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Using the density-dependent Hartree-Fock approximation and Skyrme forces together with the scaling method
and constrained Hartree-Fock calculations, we obtain the average energies of the isoscalar giant monopole
resonance. The calculations are done along several isotopic chains from the proton to the neutron drip lines.
It is found that while approaching the neutron drip line, the scaled and the constrained energies decrease and
the resonance width increases. Similar but smaller effects arise near the proton drip line, although only for
the lighter isotopic chains. A qualitatively good agreement is found between our sum rule description and the
presently existing random phase approximation results. The ability of the semiclassical approximations of the
Thomas-Fermi type, which properly describe the average energy of the isoscalar giant monopole resonance for
stable nuclei, to predict average properties for nuclei near the drip lines is also analyzed. We show that when h̄

corrections are included, the semiclassical estimates reproduce, on average, the quantal excitation energies of the
giant monopole resonance for nuclei with extreme isospin values.
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I. INTRODUCTION

Experimental and theoretical studies of exotic nuclei with
extreme isospin values are presently one of the more active
areas of research in nuclear physics. Recent developments
in accelerator technology and detection techniques allow
research beyond the limits of β stability. The number of
unstable nuclei for which masses have been measured is
rapidly increasing [1], and this trend is expected to continue
because of the use of radioactive beams [2–4]. In particular,
the proton drip line has been approached as far as for Pb
isotopes [5]. The neutron drip line has been reached to date for
Z � 8 and is expected to be extended to Z � 28 in the present
decade [6].

Collective phenomena are very useful tools to study the
nuclear structure as well as to test the ability of the nuclear
effective forces in describing such situations. The analysis of
the small amplitude oscillations, i.e., the giant resonances, is
of special relevance. In particular, it is very interesting to study
the isoscalar giant monopole resonance (ISGMR) from where
the incompressibility modulus of nuclear matter (K∞) can be
extracted [7,8]. The value of K∞ is an important ingredient not
only for the description of finite nuclei but also for the study
of heavy ion collisions, supernovae, and neutron stars.

The ISGMR for stable nuclei has been studied long
ago from both experimental and theoretical standpoints [9].
The basic theory for the microscopic description of these
collective motions is the random phase approximation (RPA)
[10,11]. The RPA calculations allow one to obtain the strength
distribution S(E) which measures the response of a nucleus to
an external perturbation. In the case of the giant resonances,
S(E) is usually concentrated in a rather narrow region of the
energy spectrum, at least for heavy stable nuclei. Thus the
knowledge of a few low energy-weighted moments of S(E)

(sum rules) can provide useful information on the average
properties of the giant resonances as, for instance, the energy
of the centroids and the resonance widths. The full RPA
calculation can be avoided by using the so-called sum rule
approach in which several selected odd moments of S(E)
are obtained by means of the properties of the ground state
only [12] and thus used to evaluate these average properties.
However, the full quantal calculation of the sum rules is
still a complicated task. In some particular cases, it can be
simplified by using the scaling method [12–14] to obtain
the cubic energy-weighted moment or performing constrained
Hartree-Fock (HF) calculations [7,12,14,15], which allow one
to compute the inverse energy-weighted moment.

Nuclei near the drip lines are characterized by the small
energy of the last bound nucleons and by their large asym-
metry I = (N − Z)/A; therefore, it is expected that their
properties, in particular those of the collective excitations,
may considerably differ from the corresponding properties
of the stable nuclei. The theoretical analysis of the giant
monopole resonances of some exotic nuclei has been worked
out in the last few years. For instance, the RPA formalism
together with Skyrme forces have been used to study the
ISGMR of some isotopes of A =100, 110, and 120 [16] and
of some Ca isotopes [17,18]. These RPA calculations give us
detailed information about the specific nuclei considered. The
qualitative behavior of the ISGMR of other exotic nuclei may
be inferred from these RPA results; however, a wider study
of the properties of the collective modes near the drip lines
is still lacking. To obtain global insight into the behavior of
the ISGMR near the drip lines, we will study in this paper the
aforementioned average properties of this collective excitation
using the sum rule approach along different isotopic chains
covering the whole periodic table. The scaling transformation
of the density applied together with zero-range Skyrme forces
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allows us to express, for the monopole oscillations, the m3

RPA sum rule (i.e., the cubic weighted moment of the strength
distribution) by a simple and closed formula related to dif-
ferent contributions to the ground-state energy [12]. Spherical
constrained HF calculations also allow us to obtain the inverse
energy-weighted moment of the strength distribution (the RPA
m−1 sum rule) for the monopole oscillation in an easy way [12].
Although with the sum rule approach detailed information on
the RPA strength cannot be obtained, this method can easily
provide us with some useful information about the average
energies and widths of the ISGMR of nuclei extending from
the stability to the drip lines.

The shell structure of nuclei near the drip lines considerably
differs from the structure of stable nuclei. However, it should
be pointed out that, in principle, the average properties of
the giant resonances are not appreciably influenced by the
pairing correlations, at least not for medium and relatively
heavy subshell closed nuclei when calculated with Skyrme
forces [17,19]. Thus, for a fast estimate of some general
trends of the average properties of the ISGMR, we will restrict
ourselves to nonrelativistic Skyrme HF calculations using the
uniform filling approximation, in which particles occupy the
lowest single-particle orbits from the bottom of the potential.

Semiclassical methods like the Thomas-Fermi (TF) theory
and its extensions (ETF) which include h̄ corrections [20] have
proven to be very helpful in dealing with nuclear properties
of global character that vary smoothly with the number of
particles A and in regions where the shell corrections (quantal
effects) are small as compared with the average value provided
by the semiclassical calculations [21,22]. Reproduction of
the binding energy from the celebrated Bethe-Weizsäcker
mass formula [23] is the best-known example of this kind.
Semiclassical ETF-type calculations of the average energies of
some collective oscillations, in particular the breathing mode,
also reproduce smoothly the quantal RPA values [20,24–27]
for nuclei close to the stability line. This can be understood
because the ISGMR is a collective oscillation whose average
properties are, in general, rather insensitive to shell effects
which are absent in the semiclassical TF-type approaches. In
this paper, we also want to investigate the ability of the TF
approach and its extensions to reproduce the smooth variation
with A of the average energies and widths of the ISGMR near
the drip lines.

The paper is organized as follows: In Sec. II, we review
the basic theory of the sum rule approach applied to obtain
the average energy of the ISGMR using Skyrme forces. The
behavior of these average energies along different chains of
isotopes is discussed in Sec. III paying special attention to the
case of Ca isotopes. In Sec. IV, we study the semiclassical TF
and ETF descriptions of the ISGMR, particularly near the drip
lines. Finally, the summary and conclusions are given in the
last section.

II. THEORY

The response of the ground state of a nucleus to the action
of a multipole moment, represented by the operator Q, is
completely characterized by its associated strength function

S(E) defined as [12]

S(E) =
∑

n

|〈n|Q|0〉|2δ(En − E), (1)

where |0〉 and |n〉 are the normalized ground and excited states,
respectively, and En are the excitation energies.

