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We combine experiments and theory to investigate the orientational dynamics of dipolar ellipsoids, which self-assemble into
elongated ribbon-like structures due to the presence in each particle of a permanent magnetic moment perpendicular to the long
axis. Monodisperse hematite ellipsoids are synthesized via sol-gel technique, and arrange into ribbons in presence of static or
time-dependent magnetic fields. We find that under an oscillating field, the ribbons reorient perpendicular to the field direction,
in contrast with the behaviour observed under a static field. This observation is explained theoretically by treating a chain of
interacting ellipsoids as a single particle with an orientational and demagnetizing field energy. The model allows describing the
orientational behaviour of the chain and captures well its dynamics at different strengths of the actuating field. The understanding
of the complex dynamics and assembly of anisotropic magnetic colloids is a necessary step towards controlling the structure
formation which has direct applications in different fluid-based microscale technologies.

1 Introduction

Magnetic colloids are microscopic building blocks which can
be assembled into extended structures due to their dipolar na-
ture.1 An applied field can be used to induce the particle as-
sembly or to carefully control the spatial orientation of the
collective system. The aggregation of these particles into ex-
tended or compact structures due to dipolar forces is a rel-
atively fast process compared to conventional self-assembly
strategies. This feature, combined with the anisotropic nature
of dipolar interactions, make magnetic colloids rather appeal-
ing for fundamental studies related with self-organization,2–8

propulsion9–13 and dynamics14–17 in a dissipative medium.
On the application side, magnetic colloids find use in several
contexts related with biomedicine,18 microfluidics19,20 and
microrheology.21,22 When the particle shape departs from the
spherical one, the self-assembly behaviour of these particles
under an external field is determined by the competition be-
tween magnetic interactions and geometrical constraints.23,24

Examples of the complex and sometimes unexpected struc-
tures obtained with anisotropic magnetic colloids have been
recently reported by various groups both in experiments25–29
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and numerical simulations.30–37

In this article we study the dynamics of overdamped ferromag-
netic ellipsoids dispersed in water and subjected to static or os-
cillating magnetic fields. These anisotropic particles present a
permanent magnetic moment perpendicular to their long axis,
and they readily assemble into elongated structures due to
dipolar forces. The long axis of these chains can be easily
oriented via a static external field. However, when the ap-
plied field oscillates, the chains reorient perpendicular to the
field direction. By neglecting the effect of chain flexibility and
thermal fluctuations, we show that this behaviour can be ex-
plained using a general model formulated for describing the
dynamics of an individual particle with a demagnetizing field
energy. By using video microscopy and particle tracking rou-
tines, we measure the average orientation of the chain and use
these experimental data to validate the theoretical predictions.

2 Experimental part

Hematite ellipsoids are prepared from condensed ferric hy-
droxide gel using the procedure developed by Sugimoto and
coworkers.38,39 In more detail, a sodium hydroxide solu-
tion (21.64g of NaOH in 90ml of high deionized water)
is gradually added to an iron chloride hexahydrate solution
(54.00gFeCl3−6H2O in 100ml of high deionized water).
During the mixing process, both solutions are vigorously
stirred and the temperature increased till 75 oC. After∼ 5min,
a 10ml aqueous solution containing 0.29g of potassium sul-
fate (K2SO4) is added and the resulting dark brown mixture
is stirred for another 5min. Finally, the mixture is hermeti-
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Fig. 1 Scanning electron microscopy image showing the
monodisperse hematite ellipsoids. The inset displays a high
magnification overview of the particles.

cally sealed and left unperturbed in an oven at 100 oC for 8
days. After this period, a dense aqueous suspension composed
of monodisperse ellipsoids is obtained together with rod-like
nanoparticles made of akaganeite, a precursor of the hematite.
The ellipsoids are recovered by diluting the suspension with
high deionized water, letting the particles sediment and re-
moving the resulting yellowish-brown supernatant, a proce-
dure that is repeated several times. After the synthesis, the
hematite ellipsoids are functionalized with sodium dodecyl
sulfate (SDS). This surfactant is grafted on the particle surface
by dispersing the ellipsoids in an aqueous solution containing
0.12g of SDS in 80ml of high deionized water. Finally, the
pH of the resulting solution is adjusted to 8.5−9.5 by adding
Tetramethylammonium Hydroxide (TMAH).
Particle size and shape were analyzed by scanning electron
microscopy (SEM, Quanta 200 FEI, XTE 325/D8395). The
ellipsoids dynamics were imaged with a CCD camera (Balser
Scout scA640-74f, Basler) mounted on top of a light micro-
scope (Eclipse Ni, Nikon) equipped with high magnification
objectives. The applied magnetic field was provided by us-
ing two pairs of custom-made coils having a common axis lo-
cated in the particle plane (x,y), and aligned along the x and
y directions. A fifth coil was located under the sample cell to
provide a perpendicular field along the z direction. AC fields
were obtained by connecting the coils to a wave generator
(TTi-TGA1244, TTi) feeding a power amplifier (IMG STA-
800,stage line or BOP 10-20 M, KEPCO). The experiments
were performed by confining a diluted water solution of the el-
lipsoids in a sealed rectangular capillary made of borosilicate
glass (inner dimensions 0.10×2.00mm, CMC Scientific).

