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Correlations in hot asymmetric nuclear matter
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The single-particle spectral functions in asymmetric nuclear matter are computed using the ladder
approximation within the theory of finite temperature Green’s functions. The internal energy and the momentum
distributions of protons and neutrons are studied as a function of the density and the asymmetry of the system.
The proton states are more strongly depleted when the asymmetry increases whereas the occupation of the
neutron states is enhanced compared to the symmetric case. The self-consistent Green’s function approach leads
to slightly smaller energies compared to the Brueckner-Hartree-Fock approach. This effect increases with density
and thereby modifies the saturation density and leads to smaller symmetry energies.
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I. INTRODUCTION

The equation of state (EOS) of asymmetric nuclear matter
is a necessary ingredient in the description of astrophysical
environments of interest such as supernova explosions or the
structure of neutron stars [1]. Actually, the study of asymmetric
nuclear matter is also relevant to understand stable nuclei
because they themselves are asymmetric nuclear systems
with a different number of protons and neutrons. The recent
availability of data concerning nuclei far from the stability
valley has also revitalized interest in the study of asymmetric
nuclear matter as a first step in the microscopic study of these
nuclei.

The evaluation of this EOS starting from realistic models
of the nucleon-nucleon (NN ) interaction is still one of the
challenging open problems in nuclear physics. In fact, the
presence of strong short-range and tensor components in
the realistic NN interactions, which are required to fit the NN
scattering data, are the origin of the corresponding correlations
in the nuclear wave function. The study of these correlations
and their influence on different observables has recently made
important progress not only from the theoretical side but also
from the experimental point of view [2–4]. In the latter case, the
analysis of (e, e′p) reactions on 208Pb covering a wide range
of missing energies led to the conclusion that the occupation
numbers for the deeply bound proton states are depleted by
about 15–20% [5]. This depletion can be identified with the
corresponding depletion of hole states in nuclear matter with
momenta well below the Fermi momentum [6–8].

Several theoretical tools have been developed and applied to
describe these correlations in nuclear systems. These include
the Brueckner hole-line expansion [9] and also variational
approaches using correlated basis functions [10–12].

Recently, enormous progress has been achieved in using the
self-consistent evaluation of Green’s function [13,14] to solve
the nuclear many-body problem [3,4,15–20]. This method
gives direct access to the single-particle spectral function,
that is, to the single-particle properties and, in particular, to
the occupation numbers. At the same time, modification of

the single-particle properties affects the effective interactions
among nucleons in the medium and both things should be
determined in a self-consistent way.

Most of the microscopic calculations have been addressed
to study symmetric nuclear matter (SNM) and pure neutron
matter (PNM) [16,17]. The study of asymmetric nuclear matter
is technically more involved and only a few Brueckner-Hartree
Fock (BHF) calculations are available [21–23]. In most of the
cases, one assumes a quadratic dependence of the energy per
particle,

E

A
(ρ, α) = E

A
(ρ, 0) + as(ρ)α2 + . . . , (1)

in terms of the asymmetry parameter α = (N − Z)/A and the
symmetry energy as(ρ). In this way, calculation of the energy
of SNM and PNM allows one to determine the symmetry
energy as(ρ) and using the previous equation one can estimate
the energy for any asymmetry. That this quadratic expression
is a good approximation has been directly confirmed in BHF
calculations of asymmetric nuclear matter [21,22]. In the case
of the variational approach, calculations for asymmetric matter
with the same accuracy as obtained for SNM or PNM are not
yet available. However, besides the energy per particle, which
is governed mainly by the symmetry energy, there are other
observables, such as the momentum distributions, that do not
necessary follow a quadratic dependence.

In this paper we want to perform a calculation of asymmet-
ric nuclear matter within the framework of SCGF theory. The
calculation is performed at finite temperature. A temperature
of 5 MeV has been chosen because it is small enough to
allow for conclusions for the T = 0 case. Nevertheless, this
temperature is large enough to allow for a smooth numerical
representation of the spectral functions and to avoid the
possibility of proton-neutron pairing instabilities [24–26]. In
the next section, we briefly describe some specific features
of the SCGF formalism for asymmetric nuclear matter. The
discussion of the results and a systematic comparison with
results of the Brueckner-Hartree-Fock approach is presented
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in Sec. III. The main conclusions are summarized in the last
section.

