
baryon interaction in the medium, treating Pauli blocking
effects to all orders in all possible transition channels. For
practical purposes, most of the recent works[26–29] have
used simple parameterizations of the new Nijmegen poten-
tials in terms of the sum of a few Gaussians. In contrast, we
start from the original Nijmegen model NSC97e[5], as done
also in Ref.[31]. In our approach, we solve the coupled-
channel equation for the G-matrix in infinite nuclear matter,
and derive from it theLL bond energy in finite nuclei. With
respect to existing calculations our treatment of the finite
system is very simple. This has the practical advantage of
permitting us to explore in depth the different effects deter-
mining the LL bond energy, such as coupled channels or
Pauli blocking to all orders.

II. FORMALISM

The LL bond energyDBLL in LL hypernuclei is deter-
mined experimentally from the measurement of the binding
energies of double- and single-L hypernuclei as

DBLLsLL
A Zd = BLLsLL

A Zd − 2BLsL
A−1Zd . s1d

A reasonable estimation of this quantity when rearrangement
effects are small can be obtained from the value of theLL
G-matrix element in a finite hypernucleus
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DBLLsLL
A Zd

< − ks0s1/2dLs0s1/2dL,J = 0uGus0s1/2dLs0s1/2dL,J = 0l, s2d

where the twoL particles are assumed to be in the lowest
single particle state of an appropriateL-nucleus mean field

potential. We will compute the above matrix element from
the infinite nuclear matter one in the following way. First, we
construct theLL G-matrix in infinite matter by solving the
well known Bethe-Goldstone equation which, in partial wave
decomposition and using the quantum numbers of the rela-
tive and center-of-mass motion, reads

kKq8L8S8JsLLduGuKqLSJsLLdl = kKq8L8S8JsLLduVuKqLSJsLLdl+ o
B1B2

o
L9S9

E dq9q92kKq8L8S8JsLLduVuKq9L9S9JsB1B2dl

3
QB1B2

sK,q9d

V −
K2

2sMB1
+ MB2

d
−

q92sMB1
+ MB2

d

2MB1
MB2

− MB1
− MB2

+ ih

3kKq9L9S9JsB1B2duGuKqLSJsLLdl, s3d

where the labelsB1B2 run overLL, JN, andSS intermedi-
ate states. The starting energyV is taken equal to 2ML

−2BLsL
A−1Zd−DBLLsLL

A Zd=2ML−BLLsLL
A Zd, where the ex-

perimental value ofBLL is taken for each hypernucleus,
namely 7.25 MeV forLL

6 He [24], 17.7 MeV for LL
10 Be [1]

and 27.5 forLL
13 B [3]. In this way, we are considering the

interaction of eachL particle not only with the nucleons in
the nucleus but also with the otherL particle. The nuclear
matter density to be used in the Pauli operatorQ is deter-
mined, for each hypernucleus, as the average nuclear density
felt by theL particle in that hypernucleus. This is obtained
by weighing the nuclear density at each point with the prob-
ability of finding theL particle

r =E rsrduCLsrdu2d3r , s4d

where rsrd is the nuclear density profile which is conve-
niently parametrized as

rsrd =
r0

1 + expS r − R

a
D , s5d

being

r0 =
3

4p

AN

R3S1 +Spa

R
D2D , s6d

with a=0.52 fm, R=1.12AN
1/3−0.86AN

−1/3 fm and AN the
number of nucleons in the hypernucleus. TheL wave func-
tion is obtained by solving the Schrödinger equation using
a Woods-Saxon L-nucleus potential with parameters
sVL ,aL ,RLd adjusted to reproduce the experimental binding
energy of theL in the single-L hypernucleus. For practical
computational purposes, from the resultingL root mean
square(rms) radius we derive the oscillator parameter,bL, of
an equivalent harmonic oscillator wave function which will

then be used in obtaining the finite hypernucleus two-body
G-matrix elements of Eq.(2) from the nuclear matter ones
displayed in Eq.(3).

