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ABSTRACT  11 

This study reports data on arsenic speciation in two green algae species (Cladophora sp. and 12 

Chara sp.) and in five aquatic plants (Azolla sp., Myriophyllum aquaticum, Phylloscirpus cf. 13 

desserticola, Potamogeton pectinatus, Ruppia filifolia and Zannichellia palustris) from the Loa 14 

River Basin in the Atacama Desert (northern Chile). Arsenic content was measured by Mass 15 

Spectrometry coupled with Inductively Coupled Plasma (ICP-MS), after acidic digestion. Liquid 16 

Chromatography coupled to ICP-MS was used for arsenic speciation, using both anionic and 17 

cationic chromatographic exchange systems. Inorganic arsenic compounds were the main 18 

arsenic species measured in all samples. The main arsenic species in the extracts of freshwater 19 

algae and plants were arsenite and arsenate, whereas glycerol-arsenosugar (gly-sug), 20 

dimethylarsinic acid (DMA) and methylarsonic acid (MA) were present only as minor 21 

constituents. Of the samples studied, algae species accumulated more arsenic than aquatic 22 

plants. Total arsenic content ranged from 182 to 11,100 and from 20 to 248 mg As kg-1 (d.w.) in 23 

algae and freshwater plants, respectively. In comparison with As concentration in water 24 

samples, there was hyper-accumulation (>0.1% d.w.) in Cladophora sp. 25 

HIGHLIGHTS 26 

- Loa River Basin (area of study) presents extreme environmental conditions  27 

- Arsenic and arsenic compounds were determined in algae and aquatic plants 28 

- Inorganic arsenic species predominated in all samples 29 

- Arsenic content in most samples ranged from 20 to 341 mg As kg-1 30 

- One sample (Cladophora sp.) presented hyperaccumulation of As (11,000 mg As kg-1) 31 
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1. INTRODUCTION 35 

The Antofagasta Region (northern Chile) has high environmental levels of arsenic (Queirolo, et 36 

al., 2000a). The only river in the region that flows into the sea is the Loa, an extremely saline 37 

river. Dissolved arsenic content in the Loa and its tributaries range from 200 to 4,400 µg As L-1 38 

(seasonal maximum) (Dirección General de Aguas (DGA), 2004). The chemical composition of 39 

the Loa’s water is strongly influenced by its tributaries, mostly by the Salado River, which is As-40 

enriched by waters from the El Tatio geothermal fields with levels up to 27 mg As L-1 (Romero, 41 

et al., 2003). The extremely arid conditions, high evaporation and the lack of low-level arsenic 42 

tributaries maintain high concentrations of arsenic and other components (e.g. copper, boron, 43 

chloride, sulfate…) throughout the river course. Nevertheless, arsenic not only comes from 44 

natural sources such as volcanic bedrock and geothermal activity, but also has anthropogenic 45 

origins, such as smelter emissions, mining waste and enriched arsenic effluents from water 46 

treatment plants (Dirección General de Aguas (DGA), 2004). The Loa River and its main 47 

tributaries provide water to the cities and it is extensively used for agriculture and by the 48 

mining industry in the Atacama region. Adverse health effects due to high arsenic 49 

concentrations in drinking water have been reported in rural populations since 1962 (Smedley, 50 

et al., 2000). Nowadays, major cities and towns receive water that complies with Chilean 51 

legislation (< 0.010 mg As L-1) (Ministerio de Salud Pública, 1969). 52 

The Loa River is a suitable habitat for a high number of endemic flora and fauna species, 53 

particularly relevant for their adaptation to this extremely arid region. Algae and aquatic plants 54 

can be considered possible bioindicators of arsenic levels in the aquatic system. As they are 55 

able to remove inorganic arsenic from water, they could be useful for bioremediation purposes 56 

(Bird, et al., 2011; Hansen, et al., 2006; Knauer and Hemond, 2000; Robinson, et al., 2006b).  57 

A comprehensive review on distribution an occurence of organoarsenic compounds in living 58 

organisms is available from Reimer et al. (2010). Specifically, several studies on arsenic and its 59 

compounds in marine algae around the world have been reported (Francesconi and Edmonds, 60 

