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Abstract. We provide an exact expression for the multi-variate joint probability distribution function
of non-Gaussian fields primordially arising from local transformations of a Gaussian field. This kind
of non-Gaussianity is generated in many models of inflation. We apply our expression to the non-
Gaussianity estimation from Cosmic Microwave Background maps and the halo mass function where
we obtain analytical expressions. We also provide analytic approximations and their range of validity.
For the Cosmic Microwave Background we give a fast way to compute the PDF which is valid up to
more than 7σ for fNL values (both true and sampled) not ruled out by current observations, which
consists of expressing the PDF as a combination of bispectrum and trispectrum of the temperature
maps. The resulting expression is valid for any kind of non-Gaussianity and is not limited to the local
type. The above results may serve as the basis for a fully Bayesian analysis of the non-Gaussianity
parameter.
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1 Introduction

One of the most interesting predictions of slow-roll single field inflation is that it should generate
primordial perturbations that are nearly Gaussian distributed, with deviations from non-Gaussianity
present at the level of the value of the slow-roll parameters [1–10]. Current constraints on the value
of the slow-roll parameters e.g., [11] indicate that non-Gaussianity from single field slow-roll inflation
will not be measured from the sky, even if one could access all modes in the sky with futuristic 21cm
experiments [12, 13]. However, any deviation from the simplest slow roll (with standard Bunch-
Davis vacuum and canonical kinetic term) implies non-Gaussianity, possibly at a detectable level. In
particular many multi-field models of inflation will produce detectable non-Gaussianity that current
or future surveys could measure: see the review by Refs.[10, 14] for a detailed explanation of the
physics behind it. Although in principle the primordial non-Gaussian signal should be present both
in the Cosmic Microwave background and in the late large-scale structure of the Universe, most of
the effort has so far been devoted to the cosmic microwave background where the gravitationally-
induced non-Gaussianity is small e.g.,[5, 15–18] and refs therein. However, if the non-Gaussian signal
is at a clearly detectable level, current estimators (which are exact in the Gaussian limit) become
sub-optimal and in particular can underestimate the size of confidence regions [19, 20]. Therefore it is
important to understand exquisitely the distribution of errors of any estimator, not only its variance
(see [36]): the full probability distribution function (PDF) is needed.

– 1 –



Further, a possible detection of non-Gaussianity from the sky would be a direct probe of the
properties of de Sitter space, as a study of the different correlators of non-Gaussianity would amount
to performing transition experiments on de Sitter; something that will never be accessible from high-
energy experiments in the imaginable future. This could open a new window to understand the
properties of gravity in de Sitter. One could, for example, answer the question if fluctuations could
be treated semi-classically as we do now.

Work so far has concentrated in finding the one-point PDF for primordial non-Gaussian initial
conditions as this has a direct application on the calculation of the halo mass function and rare event
abundance. This area has seen an exponential expansion starting with the works of [23, 24]. However
for applications to e.g., the Cosmic Microwave Background (CMB) an expression for the multi-variate
joint PDF is needed.

It is common practice to describe non-Gaussianity as a Taylor expansion of the potential of the
form Φ = φ + fNL(φ2 − 〈φ2〉) [5, 7], where φ is a Gaussian random field. This can be extended to
the cubic power if the quadratic term is sub-dominant or zero, in which case the free parameter is
gNL. This is the so-called local type non-Gaussianity because it is a local transformation in real space.
More general kinds of non-Gaussianity beyond the local type can be described by their bispectrum
(although this description is not exhaustive as fields with the same bispectrum and power spectrum
can have different higher-order correlations) e.g., [14] and references therein.

In addition to the above, it is the multi-variate joint PDF of the non-Gaussian primordial field
which is predicted by theory and which has important clues about the physics of the perturbations of
de Sitter space; therefore having an exact estimate of it goes beyond the simple experimental merit
of constraining one parameter, as it may yield clues on fundamental physics.

Previous work on estimating the PDF for the CMB bispectrum or the non-Gaussianity parameter
fNL has focussed on performing Monte Carlo simulations, but these are extremely expensive and may
not fully sample the tails of the distribution (i.e. beyond 3σ) [20, 25–27]. Further complications
arise form the fact that the PDF will depend at some level on the value of fNL itself. Furthermore,
the general techniques developed here may find useful applications in non-Gaussian late-time fields,
such as the galaxy density field in the presence of nonlinear bias or nonlinearity from gravitational
instability.

In this paper we circumvent these limitations and provide an exact solution based on analytical
methods. In particular, we provide an exact analytical formula for the one-point PDF in Eq. (4.12)
that can be used for any computation of the mass function of dark matter halos.

Furthermore, an exact formula for the joint multi-variate PDF is provided in Eq. (4.20) and
(4.26), which can be numerically integrated. For the CMB we provide a very accurate formula for
the PDF (out to more than 7σ fluctuations in the field for fNL values not ruled out by present
data) expressed in terms of the observed bispectra and trispectra. This serves as the basis of a fully
Bayesian analysis of fNL. Previous work in this direction can be found in [21, 22, 28, 29]. The
approach, approximations and applicability regimes considered here are fully complementary.

The paper is organised in a pedagogical way, first, as a warm up, solving the straightforward
Gaussian case in § 3 and then the non-Gaussian one in § 4, where we also discuss comparison with
previous estimators and present an analytic approximation which is valid out to more than 7σ fluc-
tuations in the field for fNL values not ruled out by present data and applies to non-Gaussianities
beyond the local type. We conclude in § 5 with an application of the formalism to the mass function
of dark matter halos and the CMB. The reader interested only in practical applications can find our
relevant formulas in Eqs. (4.26, 4.28, 5.2).

2 Set-up

Let us define a field A, which is the observable field and can be the temperature of the CMB or the
am` or the matter overdensity field etc. The value of the field at any spatial point i is related to the
underlying potential Φ via

A(x) = Ai =

∫
d3yM(x,y)Φ(y) ≡ (M,Φ) (2.1)
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where in the second equality we have introduced a short hand notation. For many applications
M(x,y) = M(|x − y|) = M(r). For example if A(x) is the (linearly evolved) density field δ(x)
smoothed on a given radius R then we could express this in Fourier space:

M̃(k) ≡
∫
d3ye−ik·yM(|y|) = W̃R(k)T (k)g(k) (2.2)

where W̃R(k) is the Fourier transform of the assumed filter (typically a top hat for the mass function),
T (k) is the transfer function and g(k) = −2/3(k/H0)2Ω−1m,0. The fact that Fourier quantities are
complex should not be a problem; one works with a complex field rather than a real one. If the
Ai denote the spherical harmonic coefficients of the CMB temperature field, alm, then the equation
becomes:

alm = 4π(−i)l
∫

d3k

(2π)3
Φ(k)gl(k)Y ∗lm(k̂) (2.3)

where gl(k) denotes the radiation transfer function and Φ(k) =
∫
d3x exp[−ik · x]Φ(x). Effectively

M acquires extra parameters: Mlm(k). If we observe a Fourier space quantity then we can relate it
to the real space Φ by

Aj =

∫
d3y exp(−ik · y)Φ(y) (2.4)

i.e. M(k,y) = exp(−ik · y), and j labels the wavevector k.
Several physically-motivated models for primordial non-Gaussianity are expressed as local trans-

formations of an underlying Gaussian field. For example, the non-Gaussianity of the so-called local
type [5, 7, 30] is given by

Φ = φ+ fNL(φ2 − 〈φ2〉) = φ+ fNL(φ2 − σ2
φ) , (2.5)

where φ is a Gaussian random field and fNL is the non-Gaussianity parameter which is assumed to be
small. Here by small we mean that this expression is a truncation to linear order in fNL of a physical
model that includes e.g., the self coupling of the field during inflation. In the following we would
like not to make any further approximations if possible, thus deriving whenever possible expressions
that are valid even if |fNLσφ| is not � 1. Other local models include the so called gNL parameter
[24, 31, 32]:

Φ = ϕ+ gNL(ϕ3 − 3ϕσ2
ϕ) ≡ φ+ g′NLφ

3 (2.6)

where ϕ, φ are Gaussian random fields.
In both cases the observable field A can be written as a sum of a Gaussian term AG, corresponding

to φ plus a non-Gaussian correction ANG, corresponding to the term ∝ φ2 or ∝ φ3.
The full information about the Gaussian field φ is given by the Gaussian generating functional

P[φ] (see e.g., Eq 11 of Ref. [23]) which is the basis of several calculations in this paper. For example,
the joint probability of A1, ...An is given by:

P(A1, A2, ...An) =

∫
[Dφ]P(φ)

n∏
i=1

δD [Ai − (M,Φ(φ))] (2.7)

where we have explicitly written that the field Φ is a function of the Gaussian random field φ. Here,

P(φ) =
exp[−1/2(φ,K0, φ)]∫

D[φ] exp[−1/2(φ,K0, φ)]
(2.8)

and we have used the shorthand notation∫
d3y d3z φ(y)K(y − z)φ(z) ≡ (φ,K, φ), (2.9)

and with K0 is defined by the relation to the 2-point correlation function of φ, ξφ:∫
d3yK0(|x− y|)ξφ(|y − z|) = δ(|x− z|). (2.10)
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Index range meaning

a:g 1:M number of elements of the full discretized space of Φ, φ
i:z 1:n number of elements of the discretized A array

for which we want the joint probability
ν or greek n+ 1:M the remaining elements of the full discretized space

Table 1. Summary of the index convention. The number of elements of the observable field A is L. Of course
n ≤ L, L ≤M , and n ≤M . Note that for M to be invertible a necessary but not sufficient condition is that
the maximum possible size of A to be M i.e. M = L.

