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Ferromagnetic instabilities in neutron matter at finite temperature with the Skyrme interaction
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The properties of spin-polarized neutron matter are studied at both zero and finite temperature using Skyrme-
type interactions. It is shown that the critical density at which ferromagnetism takes place decreases with
temperature. This unexpected behavior is associated to an anomalous behavior of the entropy that becomes larger
for the polarized phase than for the unpolarized one above a certain critical density. This fact is a consequence of
the dependence of the entropy on the effective mass of the neutrons with different third spin component. A new
constraint on the parameters of the effective Skyrme force is derived if this behavior is to be avoided.
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I. INTRODUCTION
Since the pioneering work of Vautherin and Brink [1] there

has been an intensive use of Skyrme effective nucleon-nucleon
(NN) interactions to study properties of finite nuclei and
nuclear matter, the latter mainly in conditions of astrophysical
interest. This type of phenomenological NN interaction is
thought to be used within a Hartree-Fock scheme (HF).
Its zero-range character leads to simple analytical expressions
for basic properties of symmetric nuclear matter such as
the binding energy (av), the saturation density (ρ0), the
incompressibility modulus (K∞), or the symmetry energy (as).
Actually, the experimental values of these quantities together
with the binding energy of some doubly magic nuclei have
been traditionally used to fit the parameters entering the
general expression of a Skyrme force. The main advantage
of these forces comes from their analytical character, which
makes them very useful to get a physical insight into problems
where the fully microscopic calculations are either very
time consuming or not yet possible to implement. Once a
parametrization is determined, one can, for instance, study
nuclei and nuclear matter under conditions far from those used
to fix the force in quite a simple way. In doing so, however,
one must always keep in mind the particular limitations of the
Skyrme parametrization that is being used.

By construction, most of the Skyrme forces used in the
literature are well behaved around the saturation density
of nuclear matter and for moderate isospin asymmetries.
However, not all the Skyrme parameters are completely well
determined through the fits of given sets of data and only
certain combinations related to the basic properties mentioned
above are really empirically determined [2]. This leads to a
scenario where, for instance, different Skyrme forces produce
similar equations of state for symmetric nuclear matter but very
different results for neutron matter. This is easily understood if
one considers that neutron matter or, equivalently, the systems
with large isospin asymmetries are not part of the common
input data that determine the parameters of the interaction.
Obviously, this feature should be corrected if Skyrme-type
forces are to be used in conditions of large neutron to proton

ratios such as nuclear matter inside neutron stars or nuclei
near the drip line. Recently, several sets of Skyrme forces
have been constructed taking into account different data
coming from highly isospin asymmetric systems. The most
well known among these are probably the parametrizations of
the Lyon group (SLy interactions) [3,4], which also took into
account variational results for neutron matter obtained with
a realistic interaction [5] to fix the parameters of the force.
Another important piece of input for neutron-rich systems
are the isotope shifts of medium and heavy nuclei. In that
case, modifications of the spin orbit term of the force have
been taken into account to correctly reproduce the data. With
these prescriptions, the SkI parametrizations were created
almost a decade ago [6]. Recently, an extensive and systematic
study has tested the capabilites of almost 90 existing Skyrme
parametrizations to provide good neutron-star properties [7].
It was found that only twenty seven of these forces passed the
restrictive tests imposed, the key property being the behavior
(increasing) of the symmetry energy as with density.

Another situation of astrophysical interest refers to the
possibility of the spontaneous appearance of spin polarized
states in nuclear matter. This type of instability (i.e., a
ferromagnetic transition at high densities) has long been
studied using different theoretical methods [8–21]. The results
are, nevertheless, still contradictory. On the one hand, Skyrme
interactions predict several types of instabilities at increasing
density [2]. In particular, currently used Skyrme forces show a
ferromagnetic transition for neutron matter at densities in the
range (1.1–3.5)ρ0 [22,23]. However, it has recently been shown
that by including a small fraction of protons into the system, the
onset density of ferromagnetism can be substantially reduced
[24]. On the other hand, recent Monte Carlo simulations [25]
and also Brueckner-Hartree-Fock calculations [26,27] using
modern two- and three-body realistic interactions exclude such
an instability, at least at densities up to 5 or 6 times ρ0. This
transition could have important consequences for the evolution
of a protoneutron star, in particular for the spin correlations
in the medium that do strongly affect the neutrino cross
sections and the neutrino mean free paths inside the star [28].
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Therefore, drastically different scenarios for the evolution of
protoneutron stars are to be considered if the existence of such
a ferromagnetic transition is confirmed.