1998; Llorente-Mirandes, et al., 2010; Thomson, et al., 2007; Tukai, et al., 2002). However, few 61 

data are available for total arsenic (Hansen, et al., 2006; Vasquez and Guerra, 1996) and 62 

arsenic speciation in Chilean seaweeds (Ruíz Chancho, et al., 2010). Nor is there much 63 

information on freshwater algae and aquatic plants (Miyashita, et al., 2009; Schaeffer, et al., 64 

2006; Zheng, et al., 2003). Although some reports are available on arsenic in water (Dirección 65 

General de Aguas (DGA), 2004; Queirolo, et al., 2000a; Romero, et al., 2003), vegetables 66 

(Muñoz, et al., 2002; Queirolo, et al., 2000a; Queirolo, et al., 2000b) and aquatic plants 67 



- 3 - 

 

(Stegen, et al., 2000) from the Loa River Basin, no study was found reporting arsenic speciation 68 

in the algae and aquatic plants of this basin. 69 

The aim of the study is to determine total arsenic and arsenic species in algae and aquatic 70 

plants from the Loa River Basin in order to assess their contribution to overall contamination in 71 

this lotic ecosystem. This could be a motive for further bioremediation studies in the area and 72 

studies of possible bio-monitoring organisms. 73 

 74 

2. STUDY AREA  75 

The study area was restricted to the Loa River Basin in northern Chile (22°16’0’’S 68°38’0’’W). 76 

The location and general view of the study area are given in Figure 1. Mining activity in the Loa 77 

Basin takes place in the intensively mineralized porphyry-Cu belt with developments at three 78 

large Cu deposits: Chuquicamata, Radomiro Tomic and El Abra (Figure 1). The main tributaries 79 

of the Loa River are the San Pedro, Salado and San Salvador rivers. Two important sources of 80 

arsenic have to be considered in this basin. On the one hand, the Salado River, mainly fed by 81 

the geothermal springs of El Tatio located in the Andes, flows in an E–W direction into a 82 

canyon and cuts into volcanic rocks, mainly andesite and rhyolitic ignimbrite of the Miocene-83 

Holocene age. On the other hand, the Chuquicamata smelter, at 2,850 MASL and 16 km from 84 

the city of Calama, producing high As content in the copper concentrates and the release of 85 

SO2 and aerosols (containing mainly arsenic as As2O3 and a low proportion of Cd, Cu, Pb and 86 

Zn) into the air, contributes to the contamination of water bodies, especially saltpans 87 

(Brundenius and Göransson, 1990). The hydrologic regime of the Loa Basin is rain-dominated: 88 

the river flow increases mainly during the summer in January and February (Dirección General 89 

de Aguas (DGA), 2004). The region is extremely arid with a rainfall ranging from 300 mm per 90 

year at 3,000 MASL to 1-2 mm per year at sea level (Romero, et al., 2003) and is associated 91 

with high environmental levels of arsenic (Queirolo, et al., 2000a). Owing to the extremely arid 92 

conditions in the region, all rivers are temporal or endorrheic except for the Loa River, which is 93 

the only permanently exorrheic river in the region. It is 440 km long, covers an area of 33,570 94 

km² and flows sinuously across the Atacama Desert from the Andes to the Pacific Ocean. In 95 

this basin, plants and algae grow in water with high conductivity and pH (see Table 1) and 96 

under strongly limiting conditions, such as large daily temperature variations and prolonged 97 

daily UV exposure.  98 
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Along the Loa Basin (Figure 1 and Table 1), three different sections of the river with specific 99 

chemical properties can be defined. The Upper Loa Section comprises the zone between the 100 

source, at the foot of the Miño volcano (UTM coordinates: 19S 541,002 7,657,055), and its 101 

confluence with the Salado River. After Lequena (Figure 1: LO-1), most of the river flow is 102 

extracted for mining and agricultural activities. The main tributary in this section is the San 103 

Pedro River, which receives water from several sources. Before the confluence with the San 104 

Pedro River, the Loa is recharged from groundwater tributaries. The Middle Loa Section 105 

comprises the zone between the Loa-Salado confluence near Calama (Figure 1: before LO-2) 106 

and the confluence with the San Salvador River (Figure 1: after SS-1). The origin of the Salado 107 

River is close to the El Tatio geothermal field. The Toconce River, which flows into the Salado 108 

River’s upper course (Figure 1: before TO-1), has its source at the foot of the Linzor volcano 109 

(Figure 1). The Lower Loa Section comprises the zone between the confluence with the San 110 