Then to compute, for example, the probability distribution of a product of n A’s we use

P(B ≡ A1 . . . An) =

∫
dA1dA2...dAnP(A1, ..., An)δD(B −A1...An) . (2.11)

Here n is 3 for the three-point function (in Fourier space it is related to the bispectrum), n = 2 for
the correlation function (in Fourier space it is related to the power spectrum) of A and n = 1 for the
(one-point) PDF of A.

In these types of integrals, the Fourier representation of the Dirac delta function involves highly
oscillatory functions and complicates the integrals. On the other hand, observations are often dis-
cretized/pixelized, so one possibility is to discretize these integrals to simplify their analytic calcula-
tion, then if needed take the continuous limit at the end. Let us pixelize our field A (say A is known
at each pixel of a map) and we have L pixels, let us also pixelize the Φ field for which we have in total
M pixels (L ≤M). As we will see this simplifies a lot the spatial integrals and the integrals in D[φ].
The integrals in Ai are however continuous integrals over all possible values that the field can take at
position i.

Let us define the index convention we will use. L denotes the size of the observable array A, of
which we want to compute the n point distribution n ≤ L, M denotes the size of the pixelized array
φ (or Φ). Note that n ≤ L ≤ M . Let us call M − n = N . The i indices (or latin indices of the last
part of the alphabet: i–z) run from 1 to n and ν (or greek indices) runs from n+ 1 to M . From now
on latin indices of the first part of the alphabet (a–h) runs from 1 to M . Note that if A and Φ have
the same dimensions then M becomes a square matrix (M ×M) and everything below is relatively
simple. However this does not need to be, as it is clear in the case of the alm where the i index runs
over the –discrete– l,m but the index j represent the integral in k which is in principle a continuous
variable (but is discretized in most practical applications).

Discretizing we obtain for Equations such as Eq. (2.10) and Eq. (2.1):
∑
bK0abξ

φ
bc = Iac and∫

d3yM(xj ,y)Φ(y) −→
∑
aMjaΦa etc. Also we can express D[φ] = dφidφν .

The Gaussian integral in the denominator of Eq. (2.8) gives√
(2π)M

det K0
. (2.12)

The Dirac delta function becomes δ(Ai −
∑
jMijφj).

Finally, let us report here a result for Gaussian integrals with we will use repeatedly below. The
Gaussian integral is ∫

dϕ exp

[
−1

2
ϕTKϕ+ BTϕ

]
=

√
(2π)m

det K
exp

[
1

2
BTK−1B

]
(2.13)

with K a square matrix m×m and B and ϕ are vectors of size m.

3 Gaussian field Φ = φ

To illustrate the approach and familiarize ourselves with some of the expressions, let us start in the
simplest case where fNL = 0, gNL = 0. We begin by considering the case where M is a square,
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invertible matrix. We then progressively consider more realistic/complicated cases: M not invertible
and the addition of (Gaussian) noise. In what follows, we denote with the over script arrow the vector

composed of the value of the field in all the pixels, e.g., ~A = {A1, ..., An}.

3.1 M invertible, n = L = M

In this case we can do the following change of variables: φ −→ Mφ or φ̂a =
∑
abMabφb and

K̂0 =
(
M−1

)T
K0M−1 (matrix multiplication);

∏
a dφa =

∏
a dφ̂a

det(M) . We thus obtain:

P( ~A) =

√
detK0

(2π)M

∫ ∏
i dφ̂i

det(M)

∏
i

δD(Ai − φ̂i) exp

−1

2

∑
ij

φ̂iφ̂jK̂0 ij


=

√
det K̂0

(2π)M
exp

[
−1

2

∑
ab

AaAbK̂0ab

]
, (3.1)

which is not surprising given that if the φ field is a multivariate Gaussian, the A field properties are
also those of a multi-variate Gaussian, albeit with a different covariance.

Note that K̂0 is defined so that∫
d3yK̂0(|x− y|)ξA(|y − z|) = δ(|x− z|). (3.2)

In other words, K̂0 is the equivalent quantity of K0, not for the underlying field φ, but for the
observable field A.

3.2 M identity matrix or invertible, n < L, L = M

Let us start with the simpler, special case whereM is the identity matrix, for example, when looking
at the distribution of the product of n pixel values of an unsmoothed field. The values taken by the
field φ will be denoted by ϕ (here ϕ plays the role of A but we have changed notation to make clear
that one is really seeing the same field).

We start from:

P (ϕi, ..., ϕn) =

√
detK0

(2π)M

∫ ∏
i,ν

dφidφν
∏
i

δD(ϕi − φi)× (3.3)

exp

−1

2

∑
ij

φiφjK0ij −
∑
i,ν

φiφνK0iν −
1

2

∑
µ,ν

φµφνK0µν

 .
The integral over dφi can be done trivially exploiting the Dirac delta function yielding:

P (ϕi, ..., ϕn) =

√
detK0

(2π)M

∫ ∏
ν

dφν × (3.4)

exp

−1

2

∑
ij

ϕiϕjK0ij −
∑
i,ν

ϕiφνK0iν −
1

2

∑
µ,ν

φµφνK0µν

 .
Here we recognize the Gaussian integral of Eq. (2.13) where in particular Bν =

∑
i ϕiK0iν and K is

the matrix made of the elements K0µν .
Note that the matrix K0 can be split in block matrices as

K0 =

(
K k
kT K

)
(3.5)
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where K is made of the K0ij elements (it is a square sub matrix of size n×n), K is made by the K0µν

elements (it is a square matrix of size N ×N), and k is an n×N matrix.
Finally we obtain that:

P(~ϕ) =

√
det(G)

(2π)n
exp

−1

2

n∑
ij=1

ϕiϕjGij

 . (3.6)

Here
Gij = K0ij −

∑
µν

K0iνK0jµK−1 = K − kK−1kT , (3.7)

and we have used the fact that

det K0 = det
(
Kk
k K
)

= det(K − kK−1kT ) det(K) (3.8)

implying det(K0)/ det(K) = det(G).
Eq. (3.6), not surprisingly, is a Gaussian but with a different covariance from that of φ. It is not

difficult to see, using the Woodbury formula

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1A−1 (3.9)

(where A, U , C, and V denote generic matrices) that

[G−1]ij = [K−10 ]ij = ξij (3.10)

as expected.
In case M is not the identity matrix but it is still an invertible matrix, as long as the array A

has been pixelized in as many elements as φ, it is straightforward to compute P( ~A) even if n < M .
One just does the substitution: φi −→

∑
aMiaφa etc. as above. In total one gets,

P( ~A) =

√
det(Ĝ)

(2π)n
exp

−1

2

n∑
ij=1

AiAj Ĝij

 , (3.11)

where K̂0 =
(
M−1

)T
K0M−1 (matrix multiplication) and Ĝ is the equivalent of G (see Eq. (3.7)) but

made from K̂0 instead of K0, [Ĝ−1]ij = [K̂−10 ]ij = ξA ij . That is we have a Gaussian with covariance
given by that of the observed field.

3.3 M non invertible, n < L, L < M

This is only a slightly more complicated case for a Gaussian field (we will see below that for a non-
Gaussian field, making M non invertible complicates the resulting expressions considerably). In this
case the observable field A is pixelized in L elements, but the dimension of the field φ (and the field
Φ) is larger, for example M = L×H (i.e. there is one (or more) extra dimensions which gets pixelized
to have H elements). To keep in mind a possible relevant application, this is the case of a CMB
temperature map: the primordial field Φ is three-dimensional, the observed temperature fluctuation
field around a given observer is two-dimensional, therefore M is non invertible.

It is easy to see that one can rewrite Eq. (2.7) considering that if φ is Gaussian then its projection,
e.g., to alm, will also be Gaussian (M is a linear operator). So we only have to reinterpret Eq. (3.1)

in light of Eq. (2.1) to have φ̂ = AG and K̂0 to be the equivalent quantity for the Gaussian AG, in
the case of the alm it will be connected to the C`. In this case there is no need to invert M. It is
however instructive in view of the non-Gaussian case, to derive the same result going through the
actual calculations.
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We start from

P ( ~A) =

√
detK0

(2π)M

∫ ∏
i,ν

dφidφν
∏
i

δD(Ai −
∑
ia

Miaφa)×

exp

−1

2

∑
ij

φiφjK0ij −
∑
i,ν

φiφνK0iν −
1

2

∑
µ,ν

φµφνK0µν

 , (3.12)

and split M into block matrices as:
M = (ℵ N ) , (3.13)

where ℵ is a n× n sub matrix and N is n×N . We also split the vector φ = {φi, φν} = {φ′, φ′′}. We
start by re-writing the argument of the Dirac delta as:

Ai −
∑
j

Mijφj −
∑
ν

Miνφν = Ai − (ℵφ′)i − (Nφ′′)i (3.14)

and make the following change of variables

A −→ ℵ−1A ≡ Ã . (3.15)

ℵ is invertible if the rank of M is maximal. Note that there is some freedom in splitting the sum in
Eq.(3.14), but we argue that the rank ofM is always maximal if the information in A is not redundant
(e.g., in the absence of noise if pixels are not counted more than once). This change of variables gives
a multiplicative overall factor |detℵ| and which changes the argument of the Dirac delta to

Ãi − φi − (ℵ−1Nφ′′)i ≡ Ãi − φi − φ̃′′i . (3.16)

Now we can integrate over the dφi and eliminate the Dirac deltas giving the following substitution
φi −→ Ãi − φ̃′′i . We get:

P( ~A) =

√
detK0

(2π)M
|detℵ|

∫
dφ′′ exp

[
−1

2

(
ÃTKÃ+ 2ÃTRφ′′ + φ′′TQφ′′

)]
(3.17)

=

√
detK0

(2π)M
|detℵ|

∫
dφ′′ exp[−1

2
{Ã, φ′′}TH{Ã, φ′′}] (3.18)

where

H =

(
K R
RT Q

)
(3.19)

R = k−Kℵ−1N (3.20)

and
Q = K +N Tℵ−1TKℵ−1N −N Tℵ−1Tk− kTℵ−1N , (3.21)

which is an N ×N matrix.
We then recognize a Gaussian integral yielding

P( ~A) =

√
detK0

(2π)n
|detℵ| 1√

|detQ|
exp

[
−1

2
AT F̃A

]
(3.22)

where
F = K −RQ−1RT (3.23)

and therefore, using Woodbury again, [F−1]ij = [H−1]ij , and F̃ = ℵ−1TFℵ−1. Of course, in this

simple example we are using the general framework to compute the PDF of another Gaussian field, Ã,
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whose covariance is simplyMT ξM. It is straightforward using the Woodbury formula to demonstrate
that we recover this result. For the Gaussian case there is therefore no need to invert Q or ℵ.