Most of the studies of the ferromagnetic instability have
been conducted at zero temperature. However, the description
of protoneutron stars requires a study at finite temperature.
Thus, because the general conditions for ferromagnetism
are well established in the case of the Skyrme forces at
zero temperature and even though their predictions are quite
different than those of microscopic calculations, it is still
interesting to study how the situation is modified at finite
temperature. Intuitively, because of the thermal disorder, one
would expect the onset density for ferromagnetism to increase
with temperature. But, as shown later, the behavior turns out
to be the opposite one and what actually happens is that the
ferromagnetic transition takes place at smaller densities. In
this work, we associate this fact to an anomalous behavior of
the entropy as a function of the spin polarization. However,
it is worth noticing here that there is no thermodynamical
inconsistency in this dependence. If eventually, microscopic
calculations with realistic interactions would not confirm this
trend, we find out a new constraint on the parameters of the
effective Skyrme force to avoid such a behavior.

In the next section we summarize the expressions of the
energy and the single-particle energies at zero temperature
and find the free energy and entropy at finite temperature
for neutron matter as a function of the spin polarization. In
Sec. III, we present some results involving the thermodynam-
ical potentials of the system. Section IV is devoted to the
study of the entropy, its relation to the effective mass and the
possible constraints that could be imposed to the parameters
to avoid such an anomalous behavior in both the classical and
the low-temperature limit. Finally, the main conclusions are
summarized in Sec. V.

II. POLARIZED NEUTRON MATTER

Most of the Skyrme interactions used in the literature have
the following general form:

V (r1, r2) = t0(1 + x0P
σ )δ(r) + 1

6 t3(1 + x3P
σ )[ρ(R)]αδ(r)

+ 1
2 t1(1 + x1P

σ )(k′2δ(r) + δ(r)k2)

+ t2(1 + x2P
σ )k′ · δ(r)k

+ iW0(σ1 + σ2)[k′ × δ(r)k], (1)

with r = r1 − r2, R = (r1 + r2)/2, k = (∇1 − ∇2)/2i the rel-
ative momentum acting on the right and k′ its conjugate
acting on the left. P σ = (1 + �σ1 · �σ2)/2 is the spin exchange
operator. The last term, proportional to W0, corresponds to
the zero-range spin-orbit term, which does not contribute in
homogenous systems and thus will be ignored for the rest of
the article.

Let us consider a homogeneous system of neutrons charac-
terized by a total density ρ, which is the sum of the spin-up
(ρ↑) and spin-down (ρ↓) densities. At zero temperature, the
total energy will be a function of ρ↑ and ρ↓ or, alternatively,
of the total density ρ and the spin polarization parameter �,
defined as � = (ρ↑ − ρ↓)/ρ.

The total energy of this system in the Hartree-Fock
approximation is given by the sum of the kinetic energy
associated to the Fermi gas of polarized neutron matter and
the expectation value of the Skyrme interaction between the
wave function describing two free Fermi seas corresponding
to neutrons with two different spin orientations. These two
Fermi seas have all the single-particle states characterized by
a good linear momentum, occupied up to the Fermi levels kF↑
and kF↓ defined through kF↑(↓) = (6π2ρ↑(↓))1/3.

The total energy per particle for zero temperature has the
following expression:

e(ρ↑, ρ↓) = h̄2

2m

1

ρ
[τ↑ + τ↓] + 1

4ρ
[2t2(1 + x2)][τ↑ρ↑ + τ↓ρ↓]

+ 1

4ρ
[t1(1 − x1) + t2(1 + x2)][τ↑ρ↓ + τ↓ρ↑]

+ 1

ρ
[t0(1 − x0) + 1

6
t3(1 − x3)ρα]ρ↑ρ↓. (2)

To simplify the notation, we will use from now on the symbol
σ to indicate the third spin component. The functions τσ are
related to the average kinetic energy of the Fermi model of
polarized neutron matter:

τσ = 3
5 (6π2ρσ )2/3ρσ = 3

10 (3π2ρ)2/3ρ(1 ± �)5/3, (3)

where the plus (minus) sign corresponds to the up (down)
spin projection. From the energy per particle one can easily
derive the chemical potentials (up and down) and the pressure.
Another important quantity for our analysis is the single-
particle energy:

εσ (k) = h̄2k2

2m
+ Uσ (k, ρ↑, ρ↓). (4)

The single-particle potential Uσ (k, ρ↑, ρ↓) takes into account
the interaction of a particle with momentum k and spin
projection σ with all the rest. It has a quadratic dependence
on the momentum that is usually incorporated in the single-
particle spectrum as a momentum independent effective mass:

εσ (k) = h̄2k2

2m∗
σ

+ Ūσ (ρ↑, ρ↓), (5)

where the effective mass is given by the following:

m∗
σ

m
= 1

1 + 2m

h̄2 aσ (ρ↑, ρ↓)
, (6)

with

aσ (ρ↑, ρ↓) = 1
4 {[2t2(1 + x2)]ρσ

+ [t1(1 − x1) + t2(1 + x2)]ρ−σ }. (7)

The momentum independent part Ūσ of the single-particle
potential Uσ is then written as follows:

Ūσ (ρ↑, ρ↓) = 1
4 {[2t2(1 + x2)]τσ

+ [t1(1 − x1) + t2(1 + x2)]τ−σ } + [t0(1 − x0)

+ 1
6 t3(1 − x3)ρα]ρ−σ + 1

6αt3ρ
α−1ρσρ−σ . (8)
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It is worth mentioning that the expression for Ūσ contains
also the rearrangement term UR(ρ↑, ρ↓):

UR(ρ↑, ρ↓) = 1
6αt3ρ

α−1ρσρ−σ , (9)

which takes into account the effect of the density dependence
of the effective interaction on the single-particle potential.
Using this prescription for the single-particle potential, one can
check that the chemical potential calculated from the energy
per particle:

µσ (ρ↑, ρ↓) = e(ρ↑, ρ↓) + ρ

(
∂e(ρ↑, ρ↓)

∂ρσ

)
ρ−σ

, (10)

does exactly coincide with the single-particle energies at the
respective Fermi surfaces of each species, µσ = ε(kFσ ).

The extension of these expressions to finite temperature is
rather straightforward. The expression for the internal energy
and for the single-particle energy are exactly the same as in
the zero temperature case, the only change coming from τσ ,
which at finite temperature is given in terms of the so-called
Fermi integrals [29]:

τσ = g

(2π )2

(
2m∗

σ

h̄2 T

)5/2

J3/2(ησ ), (11)

where g is the spin degeneracy factor of the system (in our
case g = 1 for each spin component) and where

Jν(η) =
∫ ∞

0
dx

xν

1 + ex−η
. (12)

The parameter ησ should be calculated by inverting the
following equation:

ρσ = g

(2π )2

(
2m∗

σ

h̄2 T

)3/2

J1/2(ησ ), (13)

which simply states, in terms of ησ , that the integration of the
Fermi momentum distribution of each spin component:

nσ (k) = (1 + e
εσ (k)−µσ

T )−1 (14)

should coincide with the density of the component.
Once ησ has been obtained, one can also calculate the

chemical potentials at finite temperature:

µσ (ρ↑, ρ↓, T ) = ησT + Ūσ (ρ↑, ρ↓, T ) (15)

and the entropy per particle

s(ρ↑, ρ↓, T ) = ρ↑
ρ

s↑(ρ↑, ρ↓, T ) + ρ↓
ρ

s↓(ρ↓, ρ↑, T ), (16)

where the entropies of each component are given in the
Hartree-Fock approximation by the following expression:

sσ (ρ↑, ρ↓, T ) = − 1

ρσ

∫
d3k

(2π )3
{nσ (k) ln nσ (k) + [1 − nσ (k)]

× ln[1 − nσ (k)]}

= 5

3

1

ρσ

1

4π2

(
2m∗

σ

h̄2 T

)3/2

J3/2(ησ ) − ησ . (17)

Finally, for a fixed density and temperature, the suitable
thermodynamical potential is the free energy. We can deduce

TABLE I. Symmetric nuclear matter properties at saturation
density for SLy4 and SkI3. The corresponding value of the maximum
mass of a neutron star obtained with the EoS of these two forces is
also shown.

ρ∞ (fm−3) av (MeV) as (MeV) K∞ (MeV) Mmax (M�)

SLy4 0.160 −15.97 32.04 230.9 2.04
SkI3 0.158 −15.98 34.89 259.2 2.19

it from the previous expressions of the energy and the entropy
as follows:

f (ρ↑, ρ↓, T ) = e(ρ↑, ρ↓, T ) − T s(ρ↑, ρ↓, T ). (18)

From the free energy per particle, we can get the rest of the
macroscopic properties of the system as, for instance, the
pressure (and thus the EoS). In our case, we are particularly
interested in the inverse magnetic susceptibility χ−1, which
can be obtained from a second derivative of the free energy
with respect to the spin polarization:

1

χ
= 1

µ2ρ

(
∂2f

∂�2

)
�=0

, (19)

where µ is the magnetic moment of the neutron.
Notice that in our approach the effective mass m∗ does

not depend on the temperature and that the chemical potential
obtained from the normalization condition of the density of
each component (13), when the rearrangement is taken into
account, coincides with the chemical potential derived from
the free energy through its derivative with respect to density.