3 Individual particle dynamics

As shown in the scanning electron microscopy (SEM) im-
ages of Fig.1, the synthetic approach described before al-
lows to produce monodisperse prolate ellipsoids with a nar-
row size distribution, and characterized by a rather uniform
shape. In particular, from the analysis of the SEM images
we find that the particles present a major and minor axes of
length a = 1.80µm and b = 1.33µm, respectively. When dis-
persed in water, the ellipsoids sediment due to density mis-
match, and float above the bottom glass plate showing a quasi
two-dimensional confinement. Under no external field, we ob-
serve that these ellipsoids rapidly aggregate into chains due
to the presence of a small permanent magnetic moment mmm.
However, in contrast to chains formed by paramagnetic ellip-
soids,26,40 the hematite particles arrange with their long axis
perpendicular to the chaining direction, forming a ribbon-like
structure, similar to those observed with magnetized Janus el-
lipsoids28 or hematite peanut-shape particles.41 The perma-
nent moment perpendicular to the particle long axis (c-axis)
can been explained by considering the magnetic structure of
hematite, which crystallizes in the corundum structure.42 In
this arrangement, the iron cations are aligned antiferromag-
netically along the c-axis, and above the Morin temperature,
TM ∼ 263K, the magnetic spins lay mostly in the basal plane,
i.e. perpendicular to the c-axis.41

In order to measure the strength of the magnetic moment m,
we apply a static field HHH and follow the reorientational motion
of an ellipsoid, that was previously oriented in the perpendic-
ular direction, Fig.2(a). The magnetic torque acting on the
ellipsoid, τττm = µwmmm×HHH is balanced by the viscous torque
arising from its rotation in the fluid, τττv =−ξrθ̇θθ . Here µw de-
notes the magnetic susceptibility of water and ξr the rotational
friction coefficient of the ellipsoid. By solving the torque bal-
ance equation written in the overdamped limit, τττm + τττv = 0,
and taking into account that the angle between the permanent
moment and the ellipsoid long axis is π/2, we arrive at

θ(t) = 2tan−1
[

tanh
(

t
τr

)]
, (1)

where τr = 2ξr/(µwmH) is the relaxation time. The rotational
friction coefficient for a prolate ellipsoid rotating around its
short axis can be written as, ξr = 8πηVc fr,43 where η =
10−3Pa · s is the dynamic viscosity of the medium (water),
Vc = (4πab2)/3 is the volume of the ellipsoid, and fr is a geo-
metrical factor which depends on the ellipsoid long and short
axis.40 Assuming µw ∼ µ0 = 4π10−7Hm−1, and an applied
field value H = 1100Am−1 we obtain from the experimen-
tal data a relaxation time τr = 0.035s, which corresponds to
a particle magnetic moment m = 2.2 · 10−16Am2. This per-
manent moment corresponds to a spontaneous magnetization
of the ellipsoid M = 138Am−1, which is actually one order
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Fig. 2 (a) Angle θ between the ellipsoid long axis and the x axis versus time for an applied field of amplitude H = 1100Am−1. The
continuous red line is a fit of Eq.1 in the main text. As shown in the inset, under the constant field HHH applied along the x direction, the
ellipsoids reorient with their magnetic moments along the field. (b) Optical microscope image showing two rings of dipolar ellipsoids
spontaneously assembled after compensating the earth magnetic field. The small schematic on the top-right corner shows a section of one ring
composed by ellipsoids having permanent moments perpendicular to their long axis.

of magnitude lower than the maximum spontaneous magneti-
zation value for hematite in the bulk,44 Ms = 2kAm−1. This
discrepancy can be attributed to several factors arising during
the synthesis process. It should be noted that our ellipsoids
are not coated with a silica layer which prevents oxidation
of the outer surface. A discrepancy with the bulk magnetiza-
tion of hematite was found in other works,45,46 where smaller
hematite particles were studied.