The moments of the strength function are defined as

mk =
∫ ∞

0
EkS(E)dE, (2)

where k is an integer. The different moments fulfill the
inequalities [12]√

mk+1

mk−1
�

mk

mk−1
�

√
mk

mk−2
, (3)

from where one can define average energies as follows:

Ēk =
√

mk

mk−2
and Ẽk = mk

mk−1
. (4)

In addition, the square of the variance of the strength is defined
as [12]

σ 2 = m2

m0
−

(
m1

m0

)2

�
1

4

(
m3

m1
− m1

m−1

)
. (5)

With the help of the completeness relation
∑

n |n〉〈n| = 1, it
can be verified that for any positive odd integer k the moments
(2) can be evaluated as the expectation value in the ground
state |0〉 of some commutators involving the Hamiltonian H
and the operator Q (assumed to be a Hermitian and one-body
operator). For instance,

m1 = 1
2 〈0|[Q, [H,Q]]|0〉, (6)

and

m3 = 1
2 〈0|[[Q,H ], [H, [H,Q]]]|0〉, (7)

which are called the energy-weighted and cubic energy-
weighted sum rules, respectively [12]. Equations (6) and (7)
as they are written are not useful for practical calculations
because the exact ground state |0〉 is usually unknown.
However, when the moments are computed within the 1p1h

RPA it can be shown that they coincide exactly with the
result obtained by replacing the actual ground state |0〉 by
the uncorrelated HF wave function |HF〉 [12,28].

As usual, to evaluate the energy-weighted sum rule m1, we
will restrict ourselves to an isoscalar single-particle operator
Q = ∑

i f (ri) and neglect the momentum-dependent parts of
the residual interaction. In this case one has contributions
coming only from the kinetic energy, and at the RPA level
one finds

m1 = 1

2
〈HF|[Q, [H,Q]]|HF〉 = h̄2

2m
〈HF|(∇f )2|HF〉. (8)

It has been shown that Eq. (8) also holds for a Skyrme force
because of the δ character of the p2 terms [29]. For the isoscalar
monopole oscillation, one has Q = ∑A

i=1 r2
i , and thus the RPA

m1 sum rule becomes

m1 = 2h̄2

m
A〈r2〉, (9)
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where the expectation value of the operator r2 is calculated
with the HF wave function.

A. The scaling approach with Skyrme forces

As we know [12], the cubic energy-weighted moment m3

of the RPA strength function can be calculated through the
scaled ground-state wave function �η defined as

|�η〉 = e−iηQ1 |�0〉, (10)

where η is an arbitrary scaling parameter and Q1 = i[H,Q],
for a Hermitian one-body operator Q. Then,

m3 = 1

2

∂2

∂η2
[〈�η|H |�η〉]η=0. (11)

The m3 moment measures the change of the energy of
the nucleus when the ground-state wave function is deformed
according to (10). If Q is the monopole collective operator
defined previously, the scaling transformation (10) induces
a change of scale in the ground-state HF wave function �0

conserving its normalization, i.e., each single-particle wave
function varies as

φM
η = e3η̃/2φ0(eη̃x, eη̃y, eη̃z), (12)

where η̃ = −2h̄2η/m, and φ0 are the single-particle wave
functions comprised in �0.

Under the monopole transformation (12), the particle,
kinetic, and spin densities that enter into the Skyrme energy
density scale as

ρλ(r) = λ3ρ(λr), τλ(r) = λ5τ (λr), Jλ(r) = λ5 J(λr),

(13)

where λ = eη̃. Inserting these scaled densities in the Skyrme
energy density functional, the scaled energy is obtained as

E(λ) = λ2T + λ3Eδ + λ5(Efin + Eso) + λ3γ+3Eρ + λEC,

(14)

where T and EC are the kinetic and Coulomb energies and
Eδ,Efin, Eso, and Eρ are the different contributions to the
potential energy in the notation of Ref. [12]. They are given as

Eδ =
∫

d r
{

1

2
ρ2t0

(
1 + x0

2

)
− 1

2

(
ρ2

n + ρ2
p

)
t0

(
1

2
+ x0

)}
,

(15)

Efin =
∫

d r
{

1

4
ρτ

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]

− 1

4
(ρnτn + ρpτp)

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]

+ 1

16
(∇ρ)2

[
3t1

(
1 + x1

2

)
− t2

(
1 + x2

2

)]

− 1

16
[(∇ρn)2 + (∇ρp)2]

[
3t1

(
1

2
+ x1

)

+ t2

(
1

2
+ x2

)]}
, (16)

Eso = 1

2
W0

∫
d r{J · ∇ρ + Jn · ∇ρn + Jp · ∇ρp}, (17)

Eρ =
∫

d r
{

1

12
ργ+2t3

(
1 + x3

2

)

− 1

12
ργ

(
ρ2

n + ρ2
p

)
t3

(
1

2
+ x3

)}
. (18)

The stability of the ground-state wave function against a
scaling transformation implies E′(λ)|λ=1 = 0 (virial theorem)
leading to

2T + 3Eδ + 5(Efin + Eso) + (3γ + 3)Eρ + EC = 0. (19)

According to Eq. (11), the m3 moment of the isoscalar
monopole RPA strength can be written as

m3 = 1

2

(
2h̄2

m

)2

[2T + 6Eδ + 20(Efin + Eso)

+ (3γ + 3)(3γ + 2)Eρ], (20)

where the scaled ground-state energy (14) has been employed.
Using Eqs. (20) and (9), the average energy of the ISGMR
obtained with the scaling approach reads as

ES
M =

√
m3

m1
. (21)

B. Constrained calculation of the giant monopole resonance

Let us consider a nucleus, described by a Hamiltonian H,
under the action of a weak one-body field ηQ. Assuming η

to be sufficiently small so that perturbation theory holds, the
variation of the expectation value of Q and H is directly related
to the m−1 moment [12],

m−1 =
∑

n

|〈n|Q|0〉|2
En

= −1

2

[
∂〈Q〉
∂η

]
η=0

= 1

2

[
∂2〈H 〉
∂η2

]
η=0

.

(22)

At the RPA level, the average energy of the ISGMR can
also be estimated by performing constrained spherical HF
calculations, i.e., by looking for the HF solutions of the
constrained Hamiltonian

H (η) = H − ηQ, (23)

where Q = ∑A
i=1 r2

i is the collective monopole operator.
From the HF ground-state solution �(η) of the constrained
Hamiltonian (23), the RPA m−1 moment (polarizability) is
computed as

m−1 = −1

2

[
∂

∂η
〈�(η)|Q|�(η)〉

]
η=0

= 1

2

[
∂2

∂η2
〈�(η)|H |�(η)〉

]
η=0

, (24)

from where another estimate of the average energy of the
ISGMR is given by

EC
M =

√
m1

m−1
. (25)
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In the following, we will refer to the average energies
provided by the scaling method (21) and to the constrained
HF calculations (25) as the scaled and constrained energies,
respectively. Because the RPA moments fulfill the relations√

m3/m1 � m1/m0 �
√

m1/m−1 [12], the values of the aver-
age energies ES

M and EC
M are an upper and lower bound of the

mean energy of the resonance, and their difference is related
to the variance of the strength function (resonance width)

σ = 1

2

√(
ES

M

)2 − (
EC

M

)2
. (26)

In the RPA formalism, σ is the escape width; that includes
the Landau damping but not the spreading width coming
from more complicated excitation mechanisms. Therefore, the
width estimated with (26) can be significantly lower than the
experimentally measured value [24].