Salvador River and the mouth of the river in the Pacific Ocean. The source of the San Salvador 111 

River is on the west side of Calama. The main agricultural areas in the Lower Loa Section are in 112 

Quillagua (Figure 1: after LO-4). 113 

3. MATERIAL AND METHODS 114 

3.1. Reagents and Standards 115 

All chemicals were of analytical and/or suprapur grade. Millipore Milli-Q Plus Water (18.2 MΩ 116 

cm) was used for all solutions. Ammonium dihydrogen phosphate (Panreac, p.a.) and pyridine 117 

(Scharlau, p.a.) were used for anionic and cationic mobile phase preparation, respectively. pH 118 

was adjusted with 30% ammonia (Panreac, p.a.) and 98% formic acid (Panreac, p.a.). For 119 

sample digestion, 69% nitric acid (Panreac, Hiperpur) and 31% hydrogen peroxide (Merck, 120 

Selectipur) were used. 9Be, 103Rh, 205Tl 20 µg L-1 (NIST High-Purity Standards) were used as 121 

internal standards in ICP-MS measurements.  122 

3.1.1. Arsenic standards and Certified Reference Materials 123 

Arsenite from As2O3 (NIST, USA, Oxidimetric Primary Standard 83d, 99.99%); arsenate from 124 

Na2HAsO4·7H2O (Carlo Erba); methylarsonic acid (MA) as (CH3)AsO(ONa)2·6H2O (Carlo Erba); 125 

dimethylarsinic acid (DMA) as (CH3)2AsNaO2·3H2O (Fluka); arsenocholine (AC) as (CH3)3As+(CH2) 126 

CH2OHBr- supplied by the ‘‘Service Central d’Analyse” (CNRS Vernaison, France); arsenobetaine 127 

(AB) as (CH3)3 As+CH2COO-,CRM 626, supplied by BCR (now IRMM), standard solution; and 128 

trimethylarsenic oxide (TMAO) from (CH3)3AsO (Argus Chemicals srl) were used as arsenic 129 

standards in speciation. Standardized stock solutions of the arsenic compounds containing 130 
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about 1,000 mg 
-1

 were prepared in water, except for arsenite, which was dissolved in NaOH (4 131 

g L−1, Merck, Suprapure), and all were stored in the dark at 4°C to prevent decomposition or 132 

oxidation. Multispecies standard working solutions covering the range 1 - 100 µg As L-1 were 133 

prepared fresh daily for speciation analysis. Arsenate standard solution from NIST High-Purity 134 

Standards with a certified concentration of 1,000 ± 2 mg As L-1 was used for external 135 

calibration in the determination of total arsenic content with ICP-MS. An aliquot of freeze-136 

dried extract of Fucus serratus dissolved in water (Madsen, et al., 2000) was used as a 137 

laboratory reference material for the identification of the major arsenosugars: phosphate 138 

(PO4-sug), sulfate (SO4-sug), sulfonate (SO3-sug) and glycerol (Gly-sug). The Certified Reference 139 

Material BCR CRM 279 Sea Lettuce (Ulva lactuca), supplied by the Institute for Reference 140 

Materials and Measurements (IRMM) of the European Commission, with a certified value of 141 

3.09 ± 0.20 mg As kg−1, and the Standard Reference Material (SRM) 1640 for natural water 142 

were used for internal quality control purposes in total arsenic determinations. 143 

3.2. Instruments 144 

A Perkin Elmer system of Flow injection hydride generation atomic absorption spectrometry 145 

(FI-HG-AAS), Model AAnalyst 700 and FIAS 400, was used for total As in water, under the 146 

following conditions: sample loop 0.5 mL; reducing agent, 0.5% NaBH4 in 0.125% NaOH at 5 mL 147 

min-1; 10% HCl, at 10 mL min-1; and argon at 100 mL min-1 as carrier gas for the FI system. An 148 

As electrodeless discharge lamp and electric oven temperature for the quartz cell at 900°C was 149 

used in AAS. 150 

Algae and aquatic plants and CRM Sea Lettuce were digested in a closed microwave digestion 151 

system, Milestone Ethos Touch Control. The ICP-MS analyses were performed through an 152 

Agilent 7500ce ICP-MS (Agilent, Germany) with Ari Mist HP nebulizer (Burgener, Canada). The 153 

chromatographic system consisting of an Agilent 1200 LC quaternary pump, equipped with an 154 

autosampler and degasification module, was connected to an analytical PRP-X100 (Hamilton, 155 

