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Nuclear pairing: Surface or bulk?
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We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell
of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the
chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the
pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however,
rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic
chain 100–132Sn are presented for demonstration purposes.
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I. INTRODUCTION

There is an ongoing debate whether pairing in nuclei is
concentrated preferentially in the bulk or at the surface. Quite
a few authors plead for a surface enhancement of nuclear
pairing [1,2]. This belief is based mostly on two arguments.
First, pairing is concentrated around the Fermi energy and,
in heavy nuclei, levels at the Fermi energy are dominated by
high l values with corresponding wave functions peaked at the
surface. Second, the idea of surface dominance of pairing was
probably mostly fostered from the local density approximation
(LDA) picture. Indeed, from Fig. 3 of Ref. [3], where the
neutron gap at the Fermi surface is shown in symmetric nuclear
matter as a function of kF , calculated once with a realistic
bare force and once with the Gogny D1S force, one can see
that, adopting the LDA, the gap in the interior of a nucleus
should be very small, whereas at the surface it should pass
through a huge peak over 2.0 MeV high. In contrast, using
LDA one obtains on average a reasonable agreement for the
correlation energy in comparison with quantal calculations [4].
However, to conclude from this fact that the LDA also provides
a good approximation for the r dependence of � in nuclei is
a little premature since one knows that Thomas-Fermi theory,
on which LDA is based, yields local quantities that must be
interpreted as distributions, which are useful under integration
but locally often quite erroneous [5].

Actually, the two arguments presented here are related
to two different aspects of pairing in finite nuclei. Thus,
the first argument refers to the radial distribution of pairing
correlations (i.e., of Cooper pairs formed upon various single-
particle states). Commonly, the spatial localization of pairing
correlations is described by the pairing density. In finite nuclei
the pairing density is ascribed to the radial form factor of pair
transfer reactions [6–8]. These reactions probe the strength
of pairing correlations as manifested in pair-vibration and
pair-rotation modes [9]. In contrast, the pairing field �(r),
on which the second argument is based, provides not only
informations about the localization of pairing correlations but
also on the properties of the effective pairing force. This is
evident from the fact that, by definition, �(r) is given by the
convolution between the pairing force and the pairing density.

As will be shown in this paper, in finite nuclei the radial
dependence of the pairing density is rather insensitive to the
type of the pairing force. Consequently, in finite nuclei �(r)
and the associated global quantities (e.g., pairing gaps) carry
in fact information related essentially to the effective paring
force and much less on the localization of Cooper pairs.

An earlier indication that pairing correlations may not be
tremendously surface peaked came from the study of pairing
density in half-infinite nuclear matter with the Gogny force
[10]. There, the peaking of the pairing density at the surface
was only very moderate. From Fig. 1 of Ref. [10] it is even not
evident whether the peaking is a pure consequence of Friedel
oscillations [11]. For finite nuclei only very few calculations of
the pairing density as a function of the radius are available [12].
These calculations mainly focus on how the pairing density
changes from one major shell to the other, up to the neutron
drip line. The scope of the present paper is to give a more
systematic investigation of the localization properties of the
pairing density in one major shell. Thus, it will be shown that
the bulk versus surface localization of pairing correlations can
change significantly in only one major shell, depending on
whether the chemical potential is close to a low or a high
angular momentum level. This behavior is illustrated here for
the chain of Sn isotopes with neutron number between N = 50
and N = 82. The study is performed in the Hartree-Fock-
Bogoliubov (HFB) approach and using surface versus bulk-
dominated pairing interactions. It then will be argued that only
an average over one major shell makes sense to reveal the
generic features of nuclear pairing with respect to the surface
and/or the bulk. The general framework of the calculations is
described in Sec. II. Then, in Sec. III, we discuss the radial
distribution of pairing correlations as provided by the HFB
calculations. Finally, in Sec. IV we present our conclusions.

II. FORMALISM: HARTREE-FOCK-BOGOLIUBOV
APPROACH

In superfluid Fermi liquids, pairing correlations are usually
characterized by the “condensate” wave function [13]. For the
case of 1S0 pairing the condensate wave function, referred to

0556-2813/2005/71(5)/054303(6)/$23.00 054303-1 ©2005 The American Physical Society
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here as the pairing density, is given by

κ(r) = 〈ψ(r, s = 1/2)ψ(r, s = −1/2)〉, (1)

where the operator ψ(r, s = 1/2) annihilates a nucleon at
the point r and with the spin projection s = 1/2. This local
pairing density describes the center-of-mass distribution of the
Cooper pairs inside the superfluid. For translationally invariant
superfluid systems at zero temperature, κ(r) is a constant field
with the modulus equal to

√
n0, where n0 is the number of the

condensed (Cooper) pairs [13]. In large superfluid systems, in
which the condensate is macroscopically occupied, κ(r) can
still be regarded as a classical coherent field with negliglibe
variations over distances greater than the coherence length.
However, when the range of pairing correlations (associated
with the mean-square radius of Cooper pairs) is comparable
with the size of the system, as happens in finite nuclei,
the local variations of the pairing density are important and
should be calculated from a quantum equation of motion
of the Bogoliubov–de Gennes type [14]. In finite nuclei for
such a task one usually employs the HFB equations [5], in
which both the mean field and the pairing field are calculated
self-consistently.