II. FORMALISM

A key quantity in the theory of Green’s functions—which
allows us to compute all single-particle observables as well
as the internal energy of the system—is the spectral function
A(k, ω). It can be obtained as a solution of Dysons’s equation,

Aτ (k, ω) = −2 Im �τ (k, ω + iη)[
ω − k2

2m
− Re �τ (k, ω)

]2 + [Im �τ (k, ω + iη)]2
.

(2)

where �τ (k, ω + iη) is the retarded self-energy of a nucleon
with isospin projection τ , which can either be a proton (τ =
+ 1

2 or p) or a neutron (τ = − 1
2 or n).

In the ladder or T-matrix approximation, the self-energy
contains an energy-independent Hartree-Fock part and a
complex dispersive contribution that accounts for correlations
among the particles. The Hartree-Fock contribution to the
ladder self-energy of a nucleon τ involves an explicit sum
over the isospin projection τ ′ of the internal particle,

�HF
τ (k) = 1

4π

∑
τ ′

∑
JSL

T�|τ+τ ′|

(2J + 1)
∣∣CT τ+τ ′

1
2 τ 1

2 τ ′
∣∣2

×
∫

d3k′

(2π )3
〈q|V JST

LL |q〉nτ ′(k′), (3)

with V JST
LL′ the nuclear two-body potential in a partial wave rep-

resentation. The relative momentum between the interacting
particles is given by q = 1

2 (k − k′) and the Clebsch-Gordan
coefficient for the isospin quantum numbers is denoted by
CT τ+τ ′

1
2 τ 1

2 τ ′ . The momentum distribution,

nτ (k) =
∫ +∞

−∞

dω

2π
Aτ (k, ω)fτ (ω), (4)

must be derived from the nontrivial spectral function. The
Fermi-Dirac function for nucleons with isospin projection τ is
denoted by fτ (ω) = {exp[β(ω − µτ )] + 1}−1, where β stands
for the inverse temperature T −1. For a given total density ρ,
the partial fraction xτ = ρτ /ρ of the respective particle species
is given by

xτ = γ

ρ

∫
d3k

(2π )3
nτ (k), (5)

where γ = 2 is the spin degeneracy factor of the system.
The partial fractions of protons and neutrons add up to one
(xp + xn = 1) and the asymmetry is given by α = xn − xp.
By considering a fixed composition, Eq. (5) can be used to fix
the chemical potential µτ .

The generalized expression for the imaginary part of the
self-energy in the T-matrix approximation for the case of
asymmetric nuclear matter reads

Im�τ (k, ω + iη) = 1

4π

∑
τ ′

∑
JSL

T �|τ+τ ′|

(2J + 1)
∣∣CT τ+τ ′

1
2 τ 1

2 τ ′
∣∣2

×
∫

d3k′

(2π )3

∫ +∞

−∞

dω′

2π
Aτ ′(k′, ω′)

×〈q|ImT JST τ+τ ′
LL (P,ω + ω′ + iη)|q〉

× [fτ ′(ω′) + bτ,τ ′(ω + ω′)], (6)

where bτ,τ ′(
) = {exp[β(
 − µτ − µτ ′)] − 1}−1 is the Bose
distribution function. The total pair momentum is given by
P = 1

2 |k + k′|. A dispersion relation that is reported, for
example, in Ref. [16] determines the real part of the dispersive
contribution to the ladder self-energy.

The T-matrix elements contain the resummation of the
ladder diagrams to all orders and can be obtained as the solution
of a scattering-type integral equation,

〈q|T JST mT

LL′ (P,
 + iη)|q ′〉

= 〈q|V JST
LL′ |q ′〉 +

∑
L′′

∫ ∞

0

dk′ k′2

(2π )3
〈q|V JST

LL′′ |k′〉

× ḡII
mT

(P,
 + iη, k′)〈k′|T JST mT

L′′L′ (P,
 + iη)|q ′〉.
(7)

Since in ANM, the in-medium propagation of a neutron is
different from that of a proton, the T-matrix elements depend
on the third component of the isospin of the propagating pair,
mT = τ + τ ′, via the noninteracting two-particle propagator
gII

mT
,

gII
τ1+τ2

(k1, k2,
 + iη) =
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
Aτ1 (k1, ω)

×Aτ2 (k2, ω
′)

1 − fτ1 (ω) − fτ2 (ω′)

 − ω − ω′ + iη

.