III. NUMERICAL RESULTS

In our study of the excitation energies of the giant monopole
resonances in the sum rule approach, we consider the isotopes
of some proton magic nuclei, namely, O, Ca, Ni, Zr, and Pb,
from the proton up to the neutron drip lines. The calculations
are performed using the SkM∗ force. The results are presented
in the following manner. First we discuss in detail the behavior
of the ISGMR along the isotopic Ca chain for two reasons.
First, the shell effects in the m−1 sum rule are especially
important along this chain. Second, the sum rule estimates for
some isotopes (34Ca and 60Ca) can be contrasted with presently
existing full RPA calculations [17,18] in order to learn which
kind of information can be derived from the simpler sum
rule approach. In light of these discussions of Ca isotopes,
we analyze the ISGMR in the remaining (O, Ni, Zr, and Pb)
isotopic chains.

A. The sum rule approach in calcium isotopes

In Fig. 1, we display the scaled (ES
M ) and constrained (EC

M )
estimates of the average excitation energy of the monopole
oscillation as a function of the mass number A from the
proton to the neutron drip lines. In this figure, the filled
symbols correspond to closed subshell nuclei, whereas the
open symbols correspond to open shell nuclei populated
according to the uniform filling approximation. The predicted
scaled and constrained energies of these open shell nuclei are
thus for orientation purposes. Along the Ca chain the scaled
monopole energies decrease rather smoothly when the number
of neutrons moves from the stable nuclei toward the neutron
drip line. The constrained energies also show a similar global
tendency. However, two important differences can be observed
as compared with the scaled energies. On the one hand, the
reduction of EC

M near the neutron drip line is more pronounced
than that in the case of scaled energies. The constrained
energies EC

M also decrease for the proton-rich members of
the chain while for these nuclei the scaled energies ES

M remain
close to the corresponding values in stable nuclei. On the other
hand, relatively strong changes of the constrained energies can
be observed at some subshell closures, in particular for the ones
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FIG. 1. (Color online) Excitation energies of the isoscalar giant
monopole resonance in the isotopic chain of calcium from scaling
(squares) and constrained (circles) calculations as function of the
mass number. Estimate of the resonance width (filled triangles) from
Eq. (26) is also displayed.

corresponding to neutron numbers N = 52 and N = 54, which
are reached once the orbits 2p3/2 and 2p1/2 are completely
filled. The resonance width along the chain, estimated with
Eq. (26), is also displayed in Fig. 1. It increases near the neutron
and proton drip lines but also shows noticeable oscillations due
to the shell effects at N = 32 and N = 34 in the middle of the
Ca chain far from the drip lines.

The upper panel of Fig. 2 displays the m3 sum rule as a
function of the mass number A along the chain of Ca isotopes.
It can be seen that m3 smoothly grows with increasing A
due to the global character of this sum rule [see Eq. (20)].
More interesting is the sum rule m3 divided by A, which
is shown in the inset of the same panel. The ratio m3/A

is roughly constant for the stable nuclei and smoothly
decreases when approaching the neutron and proton drip lines.
This behavior can be understood in terms of the finite nucleus
incompressibility KA [13] which is proportional to m3/A. The
value of KA can also be estimated through its leptodermous
expansion [13]

KA = K∞ + KsfA
−1/3 + KvsI

2 + KcoulZ
2A−4/3 + · · · ,

(27)

where K∞ is the nuclear matter incompressibility and Ksf,Kvs,
and KCoul are the surface, symmetry, and Coulomb corrections
which in the scaling model are negative [13]. Near the neutron
drip line, the surface (KsfA

−1/3) and Coulomb (KcoulZ
2A−4/3)

terms decrease in absolute magnitude and tend to make KA

larger with growing A, but the contribution of the symmetry
term (KvsI

2) dominates because of the large values of the
neutron excess I = (N − Z)/A and, in total, the finite nucleus
incompressibility KA is reduced. Near the proton drip line, all
three correction terms to KA are larger in absolute magnitude
than those for stable nuclei, and thus the finite nucleus
incompressibility again decreases. However, this effect near
the proton drip line is smaller than that near the neutron drip
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FIG. 2. m3 sum rule for calcium isotopes as a function of the
mass number A (upper panel). Total m1 and m−1 sum rules (filled
triangles) and contributions coming from neutrons (squares) and
protons (circles) (middle and lower panels).

line because of the smaller |I | values, at least in the case of
the Ca isotopes.

In the middle panel of Fig. 2, we display the m1 RPA sum
rule for the chain of Ca isotopes as well as their contribution
coming separately from protons and neutrons. As can be seen,
the proton contribution to m1 is roughly constant because the
proton rms radius changes only very little along the whole
chain. Contrarily, the neutron contribution to m1 increases
almost linearly with increasing number of neutrons from the
proton drip line up to 70Ca from where it starts to grow faster
following the trend of the rms radius of the neutron densities
near the neutron drip line. Because of this behavior of the
proton and neutron contributions, the full m1 as a function of
A behaves almost as its neutron contribution along the chain.
It should be pointed out that near the proton drip line, the
proton and neutron contributions are rather similar and both
contribute equally to m1; while near the neutron drip line, the
m1 sum rule is basically given by its neutron contribution.

The m−1 sum rule for the chain of Ca isotopes is displayed
in the lower panel of Fig. 2 together with their proton and
neutron contributions. From this figure, one can see that the
neutron contribution to m−1 increases almost linearly with
mass number A from the proton drip line to 48Ca and from
54Ca to 70Ca with sudden changes from 48Ca to 54Ca and
from 70Ca up to the neutron drip line nucleus 76Ca (shown in
the inset). In contrast, the proton contribution to m−1 remains
roughly constant except from 40Ca to the proton drip line
(34Ca), where it slightly increases. This behavior of the m−1

sum rule, together with the one exhibited by the m1 sum rule
discussed previously, explains the global trends shown by the
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Calcium neutron orbits

FIG. 3. (Color online) Mean square radii of the neutron single-
particle orbits for the isotopic chain of calcium as a function of the
mass number. Horizontal bars depict the value of the total neutron
mean square radius of each isotope.

constrained average energy EC
M of the ISGMR along the Ca

chain displayed in Fig. 1 from the proton to the neutron drip
lines.

To obtain more insight about the neutron contribution to
the m1 and m−1 sum rules, we display in Fig. 3 the mean
square radius of each neutron orbit nlj entering in the HF
wave function of the ground state of the Ca nuclei along the
isotopic chain. They can be contrasted with the neutron mean
square radii of the same nuclei, shown by the thick horizontal
lines. To help the discussion and for further purposes, the
neutron and proton single-particle energy levels of the Ca
isotopes are displayed in Figs. 4 and 6, respectively. In these
figures, we also included some quasi-bound levels owing
to the centrifugal (neutrons) or centrifugal plus Coulomb
(protons) barriers which simulate possible positive-energy
single-particle resonant states. From Fig. 3, we can see that
the deeper orbits almost give the same mean square radius
along the whole isotopic chain in agreement with the fact that
the more bound energy levels do not change very much from
the proton to the neutron drip line (see Fig. 4). Beyond 48Ca,
neutrons start to be accommodated in levels whose binding
energies are relatively small, and consequently the rms radii
of the corresponding orbits increase. It is important to note
that, in particular, the 2p3/2 and 2p1/2 orbits have a very large
mean square radius even though their binding energies are
not very small, especially for the heaviest isotopes. The mean
square radius of these p orbits is larger than that corresponding
to the less bound level 1f5/2, and the one of the 2p1/2 orbit
is similar to that of the 1g9/2 orbit which lies higher in the
energy spectrum. Near the neutron drip line, the very lightly
bound level 2d5/2 is occupied, and its wave function extends
rather farther, increasing substantially the mean square radius
of 76Ca (the contribution of the 2d5/2 level to the mean square
radius is shown by a triangle in Fig. 3 in the reduced scale as
indicated). This fact produces a noticeable departure from the
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FIG. 4. (Color online) Neutron single-particle energies for cal-
cium isotopes as a function of A. Symbols joined by dotted lines
correspond to empty levels.

linear behavior exhibited by the m1 sum rule near the neutron
drip line.