III. ENERGETICS OF POLARIZED NEUTRON MATTER

For the discussion of our results we have chosen the
SLy4 [4] and the SkI3 [6] Skyrme forces, both of which
passed successfully the careful tests of Ref. [7]. In Table I, we
report the values at saturation density of the binding energy,
symmetry energy, incompressibility modulus, and maximum
mass of the neutron star, which can be obtained using the EoS
of these two Skyrme forces when the β-stability conditions in
the presence of electrons and muons are imposed.

Because we are interested in analyzing the behavior of
these forces with respect to the polarization of neutron matter,
in Fig. 1 we report the ratio between the inverse magnetic
susceptibility of interacting neutron matter and that of the
corresponding free Fermi gas of neutrons as a function of the
density for different temperatures. At zero temperature, as it
is well known, both forces present a magnetic instability, that
is, the previous ratio becomes zero at the critical densities
(ρc = 0.60 fm−3 for SLy4, ρc = 0.37 fm−3 for SkI3), but,
contrary to what can be intuitively expected, the onset density
for the magnetic instability decreases with temperature for
both forces. It is precisely this anomalous behavior that we
want to explore here. Because we are mainly interested on the
study of thermal effects, we have explored unrealistically high
temperatures (much higher than those needed in the evolution
of proto-neutron stars) in order to magnify them.
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FIG. 1. Ratio between the magnetic susceptibility of the free
Fermi gas and the corresponding magnetic susceptibility of interact-
ing neutron matter as a function of density for several temperatures.

A complementary information that is rather helpful in this
analysis is the difference between the free energy of totally
polarized and unpolarized neutron matter. This difference as a
function of density is reported in Fig. 2. Once this difference
has become negative, the totally polarized system will have
a lower free energy and therefore the system will prefer a
polarized phase in front of the nonpolarized one. Notice that
the density at which this difference becomes negative does
not coincide with the onset of the magnetic instability. The
critical densities defined by this criterium at zero temperature
are ρF

c = 0.71 fm−3 and ρF
c = 0.44 fm−3 respectively, both of

them larger than the corresponding ρcs. The critical density ρc

signals the density at which the unpolarized phase becomes
unstable around � = 0, which, however, does not imply that
the system prefers the fully polarized phase, that is, the
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FIG. 2. Difference between the free energy per particle of fully
polarized neutron matter and unpolarized neutron matter as a function
of density for several temperatures.

0 0.2 0.4 0.6 0.8 1

Density ρ [fm
-3

]

-100

-50

0

50

100

e(
ρ,

∆=
1)

-e
(ρ

,∆
=

0)
 [

M
eV

]

T=0 MeV
T=20 MeV
T=40 MeV
T=60 MeV

0 0.2 0.4 0.6 0.8 1

Density ρ [fm
-3

]

-100

-50

0

50

100

SLy4 SkI3

FIG. 3. Difference between the energy per particle of fully
polarized neutron matter and unpolarized neutron matter as a function
of density for several temperatures.

minimum of the free energy is not necessarily located at � = 1.
Even more, beyond ρF

c , as we will check later on, one cannot
guarantee that the minimum of the free energy is located in the
fully polarized system.

In this discussion, it is worth noticing that the energy
per particle for fully polarized neutron matter with Skyrme
interactions reduces to the following:

e(ρ, T ,� = 1) =
[

h̄2

2m

1

ρ
+ 1

2
t2(1 + x2)

]
τ↑ = h̄2

2m∗
1

ρ
τ↑,

(20)
where the effective mass m∗ depends only on the parameters
t2 and x2 as follows:

m∗(ρ,� = 1)

m
= 1

1 + 2m

h̄2
1
2 t2(1 + x2)ρ

. (21)

This can be understood if one considers that the two body states
of fully polarized neutron matter are all triplet states on both
the spin and the isospin spaces, that is, they are symmetric in
the spin-isospin variables, and, therefore, because of the Pauli
principle, they do not see s-wave contributions (associated
to the purely contact terms of the Skyrme force), but only
p-waves originated from the gradient terms. As the parameter
t2 is usually negative, one has to take x2 � − 1 to avoid the
collapse of fully polarized neutron matter [23]. Both SLy4 and
SkI3 fulfill this condition. For SLy4, for instance, x2 = −1. For
this interaction, totally polarized neutron matter has m∗/m = 1
and its energy reduces simply to the kinetic energy of a free
Fermi sea.