In the next step, we express the two-body ket state
us0s1/2dLs0s1/2dL ,J=0l, built from the 0s1/2 states of the
equivalent harmonic oscillator potential, in terms of momen-
tum and angular variablesusk1, l1, j1dLsk2, l2, j2dL ,J=0l in the
laboratory frame using

us0s1/2dLs0s1/2dL,J = 0l =E E dk1dk2k1
2k2

2R00sbLk1dR00sbLk2d

3usk1,0,1
2dLsk2,0,1

2dL,J = 0l , s7d

whereRnlsxd is the corresponding harmonic oscillator func-
tion.

Finally, we express the two-body state with laboratory
coordinates in terms of the states with variables in the rela-
tive and center-of-mass system,uKqLSJsLLdl, used in the
solution of the Bethe–Goldstone equation

usk1,0,1
2dLsk2,0,1

2dL,J = 0l

=E dKK2E dqq2kKq000sLLduk10
1
2k20

1
2,J = 0l

3uKq000sLLdl, s8d

where kKq000sLLd uk10
1
2k20

1
2 ,J=0l are the appropriate

transformation coefficients[32,33] from the relative and
center-of-mass frame to the laboratory system. We note that
the only contribution comes from the partial wave1S0. Trans-
forming the bra stateks0s1/2dLs0s1/2dLu in a similar way, one
can finally evaluate theLL bond energy of Eq.(2) in terms
of the infinite nuclear matterLL G-matrix elements.

In Table I we summarize all the parameters that allow us
to determine the relevantL and nuclear properties needed in
the evaluation of theLL bond energy for the three hypernu-
clei studied in this work,LL

6 He, LL
10 Be, andLL

13 B.
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III. RESULTS

The diagonal1S0 LL G-matrix element for zero center-
of-mass momentum and zero relative momentum is shown in
Fig. 1 as a function of the nuclear matter density for several
starting energy values. As density increases, the G-matrix
element loses attraction as a result of Pauli blocking which
reduces the available phase space for the intermediateJN
states. On the other hand, the G-matrix element gains attrac-
tion when the starting energy increases, since the coupling to
intermediate states is then more efficient. We will return to
this behavior when the results of finite hypernuclei are dis-
cussed.

Table II displays our results forDBLL in LL
6 He, for vari-

ous coupled-channel cases. The value ofDBLL obtained
from a calculation that neglects Pauli blocking effects, i.e.,
directly from the T-matrix, is also displayed with brackets.
As expected, incorporating the coupling between theLL and
JN, produces a drastic effect over theLL uncoupled situa-
tion, increasingDBLL from 0.16 to 0.78 MeV, a value that
lies very close to the new experimental datum[24]. We note
that, contrary to what it seems to be implied in Ref.[30], the
coupling between theLL and JN channels is important
even when the interaction is weak, as it is the case of the
NSC97e potential used here which produces a scattering
length of about −0.5 fm. Actually, in Refs.[17,30] the poten-

tial is adjusted for each coupled-channel case to reproduce a
common value of the scattering length. Therefore, part of the
coupling effect is embedded in the readjusted parameters. We
now turn to analyzing the effect of theSS channel, located
more than 150 MeV higher in energy from theLL andJN
channels, and which has usually been neglected or taken in
an effective way within single-channelsLLd or two-channel
sLL ,JNd interaction models. The results shown in Table II
reveal, surprisingly, that the role of theSS channel is very
important and reduces substantially the two-channel
sLL ,JNd value ofDBLL down to 0.28 MeV, which is closer
to the uncoupled single-channel result. Note that the repul-
sion found for the full coupled-channel G-matrix element
around theLL threshold does not necessarily mean that the
SS channel produces a more repulsive interaction. In fact,
the sLL ,JN,SSd Nijmegen model becomes so attractive
that it even supports a spurious deeply bound YY state
around 1500 MeV below theLL threshold[31]. However,
the size of the G-matrix will not be affected by the presence
of this bound state since it lies very far away from the region
of energies required by our model. The net effect around the
LL threshold is that the full coupled-channel calculation has
a smaller bond energy than the case in which only theLL
and theJN channels are retained.