USA) and Zorbax SCX300 (Agilent, Germany). Both columns were protected with their 156 

respective guard column. The Instrument operating conditions of LC-ICP-MS and arsenicals 157 

that are separated with each chromatographic system are given in Table 2.  158 

 159 

3.3 Procedures 160 

3.3.1 Sample collection and preparation 161 

In June 2010, the Analytical and Environmental research group of the Chemistry Department 162 

of the Católica del Norte University (Antofagasta, Chile) collected samples of water and of the 163 
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dominant species of both algae and plants from eight sites along the Loa River and its 164 

tributaries, San Pedro, Salado and San Salvador (Figure 1). The geographical coordinates and 165 

the water properties of the sampling sites are shown in Table 1. Electrical conductivity, 166 

dissolved oxygen, pH and water temperature were measured in situ. Water samples were 167 

acidified with 2 M HNO3 and cooled in a refrigerator (< 5°C) during transport to the laboratory, 168 

where they were stored at -20°C until further analysis. The taxonomic identification of the 169 

plants and algae is given in Table 3. Samples were stored in sealed plastic bags at -18°C in the 170 

laboratory until preparation for transportation. Samples were defrosted under a laminar flow 171 

clean bench, washed with deionized water to remove mud, sand and little stones, pre-dried at 172 

45°C for 3 days and sealed in plastic bags. 173 

Plant and algae samples were transported by plane to the Analytical Chemistry Department of 174 

the University of Barcelona. There, a stereomicroscope (Zeiss) was used to remove remaining 175 

impurities. Then, samples were dried at 40°C, crushed by hand in a glass mortar and stored in 176 

PET bottles until their analyses. 177 

 178 

3.3.2. Determination of total As in water 179 

Total arsenic content in water samples was determined after microwave acidic digestion, using 180 

a closed-vessel system as follows: a 45 mL water sample was placed into the pre-cleaned 181 

EasyPrepTM vessels and 9 mL of 65% nitric acid and 3 mL of 40% hydrogen peroxide were 182 

added for digestion. The program for addition was as follows: 10 min at room temperature, 10 183 

min from room temperature to 200°C and 15 min maintained at 170°C. After cooling, digested 184 

samples were filtered through ash-free filter papers (Whatman 42) into a 100 mL volumetric 185 

flask and 5 mL of 50% HCl and 5 mL of reducing solution (5% KI + 5% ascorbic acid) were 186 

added. After 30 min, the resulting solution was diluted to volume with 50% HCl. Blanks were 187 

also prepared for each batch sample. Total As was measured by FI-HG-AAS under the 188 

conditions described in Instruments.  189 

 190 

3.3.3. Extraction of arsenic compounds and speciation analysis 191 

Homogenized, powdered samples (0.1 g) were separately weighed in polypropylene tubes in 192 

triplicate and 10 mL of water was added. The extraction procedure was performed in an end-193 

over-end shaker overnight at 35 rpm for 16 hours at room temperature. Water extracts were 194 

centrifuged (3,000 rpm, 15 min) and the supernatants were filtered through PET syringe filters 195 

(Chromafil PET, Macherey–Nagel, 0.45 μm) before analysis. The LC-ICP-MS system previously 196 



- 7 - 

 

used (Llorente-Mirandes, et al., 2010; Ruíz Chancho, et al., 2010) was applied for the 197 

determination of arsenic compounds in algae and plant extracts, under the conditions 198 

described in Table 2. An aliquot of each extract was analyzed by anionic exchange 199 

chromatography immediately after extraction. The remaining extract was stored at -80°C for 200 

further analyses (cationic exchange and total arsenic measurements). Chromatographic peaks 201 

were identified according to their retention time by comparison with standards. Arsenic 202 

species were quantified by external calibration curves. Total As was determined in aliquots of 203 

the extracts, for mass balance calculations.  204 

 205 

3.3.4. Determination of total As in algae, aquatic plants and the speciation extracts 206 

Algae and aquatic plants and BCR CMR 279 were digested under a closed-vessel microwave 207 

system as follows: 0.2 g of powdered sample was weighed in the pre-cleaned TEFLON® vessels 208 

in triplicate. After addition of 8 mL of 69% nitric acid and 2 mL of 33% hydrogen peroxide, 209 

samples were digested according to the following program: 10 min from room temperature to 210 