The free energy is composed of the sum of two contri-
butions, the internal energy and the entropy. Therefore, to
understand the anomalous behaviour of the free energy, it is
reasonable to analyze how both terms behave as a function of
density. With this aim, we show in Fig. 3 the internal energy
difference e(ρ,� = 1, T ) − e(ρ,� = 0, T ) as a function of
the density for several temperatures. As expected, the density
at which this difference becomes zero grows with temperature,
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FIG. 4. Difference between the entropy per particle of fully
polarized neutron matter and unpolarized neutron matter as a function
of density for several temperatures.

so the origin of the surprising behavior detected in Fig. 2 should
be attributed to the entropy contribution of the free energy.

The difference between the entropy of the polarized and
the unpolarized phases is shown in Fig. 4 as a function of the
density for three different temperatures. One would naively
expect the entropy of the polarized system to be lower than
that of the unpolarized one because, intuitively, the fully
polarized phase is more “ordered” than the unpolarized one.
This is, in fact, the behavior of the free Fermi sea. However,
for the interacting system, the modification of the single
particle properties, in particular those due to the effective
mass, can invert this behavior even in the Hartree-Fock
approximation. This inversion takes place at relatively low
densities, ρS

c = 0.15 fm−3 and ρS
c = 0.08 fm−3 for SLy4 and

SkI3 respectively, much smaller than the onset densities at
which ferromagnetism appears. Notice also that the entropy
critical densities are temperature independent.

As we have seen previously, there is a certain range
of densities (between ρc and ρF

c ) where neutron matter is
unstable around � = 0 but the fully polarized phase is still not
energetically favorable. In this range (and also for densities
a bit higher than ρF

c ), one can see that the minimum free
energy happens at a partial polarization 0 < � < 1. This is
seen in the left panel of Fig. 5, where we show the free
energy of the system as a function of polarization at zero
temperature (which of course coincides with the energy per
particle) and for several densities, obtained with the SkI3
interaction. At densities below ρc (the critical density provided
by the susceptibility criterium), the minimum energy takes
place at � = 0 (this is the case of the first considered density,
ρ = 0.32 fm−3). When we overpass ρc, the minimum appears
at an intermediate polarization and the energy of the fully
polarized phase is still larger than the unpolarized one (this
would be the case for ρ = 0.40 fm−3). When the density
increases, the minimum moves to larger values of �, and,
beyond ρF

c , we observe that f (ρ,� = 0) > f (ρ,� = 1) (this
is the case for ρ = 0.48 fm−3) even though the � = 1 phase is
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FIG. 5. (Left panel) Neutron matter free energy per particle at
zero temperature as a function of polarization for several densities.
(Right panel) Neutron matter free energy per particle at a fixed density
ρ = 0.36 fm−3 as a function of polarization for several temperatures.
Both figures were obtained using the SkI3 force.

not the preferred one. Finally, for larger densities, the minimum
shows up at the fully polarized configuration.

One can also observe the appearance of a preferred partial
polarization as a function of the temperature for a given density,
as it is illustrated in the right panel of Fig. 5 where the free
energy per particle at ρ = 0.36 fm−3 is drawn as a function
of the polarization. At this density, the internal energy has
the minimum at � = 0 for all the temperatures. However, the
chosen density is above the onset density for the anomalous
behavior of the entropy ρ > ρS

c , that is, the entropy is larger
for the polarized phase. As a result, the free energy develops
a minimum at 0 < � < 1 that moves to higher polarizations
when the temperature increases. Both panels of Fig. 5 are
typical examples of a spontaneous symmetry breaking, where
the interaction drives the ground state of the system to nonzero
polarizations.

The spontaneous breaking of the spin rotational symmetry
indicates the appearance of a phase transition in the system.
In our case, this phase transition is between a nonpolarized
and a polarized phase and the natural order parameter is,
thus, the polarization. In Fig. 6 we report the polarization
associated to the minimum of the free energy. For a given
density and temperature, this is the polarization that gives
the lowest free energy and it indicates, then, the polarization
at which our system is thermodynamically stable. With this
figure in hand, we can check all the results that we have
been discussing up to now. At zero temperature, below ρc,
the equilibrium configuration corresponds to � = 0. Over
ρc, the polarization grows steeply up to � = 1. When the
temperature increases, the curves shift to smaller densities, so
ρc decreases with temperature and also the density at which the
system becomes fully polarized. Of course, these results are
somewhat academic because the densities needed for neutron
matter to be fully polarized (in particular for SLy4) are very
high and, thus, unattainable in a protoneutron star. However,
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FIG. 6. Polarization associated to the minimum of the free energy
for neutron matter as a function of density for several temperatures.

we find them useful because they serve to confirm the results
concerning the anomalous behavior of the free energy with
temperature.