(8)

To circumvent the coupling between partial waves of different
total angular momenta, gII

mT
enters Eq. (7) in an angle-averaged

form that is indicated by the bar.
Equations (2)–(8) must be solved self-consistently for a

given temperature β−1, a given density ρ, and a given proton
fraction xp. Partial waves up to J = 9 were included for the
calculation of the energy-independent part of the self-energy.
The dispersive part includes only partial waves up to J = 2.
A more comprehensive description of the numerical details is
given in Ref. [16]. The numerical routine that was developed
for ANM was tested in the following way: The results for
SNM and PNM are recovered if one chooses xp = 0.5 and
xp = 0, respectively. Furthermore, we have checked that
charge symmetry is fulfilled, which can be expressed by the
condition �p(k, ω, xp) = �n(k, ω, 1 − xp).

Once the self-consistent solution for the spectral function
has been obtained, the internal energy per particle in the system
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FIG. 1. (Color online) Dependence of E/A on α2

computed in the SCGF approach (full lines) and in
the BHF approach (dashed lines) at two densities, ρ =
0.16 fm−3 (black lines) and ρ = 0.32 fm−3 (red lines).

is given by

E

A
= γ

ρ

∑
τ

∫
d3k′

(2π )3

∫ +∞

−∞

dω′

2π

1

2

(
k2

2m
+ ω

)
Aτ (k, ω)fτ (ω).

(9)
The BHF approach is obtained from the previous formu-

lation by assuming that the single-particle spectral functions
are characterized by only one energy having the full strength
accumulated in this energy, Aτ (k, ω) = δ(ω − εBHF

τ (k)), with
εBHF
τ (k) the BHF single-particle energy. In addition, in the two-

body propagator [Eq. (8)] one only considers the propagation
of particle states. Notice also that the BHF self-energy does not
include the contribution of the Bose distribution that appears
in Eq. (6).

III. RESULTS AND DISCUSSION

All the results discussed in this paper have been computed
for the charge-dependent Bonn (CDBONN) potential, defined
in [27], which is nonlocal and exhibits a softer tensor
component compared to other realistic potentials such as the
Argonne V18 [28] or Reid93 [29], which are local. Since we
want to concentrate on the asymmetry dependence, we will
only consider one temperature T = 5 MeV, low enough for the
conclusions on the asymmetry dependence to be valid at T =
0 MeV and high enough to avoid the instabilities associated
with neutron-proton pairing.

The binding energies of asymmetric nuclear matter calcu-
lated in the BHF approximation and within the framework of
the SCGF theory are reported in Fig. 1 as a function of the
square of the asymmetry parameter α. The plots correspond
to two densities, the empirical saturation density of symmetric
nuclear matter, ρ = 0.16 fm−3, and twice this density. Notice,
however, that BHF calculations using the CDBONN potential
yield a saturation point at higher densities.

The first thing to realize is the linear dependence of the
energy in terms of α2, for both types of calculations (BHF

and SCGF) in the full range of variation of asymmetry from
SNM to PNM. In the case of BHF, this fact has already been
considered in the literature [21] and provides the justification
for using PNM and SNM to determine the coefficients in
Eq. (1), which turns out to be a very good approximation.

The propagation of holes in the SCGF and the consideration
of the spectral functions in the intermediate states of the
ladder equation result in a repulsive effect with respect to
the continuous-choice BHF calculation. This repulsive effect
increases with density, being 1.8 and 3.2 MeV in SNM matter
at ρ = 0.16 fm−3 and ρ = 0.32 fm−3, respectively.