4 Rings and ribbons

The permanent moments within the ferromagnetic ellipsoids
are able to induce chaining due to dipolar interactions between
the particles. In absence of any applied field, these chains al-
ready have the tendency to orient along the direction deter-
mined by the weak earth magnetic field (∼ 50µT ). In or-
der to eliminate the influence of this field, we apply a small
static field in the opposite direction. When matching the am-
plitude of the earth field, the ellipsoids form chains pointing
along random directions, or close into rings, as those shown
in Fig.2(b). The formation of rings from interacting dipolar
particles has been observed with Janus ellipsoids28, and was
previously predicted as a low energy state of different mag-
netized particles.47–50 Given the small size of our ellipsoids,
the shape of the rings continuously fluctuates due to thermal
motion of the individual units, and the rings can easily break
or reform with time. However, we find that the application of
an oscillating field along the z direction is able to keep the ring
stable over time.

We next study the orientation and dynamics of the former
structures under an applied field in the (x,y) plane. For a static
field, single ellipsoids and ribbons orient as expected, i.e. par-
allel to the field direction. In contrast, an oscillating field of
amplitude H and angular frequency ω , HHH =H cos(ωt)eeey, pro-
duces exactly the opposite scenario, i.e. the ribbons orient in
the perpendicular direction, as shown in Fig.3(a). We compare
this response with the behaviour of commercial paramagnetic
colloids having diameter 1µm (Dynabeads Myone, Dynal),
which are isotropic particles that have an induced moment
rather than a permanent one. In the latter case we find that the
particles form chains along the field direction as expected, for
both static and oscillating fields. In a mixture of paramagnetic
spherical particles and ferromagnetic ellipsoids, Fig.3(b), we
find that the AC field induces formation of chains composed
by paramagnetic particles, which orient parallel to the applied
field, and chains composed by the ferromagnetic ellipsoids
which orient in the perpendicular direction. The system thus
assembles into a square-like network,that resembles to those
formedby orthogonal dipoles29. When the field is switched
off, the chains of paramagnetic colloids disintegrate because
of thermal forces. In contrast, the chains of ellipsoids remain
since they are kept together by strong dipolar forces. How-
ever, their mean orientations fluctuate due to thermal forces.
In order to explore the reorientational dynamics of the rib-
bons, we start by analyzing the fraction of particles φ having
an average orientation θ , considering only elementary units
such as single ellipsoids, dimers and trimers, Fig.3(c). In ab-
sence of field (deshed lines) monomers, dimers or trimers dis-
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Fig. 3 (a) Two images showing a ribbon of hematite ellipsoids reorienting perpendicular to the direction of an oscillating field direction. The
applied field has amplitude H0 = 1600Am−1 and angular frequency ω = 314.1rads−1. The corresponding video (see MovieS1) can be found
in the Supporting Information (SI). (b) Microscope image showing the orientation of ribbons (darker particles) and chains of paramagnetic
colloids (lighter particles) subjected to an oscillating field oriented along the y direction. (c) Fraction φ of particles with a given orientation θ

in absence of field (dashed lines) and in presence of an oscillating field with amplitude H0 = 780Am−1 and angular frequency
ω = 125.7rads−1 (filled points). (d) Dynamic state diagram in the (ω,H) plane. The video corresponding to the inset (MovieS2) can be found
in the SI.

play the same average behaviour, with no preferred orienta-
tion. The filled points in Fig.3(c) indicate the behaviour of the
various species under an applied field oscillating with angular
frequency ω = 314.1rads−1 and amplitude H = 1600Am−1.
Once the AC field is applied along the y direction, the
monomers are able to follow the field synchronously and os-
cillate periodically around their long axis. The driving mech-
anism for this behaviour is the torque exerted on the ellipsoids
by the oscillatory field. Consequently, a high fraction of ellip-
soids orients at small θ . As the length of the ribbon increases,
the composite structures show a larger tendency to orient with
the chain axis perpendicular to the field, where θ becomes
larger. Larger agregates like trimers require a higher torque to
stand up above the plane in order to follow the field modula-
tions because of the increase in the rotational friction coeffi-
cient. Thus at parity of applied field, the more elongated struc-
tures show the opposite behaviour, and reorient in the horizon-
tal (x,y) plane, MovieS1 in the Supporting Information (SI).
Fig.3(d) shows the dynamic state diagram, separating the re-
gion in the (ω,H) plane where long ribbons orients perpendic-
ular to the field (”ribbon” region), from the region where the
ribbons break into pieces. The latter behaviour arises since at
high field strengths the magnetic torque exerted by the field
is able to induce the rotation of monomers and dimers within
the ribbons. A video illustrating this process (MoviS2) can be
found in the Supporting Information. At very low angular fre-
quencies, ω < 12.5rads−1, the ribbon are able to follow syn-
chronously the applied field, and perform oscillations which
avoid the perpendicular orientation.