IV. ENTROPY AND EFFECTIVE MASS

In this section we investigate the relation between the
anomalous behavior of the entropy and the dependence of
the effective mass on the polarization. To this end, we
determine the density at which the difference between the
entropy per particle of the fully polarized and the unpolarized
phase becomes positive, that is, does not show the expected
behavior s(ρ, T ,� = 1) − s(ρ, T ,� = 0) < 0. We explore
two situations: the classical limit, defined by the condition
ρλ3/g → 0 (with λ =

√
2πh̄2/mT being the de Broglie

wavelength), and the degenerate limit, where T/εF 
 1.
In the first place, we consider the classical limit. In the

interacting case, it is useful to introduce the de Broglie
wavelength associated to the effective mass:

λ∗ =
√

2πh̄2

m∗T
. (22)

It is worth reminding that, for Skyrme interactions, the
effective mass depends on the density but is not affected by the
temperature. In addition, it turns out that one can easily write
all the relevant quantities for the nonpolarized system (� = 0)
and the fully polarized one (� = 1). For instance, the internal
energy can be casted in the following form:

ecla(ρ, T ,�) = 3
2T + U1(ρ,�), (23)

where U1(ρ,�) is the contribution to the internal energy that
cannot be included into the effective mass terms:

U1(ρ,�) = ρ

4

[
t0(1 − x0) + 1

6
t3(1 − x3)ρα

]
(1 − �2).

(24)

For the entropy, one has the following:

scla(ρ, T , g) = 5

2
− ln

[
ρλ∗3

g

]
, (25)

where we have explicitly shown the dependence on the
degeneracy factor g. To get the fully polarized case (� = 1), it
is enough to set g = 1, whereas the nonpolarized case (� = 0)
is obtained by setting g = 2. The previous expression can be
splitted in two pieces, the entropy of a free gas plus a correction
term associated to the effective mass:

scla(ρ, T , g) = 5

2
− ln

[
ρλ

g

]
+ 3

2
ln

[
m∗

m

]
, (26)

where one has to take into account that the effective mass
depends on both the density ρ and the polarization �. For the
free case, one can in fact check that the expected inequality is
fulfilled at all densities and temperatures:

scla(ρ, T ,� = 1) − scla(ρ, T ,� = 0) = −ln 2 < 0. (27)

In the interacting case, however, this difference becomes the
following:

�scla(ρ) ≡ scla(ρ, T ,� = 1) − scla(ρ, T ,� = 0)

= −ln 2 + 3

2
ln

[
m∗(ρ,� = 1)

m∗(ρ,� = 0)

]
, (28)

which clearly shows the influence of the interaction, via the
effective mass, to the entropy difference and which turns out to
be independent of the temperature. If we require the difference
to be negative, the following condition should be satisfied:

m∗(ρ,� = 1)

m∗(ρ,� = 0)
< 22/3. (29)

Taking into account the expressions for the effective mass
of the polarized and unpolarized phases for the Skyrme
interactions [Eq. (6)], one gets the following condition for
the parameters of the effective force:

1 + 2m

h̄2
ρ

8 [t1(1 − x1) + 3t2(1 + x2)]

1 + 2m

h̄2
ρ

4 2t2(1 + x2)
< 22/3. (30)

The previous expression is not well defined whenever the
denominator becomes zero. In fact, one can check that
11 of the 27 forces that passed the tests of [7] have a
vanishing denominator at densities below 0.5 fm−3. Because
this denominator is nothing but the inverse effective mass for
polarized neutron matter, such a singularity shows that these
parametrizations were not devised to describe highly spin and
isospin asymmetric matter. For the rest of the forces, one can
check that m∗(ρ,� = 1)/m∗(ρ,� = 0) is a monotonically
increasing function of the density, so we can univocally define
a critical density ρcla

c . For SkI3, for instance, one can use
Eq. (30) to obtain the critical density ρcla

c = 0.08 fm−3. The
case for Skyrme Lyon forces is special, because most of them
have x2 = −1 (the only exceptions are SLy0 and SLy2). In that
simpler case, the previous condition reduces to the following:

1 + 2m

h̄2

ρ

8
t1(1 − x1) < 22/3. (31)
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TABLE II. Densities ρS
c at which the condition (30) is violated

for 16 different Skyrme forces. The respective critical densities ρc

for the onset of ferromagnetism at T = 0 are also shown.