Equivalently, one could change the basis for φ to ψ so that the matrix M is M′ = (ℵ′, 0). This
being a linear operation means that ψ is still Gaussian. Note that this means: take the rectangular
matrix given by{ℵ,N} and SVD decompose it as UΣV T (or UΣV ∗ (conjugate transpose)). Then do
the following change of variables: φ −→ Uφ = ψ and therefore M −→ U−1M =M′. The Jacobian
of the transformation is therefore detU .

Thus the argument of the Dirac delta becomes Ai − ℵ′ψ′ and as before we make the change
of variable A −→ ℵ′−1A ≡ Ã. This now simplifies the equations above as Q′ = K′ and R′ = k′.
(Of course the Jacobian of the transformation must be computed; alternatively one makes sure, a
posteriori, that the probability is suitably normalized). We find:

P( ~A) =

√
detK0

(2π)n
| |detℵ′|
|detU |

| 1√
|detQ′|

exp

[
−1

2
AT G̃′A

]
(3.24)

where G̃′ = ℵ′−1TG′ℵ′−1 and G′ = K ′−R′Q′−1R′T (where prime denotes the quantity in the ψ basis.
Of course Eqs. (3.22) and (3.24) are equivalent but depending on the context one or the other

might be more suitable for practical implementation. Note that Ĝ′ =
(
M′T ξ′M′

)−1
where we use

the prime to indicate the quantity for the ψ field. Since ξ′ = UξUT and M′ = U−1M we obtain
M′T ξ′M′ =MT ξM = ξA and therefore G̃′ = Ĝ, [G̃′−1]ij = ξA ij .

To interpret G̃ e.g., in Eq. (3.22) we can readily write down the 1-point PDF (n = 1), where G̃
is a scalar, G̃11:

P(A1) =
G̃√
2π

exp

[
−1

2
A2

1G̃11
]
. (3.25)

If A is the field in real space then G̃(R) is 1/σ2
R, the inverse variance of the field, with R indicating

the smoothing scale. If A is in Fourier space then G̃(k) is 1/P(k).

3.4 Adding Gaussian noise

Having Gaussian noise in a map means that the observed field A is given by the superposition of
the field A as before and an independent Gaussian field ε, with covariance Σε, A = A + ε. Thus in
Eqs. (2.7, 3.1, 3.12 ) etc. the Dirac delta gets substituted by a Gaussian with covariance Σε. It is easy

to see that if Σ−1ε ≡ E then the second line of Eq. (3.1) remains the same provided that K̂0 −→ G
where G =

[
K̂−10 + E−1

]−1
. In doing so we have used the result for the Gaussian integral Eq. (2.13)

and that E − E(E + K̂0)−1E =
[
K̂−10 + E−1

]−1
.

Therefore for all the subsequent cases above one must just make the substitution G −→
[
G−1 + E

]−1
.

Note that we could have obtained this result more directly as follows: the PDF of the superposition
of two independent processes (A and ε) is the convolution of the individual PDFs. If the two PDFs
are Gaussian the resulting PDF will be a Gaussian with inverse covariance given by the sum of the
individual inverse covariances.

4 Quadratic local non-Gaussianity, fNL 6= 0

After having used our approach for a Gaussian field to reproduce known results and familiarize
ourselves with the manipulation of some of the expressions, we go on to tackle the case of a quadratic,
local non-Gaussianity. As we will see this apparently simple, non-linear transformation of a Gaussian
field, in some cases –those of most practical interest– complicates the final expressions quite a lot
because it spoils the analyticity of some of the final steps we were able to use in the Gaussian case.
Here we will proceed somewhat in parallel to Sec. 3, by first considering the simplest case and then
introducing complications progressively.
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We begin by noting that fNL appears only in the argument of the Dirac delta function (see
Eq. (2.7)). It is much easier to derive the final result in the case where M is the identity matrix.
While this case might not be of great practical interest, although some applications to future data
are possible and are mentioned below, it is a useful preliminary step to then tackle more complicated
and realistic cases.

4.1 M identity matrix

If M is identity matrix, one possible way to proceed to evaluate Eq. (2.7) is to use the property of
the Dirac delta:

δ(f(x)) =
∑
r

δ(x− xr)
|f ′(xr)|

(4.1)

where r here denotes the roots of the function f . In fact if M is the identity matrix, we have to
solve Ai + C − φ − fNLφ

2 = 0, where C is a constant, to make the field Φ to have zero average
(C = fNL〈φ2〉). The roots of this are:

−1±
√

1 + 4fNL(Ai + C)

2fNL
(4.2)

and
f ′ = 1 + 2fNLφ . (4.3)

Our Dirac delta becomes

∏
i

δ
(
φi −

−1+
√

1+4fNL(Ai+C)

2fNL

)
√

1 + 4fNL(Ai + C)
+

δ

(
φi −

−1−
√

1+4fNL(Ai+C)

2fNL

)
√

1 + 4fNL(Ai + C)

 . (4.4)

In the case n = 1 there is no product, only the two deltas. Let us call

f1(Ai) =
−1 +

√
1 + 4fNL(Ai + C)

2fNL
(4.5)

f2(Ai) =
−1−

√
1 + 4fNL(Ai + C)

2fNL
.

Then Eq.(2.7) becomes:

P( ~A|fNL) =

√
detK0

(2π)M

∏
i

1√
1 + 4fNL(Ai + C)

∫ ∏
ν

dφν exp

[
−1

2

∑
µ,ν

φµφνK0µν

]
(4.6)

×
∑
rq

exp

−1

2

∑
ij

fr(Ai)fq(Aj)K0ij −
∑
i,ν

fr(Ai)φνK0iν

 .
As is well known, from the pioneering work of [33] to the more recent [22], for small fnl the root
with the minus sign will be exponentially suppressed. For illustration, Fig. (1) shows the effect of
neglecting the root on the 1 point PDF (which can be easily computed) for several choices for fNLσ.
For simplicity we have taken φ to have unit variance; where the distribution is not plotted is because
it becomes imaginary (i.e. there is no solution). The figure shows that neglecting the root r = 2 is
a very good approximation since deviations are small and non-zero only close to the limit where the
PDF is not defined. Neglecting the r = 2 root we obtain:
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Figure 1. Exact one-point PDF for Φ (normalized to have unit variance) on the left panel and the effect
of neglecting the exponentially suppressed root for “small” fNL on the right panel. Several choices for fNLσφ
are shown. Where the distribution is not plotted is because it becomes imaginary (i.e. there is no solution).
Neglecting the root r = 1 is a very good approximation since deviations are small and non-zero only close to
the limit where the PDF is not defined.

P( ~A|fNL) =

√
detK0

(2π)M

∏
i

1√
1 + 4fNL(Ai + C)

∫ ∏
ν

dφν (4.7)

× exp

−1

2

∑
ij

f1(Ai)f1(Aj)K0ij −
∑
i,ν

f1(Ai)φνK0iν −
1

2

∑
µ,ν

φµφνK0µν

 .

(4.8)

If n < M we can recognize the Gaussian integral again and simplify the above equation:

P( ~A|fNL) =

√
detG
(2π)n

∏
i

1√
1 + 4fNL(Ai + C)

exp

−1

2

∑
ij

f1(Ai)f1(Aj)Gij

 . (4.9)

For n = M this is instead:

P( ~A|fNL) =

√
detK0

(2π)n

∏
i

1√
1 + 4fNL(Ai + C)

exp

−1

2

∑
ij

f1(Ai)f1(Aj)K0ij

 ≡ P(Φ) . (4.10)
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Note that this is the multivariate distribution of the Φ field (M having been set to the identity).
Note the similarity between this and Eq. 14 in [22]. Of course, to obtain the same quantity for M
not the identity matrix, one can then always write that

P( ~A|fNL) =

∫
D[Φ]P(Φ)δD(A−

∫
MΦ) . (4.11)

This then must be integrated numerically via Monte-Carlo methods, as for example explored in
[22, 28]. While Ref. [22, 28] proceeds by computing this (or a related) expression directly with a
Monte Carlo approach, here we attempt to carry on analytically. If M is the identity matrix, the
one-point function can be obtained by setting, i, j ≡ 1 as for the Dirac delta of Eq. (4.9). One then
recognizes the Gaussian integral in φ obtaining

P(A1|fNL) =

√
det(G)

2π

1√
1 + 4fNL(A1 + C)

(
exp

[
−1

2
f21 (A1)G11

]
+ exp

[
−1

2
f22 (A1)G11

])
.