90°C, maintained for 5 min at 90°C, 10 min from 90°C to 120°C, 10 min from 120°C to 190°C 211 

and maintained for 10 min at 190°C. After cooling, digested samples were filtered through ash-212 

free filter papers (Whatman 40) and diluted to 20 mL with water. Blanks were also prepared 213 

for each batch sample. Total arsenic content was measured by ICP-MS. The digested samples 214 

and the extracts obtained for further arsenic speciation were properly diluted with 1% nitric 215 

acid prior to measurement, to ensure that all arsenic concentrations were within the working 216 

calibration range (0–50 µg As L-1). Helium was used in the collision cell to remove interferences 217 

in ICP-MS measurements and a solution of 9Be, 103Rh, 205Tl (20 µg L-1) was used as an internal 218 

standard. Samples were quantified by external calibration method. For quality control 219 

purposes, the calibration curve was run before, within and after each sample series 220 

measurement. 221 

3.4 Quality assessment in the determination of arsenic and arsenic species 222 

3.4.1 Column recovery 223 

Column recovery was calculated as the ratio of the sum of the species eluted from the 224 

chromatographic columns to the total arsenic in the extract injected into the column. Column 225 

recoveries ranged between 60% and 100% (Table 3). This parameter allows to evaluate 226 

correctly the quantification of the species and to guarantee the correct chromatographic 227 

separation. 228 
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3.4.2. Certified reference material (CRM) 229 

To check accuracy, total arsenic concentration was determined in CRM BCR 279 Sea lettuce 230 

(Ulva lactuca). The result obtained (2.9 ± 0.3 mg As kg-1) was consistent with the certified value 231 

(3.09 ± 0.20 mg As kg-1), thereby demonstrating the accuracy of the analytical method. Our 232 

results for arsenic species (As(V): 0.53 ± 0.04 mg As kg-1; As(III): 0.06 ± 0.03 mg As kg-1; DMA: 233 

0.06 ± 0.03 mg As kg-1; MA: 0.04 ± 0.01 mg As kg-1;AB: 0.14 ± 0.02 mg As kg-1; gly-sug: 0.096 234 

±0.004 mg As kg-1; PO4-sug: 0.08± 0.01 mg As kg-1; Unknown species: 0.07 ±  0.02 mg As kg-1; 235 

Extraction efficiency: 57%; Column recovery: 81%) and those reported in the literature do not 236 

disagree (Caumette, et al., 2011; Foster, et al., 2007). 237 

3.4.3. Analysis of F. serratus extract 238 

We used an extract from the brown seaweed F. serratus (Madsen, et al., 2000) to identify 239 

arsenosugars present in our algae samples. For quality control purposes, we quantified As 240 

species in F. serratus extracts. Our results1 (DMA: 0.01 ± 0.01 µg; gly-sug: 0.07 ± 0.01 µg; PO4-241 

sug: 0.07 ± 0.01 µg; SO3-sug: 0.56 ± 0.04 µg; SO4-sug: 0.37 ± 0.02 µg) confirm those reported by 242 

Madsen et al. (2000) and other values in the literature on the same extract (Kohlmeyer, et al., 243 

2003; Llorente-Mirandes, et al., 2010; Ruíz Chancho, et al., 2008; Šlejkovec, et al., 2006). 244 

3.4.4. Quantification of arsenic species without standard 245 

Standards were not used for some arsenic species since they were not offered. Using 246 

calibration curves form others species is a controversial point as nebulization efficiency might 247 

be different for each compound (Entwisle and Hearn, 2006; Polya, et al., 2003); however, we 248 

quantified PO4-sug with the MA calibration curve, SO3-sug and SO4-sug with the As(V) 249 

calibration curve, and gly-sug with the calibration curve of the AC standard as other authors 250 

suggested (Francesconi and Sperling, 2005). 251 

3.4.5. Limit of Detection (LOD) and Limit of Quantification (LOQ) 252 

LOD and LOQ were estimated. The former is the lowest concentration of an analyte that can 253 

be reliably differentiated from background noise (signal-to-noise ratio greater than 3). The 254 

LOQ is the lowest concentration that can be quantified (signal-to-noise ratio greater than 10). 255 

For calculating LOD and LOQ, the standard deviation of the base line and the peak base of each 256 

analyte multiplied by 3 or 10 (LOD and LOQ respectively) were calculated in the peak height 257 