In Fig. 5, we display the contributions m−1[nlj ] of a single
nucleon in the occupied neutron orbits to the total m−1 sum
rule for each Ca isotope. This figure shows that the more bound
neutron levels give almost the same single-particle contribu-
tion to m−1 in all the nuclei of the Ca chain. The behavior
of the m−1 sum rule from 48Ca onward to the neutron drip
line is governed by the outer orbits 2p3/2, 2p1/2, 1f5/2, 1g9/2,
and 2d5/2, which give the largest contribution to m−1 from
52Ca to 76Ca. The single-particle contributions to m−1 from
the orbits 2p3/2 and 1g9/2 are still roughly constant; however,
strong changes can be observed in m−1[nlj ] for the 2p1/2

and 1f5/2 orbits. A very large m−1[nlj ] value comes from
the outermost very lightly bound orbital 2d5/2 in the drip line
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FIG. 6. (Color online) Same as Fig. 4, but for protons.

nucleus 76Ca (shown as a plus sign in the figure in the reduced
scale as indicated). The large single-particle contribution of the
2p1/2 and 2d5/2 orbits to m−1 is due to the extension of their
corresponding wave functions beyond the core of the nucleus,
so that neutrons in such orbitals are much softer to pick up
than neutrons accommodated in inner orbitals producing the
strong enhancement of the total m−1 sum rule.

Let us now discuss the enhancement of the m−1 sum rule
near the proton drip line. As it is known [30], the depth of
the single-particle potential for protons decreases when the
number of neutrons in an isotopic chain decreases. Thus the
outermost bound proton levels for nuclei near the proton
drip line (see Fig. 6) have little binding energy and their
corresponding HF wave functions extend far from the core
of the nuclei; consequently, protons in these orbits are softer
against pickup thereby increasing the contribution to the total
m−1 sum rule. This is just the case of the 1d3/2 orbit for protons
in Ca isotopes (see Fig. 6), which passes from −7.5 MeV in
40Ca to −1.1 MeV in the proton drip line nucleus 34Ca and
gives the largest contribution to m−1 in this case.

B. Connection with the RPA strength function

As mentioned, the sum rules m1,m3, and m−1 computed
from the HF ground state by means of Eqs. (9), (20), and
(24), are the exact 1p-1h RPA value [12]. Actually, the self-
consistent HF sum rules provide a practical means to check
the accuracy of an RPA calculation of the strength function
S(E), provided that both the sum rule and the RPA calculation
are performed in the same conditions. However, because of
their complexity, the RPA calculations often are not fully
self-consistent. For instance, the Coulomb and/or spin-orbit
residual interactions may be absent in the RPA response.
As recently shown in [31], when the RPA calculations are
performed self-consistently, the sum rules extracted from the
RPA strength function are quite close to the values obtained in
the HF sum rule approach.
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RPA calculations for 34Ca and 60Ca were carried out some
time ago [17]. The extracted ISGMR mean energies were
ES

M = 22.5 and EC
M = 17.8 MeV for 34Ca, and ES

M = 18.8
and EC

M = 15.4 MeV for 60Ca. Although there are some
differences, they compare well with the values from our sum
rule calculation: ES

M = 22.0 and EC
M = 17.3 MeV for 34Ca,

and ES
M = 18.3 and EC

M = 15.0 MeV for 60Ca. Our values for
the resonance widths are 6.8 MeV in 34Ca and 5.3 MeV in 60Ca,
which coincide with the RPA values obtained in Ref. [17]. The
systematic deviation of about 0.5 MeV of the RPA average
energies reported in Ref. [17] from our sum rule results may
possibly be attributed to a deficiency in full self-consistency.

The information contained in the energy spectra of the
nuclei as well as in the values of the sum rules allows one
to infer important properties of the strength function S(E).
Looking at Fig. 10 of Ref. [17], one can see that for 34Ca there
is a low-energy bump in the region around 5–13 MeV. It is
mainly due to transitions from the less bound proton levels
(1d3/2 and 2s1/2) to the continuum. These transitions enhance
the m−1 sum rule that weighs the low energy part of S(E). The
peak seen at high energies, in the 19–25 MeV region, receives
contributions from the 1p → 2p (resonant) transition of
protons as well as from the 1p → 2p and 1s → 2s transitions
of neutrons. Concerning 60Ca (Fig. 12 of Ref. [17]), the
low-energy bump around 4–12 MeV is again mainly related to
transitions to the continuum from the less bound levels, which
in this case are due to neutrons. For this nucleus the last neutron
in the 1f5/2 orbit is bound by 3.4 MeV which is in agreement
with the threshold energy. The high-energy peaks around
17 MeV and 21 MeV can be related to the 2s → 3s (virtual)
and to the 1d5/2 → 2d5/2 (resonant) transitions for protons and
to the 1p → 2p, 1d5/2 → 2d5/2, and 1d3/2 → 2d3/2 (resonant)
transitions for neutrons. Strictly speaking, these transitions
between single-particle levels, should be related to peaks of
the unperturbed strength, but they also appear when the RPA
correlations are included. They are, however, slightly shifted
to lower energies in general. With this experience in hand, we
will discuss from a qualitative point of view the most important
trends of the RPA monopole response which can be expected
for some representative nuclei of the Ca isotopic chain.

For 52Ca and 54Ca, a low-energy bump in S(E) starts to be
developed because of transitions from 2p3/2 and 2p1/2 levels
to the continuum. Although the strength in the low-energy
region of S(E) should be small because of the relatively large
binding energy of the last filled levels of neutrons of these
nuclei (6.7 and 4.1 MeV for 52Ca, and 54Ca, respectively),
the large rms radii of these orbits favor a large overlap
between the wave functions of these bound levels and the
levels in the continuum [32], which increases the strength
at these energies. This fact is supported, on average, by the
enhancement of the m−1 sum rule in passing from 48Ca to
54Ca. This confirms our assumption about the key role of
the 2p3/2 and 2p1/2 orbits on the sudden increase of m−1.
In passing from 60Ca to 70Ca, the increase of m1 and m−1

is basically a size effect which explains the almost similar
values of EC

M in both nuclei. Here one should also expect a
low-energy bump shifted toward lower energies because of
transitions to the continuum from the 1g9/2 orbit, which is
bound by 2.5 MeV. For 76Ca, m−1 strongly increases as a result

of the effect of the 2d5/2 orbit (bound by only 0.84 MeV)
which has a very large rms radius. Although m1 slightly
increases, the large change of m−1 explains the dramatic
reduction of EC

M at the neutron drip line for the Ca isotopes.
For this nucleus, one could also expect a large low-energy
bump dominated by the transition to the continuum from the
2d5/2 level. The structure in S(E) should also contain broad
high-energy peaks due to transitions from the deeply bound
states to the unoccupied bound or resonant levels, coming from
both neutrons and protons. From this it appears that knowledge
of the spectrum of a nucleus as well as the m1 and m−1 sum
rules can provide useful information that allows one to sketch
the behavior of the strength distribution S(E).