(4.12)

4.2 Approximations

We now take a detour (subsections 4.2 and 4.3). We first explore possible approximations of this exact
PDF expression, their performance and range of validity. For simplicity and clarity we do so in the
case where M is the identity matrix, i.e., where we can ignore the transfer function. Therefore the
results will be valid only qualitatively and not strictly quantitatively in the (practically interesting
case) when there is a transfer function, especially if it makes M not invertible. Nevertheless the
performance of the approximations considered will be directly useful in Sec.4.6. In addition they
could be useful to find approximations to Eq. 4.26.

It is possible to further simply our expressions in Sec. 4.1 by expanding to first (or higher) order
in fNL. For example expanding at first order the square root we obtain (1 + 2fNL

∑
i(Ai + C)) both

in Eqs. (4.9) and (4.10), in the same spirit then f1(Ai) −→ Ai + C − A2
i fNL. Figure (2) shows how

different approximations perform in the case of the one-point PDF (whereM is the identity matrix).
We illustrate the performance of the different approximations by using the one-point PDF and taking
φ to have unit variance (σ = 1). Note that due to this normalization the real expansion parameter is
fNLσ. For clarity below we will use the symbol fnl to indicate the non-Gaussianity parameter for a
field with unit variance, thus fnl = fNLσ.

The solid (black) line shows the first-order expansion of both the square root and the argument
of the exponential:

P1st(Φ|fnl) =
1√
2π

(1− 2fnlΦ) exp

[
−1

2
Φ2 + fnl(Φ

3 − Φ)

]
. (4.13)

Note that the Babich (2005) [33] (B05 from now on) approximation of the PDF (see their Eq.
20) would correspond to approximating (1 − 2fnlΦ) ∼ exp(−2fnlΦ). On the other hand the first-
order Edgeworth expansion (see e.g. [24] their Eq. (4.10)) corresponds to further expanding the
non-Gaussian part in the exponential by exp[fnl(Φ

3−Φ)] ∼ 1 + fnl(Φ
3−Φ) (thin solid (black) lines).

The popular non-Gaussianity estimator [25, 33, 34] where the term (Φ3 − 3Φ) is considered stems
from an expansion of the PDF (more on this below).

In order to make the path integrals in what follows analytic it is worth to note that an integrand
made by the product of a polynomial with an exponential of a quadratic expression is integrable
analytically but an exponential of an expression of power higher than quadratic is not. However
expanding the fnlΦ

3 term in the exponent as (1 + fnlΦ
3) performs very badly as Fig. (2) shows

(dot-dashed).
Fig. (2) shows that the first-order expansion in fnl does not provide a good approximation to

the PDF, and indeed it is well known for example that a first-order Edgeworth expansion can give
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Figure 2. Left: the one-point PDF (the underlying Gaussian field φ is normalized to have unit variance
(σ = 1)). Solid line with diamonds: exact. Solid (black) line: keeping only terms proportional to fNLσ both
in the argument of the exponential and in the factor in front. Solid thin (black) line: First-order expansion.
Dotted line (purple): keeping terms proportional to fNLσ

2 both in the argument of the exponential and in
the factor in front. Short dashed line (blue):as above but expanding the terms ∝ fNLσ

2 in the argument of
the exponential as exp(x) = (1 + x). Dot-dashed (light blue): expression where starting from an expansion
that keeps terms proportional to fNLσ

2 both in the argument of the exponential and in the factor in front,
only terms ∝ Φ and Φ2 are kept in the argument of the exponential, the rest is expanded as exp(x) = 1 + x.
Solid thick (red): second-order Edgeworth expansion. Long dashed (red): Expansion to second order in fNLσ.
Dot–dot–dashed line (green): approximation of Babich (2005) Right: % error in the approximation (same
linestyle as in the left panel). See text for more details.

negative values for the PDF (see discussion in [24]). Going to second order helps. Expanding to
second order both the square-root and the argument of the exponential yields the dotted line in the
figure. If the second-order part of the exponential is also expanded as exp(x) = 1 + x we obtain the
short dashed line.

Expanding the full expression to second order in fnl (thus expressing the PDF as a Gaussian
multiplied by a correction) we obtain something similar (but not quite identical) to the second-order
Edgeworth expansion:

P2nd(Φ|fnl) =
1√
2π

exp

[
−1

2
Φ2

] [
1 + fnl(Φ

3 − 3Φ) +
f2nl
2

(
Φ6 − 11Φ4 + 23Φ2 − 5

)]
(4.14)

where the second-order Edgeworth expansion would be:

P2ndEW(Φ|fnl) =
1√
2π

exp

[
−1

2
Φ2

] [
1 + fnl(Φ

3 − 3Φ) +
f2nl
2

(
Φ6 − 13Φ4 + 33Φ2 − 9

)]
. (4.15)

The fact that Eq. (4.14) and Eq. (4.15) are different at second order should not be too surprising. In
fact while Eq. (4.14) is a polynomial expansion around fnl = 0 using polynomials in their natural form,
Eq. (4.15) is an expansion in Hermite polynomials, which, for the problem at hand, are an orthogonal
basis. It is well known that expansions in orthogonal polynomials have smaller truncation errors,
much better convergence and extrapolation properties than other polynomial expansions. Therefore a
truncated Edgeworth expansion should be preferred to a Taylor expansion truncated at the same order.
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Figure 3. Hybrid approach: the exponential part preserves the Gaussian structure as it has only terms ∝ φ
and ∝ φ2. Again φ is normalized to have unit variance.

Not unexpectedly, our numerical investigations have shown that the difference between Eq. (4.14) and
Eq. (4.15), at least for relatively small fnl, is small.

Note that the B05 [33] second-order expansion would correspond to

P2ndBabich(Φ|fnl) =
1√
2π

exp

[
−1

2
Φ2 + fnl(Φ

3 − 3Φ) +
f2nl
2

(
−5Φ4 + 14Φ2 − 5

)]
. (4.16)

One “hybrid” approach is to look for simplicity of integration, first expand to second order both
the square root and the argument of the exponential, then leave in the argument of the exponential
only terms ∝ φ2 and ∝ fnlφ the rest expand as exp(x) = 1 + x+ x2. This is shown in Fig. (3).

Having different approximations used in the literature and the exact expression allows us to
quantify their performance. In table (4.2) we show the range of Φ/σ where the different approximations
work at better than 20%. We conclude that a second-order expansion (Edgeworth or plain second
order or hybrid) reproduces well the PDF except in the extreme tails ( > 5σ) for relatively high
fnl values and in addition offers the possibility of performing many of the relevant path integrals
analytically. In what follows we will therefore use this approximation when needed.

Note that in the form of B05 the log of the PDF to second order is written as a Gaussian part
plus a first-order term given by I1× fNL and a second-order term I2× f2NL. 〈I1〉 = 6fNL and 〈I2〉 = 6.
If we write the second-order expansion or the second-order Edgeworth expansion in the B05 form we
obtain the same I1 expression but different expressions for I2. Note however that 〈I2〉 is always equal
to 6.

While so far we have interpreted the PDF as a probability of Φ for a given fNL, we can reinterpret
it, assuming a uniform prior on fNL, as the PDF for fNL given Φ. Doing so, as we will show in details
below, will uncover some properties of this PDF which we believe were missed so far. These stem from
the fact that in P(Φ|fNL), fNL is fixed and it is therefore physically motivated to chose it to be small.
Conversely, when considering P(fNL|Φ), the fNL values are not bounded and can in principle range
from −∞ to ∞. For large |fNL| (or combinations of relatively small |fNL| but large |Φ|), P(fNL|Φ)
has discontinuities which prevent any expansion in fNL. It is only when working in a regime away
from the discontinuities that expansions in fNL are meaningful and moments of the distribution are
well-defined so the the central limit theorem applies.

4.3 Estimators vs. full PDF

We continue our detour to discuss the choice of an estimator for fNL given the exact and approximated
expressions of the PDF in the simplified one-point case discussed above. We use this simplified case
for clarity, as we will see below, it still captures all the interesting physics, features and limitations of
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fNLσ 1st order Babich(2005) 2nd order second-order Edgeworth Hybrid
0.1 3 4 5 4
0.01 4 6 6 6
0.001 7 10 10 8

Table 2. Number of sigmas where the different approximations fit the exact PDF to better than 20%. Recall
that for simplicity throughout this section we have taken the field to have unit variance.

known estimators. As we will see below, this exercise is useful to clarify some common misconceptions.
While all statistical information is enclosed in the full PDF, if the PDF is complicated or hard to
compute it is often useful to work with estimators. An estimator represents a massive reduction of
information: in this case for example the full PDF is substituted by a single number (the estimated
fNL value). It is worth recalling that the maximum likelihood estimator (MLE) is often desirable
because, if it exists, under mild conditions, it is asymptotically the best unbiased estimator. To
derive a MLE one interprets the PDF (probability of the data given the parameters) as the likelihood
for the parameters given a set of data, and finds its maximum. This conditions give a combination of
the data (Φ in our case at hand) which is a MLE of fNL (or fnl) i.e. f̂NL (or f̂nl) . The drawback of
a MLE is that in many problems the full PDF is not known or if it is known, its maximum cannot be
found analytically. For our exact formulation of the PDF, it is clear that the maximum must be found
numerically. In addition, in some regimes the PDF diverges making a MLE not well-defined. Fig. (4)
–solid line, top panel– shows the locus of the maximum of the likelihood as a function of Φ for the
simple one-point PDF investigated above (i.e., in this sub-section we keep considering φ to have unit
variance). The dotted line is for guidance at fNL = 0. The dashed line corresponds to the estimator
of B05. In correspondence of the diamond symbols in the bottom panels we show the shape of the
likelihood as a function of fnl for fixed Φ values (0.1, 0.5, 1, 1.5). The likelihood is well-behaved as
long as Φ is small. The location of the “cusp” in the curve corresponds to |Φ| = 1 and for Φ = 1 + ε
(where ε is a small number) the PDF diverges, the discriminant becomes negative (and the PDF is
zero) splitting the divergence through the middle. For |Φ| > 1 there are two points where the PDF
diverges, separated by a region where the discriminant is negative and the PDF is zero.