                                                
 

1
 Values for F. serratus extract are given as absolute amount for extract µg. 
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calibration curve. The arsenosugar LODs and LOQs was estimated through a correction factor, 258 

which is the relation within the concentration of arsenosugar in F. serratus and the height of 259 

the peak. 260 

 261 

4. RESULTS AND DISCUSSION 262 

4.1. Surface water characteristics 263 

Coordinates and water characteristics are shown in Table 1. Surface waters were characterized 264 

by pH values near neutral to slightly alkaline (pH 7.27-8.42). Electrical conductivity (0.438 – 265 

20.9 mS cm-1) and total dissolved solids (1.84–10.61 g L-1) showed wide ranges of values 266 

between Loa river sections and were consistent with the location of the anthropogenic sources 267 

(wastewater and mining activities). Arsenic content in the surface waters ranged from 0.220 to 268 

1.40 mg As L-1 and varied depending on the sampling point. The results indicated that the main 269 

contribution is due to the anthropogenic inputs of tributaries near the mining area of 270 

Chuquicamata and Calama city. Therefore, the ecological risk of anthropogenic As from long-271 

term human activities might be mainly due to the sediments of these tributaries. An increase 272 

of arsenic is observed down-stream even at a considerable distance from the confluence, 273 

through the important mining area of Chuquicamata, to the mouth. The highest level of As was 274 

measured in Lower Loa (LO-4), mainly polluted by mining, smelting, industrial and agricultural 275 

activities. For internal quality control, the SRM 1640 was analyzed for arsenic and the results 276 

obtained were within ± 5% of the reference value.  277 

 278 

4.2. Total arsenic in algae and aquatic plants 279 

Results of total arsenic and arsenic species found in the algae and aquatic plants, limits of 280 

quantification and detection, extraction efficiency and column recoveries are given in Table 3. 281 

Each of the values shown in the tables is the mean of three replicates. 282 

Total arsenic content determined in various species of algae and aquatic plants varied along 283 

the river course and ranged from 20 to 341 mg As kg-1 (Table 3), but this range was greatly 284 

exceeded in an algae sample (Cladophora sp.: 11,100 mg As kg-1) from the Salado River (SA-1), 285 

one of the most polluted sites (Dirección General de Aguas (DGA), 2004). The disparity in the 286 

values found in these algae is largely attributable to the water’s chemical composition in the 287 

Salado River, which is strongly influenced by its origin in the geothermal field of El Tatio. 288 

Nevertheless, a freshwater plant (Phylloscirpus cf. deserticola) collected at the same site (SA-1) 289 

as Cladophora sp. had 49 mg As kg-1. A similar figure was seen in a study comparing the same 290 
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algal species with some aquatic plants in a freshwater environment (Schaeffer, et al., 2006). 291 

The differences in arsenic concentration between samples might be due either to the fact that 292 

P. cf. deserticola is a vascular plant and Cladophora sp. is a filamentous alga, or to differences 293 

in the habitat where samples were collected. Cladophora sp. lives submerged in water, 294 

whereas the analyzed samples of P. cf. deserticola were only aerial stems, not submerged 295 

roots and stems. Data on arsenic content in algae and freshwater plants of the same genus as 296 

in the present study but from different locations are summarized in Table 4 for comparison 297 

purposes. Algae and aquatic plants growing in the Loa River Basin survive in an environment 298 

with high arsenic content, meaning that these species have developed arsenic tolerance 299 

mechanisms (which may vary between species). In general, hyperaccumulating plants can 300 

concentrate some elements in their tissues up to 0.1% of their dry weight. Of the species 301 

analyzed, Cladophora sp. is able to hyperaccumulate arsenic (1.11% of dry weight) and would 302 

be a good candidate for bioremediation studies. With this aim in mind, bioaccumulation 303 

coefficients (BC) were estimated as the ratios of total arsenic in the sample to the arsenic in 304 

water, according to Robinson et al. (2006a) (values shown in Table 5). Cladophora sp. shows 305 

remarkable differences between SA-1 (13,910) and SS-1 (152), whereas arsenic concentration 306 

in water at SA-1 is lower than at SS-1 (see Table 1). This behavior could be explained by 307 

including phosphorous, since the ratio As:P in soil and water affects intake, distribution and 308 

speciation due to the chemical analogy between arsenate and phosphate (Wang, et al., 2002). 309 