C. Transition densities

In this subsection, we will discuss the two transition
densities [15]

δρ+1(r) = − 1

2A〈r2〉 [3ρ(r) + rρ ′(r)], (28)

which is the Tassie transition density corresponding to the
scaling transformation, and

δρ−1(r) = − 1

2m−1

∂ρη(r)

∂η

∣∣∣∣
η=0

, (29)

which is the transition density in the constrained case. In
Eq. (28), ρ(r) is the ground-state particle density and 〈r2〉
the mean square radius of the nucleus. In Eq. (29), ρη(r) is
the particle density built up with the HF single-particle wave
functions that are solutions of the constrained Hamiltonian
(23), and m−1 is the inverse energy-weighted sum rule
calculated using (24). The chosen normalization in Eqs. (28)
and (29) ensures that when a single state exhausts the sum rule,
then δρ+1(r) = δρ−1(r).

Figure 7 displays the neutron (upper panel) and proton
(middle panel) contributions to the constrained transition
densities (29) multiplied by r2 for some Ca isotopes between
the proton and neutron drip lines, namely 34Ca, 48Ca, 54Ca,
70Ca, and 76Ca. The neutron contribution to r2δρ−1 strongly
depends on the neutron number of the considered isotope. The
outer bump of the neutron contribution broadens and shifts
to larger values of r when the nuclei approach the neutron
drip line; this is basically due to the neutrons in the outermost
orbits which are loosely bound and extend very far from the
center of the nucleus. For example, in Fig. 7 one can see
the effect of the 2p3/2 and 2p1/2 orbits in 54Ca where the
outer bump is clearly shifted with respect to that of the 48Ca
nucleus. The fact that the rms radius of the 1f5/2 and 1g9/2

orbits are similar to those of the 2p3/2 and 2p1/2 orbits (see
Fig. 3) is also reflected in the transition density of the nucleus
70Ca, whose external bump is located, roughly, at the same
position as that of the one corresponding to 54Ca. The very
lightly bound 2d5/2 orbit has a very large rms radius (see
Fig. 3), and consequently the external bump of the neutron
contribution to the constrained transition density is pushed to
very large distances. The proton contribution to the constrained
transition density displayed in the middle panel of Fig. 7
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shows a completely different pattern. On the one hand, both
the inner and outer bumps are located approximately at the
same positions for all the considered Ca isotopes, which is in
agreement with the fact that the proton rms radius along a given
isotopic chain remains approximately constant. On the other
hand, the proton contribution to the total transition density
decreases with increasing mass number. This is consistent
with the fact that protons contribute proportionally less than
neutrons to the m−1 sum rule in neutron drip line nuclei as can
be seen from the lower panel of Fig. 2.

The lower panel of Fig. 7 compares the Tassie and the
constrained transition densities for the drip line nuclei, 34Ca
and 70Ca. For both nuclei, the bumps of r2δρ+1 and r2δρ−1
are located at the same place. However, the shapes of both
transition densities differ relatively between them. The strong
fragmentation of the RPA strength in Ca isotopes, in particular
in the drip line nuclei, can be gauged by the large enhancement
of the resonance width in these nuclei (see Fig. 1).

D. Other isotopic chains

With the experience gained from this analysis of Ca
isotopes, let us discuss the more salient features found in
other isotopic chains. Figure 8 displays the scaled ES

M and
constrained EC

M energies of the ISGMR as well as the
resonance width for the O, Ni, Zr, and Pb isotopic chains.
The filled and open symbols correspond to subshell closed
and open nuclei, respectively. The scaled energies along these
isotopic chains qualitatively behave in a similar way as those
in Ca isotopes. In general, ES

M is roughly constant along the
considered chains from the proton drip line to the stable nuclei
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FIG. 8. (Color online) Excitation energy of ISGMR from scaling
and constrained calculations, and predicted resonance width for the
isotopic chains of O, Ni, Zr, and Pb.

and then shows a moderate downward trend while approaching
the neutron drip line. On the contrary, the constrained energies
exhibit again a sizable reduction near the neutron drip line and
a moderate decrease near the proton drip line. One exception
to this general behavior is 12O, which shows a noticeable
decrease of the scaled and constrained energies at the proton
drip line. The reasons are similar to those discussed for 34Ca,
but more accentuated because of the smaller nuclear charge.
Another exception is the heavy Pb chain where the constrained
energy EC

M smoothly diminishes from the proton to the neutron
drip lines showing a similar behavior to that of the scaled
energy for these isotopes. As a consequence, for light and
medium isotopic chains (O, Ni, and Zr) the ISGMR width
shows an enhancement near the proton and neutron drip lines
(somewhat more pronounced at the neutron drip line), whereas
the resonance widths for the Pb isotopes remain approximately
constant along the whole chain. Thus, the resonance width
in the different isotopic chains shows a downward tendency
with increasing atomic number, which suggests a smaller
fragmentation and more collective character in the ISGMR
of heavy nuclei such as the Pb isotopes.

We now discuss the m1 and m−1 sum rules in O, Ni,
Zr, and Pb isotopes. In Figs. 9 and 10 we display m1/A

5/3

and m−1/A
7/3, respectively, for the aforementioned isotopic

chains. These scaling factors A−5/3 and A−7/3 remove the size
dependence of the total m1 and m−1 sum rules [24]. Figure 9
shows that the neutron contribution to m1/A

5/3 increases and
the proton contribution decreases with growing mass number
A. However, the total m1/A

5/3 displays a rather constant
behavior as a function of A for all the considered isotopic
chains, except maybe for some drip line nuclei. This means
that the enhancement of the m1 sum rule with A displayed in
Fig. 2 for Ca isotopes up to 70Ca is basically due to a size
effect except near the drip line nuclei. The A-scaled m−1/A

7/3

sum rule displayed in Fig. 10 for the O, Ni, Zr, and Pb chains
shows a rather constant behavior in the region of stable nuclei.
It clearly increases near the neutron drip lines and also for
the proton drip line of oxygen. It shows the softness against
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pick-up of the nucleons from the outermost lightly bound levels
thus giving the large enhancement of the m−1 sum rule in the
case of drip line nuclei.

From the sum rule approach, we can also obtain some
information about the RPA strength distributions for O, Ni,
and Pb isotopes. Reference [33] studied the isoscalar monopole
RPA strength for the neutron drip line nucleus 28O. We can
analyze this nucleus on the basis of the sum rule approach.
To help the discussion, we report in Table I the neutron and
proton single-particle energy levels (including the quasibound
ones) as well as the mean square radius of each bound orbit
for this nucleus obtained with the SkM∗ force. In this case,
the last occupied neutron level (1d3/2) is bound by only
1.8 MeV. As discussed in Ref. [33], the RPA strength develops
a low-energy bump because of transitions to the continuum
from the 1d5/2, 2s1/2, and 1d3/2 levels, and a high-energy peak
because of the neutron transition 1p3/2 → 2p3/2 (resonant)
and the proton transitions from the 1s1/2, 1p1/2, and 1p3/2

levels to the unoccupied (but bound) 2s1/2, 2p1/2, and 2p3/2

levels, respectively. This structure is actually encoded in the
sum rule approach used here. Looking at Fig. 10, a noticeable
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FIG. 10. m−1 sum rule scaled by A−7/3 for the isotopic chains of
O, Ni, Zr, and Pb. Neutron (squares) and proton (circles) contributions
to the total m−1 are also plotted.

enhancement of the scaled m−1/A
7/3 sum rule for 28O can be

seen in qualitative agreement with the large amount of strength
in the low-energy part of S(E). To be more quantitative, we
also report in Table I the contribution to m−1 coming from a
single neutron in each occupied orbit. The largest part of the
m−1 sum rule comes from contributions of the 1d3/2, 2s1/2, and
1d5/2 neutron levels, which are responsible for 74, 11, and 8%
of the total m−1 sum rule (263.022 MeV−1 fm4), respectively.
On the other hand, using the 〈r2〉 values reported in the same
table, we find that the contribution of these neutron levels to
the total m1 sum rule (2.586 × 104 MeV fm4) is 23, 11 and
25%, pointing out again their relevance in the low-energy part
of S(E).