Comparing the results ofDBLL with those between brack-
ets, which have been obtained from a T-matrix calculation,
one observes that Pauli blocking effects(nonexisting in the
single channelLL case) are quite important, especially when
the three-channels(LL, JN andSS) are considered, reduc-
ing by half the value ofDBLL. We note that our Pauli un-
blocked value of 0.54 MeV, obtained for the complete
coupled channel calculation using the original Nijmegen po-
tential NSC97e, is reasonably close to results obtained di-
rectly in finite hypernuclei but using effective Gaussian pa-
rameterizations fitted to the scattering length of the
Nijmegen NSC97e interaction, namelyDBLL=0.58 MeV
[26] and DBLL=0.64 MeV [29]. We note that the recent
variational calculation using the Nijmegen interactions
quotes a slightly larger value of 0.81 MeV[31].

The results of Table II show that a proper treatment of
Pauli blocking, neglected in most of the calculations using
more sophisticated ways of treating the finite hypernucleus
[16,25,26], is needed to draw conclusions on the particular
value of DBLL predicted by a given interaction. A first at-
tempt to incorporate the Pauli suppression effect within the
context of finite hypernuclei has been done recently in Ref.
[29], where a Pauli blocking term, correcting the phase space
of intermediateJN states accessed viaLL→JN conversion
up to second order in the effective interaction, is added. The

TABLE II. LL scattering length andLL bond energy inLL
6 He,

for various channel couplings. Results within brackets ignore Pauli
blocking effects.

aLL ffmg DBLL fMeVg

LL −0.25 0.16(0.16)

LL ,JN −0.84 0.78(1.02)

LL ,JN,SS −0.49 0.28(0.54)

TABLE I. Parameters of the Woods-SaxonL-nucleus potential
(VL, aL, RL), equivalentL oscillator parametersbLd, effective
nuclear density(r) and G-matrix starting energysVd for eachLL
hypernucleus.

LL
6 He LL

10 Be LL
13 B

VLfMeVg 28 28 28

aLffmg 0.59 0.59 0.59

RLffmg 1.60 2.06 2.67

bLffmg 2.23 1.89 1.82

rffm−3g 0.277 0.181 0.176

VfMeVg 2224.12 2213.67 2204.17

FIG. 1. 1S0 diagonalLL G-matrix element as a function of the
nuclear number density in units ofr0, with r0=0.17 fm−3.
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LL bond energy is then reduced from 0.64 to 0.21 MeV,
hence finding a Pauli suppression of 0.43 MeV, which is
about twice the size of the reduction we find in the present
work, namely s0.54–0.28d MeV=26 MeV. The reason for
the difference has to be found in higher order terms of the
Pauli correction. Indeed, if, in the spirit of the procedure
followed in Ref.[29], we truncate the series that defines the
T-matrix in terms of theG-matrix, T=G+Gs1/E−Q/EdT,
up to second order inG, then the contribution of the Pauli
blocking correcting term,Gs1/E−Q/EdG, amounts to
0.36 MeV. This is consistent with the value of 0.43 MeV
quoted in Ref.[29] which was obtained with a slightly modi-
fied effective interaction to fit the newDBLL value inLL

6 He.
Moreover, we have checked that the series converges to our
T-matrix result and, hence, to our complete Pauli correction
of 0.26 MeV. The Pauli correction built directly in the finite
nucleus in the full coupled-channel calculation of Ref.[31] is
also small and of the order of 0.2 MeV.

The scattering length for each coupled-channel situation
is also shown in Table II to illustrate, as in other works
[26,30], its correlation with theLL bond energy, which in-
creases as the magnitude of the scattering length increases.
This correlation is to be expected sinceaLL is proportional to
the T-matrix andDBLL is proportional to the corresponding
medium modified G-matrix. We would also like to point out
that the scattering length changes substantially for each of
the coupled-channel cases. This is apparently different from
the results shown in Refs.[17,30] but, as mentioned before,
in these later works the interaction is readjusted in each
coupled-channel calculation to reproduce a common value of
the scattering length.