However, for a given density, the difference between the
SCGF and the BHF calculations does not depend so much on
the asymmetry, which is slightly greater in SNM than in PNM.
This leads to a small decrease of the symmetry energy of the
SCGF calculation compared to the BHF one, which is also
calculated at T = 5 MeV. At ρ = 0.16 fm−3, as = 30.0 MeV
in the BHF approximation whereas the SCGF schemes provide
as = 28.6 MeV. This is in qualitative agreement with a recent
comparison of both approaches [17], in which the symmetry
energy has been deduced from SNM and PNM calculations.
The reduction of the symmetry obtained in the present analysis,
however, is weaker than the decrease reported in [17] by around
4 MeV. In this reference, however, the Reid93 potential, which
has a stronger tensor component and also stronger short-range
correlations than the CDBONN, was employed. Furthermore
it should be noted that the spectral functions employed in [17]
are described in terms of three δ functions, whereas a continous
description has been used in the present approach. In addition,
the calculation of [17] was performed at T = 0 whereas we
consider T = 5 MeV. We do not believe, however, that the
temperature can be the origin of this discrepancy. In fact, if
one considers the model of a noninteracting Fermi gas, one
finds that the symmetry energy at normal density ρ0 is reduced
by 0.5 MeV going from T = 0 to the case of T = 5 MeV.

In discussing the differences for the symmetry energy
between SCGF and BHF one must keep in mind that the loss of
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FIG. 2. (Color online) Dependence of neutron (up-
per curves) and proton (lower curves) chemical poten-
tials µ on the asymmetry α calculated in the SCGF
approach (solid lines) and in the BHF approach (dashed
curves) at two given densities, ρ = 0.16 fm−3 (black
lines) and ρ = 0.32 fm−3 (red lines).

energy in SCGF compared to BHF results from a delicate bal-
ance between an increase of kinetic energy and more attractive
potential energy. In fact, the perturbative inclusion of the hole–
hole scattering terms of [23] even leads to an increase of the
symmetry energy.

The second point that we want to consider is the dependence
of the chemical potential of protons and neutrons on the
asymmetry. Figure 2 shows the chemical potential of neutrons
(upper curves) and protons (lower curves) calculated in the
SCGF approach (solid lines) and in the BHF approach (dashed
curves). The chemical potential of protons and neutrons
coincide at the symmetric case (α = 0), as we have not
considered the charge symmetry breaking terms contained
in the CDBONN potential. When the asymmetry increases,
the neutron chemical potential increases and becomes posi-
tive, whereas the protons potential becomes more and more
attractive. The dependence on α2 is no longer linear. One
should keep in mind that in the case of SCGF, the chemical
potential that one obtains from the normalization condition
of the partial density should coincide with the one obtained
from the free energy using the thermodynamic relation
µτ = F/A + ρ

∂F/A

∂ρτ
. In contrast, it is well known that in

the BHF approach the chemical potential derived from the
normalization condition substantially differs from the one
obtained by the thermodynamic relation. Actually, this is
already true at T = 0 MeV where one needs to incorporate the
rearrangement terms in the self-energy to recover the relation
µ = ε(kf ) (where ε(kF ) is the single-particle energy at the
Fermi surface).

It is important to note that the differences between the
BHF and the SCGF chemical potentials are much larger (of
∼15 MeV in the whole range of asymmetries) than the
differences in the energy per particle discussed in Fig. 1, thus
indicating that the role of correlations has a greater influence
in this observable than in the energy per particle and also
giving an idea of the magnitude of the rearrangement term in
such calculations. In particular we want to emphasize that the
difference between the chemical potentials for neutrons and

protons is larger for BHF than it is for SCGF. This implies that
the SCGF tends to predict β equilibrium with a smaller proton
fraction as derived from BHF calculations.

At this point we want to remark again that the results dis-
cussed in this work (BHF as well as SCGF) have been obtained
for a finite temperature of T = 5 MeV. The chemical potentials
displayed in Fig. 2, in particular the ones for large asymmetries,
deviate from those calculated at zero temperature. To have a
simple estimate of this temperature dependence we consider
again the Fermi-gas model of noninteracting nucleons and find,
at density ρ0 and asymmetry α = 0.9, the chemical potential
of the neutron to be smaller by 0.4 MeV at T = 5 MeV
compared to that at T = 0, whereas the chemical potential for
the protons is smaller by even 3 MeV at T = 5 MeV compared
to the case of T = 0. This is because at large asymmetries
and finite temperature, the minority species can be far from
the degenerate limit and its chemical potential can be very
different from the zero-temperature value. Therefore, caution
should be taken in the extrapolation of chemical potentials at
zero temperature when asymmetries are large.