In this study the HFB equations are solved by imposing
spherical symmetry and employing zero-range forces in both
the particle-hole and particle-particle channels. Under these
conditions the radial HFB equations have the following form:(

h(r) − λ �(r)
�(r) −h(r) + λ

)(
Ui(r)
Vi(r)

)
= Ei

(
Ui(r)
Vi(r)

)
, (2)

where h(r) and �(r) are, respectively, the mean-field Hamilto-
nian and pairing field, and λ is the chemical potential. All basic
quantities such as particle density ρ(r) and pairing density κ(r)
are expressed in terms of the upper and lower components of
the HFB wave function. Thus,

ρ(r) = 1

4π

∑
i

(2ji + 1)V∗
i (r)Vi(r), (3)

κ(r) = 1

4π

∑
i

(2ji + 1)U∗
i (r)Vi(r). (4)

In the present HFB calculations we use in the particle-hole
channel a Skyrme-type force (i.e., SLy4 [15]). Hence the mean
field has the standard expression in terms of single-particle
densities [16,17]. For the pairing interaction we use two forces,
that is, a pure δ force and a density-dependent δ (DDD) force.
For the latter we take the form [18]

V (r − r′) = V0

[
1 − η

(
ρ

ρ0

)α]
δ(r − r′)

≡ Veff(ρ(r))δ(r − r′). (5)

The pairing interaction acts upon the pairing density through
the pairing field, which for the DDD force is given by

�(r) = Veff

2
κ(r). (6)

Because of the divergences associated with a zero-range
pairing force, the HFB calculations should be performed
with an energy cutoff. The energy cutoff and the strength
of the interaction can be eventually related to each other

TABLE I. Results of HFB calculations for Sn isotopes obtained
with the DDD force. A is the atomic mass, λ is the chemical potential
(in MeV), and 〈�〉 is the averaged pairing gap (in MeV). The latter
is calculated by convoluting the pairing field with the pairing density.
The next five rows give the occupation probabilities for the single-
particle states of the valence shell. Shown in parentheses for each of
these states is the Hartree-Fock energy corresponding to the midshell
isotope 116Sn.

A 104 108 114 116 124 128
λ −10.9 −10.0 −8.97 −8.64 −7.3 −6.7
〈�〉 1.4 1.77 1.91 1.88 1.6 1.3
2d5/2 (−10.1) 0.63 0.73 0.88 0.91 0.97 0.98
1g7/2 (−9.7) 0.17 0.28 0.65 0.74 0.94 0.97
3s1/2 (−8.8) 0.097 0.16 0.43 0.54 0.89 0.95
2d3/2 (−8.3) 0.07 0.11 0.30 0.4 0.83 0.93
1h11/2 (−6.7) 0.03 0.05 0.11 0.14 0.44 0.7

through the scattering length of the di-neutron system [18]
or by using more sophisticated regularization procedures [19].
In the present calculations we use an energy cutoff (in the
quasiparticle spectrum) equal to 60 MeV. The strength of
the DDD force is taken equal to V0 = −430 MeV fm−3; for
the parameters that set the density dependence of the DDD
force we use the same values as in Ref. [3] (i.e., η = 0.45
and α = 0.47). This parametrization assures reasonable gap
values in Sn isotopes. It is worth mentioning that in Ref. [3]
the last two parameters (i.e., the ones that fix the density
dependence of the DDD force) were fitted to reproduce the
density dependence of pairing gap in nuclear matter provided
by the Gogny D1S force. Thus, from this perspective, a finite-
range density-independent Gogny D1S force is equivalent
to a DDD force that, according to the terminology used in
Refs. [20,21], is a mixture between a volume and a surface
pairing interaction. In the HFB calculations with the pure
δ force we have taken a strength V0 = −220 MeV fm−3. With
this value of the strength we get for Sn isotopes approximately
the same pairing energies as for the DDD force.