The single-nucleon contributions to 〈r2〉 and to the m−1

sum rule reported in Table I can also provide information
about S(E). The energy corresponding to the maximum of
the unperturbed strength due to transitions of the outermost
nucleons to the continuum can be estimated for each orbit as
the square root of the ratio of their single-nucleon contribu-
tions to m1[nlj ] and m−1[nlj ]. From the values reported in
Table I, this estimate gives 5.6 and 9.6 MeV for the 1d3/2 and

TABLE I. Neutron and proton single-particle energy levels (in MeV) with the occupancy (given in parentheses) for 28O.
The mean square radius 〈r2〉 (in fm2) and the single-nucleon contribution to the m−1 sum rule of each orbital (in MeV−1

fm4) are also given.

Neutron Proton

Orbital Energy 〈r2〉 m−1[nlj ] Orbital Energy 〈r2〉 m−1[nlj ]

1s1/2 −31.920 (1) 5.085 0.3093 1s1/2 −44.132 (1) 5.433 0.3505
1p3/2 −19.920 (1) 8.701 0.9664 1p3/2 −31.726 (1) 8.786 1.0010
1p1/2 −14.936 (1) 9.194 1.5875 1p1/2 −27.060 (1) 9.068 1.3510
1d5/2 −8.641 (1) 12.962 3.6757 1d5/2 −19.389 (0) — —
2s1/2 −5.997 (1) 16.689 15.1465 2s1/2 −15.143 (0) — —
1d3/2 −1.780 (1) 18.278 48.9019 1d3/2 −12.415 (0) — —
2p3/2 0.526 (0) — — 1f7/2 −6.665 (0) — —
1f7/2 1.731 (0) — — 2p3/2 −2.380 (0) — —
1g9/2 10.366 (0) — — 2p1/2 −0.701 (0) — —
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2s1/2 neutron levels, in qualitative agreement with the position
of the maxima in the unperturbed strength displayed in Fig. 1
of Ref. [33].

For the Ni isotopes, the situation is qualitatively similar
to that found for the Ca isotopic chain, although there are
some differences. First, the enhancement of the polarizability
shown by Ca isotopes when 2p3/2 and 2p1/2 orbits are occupied
(52Ca and 54Ca, respectively) is appreciably attenuated in the
corresponding Ni isotopes (60Ni and 62Ni). This is because
for Ni isotopes, the 1f7/2 orbit for protons is filled and thus
neutrons occupying 2p3/2 and 2p1/2 levels are more bound and
have smaller rms radii than the corresponding Ca isotopes.
They thus contribute less to the m−1 sum rule, as can be
realized from Fig. 10, where no significant enhancement of
the scaled m−1/A

7/3 sum rule is observed. Second, in Ca
isotopes the strong enhancement of the m−1 sum rule and
a moderate rise in m1 start to be appreciable once the 1g9/2

orbit has been occupied (which corresponds to 70Ca) and the
very lightly bound 2d5/2 level starts to be populated (see
Fig. 2). Something similar happens for Ni isotopes beyond
78Ni, where the 2d5/2, 3s1/2, and 2d3/2 orbits become slightly
bound and contribute largely to the enhancement of the m−1

(strong) and m1 (moderate) sum rules, decreasing of the
constrained energy and enhancing of the width of the ISGMR
in nuclei between 78Ni and the drip line nucleus 90Ni. However,
the single-nucleon contribution to the m1 and m−1 sum rules
critically depends on its binding energy and increases very
fast when the binding energy approaches zero. In our uniform
filling approach and using the SkM∗ force, the last occupied
level in the drip nucleus 76Ca (2d5/2) is bound by only
0.85 MeV, while in the Ni drip nucleus 90Ni the outermost
levels 2d5/2, 3s1/2, and 2d3/2 are bound by 3.45, 2.26, and
1.09 MeV, respectively. These differences in the binding
energies of the last occupied levels explain why the decrease
in the constrained energy and the enhancement of the width of
the ISGMR is more important in the Ca isotopes than in the
Ni isotopes near the neutron drip line.

We next discuss the chain of the Zr isotopes. For the 122Zr
nucleus, where the neutron shell N = 82 is closed, the binding
energy of the last bound orbit (1h9/2) is 5.01 MeV with the
SkM∗ force. Some neutron orbits belonging to the N = 126
closed shell, namely, the 2f7/2, 3p3/2, and 3p1/2 orbitals,
become very lightly bound in the 130Zr, 134Zr, and 136Zr
isotopes and thus increase greatly the m1 and m−1 sum rules in
these nuclei close to the neutron drip line. In the uniform filling
approximation, such a scenario can be appreciated in Figs. 9
and 10 from the departure from the roughly constant value
of the A-scaled m1/A

5/3 and m−1/A
7/3 sum rules in subshell

closed Zr isotopes beyond 122Zr. The strong enhancement of
the m−1 sum rule combined with the moderate rise in the m1

sum rule produces the dramatic decrease of the constrained
energy EC

M and the large increase of the resonance width near
the neutron drip line, which can be observed in Fig. 8.

The situation is different in the heavy Pb isotopic chain.
In this case, the neutron drip line is reached when the N =
184 shell is completely occupied (the last filled orbit 3d3/2 is
bound by 2.58 MeV). In the lighter Ca, Ni, and Zr isotopic
chains, the shell gap above the N = 50 and N = 82 closed
shells is strongly reduced when approaching the neutron drip

line (and even disappears in the case of the Ca isotopes [6])
as compared to those of the stable nuclei of these chains.
Therefore, in nuclei near the neutron drip line, some levels
of the next major shell can still be bound before reaching
it. However, in neutron-rich Pb isotopes, the shell closure at
N = 184 is more robust, and no bound levels belong to the
next major shell in the neutron drip nucleus. The A-scaled
m1/A

5/3 sum rule is practically constant along the whole chain
and m−1/A

7/3 shows a moderate increasing tendency near the
neutron drip line (see Figs. 9 and 10). The combination of
these two effects causes the constrained energy and the energy
width of the ISGMR in neutron-rich Pb isotopes to vary only
slightly as compared to the corresponding values in the stable
nuclei of the chain, as seen in Fig. 8.

We have treated all nuclei in the spherical approximation.
This is justified to a large extent because of the semimagic
character of the isotopic chains considered. However, some of
the isotopes may happen to be deformed, specially in the Zr
chain. For more than two decades, there has been experimental
evidence [34,35] that the isoscalar monopole strength in
deformed nuclei shows an additional lower energy peak when
compared to that of spherical nuclei. This is interpreted as an
effect of the coupling between the ISGMR and the isoscalar
giant quadrupole resonance in deformed nuclei that broadens
and splits the ISGMR strength into two components [36,37].
We believe that this effect may be enhanced in deformed
isotopes away from the valley of stability, because the broader
distribution of the resonance strengths near the drip lines
possibly contributes to an increase in the coupling between
the two excitation modes.