The next point we shall address is the discussion of
the single-particle spectral functions. Figure 3 shows the
proton spectral functions at ρ = 0.16 fm−3 for the momentum
k = 0 MeV at different proton fractions as a function of the
energy measured with respect to the proton chemical potential
corresponding to each fraction. As the asymmetry increases,
the amount of protons decreases and the Fermi momentum
for the protons gets closer to k = 0 MeV. As a consequence,
the coupling to two-hole one-particle configurations with this
momentum of k = 0 is reduced, with the quasi-particle peak
getting narrower and higher. The spectral function at positive
energies, however, is larger with increasing asymmetry. This
can be explained by the fact that correlation effects mainly
originate from the tensor force, which is more important
in proton–neutron interactions than in neutron–neutron or
proton–proton interactions. Note that the most important
partial wave for these tensor correlations is the 3S1 − 3D1

channel, which is relevant for nucleon pairs with isospin
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FIG. 3. k = 0 MeV proton spectral func-
tion for different proton fractions. The cal-
culations were performed at ρ = 0.16 fm−3

and T = 5 MeV.

zero only. Since the density of neutrons increases with the
asymmetry parameter, the protons display stronger correlation
effects at these larger asymmetries leading to an enhancement
for the spectral function for k < kF at energies ω > µ.

The corresponding plot for the neutron spectral functions is
presented in Fig. 4. Again we consider the momentum k = 0,
the same density ρ = 0.16 fm−3, and asymmetries. Looking
at the spectral functions at energies above the chemical
potential for the neutrons, we can see that the correlations
that are responsible for the spectral function in this regime
are reduced with the asymmetry, that is, with the density of
protons. This can again be understood from the dominance of
the proton-neutron interaction leading to these correlations.
The width of the neutron spectral functions seems not to
be affected very much by an increase of the asymmetry for
the considered values of α. This results from the damping
of the strong isospin-zero correlations at larger values of

α being counterbalanced by an increasing phase space for
the neutron-neutron configurations. Similar observations have
also been made in the perturbative calculations of asymmetric
matter in [23].

To explore a bit more the width and height of the quasi-
particle peak in the spectral function and its dependence on the
asymmetry we show in Fig. 5 the width of the spectral function
given by 2 | Im�(k, εqp) |, where εqp is the quasi-particle
energy. Obviously, for the symmetric case both the widths
for protons and neutrons coincide. When the asymmetry
increases, the width of the protons decreases monotonically,
indicating that k = 0 is getting closer and closer to the proton
Fermi surface. The situation for the neutrons is a little bit
different. For low asymmetries, the width initially increases
with the asymmetry, reaches a maximum, and then it decreases
again—being a little lower for pure neutron matter than for the
symmetric case. This indicates that there is an asymmetry
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FIG. 4. k = 0 MeV neutron spectral function
for different proton fractions. The calculations
were performed at ρ = 0.16 fm−3 and T =
5 MeV.
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for which the correlation effects on the width of the neutron
quasi-particle peak reach a maximum. As already mentioned,
there is a competition between the correlations originated
by the propagation of neutron-neutron holes, which should
increase when the asymmetry gets larger as the associated
phase space also grows, and the correlations originating from
the interaction of the neutrons with the protons. It is clear that
these last correlations get less important for the neutrons with
increasing asymmetry. Finally, for neutron matter, the decrease
of the number of protons and therefore the suppression
of the tensor components of the neutron–proton interaction
dominates and the width for neutron matter is slightly smaller
than for symmetric nuclear matter.