III. RESULTS: PAIRING LOCALIZATION
IN Sn ISOTOPES

Before we start analyzing the local properties of pairing
correlations, we first present the global quantities that chara-
terize the HFB solution. Thus, Table I shows how the chemical
potential λ, the averaged gaps, and the occupation probabilities
of single-particle states are evolving by filling the major shell
N = 50–82. Changes of particle density with neutron number
are shown in Fig. 1(a). These changes can be easily traced
back to the occupation probabilities of single-particle wave
functions shown in Fig. 1(b). Thus, one notices the progressive
increase of the particle density at small distances, produced by
the filling of the state 3s1/2.

Next we discuss how the localization properties of the
pairing density change with the filling of the major shell
N = 50–82. The results for κ(r) obtained by using the two
zero-range pairing forces introduced in the previous section
are shown in Fig. 2.
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FIG. 1. (Color online) The particle density (a) for various Sn isotopes and the Hartree-Fock wave functions (b) corresponding to the valence
shell of 116Sn.

First, we notice that for both pairing forces κ(r) changes
quite strongly from A = 104 to A = 128. Thus, we see that at the
beginning of the shell, when the contribution of the states 2d5/2

and 1g7/2 is dominant, the pairing density is slightly larger
inside the nucleus than at the surface. Then, at midshell, the
pairing density becomes on average almost flat for an extended
region from about 1 to 5 fm. We also notice a large bump
close to the center of the nucleus produced by the neutrons
distributed in the state 3s1/2.

In the second half of the major shell the chemical potential
becomes closer to the intruder state 1h11/2, which starts
progressively to dominate the structure of κ(r). Since the
wave function of 1h11/2 is localized in the surface region [see
Fig. 1(b)], the pairing density also gets a bump around 5 fm.
This bump becomes more pronounced toward the end of the
shell. However, one can see that toward the end of the shell
the pairing density decreases rather strongly in the center of
the nucleus. This behavior reflects the smaller contribution
of the state 3s1/2 toward N = 82.

A somewhat surprising but important finding, shown in
Fig. 2, is that the radial structure of κ(r) changes very
little with the density dependence of the δ force. Through

this dependence the strength of the pairing force is reduced
inside the nucleus compared to the surface region. Conse-
quently, the relative contribution of the state 3s1/2 to pairing
correlations is suppressed. However, because of its small
degeneracy compared to the other states, this suppression
has no important consequences on κ(r), as can be seen in
Fig. 2.

As we have seen, the radial dependence of the pairing
density in Sn isotopes is dominated by the individual shell
structure. To reveal a generic behavior one should follow the
old idea of Strutinsky [22] and average the pairing density
over one major shell. Here we have taken the crude arithmetic
average over all even Sn isotopes, leaving the study of more
refined averaging methods for future work. The result is shown
in Fig. 3. We remark that on average the pairing density
κ(r) is quite flat over the bulk. Since we are considering an
even-parity shell, we have at the origin a quite pronounced
bump from the s wave. Had we considered an odd-parity shell,
we certainly would see a corresponding hole at the origin [23].
In Fig. 3 we also see that despite the fact that the density-
dependent force yields, with respect to the pure δ force, slight
surface enhancement and volume depression, the difference
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FIG. 2. (Color online) Neutron pairing densities κ(r) (in fm−3) for Sn isotopes calculated in the HFB approach. The black (red) curves
correspond to the δ force (density-dependent δ force).
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FIG. 3. (Color online) Averaged pairing density (in fm−3) calcu-
lated in the HFB approach. The solid (dot-dashed) curve corresponds
to δ force (density-dependent δ force).

induced upon κ(r) by the two pairing forces is practically
insignificant.

To further understand what happens, let us take the BCS
approximation of κ and replace, for the midshell situation, the
uv factors with a unique constant equal to one, that is, κ(r) ≈

1
4π

∑
i uivi |φi(r)|2 ≈ 1

4π

∑
i
′|φi(r)|2, where the prime indicates

that the sum runs over the major shell only and φi(r) are
the single-particle wave functions. Taking the wave functions
plotted in Fig. 1(b) for φi(r), one gets for κ the result shown
in Fig. 4. By summing in κ all single-particle states with the
same uv factor one overestimates the contribution of those
single-particle states that are far from the chemical potential,
mainly of the states 2d5/2 and h11/2. This fact produces the
extended tail seen in Fig. 4. Apart from that, we can see that
this rough approximation of κ follows rather well the flat radial
structure of the HFB curve.

A strong dependence of the pairing density profile on the
individual shell structure can be clearly observed even for a
pairing force that is drastically reduced inside the nucleus. The
results for such a pairing force, with the parameters η = 1,
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FIG. 4. (Color online) Pairing density in 116Sn. The solid line is
the HFB result. The dotted line corresponds to the summation of the
square of single-particle wave functions (see text).
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FIG. 5. Neutron pairing densities (in fm−3) for several Sn isotopes
calculated by using a DDD force with η = 1. The inset contains the
average value of the pairing density.