Finally, we collect in Table III the results ofDBLL for the
three observedLL hypernuclei. The role of coupled chan-
nels is qualitatively similar in the three hypernuclei: Cou-
pling the JN channel to theLL channel increasesDBLL

substantially, while the additional incorporation of theSS
channel reduces the binding also substantially, bringing the
value of theLL bond energy closer to the uncoupled result.
We also observe that the heavier the nucleus the smaller the
binding, contrary to what one would be expecting from the
present experimental results. The trend found here is a reflec-
tion of the behavior of the1S0 G-matrix element shown in
Fig. 1. Inspecting the nuclear structure parameters for each
hypernucleus shown in Table I, we see that the nuclear den-
sity for LL

6 He is the largest, slightly above 1.5r0, hence this
hypernucleus has the strongest Pauli repulsive effect. How-
ever, the starting energyV is also the largest, which produces
a gain in attraction. For the range of densities and starting
energies explored by the threeLL hypernuclear systems

studied here, the dependence of the G-matrix on the starting
energy is twice more important than that on the density. The
net effect is that the largestDBLL value is obtained for the
lightest system.

IV. CONCLUSIONS

In this work we have obtained the bond energyDBLL in
severalLL hypernuclei, following a microscopic approach
based on a G-matrix calculation in nuclear matter using, as
S=−2 interaction, the recent parameterization NSC97e of the
Nijmegen group. We have identified theLL bond energy
with the 1S0 LL G-matrix element calculated for values of
the nuclear density and starting energy appropriate for each
hypernucleus.

Our simplified finite-nucleus treatment has allowed us to
explore in depth the effect of the various coupled channels
and the importance of Pauli blocking on the intermediateJN
states, paying a special attention to the role of theSS chan-
nel usually neglected in the literature. Consistently with
other works, we find that the coupling between theJN and
LL channels has a drastic effect, increasing by about
0.6 MeV the calculatedDBLL in LL

6 He with respect to a
single-channelLL calculation. Surprisingly, the additional
incorporation of theSS channel yields a non-negligible re-
duction in the binding of 0.4 MeV. It would be interesting to
explore the role of the coupling toSS states in other three-
channelS=−2 interactions, such as the Nijmegen hard-core
potential F [34]. Unfortunately, our momentum-space
method can only handle soft-core interaction models.

We have also explored, within the complete three-channel
approach, the effect of Pauli blocking, which is often ne-
glected or considered in a truncated way in previous works.
With respect to a T-matrix calculation, our calculated value
of DBLL in LL

6 He gets reduced by 0.26 MeV, about half of
what was found on the basis of a second order Pauli cor-
rected calculation[29].

Due to our simplified treatment of nuclear structure, we
do not expect a quantitative agreement with experimental
data for the three hypernuclei studied. However, from the
bulk of studies of double-L hypernuclei available in the lit-
erature, it seems unreasonable to think that a proper finite
nucleus calculation which incorporates consistently core-
polarization effects, might change the calculated bond ener-
gies substantially enough to obtain a simultaneous agreement
with the data. In this respect, our results confirm, in accor-
dance with recent cluster calculations[26], the incompatibil-
ity between the experimental binding energies of the light
double-L hypernuclear species. We note, however, that the
disagreement would be reduced if thep− weak decay of the

LL
10 Be ground state was assumed to occur to the first excited
state ofL

9 Be, as pointed out by Filikhin and Gal[26], hence
reducing the bond energy inLL

10 Be to about 1 MeV. A clari-
fication of the experimental situation, through new experi-
ments and analyses, is certainly needed in order to test the
theoretical models and make progress in the field of doubly-
strange systems.
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TABLE III. LL bond energy inLL
6 He, LL

10 Be, andLL
13 B, for vari-

ous channel couplings. Units are in MeV.

LL
6 He LL

10 Be LL
13 B

LL 0.16 0.0046 0.11

LL ,JN 0.78 0.97 0.96

LL ,JN,SS 0.28 0.22 0.11

EXP: 1.01−0.31
+0.38 [24] 4.2±0.4[1] 4.8±0.7[3]
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