Another observable that has been the object of discussion
during the past few years, owing to its relevance in the

analysis of the (e, e′p) reaction, is the momentum distribution,
which also provides a clear measurement of the effects
of correlations. In Fig. 6, we show the occupation of the
zero-momentum state as a function of the asymmetry. In the
symmetric case, we can observe an unexpected behavior on
the occupation as a function of density: At the higher density
there is a higher occupation whereas at the lower one the
occupation is smaller, a behavior that has been pointed out
previously in the literature [8]. For a given density, proton
depletion increases with asymmetry, indicating the importance
of the neutron-proton correlations. In contrast, the depletion
of the neutrons gets smaller, that is, neutron matter is a less
correlated system. Also it is worth noting that for pure neutron
matter one recovers the expected behavior of having a higher
occupation for smaller density.
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FIG. 6. (Color online) Dependence of the
n(0) on the proton fraction for neutrons (full
lines) and protons (dashed lines) at two given
densities, ρ = 0.16 fm−3 (black lines) and ρ =
0.32 fm−3 (red lines).
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FIG. 7. (Color online) Momentum distributions
for neutrons and protons for the SCGF approach (full
lines) and the BHF approach (dashed lines) at a density
ρ = 0.16 fm−3 and asymmetry α = 0.2.

Finally, in Fig. 7, we show the momentum distribution
at ρ = 0.16 fm−3 and an asymmetry α = 0.2, which is
characteristic of heavy nuclei, such as 208Pb. Included in the
figure are also the BHF momentum distributions. The first
thing to notice is that the BHF momentum distributions do not
contain correlation effects and are very similar to a normal
thermal Fermi distribution. The momentum distributions
obtained within the framework of the SCGF contain, besides
thermal effects, important short-range and tensor correlations,
which are reflected in the depletion of the occupation at
low momentum and in a larger occupation than the BHF
momentum distribution at large momenta. Notice also that
the proton momentum distribution is more depleted than the
neutron momentum distribution. This is in agreement with all
the previous discussions, reflecting the fact that the protons
(i.e., the less abundant particle in the realistic asymmetric
conditions) are more affected by correlations, mainly due to
their interactions with neutrons. This may be important in
the interpretation of the momentum distributions obtained in
(e, e′p) experiments. Some of the analysis has been conducted
within the framework of a local density approximation starting
from results obtained in SNM, where the momentum distri-
bution of protons and neutrons are identical. This different
behavior of the momentum distributions of protons and
neutrons contrasts with the very recent calculations by Bożek
[20] also obtained within the SCGF framework and with the
CDBONN potential in which no noticeable difference between
the momentum distributions of neutrons and protons was
found.

IV. SUMMARY AND CONCLUSIONS

The techniques to evaluate the single-particle Green’s
function in a self-consistent T-matrix approach (SCGF), which
has recently been developed for nuclear matter [16], have
been extended and applied to asymmetric matter. Actual

calculations have been performed using the realistic CDBONN
interaction for asymmetric matter at two densities (the sat-
uration density of symmetric nuclear matter and twice this
density), at various asymmetries, and for a temperature of
T = 5 MeV. This temperature is low enough to allow for
conclusions on the T = 0 limit and high enough to avoid the
instabilities associated to neutron-proton pairing.

The inclusion of the hole-hole ladders and the self-
consistent treatment of the Green’s function in the SCGF
approach leads to a small reduction of the binding energy
per nucleon compared to the BHF approximation. This effect
increases with density and is slightly weaker for pure neutron
matter compared to symmetric nuclear matter, which leads to
a small reduction in the symmetry energy.

Larger effects are observed for the single-particle properties
such as the chemical potential. In particular we observe in
neutron-rich matter a reduction in the difference between the
chemical potentials for protons and neutrons, which would
correspond to smaller proton fractions in β-stable matter than
those predicted by a BHF-type equation of state.

The SCGF calculation also yields detailed informations on
the single-particle spectral functions and momentum distribu-
tions for protons and neutrons. We observe a depletion of the
proton occupancies for momenta below the Fermi momentum,
which increases significantly with neutron fraction. This can
be explained by the strong correlations induced from proton-
neutron interactions.
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T. FRICK, H. MÜTHER, A. RIOS, A. POLLS, AND A. RAMOS PHYSICAL REVIEW C 71, 014313 (2005)

[1] H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000).
[2] M. Baldo, Nuclear Methods and the Nuclear Equation of State,

Int. Rev. of Nucl. Phys, Vol. 9 (World Scientific, Singapore,
1999).
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