ρS
c (fm−3) ρc (fm−3)

SGI 0.09 0.28
SLy0 0.11 0.41
SLy1 0.15 0.58
SLy10 0.13 0.61
SLy2 0.09 0.29
SLy230a 0.10 0.54
SLy3 0.15 0.60
SLy4 0.14 0.60
SLy5 0.15 0.57
SLy6 0.14 0.90
SLy7 0.14 0.57
SLy8 0.15 0.60
SLy9 0.11 0.47
SV 0.15 0.77
SkI3 0.08 0.37
SkI5 0.07 0.28

Then, as t1(1 − x1) > 0, one can easily obtain a critical density
(ρcla

c = 0.15 fm−3 for SLy4) beyond which one can be sure
that, if the temperature is high enough to reach the classical
limit, one will observe an anomalous behavior of the entropy.
In fact, one can check that the temperature is not an essential
factor because we have seen that ρS

c [precisely the density
at which s(ρ, T ,� = 1) − s(ρ, T ,� = 0) changes sign] is
quite independent of temperature and, thus, this classical
entropy critical densities coincide with the ρS

c defined before,
ρcla

c = ρS
c . In Table II we give a list of these densities for the

16 forces that have no singular effective mass for neutrons
in fully polarized matter and compare it to the corresponding
ferromagnetism onset densities at zero temperature ρc.

In second place, we investigate the low temperature limit.
In this case, we can express the different thermodynamic quan-
tities for the polarized and the unpolarized phases in terms of
the Fermi momenta kF = (6π2ρ/g)1/3 and the Fermi energies
associated to the effective mass ε∗

F (�) = h̄2k2
F /2m∗(�). In the

low temperature regime, the internal energy can be written as
(this expression is only valid for � = 0 or � = 1):

elow(ρ, T ,�) = 3

5
ε∗
F (�)

[
1 + 5π2

12

(
T

ε∗
F (�)

)2
]

+U1(ρ,�),

(32)
where U1 is the same function defined previously for the
classical case and where we recover the well-known T 2

dependence of the internal energy. Conversely, the entropy
per particle (again only valid for � = 0 or � = 1) shows a
linear dependence on T:

slow(ρ, T ,�) = π2

2ε∗
F (�)

T = π2

3ρ
N (0)T , (33)

where we have introduced the density of states at the Fermi
surface, N (0) = gm∗kF /2π2h̄2.
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FIG. 7. Neutron effective mass of the up and down components
as a function of polarization at ρ = 0.16 fm−3. The horizontal lines
signal the maximum value of the effective mass of the up component
in fully polarized matter if the entropy of the polarized phase has to
be smaller than the unpolarized one.

At this point, we can perform the same analysis that we
made for the classical limit. Let us start again by the free case
and rewrite Eq. (33) to see the explicit dependence on the spin
degeneracy:

slow(ρ, T ,� = 1) − slow(ρ, T ,� = 0)

= π2T m

h̄2(6π2ρ)2/3
(1 − 22/3), (34)

which in fact is smaller than zero. For the interacting case, the
difference comes, again, only from the effective masses:

�slow(ρ, T ) ≡ slow(ρ, T ,� = 1) − slow(ρ, T ,� = 0)

= π2T m∗(ρ,� = 0)

h̄2(6π2ρ)2/3

[
m∗(ρ,� = 1)

m∗(ρ,� = 0)
− 22/3

]
.

(35)

By requiring this difference to be negative, we recover the same
condition for the effective masses that we found in the classical
regime [Eq. (30)]. Contrary to the classical limit, in this case
�slow depends on the temperature, although this dependence
cannot change its sign. Now we can understand why ρS

c is
independent of the temperature: because in the classical limit
(which requires high temperatures) and in the low temperature
limit the entropy critical densities are exactly the same, one
can guess that for intermediate temperature ρS

c will also not
change.

We have seen that the interaction influences the entropy
only through the effective mass and we have been able to trace
back the anomalous behavior of the entropy (as a function
of the polarization) to the violation of Eq. (30), which does
involve only effective masses. In Fig. 7, then, we show the
effective mass of neutrons with both orientations of the third
spin component as a function of polarization for a fixed
density ρ = 0.16 fm−3, which lies above the entropy critical
density ρS

c for both SLy4 and SkI3. Obviously, for � = 0,
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FIG. 8. Entropy per particle of neutron matter as a function of
polarization at ρ = 0.32 fm−3 for several temperatures.

the effective masses for the neutrons with spin up and spin
down coincide. The horizontal line in both panels is placed
at m∗/m = 22/3m∗(� = 0)/m, indicating the upperbound for
m∗(� = 1)/m, above which we will find the anomalous
behavior of the entropy. The effective mass of the most
abundant species increases with the polarization, whereas the
one of the less abundant is the decreasing one. Notice that for
SLy4, as we have already pointed out, the effective mass for
the fully polarized system is simply the bare mass.