Furthermore, the support of the PDF depends on the parameter, since it is zero for Φ < −fnl −
1/(4fnl), and this makes the Cramér-Rao bound invalid [35].

These conditions make the MLE not well-defined. Note that the B05 estimator is not a MLE
except for fnl = 0. Its error is shown to satisfy the Cramér-Rao bound, but that just corresponds to
an expansion of the PDF i.e. it approximates the PDF as a function of fnl as a Gaussian distribution.
The plots in Fig. (2) show that this is not a good approximation: even when Φ is very small the
likelihood has broad wings. While it is true that the central limit theorem should make the PDF
close to Gaussian for practical applications where many independent measurements are considered,
the full PDF shape carries much more information than its mean and the variance, as discussed at
length in [36]. Since we have the exact expression for the PDF we can compute the possible bias of
the estimator by computing (numerically) the expectation value of it.

Numerically we find that the estimator of B05 is unbiased even for large values of fnl. In
particular the bias of the estimator scales like f2nl as follows:

bias of estimator = 0.001

(
fnl
0.1

)2

. (4.17)

Given that the maximum likelihood estimator is not well-defined and that the full likelihood is known,
and that the PDF carries more information than just the mean and variance of an estimator, it is
much more useful (although not necessarily simpler) to work directly with the full PDF. This is what
we set up to do here.

The above discussion is valid for a single pixel. In any practical application many independent
measurements will be combined, and a full analysis would include in-field correlations (e.g. [37]). For
illustration, we consider first a full posterior analysis for fNL based on the complete PDF in n pixels.
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Figure 4. Top panel. Solid line: the numerically-determined maximum likelihood as a function of fnl(= fNLσ)
for several values of Φ. Here the underlying Gaussian field φ is taken to have unit variance (σ = 1). For
|Φ| ≥ 1 the PDF diverges making a maximum likelihood estimator not well-defined. Dashed line: the Babich
(2005) estimator. The dotted line is for reference at fnl = 0. The inset shows a zoom in in the region around
fnl = 0. The Bottom 4 panels show slices through the fnl likelihood for fixed values of Φ (0.1, 0.5, 1, 1.5
from top left to bottom right), which maximum correspond to the locations of the diamonds. Note that the
likelihood for fnl is always highly non-Gaussian. For |Φ| > 1 there are two points where the PDF diverges that
are separated by a region where PDF is zero. For |Φ| ≥ 1 the derivatives of the likelihood are non continuous.
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Figure 5. Left panel: Log(Posterior) for fnl(= fNLσ), with true f true
nl =0.1 and 106 pixels but ignoring

sampling issues and noise. fnl > f true
nl is excluded, as the true PDF is non-zero for some values of Φ where the

trial PDF is zero. Right panel: Log(Posterior) for fnl(= fNLσ) given 106 pixels, and f true
nl = 0.03. A Gaussian

noise of rms 0.01 added (recall that the underlying Gaussian field φ is normalized to have unit variance). The
noise makes all values of Φ reachable in principle, and so the posterior is always non-zero. This removes the
strict cutoff apparent in the left panel.

Using Bayes’ theorem, the probability of the non-Gaussianity parameter having a value fnl is
P(fnl|Φ) ∝ P(Φ|fnl), for a uniform prior on fnl. For i = 1, . . . , n pixels, assumed independent, the

probability of fnl given a set of pixel values {Φi} ≡ ~Φ (normalized so that the underlying Gaussian
field φ has unit variance for the case at hand) is

P(fnl|~Φ) =
∏
i

P(fnl|Φi) ∝
∏
i

P(Φi|fnl)

so
lnP(fnl|~Φ) =

∑
i

lnP(Φi|fnl) + const .

If the true fnl is f truenl , then the probability of a pixel having a value between Φ and Φ + dΦ is
P(Φ|f truenl )dΦ. So the sum over the set of pixels becomes an integral over Φ, with a weight given by
P(Φ|f truenl ) (and a normalisation given by the number of pixels):

lnP(fnl|~Φ) = n

∫
dΦP(Φ|f truenl ) lnP(Φ|fnl) + const.

Note that the for the purpose of this illustration the number of pixels enters only as a normalization
factor; in fact the sum is evaluated as an integral and the limits of integration are (formally) from −∞
to∞. In practice, given a finite number of pixels, the chances of sampling the tails of the distribution
are small and thus effectively the limits of integration should depend on the number of pixels.

The above equation implies that P(fnl|~Φ) is zero for fnl > f truenl , since there is an excluded region
which depends on fnl: P(Φ|fnl) = 0 for Φ < Φmin where Φmin = −fnl− 1/(4fnl) (Note that this limit
is very small for small fnl, e.g. for fnl = 0.01, Φ > −25.01). Hence, if fnl > f truenl , there is a region of
Φ where P(Φ|f truenl ) 6= 0 and lnP(Φ|fnl)→ −∞ and the integral diverges. This is borne out by doing
the integration (see left panel of Fig. (5)) (Note that this argument applies to small fnl, in which case
Φmin increases with fnl). This sharp discontinuity will also prevent any truncated expansion of the
PDF being a good approximation.

However, in a practical case, the chances of reaching the ‘excluded’ region which is forbidden
for a small (positive) fnl are basically vanishingly small, so the cliff in the posterior is not going
to happen in practice, because of sampling, or it could also happen because of noise. For example,
if we introduce a small Gaussian noise into the measurements, then the probability of reaching the
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Figure 6. Left panel: PDF simulated (3 million Φ’s, thick solid line), analytical exact expression (dashed
line), first order (dotted) and second order (dot-dashed). Right panel: % difference compared with simulated
PDF, analytical exact expression (solid), first order (dotted) and second order (dashed). Here the underlying
Gaussian field φ has unit variance and f true

nl = 0.03.

otherwise forbidden region of Φ is no longer zero, and this allows values of fnl > f truenl to have non-zero
probability. The right panel of Fig. (5), shows the posterior for local non-Gaussianity with a Gaussian
noise added, with rms only 0.01; the zero probabilities have gone away, and the posterior becomes
quite Gaussian. This behaviour is quite robust for small smoothing; for large smoothing the posterior
gets wider.

The cutoff disappears also if we now consider that for a sample of finite size the tails of the
distribution are not well sampled. For example for fnl = 0.05(0.1), the region Φ < −5.05(−2.6) is
not sampled if the sample is smaller than about 1.7× 106 (80). The disappearance of the cliff makes
truncated expansions in fNL of the PDF viable. Note however that a truncation to first order will
yield to a P1st(fNL) that does not have a maximum, which therefore cannot be a good approximation.
At the minimum to have a maximum the approximated PDF must be truncated at second order or
higher in fNL.

We next explore the performance of the estimator, the exact PDF and its approximations in the
regime where sampling is finite. To do so we generated simulations (realizations) of uni-variate non-
Gaussian fields for given values of fnl (which we refer to as f truenl ) and proceed to recover (measure)
it from samples of the field (which we call fmnl , where m stands for measured). Before proceeding we
verified that the distribution of the realization matches to analytic exact PDF for all fnl values. This
is shown in Fig. (6) for f truenl = 0.03.

We concentrate here on two regimes: one where there are few samples (only 50 Φs; small sample
size) and one where there are many more samples (1500 Φs; large sample size). For simplicity we
assume that the pixels (samples) are uncorrelated. Fig. (7) shows the distribution of the fmnl ob-
tained using the exact PDF (solid line), the first and second-order PDF (dashed and dotted, almost
indistinguishable) and the B05 estimator (Dot-dot-dot-dashed). To be explicit, since the pixels are
uncorrelated we can multiply the individual likelihoods P(fnl|Φ1...Φn) =

∏
i P(fnl|Φi) and fmnl is the

value that maximizes such product.
Clearly the distribution of fmnl is non-Gaussian. In particular we note that if f truenl is small (0.03

in this example) there is a non-negligible probability that the fnl of the sample is ∼ 0.15 if the sample
is small. The shape of the PDF for small sample size reflects the behaviour seen in Fig. (4) bottom
right panel.

This behaviour disappears when the sample size is increased as shown in Fig.(8). Note that all
approximations and the estimator have a variance that is larger than the one given by the exact PDF
when f truenl is large. As f truenl −→ 0 the PDF, its approximation and estimator distributions converge.
The resulting distribution remains however non-Gaussian. This demonstrates the importance of
working with a PDF (exact if f truenl is large, exact or approximated if f truenl is small): the confidence
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Figure 7. Distribution of fmnl for the exact PDF (solid line), first order (dotted) second order (dashed),
B05 estimator (Dot-dot-dot-dashed) in the small sample size limit. The thin vertical dotted line shown the
location of f true

nl (0.03 on the left panel and −0.07 on the right panel).