α = 1, and V0 = 600 MeV fm−3, are shown in Fig. 5. This
pairing force gives a pairing field that is almost entirely
concentrated in the surface region (see Fig. 6). However, in
spite of this very strong surface localization of the pairing field,
the pairing densities shown in Fig. 5 still have a large volume
component, especially for 104Sn, which changes significantly
with neutron number. This also can be seen for the average
pairing density (see the inset in Fig. 5).

From all these results it appears that in a particular nucleus
the radial distribution of the pairing correlations, given by
the pairing density, depends strongly on the localization of
single-particle states that are close to the chemical potential
and much less on the type of pairing force. The dependence of
pairing density profile on the filling of the major shells can be
eventually checked in pair-transfer reactions.

The quantity that depends strongly on the assumption made
on the type of pairing force is the pairing field. This dependence
is clearly seen in Fig. 6, where the averaged pairing fields
corresponding to the δ force and the DDD forces are plotted.
Hence, indications about which type of pairing force might be
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FIG. 6. (Color online) Averaged pairing field (in MeV) for Sn
isotopes. The solid curve corresponds to the δ force; the dashed
(dotted) lines are the results for the DDD force with η = 0.45 (η = 1).
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more appropiate in finite nuclei can eventually be extracted
from quantities related to the pairing field (e.g., the pairing
gaps). Thus, according to Ref. [20] a DDD force with η = 1/2
and α = 1 would give better results for the odd-even mass
staggering than a δ force or a DD force with η = 1 and α = 1.
However, a pure δ force gives for the one- and the two-neutron
separation energies almost the same results as a DDD force
[24]. Therefore, from these calculations one cannot yet draw
a definite conclusion on how much stronger the pairing force
should be at the surface compared to the bulk. Nevertheless, the
fact that the pairing force should have some surface peaking
is suggested by all bare interactions, which are more attractive
for small momenta than for large ones (see also the Vlow−k

force based on realistic bare nucleon-nucleon interactions
[25,26]). However, bare forces do not yield enough pairing
in finite nuclei [27] and additional attraction from the induced
interaction (phonons) may still enhance the surface behavior
of the effective pairing force [28].

IV. SUMMARY AND CONCLUSIONS

In this work we have investigated the radial distribution of
pairing correlations in the major neutron shell N = 50–82 of
Sn isotopes. The localization of pairing correlations, given
by the pairing density, is calculated in the framework of
the HFB approach using two effecive pairing interactions: a
pure δ force and a δ force with a density-dependent factor
that enhances the strength of the interaction at low density
(i.e., in the surface region). It was found that the pairing
density changes strongly going from one end to the other
of the major shell N = 50–82, depending on whether the
chemical potential is close to a level with low or high l value.
However, the differences with respect to the two pairing forces
remained insignificant.

Then, to obtain some generic behavior of the pairing density
κ in nuclei, we performed an average of κ’s over one major
shell. The resulting averaged pairing density (κ) is, apart from
some oscillations, practically constant over the whole volume
except for a quite pronounced peak at the origin, produced by
the 3s1/2 state contained in the open major shell of Sn isotopes.
The results for κ show again very little sensitivity to the type
of pairing force used in the calculations, with the exception of
the extreme case where the pair field is completely suppressed
in the interior of the nucleus.

We also have calculated the corresponding pairing fields
�(r). By definition the pairing field is directly proportional
to the pairing force [see Eq. (6)]. Thus, even if for a given
DDD force the pairing density is almost constant over the
nuclear volume, the corresponding pairing field shows a
surface enhancement similar to that of the DDD force. This
is clearly seen in Fig. 6. Therefore in finite nuclei quantities
relating to the radial distribution of the pairing field (e.g.,
odd-even mass differences) probe the density dependence of
zero-range pairing forces rather than the localization of pairing
correlations (i.e., of Cooper pairs).

In summary, the radial distribution of pairing correlations
in finite nuclei depends strongly on the localization of
single-particle states that are closest to the chemical potential
and much less on the surface or bulk enhancement of the
pairing force. However, to reveal generic features an average
over the shell fluctuations should be taken. This reveals
that even strongly surface peaked pairing fields �(r) induce
only a moderate surface enhancement of the local pairing
density κ(r).

The conclusions of this study are based on zero-range
pairing forces. However, the results with a finite-range force
of the Gogny type, which will be published in a future
paper together with a semiclassical study of nuclear pairing
localization [29], show the same trends.
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