The behavior of the entropy as a function of the polarization
at a fixed density ρ = 0.32 fm−3 for several temperatures and
for both Skyrme forces is shown in Fig. 8. As expected, the
entropy increases with temperature. However, because this
density is above ρS

c , the entropy of the fully polarized phase is
larger than that of the unpolarized one, giving the anomalous
behavior of the entropy with the polarization. A careful
look shows that this difference increases with temperature as
expected from the results of Fig. 4. For a given temperature
and polarization and considering that the entropy in both limits
(and also in between them) is an increasing function of the
effective mass and that, as shown in Fig. 7, the effective mass
for SLy4 is larger than that of SkI3, we can understand why
the entropy associated to SLy4 (left panel) is larger than the
one corresponding to SkI3 (right panel).

Finally, using the low temperature expansion, we analyze
why ρF

c decreases with temperature. At zero temperature, the
difference between the free energy (internal energy) of the
fully polarized phase and the nonpolarized one is follows:

�f (ρ, T = 0) ≡ f (ρ, T =0,�=1) − f (ρ, T = 0,� = 0)

= 3

5

h̄2

2m∗(ρ,� = 1)
(3π2ρ)2/3

[
22/3 − m∗(ρ,� = 1)

m∗(ρ,� = 0)

]

− 1

4
ρ

[
t0(1 − x0) + 1

6
t3(1 − x3)ρα

]
. (36)

To find ρF
c (T = 0), we should find the density at which the

previous expression becomes zero. For most of the forces,
as we have already shown in Table II, the density at which

the first term becomes negative is quite low, whereas the
combination [t0(1 − x0) + 1

6 t3(1 − x3)ρα] is usually negative
at all densities. The energy difference, then, becomes negative
only through a balance of both terms, and this happens at
ρ = ρF

c (T = 0), which is an upperbound for the real critical
density ρc(T = 0). It is quite noticeable that this cancellation
results from a subtle interplay of all parameters of the Skyrme
force. Once we introduce a low temperature, the difference
between free energies becomes the following:

f (ρ, T ,� = 1) − f (ρ, T ,� = 0)

= �f (ρ, T = 0) − π2

4
T 2 2m∗(ρ,� = 0)

h̄2(6π2ρ)2/3

×
[
m∗(ρ,� = 1)

m∗(ρ,� = 0)
− 22/3

]
, (37)

and, therefore, this relation shows that at finite temperature,
whenever m∗(ρ,� = 1)/m∗(ρ,� = 0) > 22/3, which occurs
for densities larger than ρS

c , the unpolarized system is unstable
if the instability happens already at T = 0. However, even
when �f (ρ, T = 0) > 0, the second term can make the
difference become negative. Around ρF

c (T = 0), the difference
decreases with density (see Fig. 2) and thus the negative term
makes ρF

c (T �= 0) smaller with respect to ρF
c (T = 0). Or, in

other words, ρF
c (T ) < ρF

c (T = 0) provided that ρF
c (T = 0) >

ρS
c , which is always true as seen in Table II.

V. SUMMARY AND CONCLUSIONS

In this work, we have studied the properties of polarized
neutron matter, with neutrons interacting through Skyrme-type
interactions, both at zero and finite temperature. First, we have
revised the zero temperature calculations using two modern
Skyrme forces and we have studied the ground state of neutron
matter as a function of polarization. We have shown that the
ground state is not necessarily at fully polarized or unpolarized
matter, but that it can be found at partially polarized matter,
giving rise to a spontaneous symmetry breaking where the
system prefers a state with nonzero polarization.

Our main emphasis, however, has been the study of
the influence of temperature on the manifestation of the
ferromagnetic behavior. In particular, we have considered the
stability of the unpolarized phase and we have shown that
the critical density at which ferromagnetism takes place ρc

decreases with temperature. This unexpected behavior has
been associated to an anomaly of the entropy: above a certain
critical density ρS

c , the entropy of the polarized phase turns
out to be larger than that of the unpolarized one. We have also
shown that this fact is a consequence of the dependence of the
entropy on the effective mass of the neutrons with different
third spin component and, in particular, a consequence of
the dependence of these effective masses on the polarization.
More precisely, we have derived a condition for the maximum
ratio between the effective masses of the fully polarized phase
and the unpolarized one. Although this criterium is density
dependent, one could in principle use it as a restriction on the
parameters defining a Skyrme force.
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Finally, we emphasize the fact that the present analysis
has been restricted to Skyrme interactions that, contrary to
other microscopic calculations, give a ferromagnetic transition
at densities around 3.5ρ0. It would be useful to compare
these calculations with the results obtained with realistic
interactions and determine the behavior of the entropy
and the effective masses of neutrons as a function of the
spin polarization. Work in this direction is presently in
progress.
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