�� ��

Figure 8. Distribution of fmnl for the exact PDF (solid line), first order (dotted) second order (dashed), B05
estimator (Dot-dot-dot-dashed) in the large sample size limit. The thin vertical dotted line shows the location
of f true

nl . Note that all approximations overestimate the width of the true distribution for large f true
nl . As

f true
nl −→ 0 the PDF, its approximation and estimator distributions converge.

intervals for � 1σ or � 68% levels, cannot be estimated from the rms. In the absence of a PDF,
many simulations of the experiment would be required to estimate these confidence intervals via Monte
Carlo simulation. On the other hand knowing the PDF allows one to compute any desired confidence
interval. Although in this section we have worked in the case where M is the identity matrix, we
expect that these findings hold qualitatively in the general case.

Our detour ends here; we now go back at deriving analytic expressions for the full PDF for
increasingly complicated (realistic) cases.
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4.4 If M is not the identity matrix

If M is not the identity matrix but it is an invertible square matrix then we need to go back to the
expression for P as:

P( ~A|fNL) =

√
detK0

(2π)M

∫ ∏
i,ν

dφidφν
∏
i

δD(Ai −
∑
a

MiaΦa)×

exp

−1

2

∑
ij

φiφjK0ij −
∑
i,ν

φiφνK0iν −
1

2

∑
µ,ν

φµφνK0µν

 . (4.18)

If n = M then one could do

Ab −→
∑
a

(M−1)baAa ≡ Ãb , (4.19)

which also introduces a factor of 1/ detM−1 = detM in front of the RHS. This complicates the Dirac
delta function but leaves us with a Gaussian integral.

We obtain

P( ~A|fNL) =

√
detK0

(2π)M
detM

∏
a

1√
1 + 4fNL(Ãa + C)

×

∑
rq

{
exp

[
−1

2

∑
ab

fr(Ãa)fq(Ãb)K0ab

]}
; (4.20)

if we keep only one root for small f, r = q = 1.
For a possible practical application M is a square invertible matrix; for example when A corre-

sponds to the matter overdensity field δ be it in real or Fourier space. If n < M this route cannot be
used (see below for the approach to use) but one could always write :

P( ~A|fNL) =

∫
D[A]P(A)δD(A−A) . (4.21)

So for example for the one-point PDF one should do: P(A1) =
∫
D[A]P(A)δD(A1−A). By applying

the Dirac delta one reduces the dimensionality of the path integral by one. The remaining integral
might still have to be performed numerically.

4.5 M not invertible, n < M

To obtain directly the probability of P( ~A) if n < M andM is not invertible let us go back to Eq. (4.18)
and as before let us now split the Dirac delta function so its argument is given by the elements of:

A− ℵΦ′ −NΦ′′ = A− ℵφ′ − ℵfNLφ
′2 −Nφ′′ − fNLNφ′′2 + fNLσ

2
φc (4.22)

where the elements of the matrix c are given by ci =
∑
aMia. From now on let us redefine c = fNLσ

2
φc.

Now note that to impose the Dirac delta function one must first integrate in φ′ as such it is
convenient first to change variables so that the argument of the Dirac delta function is multiplied by
ℵ−1, which yields a |detℵ| in front of the equation and then it is useful to define :

Ã(φ′′|fNL) = ℵ−1A− ℵ−1Nφ′′ − fNLℵ−1Nφ′′2 + ℵ−1c . (4.23)

with this the roots of the quadratic equation are:

φr,i =
−1±

√
1 + 4fNLÃi(φ′′|fNL)

2fNL
, (4.24)
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and the Dirac delta function becomes

δD(φi − φr=1) + δD(φi − φr=2)√
1 + 4fNLÃi

. (4.25)

Thus we arrive at

P( ~A|fNL) =

√
detK0

(2π)M
detℵ

∫
dφ′′

∏
i

(√
1 + 4fNLÃi(φ′′|fNL)

)−1
exp

[
−1

2

∑
νµ

φµφνK0µν

]
×

∑
r=1,2

exp

−1

2

∑
ij

φr,iK0ijφr,j + 2
∑
iν

φr,iK0iνφ
′′
ν

 .
(4.26)

Again one can safely ignore the exponentially suppressed root. Note that even if only an integral in
φ′′ is left, there are complications to perform this analytically: φ′′ appears not only in front of the
exponential as an argument of the function Ã (under the square root), but also in the exponential
both under square root in the φr and explicitly.

This equation is one of the main results of this paper as it can be interpreted as the probability of
fNL given the observable vector A. The expression is exact but the path integral must be performed
numerically for different fNL values. Note that the dimensionality of the integration has been reduced
by a factor L compared to e.g., Eq. (4.11)– i.e. for a full sky CMB map the dimensionality of
the integral has been reduced by a factor O(106). The integrand is close to a Gaussian so the
numerical integration should converge easily but detailed implementation will depend on the particular
application one is interested in. We will return on this in Sec. (5).

4.6 Approximations

In order to progress analytically approximations must be made. Taylor-like expansions around fNL = 0
could be considered and they could be chosen so that the integral (Eq.4.26) becomes analytic, in the
same spirit as Sec. (4.2). Sec. (4.2) and (4.3) indicate that a second-order (Edgeworth) expansion is a
good approximation for the full PDF if fNL is small and the sample size is reasonably large. While we
have quantified this numerically for the single pixel and Poisson, uncorrelated pixels case, we expect
that qualitatively the same will hold in the more general, multi-variate case. While for the one-point
PDF whereM is the identity matrix it is simple to expand directly the PDF, as done in Sec. (4.2), it
becomes, still doable, but unnecessarily complicated if we want to work with Eq. (4.26). In fact the
work leading up to Eq. (4.26) and the route we chose, are necessary if one wants to find a closed form
for the exact PDF. If one instead wanted a priori to obtain an approximated expression, truncated
at a given order, the simplest route to follow would have been different. In fact it is well know that
a general expression for any (well behaved) PDF can be obtained from its generating functional by
expanding the PDF in terms of all its (2nd and higher-order) correlations.

This expansion can be written as (see e.g., [39] , the integrand of their Eq. 9, and [40]):

P( ~A|fNL) =
det K1/2

(2π)n/2
exp

 ∞∑
i=3

(−1)i
n∑

[ri]=1

ξ
(i)
[ri]

i!

i∏
j=1

∂

∂Arj

 exp

[
−1

2
( ~A,K, ~A)

]
(4.27)

where K denotes the inverse covariance matrix for ~A and [ri] is a compact notation to account for
all relevant combinatorials for example for i = 3 the second sum runs over all triplets that can be
combined out of the A1...An. Here ξ(i) denotes the connected correlation function (or corresponding
polyspectra) of order i. This expression is exact, but it involves an infinite sum which must be
truncated. In fact this expression simply says that any non-Gaussian distribution is specified by all
its higher order correlations (only a Gaussian distribution is completely specified by its covariance).
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In other words Eqs. (4.26) and (4.27) are mathematically equivalent for local non-Gaussianity once
the ξn are the ones of the field A. For a practical application however, when the exact PDF is needed,
Eq. (4.26) is preferable to Eq. (4.27) because of the infinite series in Eq. (4.27) which would require
evaluation of an infinite sequence of correlation functions for A. Conversely, if for some applications
an approximated expansion of the PDF is what is needed, it is overwhelmingly easier to work with
Eq. (4.27), truncated at the appropriate order.

As an exercise it is not too algebraically cumbersome to see that at first order in fNL Eq. (4.26)
and Eq. (4.27) are truly equivalent. The univariate case for unit variance field was presented in
Sec. (4.2). For the multi-variate case with a generic covariance, the most cumbersome part is to keep
track of the various (symmetrized) permutations that go in ξ(3) for the local non-Gaussian case. Since
in the simpler case analyzed in Sec. (4.2) and (4.3) we could compute the exact PDF, its first and
second-order expansions, and compare the performance of the exact PDF with its approximations,
we conclude that a second-order expansion of Eq. (4.27) is suitable for many interesting practical
applications (fNL in agreement with current constraints i.e., Ref. [38], sample size not too small).
Here therefore we derive an explicit expression for the multi-variate non-Gaussian PDF to second-order
using Eq. (4.27).

We expand to second order in fNL by first truncating the first sum to i = 4 – i.e., the trispectrum–
and then expanding the exponential in Taylor series to second order.

It is easy to see that if A = Φ, n = 1 and Φ has unit variance, we recover Eq. (4.15). In doing
so it is useful to keep in mind that for local non-Gaussianity ξ(3) = 6fNL and ξ(4) = 24f2NL.