IV. SEMICLASSICAL EXTENDED THOMAS-FERMI
CALCULATIONS

As mentioned in the Introduction, we know that for stable
nuclei, semiclassical approximations of Thomas-Fermi (TF)
type and its extensions (ETF) used with the sum rule approach
provide a good estimate of the ISGMR excitation energies at
least for stable nuclei [20,24–27]. In this section, we want
to study whether these semiclassical approximations are also
able to follow the average trend of the quantal results in regions
away from the stability line.

To describe semiclassically (at TF or ETF levels) the
ISGMR excitation energies with the scaling method, we will
calculate first the ground-state neutron and proton densities.
This is done by replacing the quantal kinetic energy density
τ = ∑A

i=1 |∇φi |2 by the semiclassical one at the TF level

τTF = ∑
q=n,p 3/5(3π2)

2/3
ρ

5/3
q or at the ETF level including

h̄2 or h̄4 corrections [20,25] into the Skyrme energy density
functional and then solving the variational Euler-Lagrange
equations for the neutron and proton densities ρn and ρp,
respectively [25]. The ETF method introduces h̄2 (h̄4) cor-
rections on top of the simple TF kinetic energy through an
expansion of second (fourth) order gradients of the particle
density, which include nonlocal contributions coming from the
spin-orbit potential and the effective mass. These h̄ corrections
modify the asymptotic behavior of the self-consistent solution
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of the energy density and give a semiclassical density profile
which averages the shell oscillations of the quantal HF density
in the bulk and reproduces its falloff at the surface. When h̄4

corrections are taken into account, the semiclassical energy of
the ground state becomes roughly similar to the one obtained
using the more cumbersome Strutinsky average method [25].

In the semiclassical approaches, the neutron (proton) drip
line is reached when the neutron (proton) chemical potential
vanishes. We have checked [38] that the neutron drip lines
for Ca and Pb at TF level using the SkM∗ force correspond
to neutron numbers of 48 and 195 which are in reasonable
agreement with the HF predictions (56 and 184, respectively).
This fact points out that nuclei near the drip lines can be studied
through semiclassical methods of the ETF type. If the TF or
ETF densities are used to compute (19), the virial theorem
is, of course, strictly fulfilled thanks to the self-consistency.
The semiclassical sum rules m3 and m1, which are needed
to obtain the excitation energy of the ISGMR in the scaling
method, are calculated using again Eqs. (20) and (9) but with
the semiclassical self-consistent neutron and proton densities
instead of the HF ones.

As it happens in the quantal case, the excitation energy
of the ISGMR can also be estimated semiclassically by
performing TF or ETF constrained calculations. In this case,
one has to minimize the constrained semiclassical energy∫

d r[HTF,ETF − ηr2ρη] = E(η) − η

∫
d rr2ρη, (30)

where the quantal kinetic energy has been replaced by the TF
or ETF equivalents. To obtain the semiclassical m−1 sum rule,
we use Eq. (22) but replace the HF expectation values by the
semiclassical ones.

Thus, the semiclassical average excitation energies of the
ISGMR are obtained from the RPA sum rules but with the
HF expectation values entering in them replaced by the TF or
ETF ones. The semiclassical excitation energies of the ISGMR
calculated with the Skyrme SkM∗ force using the scaling
method and performing semiclassical constrained calculations
are displayed in the upper panel of Fig. 11 in comparison
with the exact RPA average energies Ē3 = √

m3/m1 and Ē1 =√
m1/m−1 (which are the quantal scaled ES

M and constrained
EC

M energies described in Sec. 2) along the Ca isotopic chain
from the proton to the neutron drip lines. The semiclassical
predictions of the excitation energies displayed in Fig. 11 are
calculated at the pure TF level (dashed-dotted lines) and the
ETF level including h̄2 (solid lines) and h̄4 (dashed lines)
corrections. From this figure, we can see that the general
trends of the excitation energies Ē3 of the ISGMR are well
reproduced by all the considered semiclassical approximations
along the whole isotopic chain. The agreement between the
RPA Ē3 energies and their semiclassical counterpart improves
by increasing the order of the h̄ corrections, as can be seen
in the upper panel of Fig. 11. If h̄4 corrections are included
in the ETF calculation, then the RPA Ē3 energies are almost
perfectly reproduced.

As far as the scaling approach is concerned, a first
conclusion of this analysis is that the semiclassical approach
to the RPA Ē3 (scaling) energies of the ISGMR agrees very
well with the corresponding quantal RPA values not only for
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FIG. 11. (Color online) Variation of excitation energies of
isoscalar giant monopole resonance with mass number A for Ca
isotopic chain (upper panel). Semiclassical results of Thomas-Fermi
(TF) type including h̄ corrections at different orders, obtained with
the scaling and constrained approaches, are contrasted with the RPA
average energies. Resonance widths (lower panel).

stable nuclei but also for nuclei near the drip lines, specially
if h̄4 corrections are included in the semiclassical calculation.
This fact points out that the role of shell effects is almost
negligible in the estimate of the average energy Ē3 of the
ISGMR obtained from the m3 and m1 sum rules on the one
hand, and it justifies the use of the liquid-drop-like expansion
of the finite nucleus incompressibility (27) along the full
isotopic chain on the other hand.

However, the situation is different when the ISGMR
excitation energy is estimated by performing constrained
calculations. In this case, the constrained TF calculations
give excitation energies that lie very close to the values
obtained with the scaling method for Ca isotopes and thus
fail in reproducing the RPA Ē1 energies in nuclei far from
stability. Consequently, in the simple TF approximation, the
predicted resonance width is very small and cannot reproduce
the behavior of the RPA estimates of the width (26) along
the chain as it can be seen in the lower panel of Fig. 11,
where the RPA widths and their semiclassical equivalents are
displayed. The agreement between the RPA average energies
Ē1 and their semiclassical estimates considerably improves
when h̄ corrections are considered explicitly in the calculation
of the semiclassical densities. The ETF-h̄2 average energy of
the ISGMR obtained by semiclassical constrained calculations
qualitatively describes the behavior of the RPA results. A
more quantitative agreement, at least from the proton drip to
stable nuclei, is found when the average excitation energies are
obtained through ETF-h̄4 calculations. Of course, the effects
induced by some specific orbitals in the RPA Ē1 energies in Ca
isotopes cannot be recovered by the semiclassical approaches.
However, they nicely average the RPA results, the average
being better when the h̄4 corrections are taken into account in
the calculation. A similar situation is found in the estimates of
the width of the ISGMR resonance along the isotopic chain,
where the semiclassical approaches average again the RPA
values, as can be seen in the lower panel of Fig. 11.
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FIG. 12. (Color online) Same as Fig. 11, but for Pb isotopes.