In the present study, as differences in phosphate concentration were found between the 310 

water samples (see Table 1), the highest BC (the highest uptake of arsenate) was obtained with 311 

the data from the site with low phosphate concentration. Thus, the increase in phosphate in 312 

the water appears to result in a decrease in arsenic uptake.  313 

4.3. Arsenic speciation 314 

Results of arsenic speciation, limits of quantification and detection, extraction efficiency and 315 

column recoveries are given in Table 3. 316 

Extraction efficiencies (calculated as the ratio of total As in the extract to total As from acidic 317 

digestions) ranged from 5% to 126%. Rubio et al. (2010) reported a wide range of extraction 318 

efficiencies among algae and plants with different extracting agents (6%-108%). Water is a 319 

good extracting agent, since it enters the sample matrix and extracts the compounds 320 

determined in the present study, as these are very polar and soluble in water (Francesconi and 321 

Kuehnelt, 2004). Low extraction efficiencies are related to the presence of non water-soluble 322 

arsenicals like arsenolipids (Francesconi, 2003), and to arsenic bound to cell components or 323 

proteins, which are not extracted by soft extractants such as water (Koch, et al., 2000). For 324 
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example, Cladophora sp. (SA-1) had a total arsenic concentration of 11,100 mg As kg
-1

, but only 325 

5% of arsenic compounds were extracted, only as inorganic forms. 326 

Inorganic arsenic (iAs) is the main form in the samples, representing 82% to 100% of the sum 327 

of arsenic species. High values of standard deviation in some arsenite values could be 328 

explained by the rapid oxidation of this species to arsenate (Table 3). DMA, MA and glycerol 329 

arsenosugars were found as minor compounds in several samples. Gly-sug was found in plant 330 

samples of P. pectinatus and R. filifolia, corroborating recent studies of aquatic plants 331 

(Llorente-Mirandes, et al., 2010; Ruíz Chancho, et al., 2010). AB was not detected in any 332 

sample, which indicates that the removal of epiphytes during sample pre-treatment was 333 

accurate and that microbial activity, which might be involved in the formation of such an 334 

arsenocompound (Llorente-Mirandes, et al., 2010; Ruíz Chancho, et al., 2010), is not significant 335 

in the Loa River Basin. In some chromatograms the presence of a large amount of a major 336 

arsenic compound might make it difficult to quantify minor species that elute with a similar 337 

retention time. As an example, Figure 2 shows an anionic and a cationic exchange 338 

chromatogram of extracts of P. pectinatus (LO-4) and Chara sp. (LO-2).  339 

Column recovery values, calculated as the ratio of the sum of arsenicals eluted from the 340 

column to the arsenic injected in the column, are shown in Table 3. Anionic column recoveries 341 

ranged from 60% to 96%; and cationic ones, from 75% to 100%.  342 

It is interesting to notice that samples from TO-1 and SA-1 present the same speciation patters 343 

despite being different taxa of aquatic plants. These results might suggest that arsenic uptake, 344 

transformation and accumulation in plants and algae growing under chemical stress depend on 345 

the environmental conditions rather than the biological species (Kabata-Pendias, et al., 1997). 346 

Diatoms were present in all algae (Chara sp. and Cladophora sp.) and in P. pectinatus (LO-3). 347 

Therefore, the possible influence of adsorbed diatoms on samples was examined. However, 348 

this seems to have had no effect on extraction efficiency, since samples had both low (5%) and 349 

high ratios (76%). Nor was any correlation between occurrence of diatoms and total arsenic 350 

and arsenical concentrations found (see Table 4). 351 

 352 

 353 

5. CONCLUSIONS 354 

This is the first study of arsenic speciation in algae and freshwater plants from the Loa River 355 

Basin (northern Chile). Samples had a wide range of concentrations of total arsenic, from 20 to 356 

341 mg As kg-1 (d.w.), except for one algal sample with 11,100 mg As kg-1, Cladophora sp., 357 

which can be classified as a hyperaccumulator. Inorganic arsenic predominated in all samples, 358 

accounting for 82% to 100% of the arsenicals measured. Small amounts of DMA, MA and gly-359 
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sug were detected in several samples. This preliminary information should contribute usefully 360 

to further bioremediation assays and to the proposal for biomonitoring organisms in this 361 

extremely arid region. 362 

 363 

 364 
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