In the general case by performing the derivatives we obtain:

P( ~A|fNL) =

√
det K

(2π)n/2
exp

[
−1

2
( ~A,K, ~A)

]
×

{
1 +

1

6

∑
all l

ξ
(3)
l1l2l3

[
(K ~A)l1(K ~A)l2(K ~A)l3− 3Kl1l2(K ~A)l3

]
+

1

24

∑
all l

ξ
(4)
l1l2l3l4

[
3Kl1l2Kl3l4 − 6Kl1l2(K ~A)l3(K ~A)l4 + (K ~A)l1(K ~A)l2(K ~A)l3(K ~A)l4

]
+

1

72

∑
l1,...,l6

ξ
(3)
l1l2l3

ξ
(3)
l4l5l6

[
(K ~A)l1(K ~A)l2(K ~A)l3(K ~A)l4(K ~A)l5(K ~A)l6 − 15Kl1l2Kl3,l4Kl5l6

−15Kl1l2(K ~A)l3(K ~A)l4(K ~A)l5(K ~A)l6 + 45Kl1l2Kl3l4(K ~A)l5(K ~A)l6

]}
(4.28)

where li run from 1 to n. Here we recognize that in this approximation the PDF is given by a suitable
combination of bispectrum and trispectrum. We will return to this point below in the application to
the CMB in Sec. (5). The great advantage of this approach is that the resulting expression is valid
for non-Gaussianity beyond the local type. While we have tested quantitatively the performance of
this approximation for the local case, we expect that it will hold also e.g., for equilateral, orthogonal
or flattened type. Of course, Eq. (4.28) is strictly second-order in fNL for non-Gaussianity of the
type where ΦNG ∼ fNLφ ∗ φ (∗ denoting convolution or multiplication). Should other types of
non-Gaussianity be considered, then the expression would not be necessarily second-order in the non-
Gaussianity parameter. For example for the gNL type where fNL = 0, the terms with ξ(3) would drop
out and the resulting expression would be first-order in gNL.

Given that in a practical application the Ai are measured (given) quantities, the PDF can be
interpreted as the probability distribution for fNL. Within a given model (like for example the local
model) where the bispectrum and trispectrum coefficients are related (one being ∝ fNL and the other
∝ f2NL) the PDF can be used to constrain the parameter (i.e. find the maximum likelihood and the
confidence intervals). In a more model-independent way, one could imagine finding joint constraints on
the coefficients of the bispectrum and trispectrum and then comparing those with theory predictions.
In light of these considerations and the fact that for fNL values allowed by present data and for not
too small sample sizes this expression gives and an extremely good approximation for the exact PDF,
Eq. (4.28) represents one of the main results of this paper. For a CMB application of Eq. (4.28), see
Sec. (5).
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4.7 Adding Gaussian (or near-Gaussian) noise

As before (and using the same convention as of Sec. (3.4)) we can derive the result in two ways.
The direct way is to recall that P(A) = P(A) ? P(ε) which will be further explored below (Sec. 5.2)
in the context of measuring fnl from a CMB map. In fact, although the approach is general, the
implementation depends on the details of the concrete application. This approach might be best if
the noise has complicated pixel-to-pixel correlations. The other way is to substitute the Dirac delta
function by a Gaussian with width given by the noise covariance Σε or by the noise distribution if it
is non-Gaussian. Here we illustrate the approach in the Gaussian noise case.

In this case our starting equation becomes Eq. (2.7) but where the product of the Dirac delta
function is instead 1/(2π)n/2 exp[−1/2(A−MΦ,Kε, A−MΦ)] whereKε denotes the inverse covariance
of the noise and MΦ should due interpreted as matrix times a vector. Unfortunately the resulting
path integral cannot be done exactly analytically but can be performed numerically. However even in
the signal-only regime the last path integral has to be performed numerically (see discussion around
Eq. (4.26)) thus correctly including the effect of noise does not represent an additional computational
burden.

On the other hand, if the noise contribution is sub-dominant compared to the signal (and yet
non-negligible) a saddle point approximation performs very well: Eq. (4.26) then becomes the first
term in a saddle point approximation. Note that Ref.[22] already noted that the presence of Gaussian
noise has the effect of changing the Dirac delta functions for Gaussians. They approach the problem
by implementing numerically the expressions corresponding with our Eq. (2.7) and Eq. (4.11).

5 Application I: measuring fnl from a CMB map

5.1 Signal-only regime

It is possible to consider Eq. (4.26) and interpret it as the probability of fNL given the observable

vector ~A (which could be a`m or T etc.). This expression is exact. One would need to still do a path
integral numerically but only for a grid of values for fNL i.e. only a finite, reduced number of times,
to find the maximum likelihood and its confidence levels. The path integral can be computed using
standard lattice QCD techniques. The integrand is close to a Gaussian so integration should converge
easily. This makes possible to increase the size of the lattice, which sample φ′′ in Eq. (4.26). In QCD
applications the size of the lattice can be as large as billions, comparable with the size we estimate
would be needed for a CMB application. Alternatively Monte-Carlo techniques such as those explored
in [28] can be employed. We leave the numerical implementation for the evaluation of Eq. (4.26) for
future work, but note that a) with respect to the formulation of Eq. (4.11) the dimensionality of
the integral has been reduced by a factor O(106) and b) given a set of data (e.g., a CMB map) the
integral for several fNL values must be computed only once to obtain the best-fit value and confidence
intervals.

This approach of using the PDF does not have the problem of the bispectrum that is that the
number of triplets one can make grows much faster than the number of pixels in a map and therefore
different bispectrum estimates are not independent (and thus the central limit theorem needs not
to apply) [17]. One possible limitation is that the expression is exact only in the signal-dominated
regime (i.e. no noise). This can be overcome as we discuss below.

5.2 Adding noise

As done in Sec. (3.4) consider that the observable field is A and is given by the superposition of
two independent random processes, the signal A and the noise ε, (Ai = Ai + εi). For the sum
(superposition) of two independent random processes the probability distribution is the convolution
of the two probabilities. Doing the convolution however might not be possible analytically. One thing
to keep in mind is that if the noise is uncorrelated one need not do a Npix-dimensional convolution,
but one can do Npix 1-dimensional convolutions. On the other hand, what we expect in the presence
of noise is that the probability distribution of fNL is broadened by the noise:

PA(fNL|A) = PA(fNL|A) ? Pε(fNL|ε) (5.1)
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i.e. a convolution between the result of the signal-only regime with the distribution for the noise-only
regime. Given that the noise has zero mean, Pε(fNL|ε) must only depend on the noise covariance Σε.
The advantage of this approach is that one is left to do only a 1 dimensional convolution.

While Pε(fNL|ε) has not been computed, if the noise is Gaussian or close to Gaussian, we know
that it must be very well approximated by the distribution for the KSW estimator [34] applied to a
purely Gaussian map (as it saturates the Cramér-Rao bound [36]). This distribution has been shown
to be very well approximated by a Gaussian [20] –since for a large number of pixels the central limit
theorem holds– with variance σ2

fNL
= 1/(6σ2

εNpix). In summary, since the noise is not correlated
with the signal, in the presence of noise the signal-only PDF, Eq. (4.26), must be convolved with
the noise-only PDF for fNL. If the noise is Gaussian, the noise-only PDF has a closed analytical
expression; if not, it would need to be computed on a case-by-case basis. Having PA(fNL|A) already
computed on a grid of fNL values (and Pε(fNL|ε) as an analytic expression or computed on the same
grid values for fNL) makes the convolution a discrete sum. Of course this is useful if the noise-only
PDF is less broad than the signal-only PDF (i.e., significantly non zero over a smaller range of fNL

values than the signal-only PDF ). If not, then one would be working in the noise-dominated regime
where little useful information on the primordial fNL can be extracted, or, alternatively, where the
signal PDF is only a correction to the noise-only PDF. Thus rough approximations of the signal PDF
can be safely used in this regime.

Another equivalent approach is the one outlined in sec. (4.7): substitute the Dirac delta function
in Eq.(4.18) by the noise distribution. Then Monte-Carlo like approaches as adopted e.g. in [22] can
be used to evaluate the multi-dimensional integral. Depending on the nature of the noise one or the
other will be best suited.

5.3 Second-order PDF expansion

Eq.(4.28) as it is can be interpreted as the PDF given the temperature pixels in a CMB map (i.e.
A = T or A = ∆T/T , n the number of pixels, l the pixel index and wi the i-point correlation
function). On the other hand it is useful to re-write it explicitly as a function of the spherical
harmonic coefficients a`m also because it will make explicit the relation of our findings with previous
work in the literature. In the following we denote by a the vector of am` and by n the number of
harmonic coefficients considered. We obtain:

P(a|fNL) =
(detC−1)1/2

(2π)n/2
exp

[
−1

2

∑
``′mm′

a∗m` (C−1)`m`′m′am
′

`′ )

]
×1 +

1

6

∑
all `imj

〈am1

`1
am2

`2
am3

`3
〉
[
(C−1a)m1

`1
(C−1a)m2

`2
(C−1a)m3

`3
− 3(C−1)m1m2

l1,l2
(C−1a)m3

l3

]
+

1

24

∑
all `m

〈am1

`1
am2

`2
am3

`3
am4

`4
〉
[
3(C−1)m1m2

`1`2
(C−1)m3m4

`3,`4

−6(C−1)m1m2

`1,`2
(C−1a)m3

`3
(C−1a)m4

`4
+ (C−1a)m1

`1
(C−1a)m2

`2
(C−1a)m3

`3
(C−1a)m4

`4

]
+

1

72

∑
l1,...,l6

〈am1

`1
am2

`2
am3

`3
〉〈am4

`4
am5

`5
am6

`6
〉
[
(C−1a)m1

`1
(C−1a)m2

`2
(C−1a)m3

`3
(C−1a)m4

`4
(C−1a)m5

`5
(C−1a)m6

`6

−15(C−1)m1m2

`1`2
(C−1a)m3

`3
(C−1a)m4

`4
(C−1a)m5

`5
(C−1a)m6

`6

−15(C−1)m1m2

`1`2
(C−1)m3m4

`3`4
(C−1)m5m6

`5`6
+ 45(C−1)m1m2

`1`2
(C−1)m3m4

`3`4
(C−1a)m5

`5
(C−1a)m6

`6

]}
(5.2)

Note that in the second line of Eq. (5.2) we recognize the standard formulation for approximating
the PDF [33] which is the starting point to derive the standard KSW estimator [34]. In fact we
recognize Eq. (5) of [41]. In the next two lines we recognize Eq. (32), but more specifically Eq. (158),
of [42].
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The last three lines are “new” terms that arise from expanding the exponential to second order
in fNL thus involving a term proportional to the bispectrum squared.