A comparison between the RPA average excitation energies
Ē3 and Ē1 and their semiclassical estimates is displayed in
Fig. 12 for the Pb isotopic chain. As in the case for Ca
isotopes, the semiclassical scaled energies vary smoothly with
the mass number A and reproduce quite well the RPA Ē3

average energies from the proton to the neutron drip lines, at
least for the subshell closed isotopes displayed in the figure.
For Pb isotopes, the RPA Ē1 average energies show a rather
smooth decreasing tendency with increasing mass number A,
which is enhanced near the neutron drip line. As happens
for Ca isotopes, the semiclassical TF constrained energies
lie close to the scaled ones and are unable to describe the
strong decreasing of Ē1 near the neutron drip line. However,
when h̄ corrections are added, the semiclassical ETF estimates
nicely reproduce the RPA Ē1 average energies, specially if
h̄4 corrections are taken into account. As discussed before,
the ISGMR of Pb isotopes exhibit a much more collective
behavior, and single-particle effects are much less important
than in Ca isotopes even near the drip lines. Thus, it is not
completely surprising that the semiclassical approximations
of ETF type are able to reproduce accurately not only the Ē3

average energies but also the Ē1 ones.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the variation of average
properties (mean energies and resonance widths) of the
isoscalar giant monopole resonance along the isotopic chains
between the proton and neutron drip lines for nuclei with
magic atomic number from O to Pb. These average energies are
obtained within the RPA sum rule approach using the SkM∗
interaction. For each nucleus, we have calculated the RPA
cubic (m3) and inverse energy (m−1) weighted sum rules. The
m3 sum rule is obtained by means of a scaling transformation
of the self-consistent HF neutron and proton densities, while
m−1 is computed by performing constrained Hartree-Fock
calculations. For a Skyrme force, the energy-weighted sum
rule m1, which is required for evaluating the average energies,

is simply proportional to the mean square radius of the
Hartree-Fock particle density.

The scaled energies Ē3 along the isotopic chains show
general trends which are rather independent of the atomic
number. The scaled estimate of the average excitation energy
of the ISGMR shows a downward tendency as one moves
toward the neutron drip line from the stable nuclei. This
falloff of the scaled energy is smooth because of the moderate
growing behavior of the m3 sum rule with increasing mass
number which is compensated by the stronger enhancement of
the m1 sum rule. The latter weighs more the tail of the density
distributions and consequently is more important in nuclei near
the neutron drip line. This reduction of the scaled estimate
of the ISGMR average excitation energy at the neutron drip
line is more noticeable in small and medium mass nuclei,
and its relative importance decreases with increasing atomic
number.

A similar decreasing tendency of Ē3 near the proton drip
line appears only for very light nuclei such as the O isotopes,
and it is not observed in heavier systems. The reason lies in
the fact that for proton drip line nuclei, the Coulomb barrier
prevents their single-particle wave functions from extending
much from the center of the nucleus, thus prohibiting an
enhancement of the rms radius of the density, which in
turn would reduce the scaled average excitation energies of
these nuclei. Because of the global character of the scaled
estimate of the ISGMR average energies that depend on the
nuclear densities, single-particle effects play a minor role on
these energies even for drip line nuclei. In this regard, the
macroscopic description of the finite nucleus incompressibility
based on a leptodermous expansion is still valid and allows
for a qualitative understanding of the behavior of the scaled
estimates of the ISGMR average energies even near the drip
lines.

The global behavior of the average energies of the ISGMR
estimated through constrained calculations is, in general,
similar to the one exhibited by the scaled energies. These
average energies are in general smaller in drip line nuclei than
in stable ones. The effect is much more pronounced for the
constrained energies calculated near the neutron drip line, in
contrast to those calculated in the scaling approximation. Near
the neutron drip line, the constrained estimate of excitation
energy of the ISGMR clearly deviates from the empirical
A−1/3 law known for stable nuclei. The reason for this
behavior of the constrained estimate near the drip lines is
that the single-particle effects are much more important in
this case than in the scaling calculation. Nuclei near the drip
lines are characterized by neutrons (protons) occupying very
lightly bound levels whose corresponding wave functions
extend very far from the core of the nucleus, especially in
the case of neutron-rich nuclei owing to the absence of a
Coulomb barrier. Neutrons occupying these orbits have larger
single-particle neutron mean square radius and at the same
time are much softer against pickup than those filling more
bound orbits. Consequently, both the energy and the inverse
energy-weighted sum rules are enhanced, this effect being
more important in the latter than in the former. This explains
the sizable decrease of the constrained estimate of the average
energy of the ISGMR in nuclei near the neutron drip lines. This
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effect is particularly important in the Ca and Zr isotopic chains,
where the corresponding neutron drip nuclei (76Ca and 136Zr,
respectively) have the last occupied orbit bound by less than
1 MeV. Moreover for the particular nuclei 52Ca, and 54Ca,
which are not neutron drip nuclei, we find a noticeable
enhancement of the m1 and m−1 sum rules because for these
specific nuclei, the neutron 2p3/2 and 2p1/2 single-particle
wave functions extend very far from the core, although their
binding energies are not particularly small.

The RPA sum rule description of some of the average
properties of the ISGMR has some clear limitations as
compared with a full RPA calculation of the response function.
Thus only some global trends of the RPA strength can be
inferred from our calculation. For instance, the reduction of the
scaled and constrained energies near the drip lines should be
associated with the appearance of a noticeable RPA strength in
the low-energy region as suggested by the enhancement of the
m−1 sum rule. As in a full RPA calculation, nuclei near the drip
lines are found to have a large resonance width in our approach,
but the mean energy of the resonance cannot be determined
very precisely because the scaled and constrained energies,
which are upper and lower bounds of the mean energy, are
largely separated. This large width near the drip lines can be
due to a very broad resonance as well as to a fragmentation of
the strength distribution.

We have also investigated the ability of semiclassical
approximations of the TF type and its extensions including
h̄ corrections (ETF) for describing the ISGMR near the drip
lines within the sum rule approach. The semiclassical sum rules
are obtained by using the full quantal RPA expressions but
with the HF expectation values replaced by the semiclassical
ones at the TF or the ETF levels. The semiclassical estimates
of the average scaled and constrained energies are free from
any shell effects. Thus some of the discussed trends as, for
instance, the enhancement of the m1 and m−1 sum rules when

a particular orbital is occupied are only taken into account on
the average in the semiclassical description. This means that
the quantal RPA scaled and constrained energies may be spread
around the values provided by the semiclassical calculations.
In nuclei near the drip lines, the pure TF approximation
fails in reproducing, even on the average, the global trends
of the RPA constrained energies and thus the widths of the
ISGMR, because of the poor description of the nuclear surface.
However, when the h̄2-order corrections, and those of h̄4

order, are included in the semiclassical calculation, the ETF
description of the surface of the nuclei agrees better with the
HF one, and the RPA scaled and constrained energies are nicely
averaged by the corresponding semiclassical counterpart.

We known that the right description of nuclei near the drip
lines has to take into account pairing correlations, in particular
for open shell nuclei. The inclusion of pairing in RPA, i.e.,
the quasiparticle RPA, has a noticeable effect on the strength
of the response of the drip line nuclei to external fields [39];
however, its impact on the average excitation energies is much
less. Thus, in the present approximation we did not consider
pairing and assumed the uniform filling approach to obtain
insight into the general trends of the ISGMR in exotic nuclei
near the drip lines. In a next step, the application of the sum
rule approach in the quasiparticle RPA should be probed to
properly take into account the influence of pairing correlations
on the average properties of the ISGMR. Investigations in this
direction are in progress.
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Frontiéres, Gif-sur-Yvette, 1992).

[3] Proceedings of the International Workshop on Research
with Fission Fragments, Benediktbeuern, Germany, edited by
T. Von Egidy et al. (World Scientific, Singapore, 1997).

[4] I. Tanihata, Heavy Ion Phys. 6, 143 (1997).
[5] T. Radon et al., Phys. Rev. Lett. 78, 4701 (1997).
[6] I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C 64,

024313 (2001).
[7] J. P. Blaizot, J. F. Berger, J. Dechargé, and M. Girod, Nucl. Phys.
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