We argue here that interpreting this as a likelihood for fNL enables one to combine optimally
bispectrum and trispectrum measurements and obtain both best-fit value and confidence intervals for
the non-Gaussianity parameter. As discussed above this expression is valid for non-Gaussianities more
general than the local form as long as departures from Gaussianity are small as quantified in Sec. (4.3).
This expression is strictly second order in fNL for the type of non-Gaussianity where ΦNG ∼ fNLφ ∗φ
(∗ denoting convolution or multiplication) which includes local, equilateral, flattened and orthogonal
shapes. for other types of non-Gaussianity, this expression will not necessarily be second order in
the non-Gaussianity parameters. Within a given non-Gaussian model where the bispectrum and
trispectrum amplitudes are specified by a single parameter, this PDF can be used to constrain such
a parameter. Moreover, in a more model-independent approach one could use the above PDF to find
joint constraints on the amplitude of the bispectrum and trispectrum for comparison with theory.
Eq. (5.2) is one of the main results of this paper. Moreover note that this approximation to the
PDF, being quadratic in fNL, always has a maximum. In the standard formulation, where the PDF
expansion is truncated to first order in fNL, the PDF depends linearly on fNL and therefore at face
value has no maximum. Implicitly, the quadratic term is assumed to have a constant coefficient (the
average of the true coefficient in the case of B05), and the estimator normalised later to be unbiased.
With the complete PDF, it is easy to write down the maximum after expansion to second order. We
rewrite Eq. (5.2) is a compact form

P(a|fNL) = G ∗ [1 + fNLb ∗ w1 + f2NL(t ∗ w2 + h ∗ w3)] (5.3)

where G denotes the Gaussian factor, b ∗ w1 corresponds to the part on the second line of Eq. (5.2)
that is proportional to fNL evaluated for fNL = 1, and similarly the terms t∗w2 and h∗w3 are defined
by that equation. Then the formal maximum would be

f̂NL = − b ∗ w1

2(t ∗ w2 + h ∗ w3)
(5.4)

and its variance 1/(t ∗ w2 + h ∗ w3).

6 gNL case

We can extend our formalism to the so-called gNL model, in which

Φ = φ+ gNL(φ3 − 3〈φ2〉φ) ≡ φ+ g′NLφ
3 , (6.1)

which corresponds to the case when fNL is zero. Having worked out in pedagogical detail the Gaussian
case and the local fNL one, here we will only sketch the derivation. In fact the steps are closely similar,
only the resulting expressions (given the increasing number of roots involved) become quickly long
and cumbersome. If M is the identity matrix, we obtain

P( ~A) =

√
detK0

(2π)M

∏
i

1

|1 + 3gNLφ2r|

∫ ∏
ν

dφν exp

[
−1

2

∑
µ,ν

φµφνK0µν

]
(6.2)

× exp

−1

2

∑
ij

fr(Ai)fr(Aj)K0ij −
∑
i,ν

fr(Ai)φνK0iν


where φr is the real root of the third order equation A − φ − gNLφ

3 = 0. The integral in φ can be
performed analytically as done before. If M is invertible but not the identity matrix, then A −→
M−1A and a factor of detM should be included in front of Eq. (6.3). In the general case where M
is not invertible, the technique presented in Sec. (4.5) can be similarly applied here to obtain a closed
expression. The resulting expression can be obtained straightforwardly, but it is long and cumbersome
and therefore we do not write it explicitly here.
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7 Application II: Mass function of dark matter halos

Note that in the case where we need the PDF of the linearly extrapolated δL, P(δL), M is invertible
and we have obtained above an exact analytic expression:

P(δL|fNL) =
1

(2π)M/2

1

σR

1√
1 + 4fNL(δ̃L + fNLσ2

φ,R)

∑
r=1,2

{
exp

[
−1

2

f2r (δ̃L)

σ2
φ,R

]}
. (7.1)

Here δL is the linearly extrapolated overdensity field smoothed on scale R, corresponding to the halo
mass one is interested in; σR denotes the RMS of δL (smoothed on scale R); σφ,R is the corresponding
quantity for the primordial field φ. The sum is over the two roots (recall that the exponentially
suppressed root can be safely neglected). δ̃ =M−1δ. Finally f1,2(δ) = 1/(2fNL)

(
−1±

√
1 + 4fNLδ

)
.

While in principle the inversion of M here requires solving the Poisson equation, recall that in our
approach the fields are pixelized and therefore techniques developed for setting the initial conditions
for dark matter cosmological N-body simulations can be directly applied here. P(δL) is the basic
ingredient to compute the mass function. In the old-fashioned Press-Schechter approach one only had
to integrate the one-point PDF for δL above the threshold for collapse δc (and introduce the fudge
factor of 2). In this framework our approach gives an exact expression for the Press-Schechter mass
function, which should not have the problem of negative PDF tails (as in the Edgeworth expansion,
see [24, 43]) or being inaccurate for not-so-rare peaks [23]. The standard Press-Schechter approach
fails in many respects but the one-point PDF remains the key ingredient for more sophisticated
formulations of the mass function [43–46]. Ref. [47] showed the equivalence of simple barrier crossing
to more modern and sophisticated approaches and ref. [45] showed how to compute the (Gaussian and
non-Gaussian) mass functions starting from the 1-point PDF and using a suitably-defined threshold.

7.1 Application III: three-dimensional matter overdensity (e.g. 21cm surveys)

In the case of surveys that map directly the three-dimensional δ field, the size of the M matrix
is M = n as in Sec. (4.4), which simplifies the computations over the CMB case. Although one
still needs to compute the transfer function because non-Gaussianity is in the φ field, the equations
simplify significantly, as the last path integral can be performed analytically, see Eq. (4.20).

8 Conclusions

We have presented a new formalism to write down a closed expression for the exact multi-variate joint
probability distribution function (PDF) of a non-Gaussian field of the local type. We provide an exact
formula for such PDF for the non-Gaussianity parameter fNL in Eq. (4.26). This exact formulation
has several applications ranging from the halo mass function to the analysis of CMB maps. In its more
generic formulation (and this for applications that rely on the generic formulation such as application
to CMB maps) the final integration must be performed numerically. The dimensionality of the
integral is high but it has been reduced by a factor O(106) compared to the initial and intermediate
formulation. While we estimate that the numerical calculation is doable it remains to be seen how
computationally intensive it might be in practice for a realistic (Planck-size) CMB map. This is left
for future work. However in special cases (e.g., as the fundamental step for the derivation of the halo
mass function) the resulting expression is fully analytic. We present the exact analytic formula for the
1-point non-Gaussian PDF in Eq. (4.12) which provides the key ingredient for an exact formulation
of the mass function of dark halos; a formula to do so is provided in Eq. (7.1).

These results serve as the basis for a fully Bayesian analysis of the non-Gaussianity parameter
which has several advantages compared to the presently-used, state-of-the-art frequentists estimators.
Most notably the fact that the PDF encloses the full information on the parameter of interest and
therefore prohibitively expensive Monte Carlo estimation of the errors is not needed. While the
analytic derivation is done in the signal-only regime, we also discuss how to include (analytically) the
effect of instrumental noise and show that Gaussian noise can be included at little extra computational
expense.
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Having a full, exact PDF expression and formulating the problem in a Bayesian fashion, enabled
us to uncover some features of the PDF for local non-Gaussianities that were previously ignored.
Notably the fact that the PDF is neither smooth nor continuous, making any approximation based
on expansions on the fNL parameter of the PDF sometimes unsuitable (and applicability of the
central limit theorem limited). We however identify a regime where a second-order expansion is a
good approximation, this happens for a combination of fNL not too large (i.e., not ruled out by
current measurements) and a sample size which is not too small (few tens or equivalently for a full
sky CMB analysis (` < `max where `max ∼ few or larger). That is, for a full sky CMB analysis
that explores a wide ` range, the second-order expansion is a good approximation, however if one
wanted to explore localized features or fine scale-dependence, the full PDF behaviour might have
to be considered. We present explicit expressions for this second-order expansion approximation
both in the general case, Eq. (4.28), and for the specific application to a CMB map, Eq. (5.2). In
such expansions we can recognize previously known terms (such as the KSW estimator of Ref. [34],
and the optimal trispectrum estimator of Ref. [42]) but also a new term ∝ f2NL. This formulation
enables one to combine optimally bispectrum and trispectrum measurements and obtain both best-fit
value and confidence intervals for the non-Gaussianity parameter. As an added bonus, this truncated
expression is valid for non-Gaussianity beyond the local type. While we have tested quantitatively the
performance and regime of validity of this approximation for the local case, we expect that qualitatively
it will hold also e.g. for equilateral, orthogonal or flattened type and in general for non-Gaussianity
where ΦNG ∼ fNLφ ∗ φ (∗ denoting convolution or multiplication). Within a given model (like for
example the local model) where the bispectrum and trispectrum coefficients are related, the PDF can
be used to constrain the parameter (i.e. find the maximum likelihood and the confidence intervals). In
a more model-independent way, one could imagine finding joint constraints on the coefficients of the
bispectrum and trispectrum and then comparing those with theory predictions. Our formulas may
also find application in large-scale galaxy surveys in searching for non-Gaussian features, compute
the confidence intervals and in general do statistical inference also comparing and combining different
data sets.
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