5 Theoretical model

The dipolar energy of a chain made of homogeneously mag-
netized ellipsoids with magnetization M can be modelled as
an effective demagnetizing field energy, in the approximation
that all magnetic moments of particles are equal. The energy
per volume can be written as:

E
V

=−M(eee ·HHH)− ∆N
2

M2(eee ·nnn)2 , (2)

eee and nnn being the unit vectors aligned along the permanent
moment and the chain axis directions, respectively. Eq. 2 was
originally formulated by Stoner and Wohlfarth51 to describe
the equilibrium direction of a uniformly magnetized ellipsoid
subjected to an external field. The first term represents the en-
ergy associated with the applied field, being eee ·HHH proportional
to the cosine of the angle between the permanent moment of
the ellipsoid and the external field. The second term in Eq. 2
describes the energy per volume associated with the demag-
netizing field, being eee · nnn the cosine of the angle between the
permanent moment of the ellipsoid and the previously referred
chain longest axis. The demagnetized factor ∆N = N⊥−N‖ of
a chain of n particles is given by (see Appendix A):

∆N = π

(
ζ (3)+

1
2

ψ
(2)(n)− 1

n

(
π2

6
−ψ

(1)(n)
))

(3)

where subscripts ‖, ⊥ denote the parallel and perpendicular
components to the symmetry axis of the ellipsoid, respec-
tively. In Eq. 3 ζ is the zeta function, ψ the digamma function
and ψ(i) its derivative of order i. Eq. 2 has been used in the
past to study the optical anisotropy of magnetic colloids in AC
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fields.52,53 The governing equations for the particle are:

KKKeeeE = 0 (4)
−ξ nnn× ṅnn−KKKnnnE = 0 (5)

where ξ is the rotational friction coefficient of the ribbon, and
KKKaaa = aaa× ∂

∂aaa . We assume that, at relatively high frequency, the
magnetic equilibrium is established much faster as compared
to the evolution of the particle orientation given by the director
nnn. We next assume that the external field oscillates as HHH =
H cos(ωt)hhh, with hhh = (1,0). In this case the characteristic
time of particle orientation τr = ξr∆N/H2V >> 1/ω is much
greater than the period of the AC field, and Eq. 5 can be solved
by separating slow and fast time scales. By taking the time
average with respect to the fast oscillation of the AC field we
obtain (Appendix B):

−ξ nnn× ṅnn =
1
2

H2V
∆N

nnn ·hhh[nnn×hhh] . (6)

Introducing the direction angle ϑ as, nnn = (cos(ϑ),sin(ϑ));
ṅnn = (−sin(ϑ),cos(ϑ))ϑ̇ , Eq. 6 can be written as:

ϑ̇ =
ωc

2ωh2
a

cos(ϑ)sin(ϑ) , (7)

where ha = ∆N M/H describes the ratio of the effective de-
magnetizing field strength and the applied field strength and
ωc = ∆N M2V/ξ is the critical frequency of the particle mo-
tion. The time is rescaled according to t̃ = ωt. Eq. 7 has two
stationary points at ϑ = 0 and ϑ = π/2. It is easy to see that
the first is unstable, while the last is stable. Thus, for small
AC fields the particle orients in the direction perpendicular to
the field, and the solution of Eq. 7 reads as

tan(ϑ(t̃)) = tan(ϑ(0))exp(ωct̃/(2ωh2
a)) , (8)

and the (x,y) components of the director nnn are:

nx(t̃) =
1√

1+ tan2 (ϑ(0))exp(ωct̃/(ωh2
a))

(9)

ny(t̃) =
tan(ϑ(0))exp(ωct̃/(2ωh2

a))√
1+ tan2 (ϑ(0))exp(ωct̃/(ωh2

a))
(10)

We point out that Eq. 2 contains the effect of the dipolar inter-
action between the particles, since as shown in Appendix A,
the demagnetizing field energy can be derived from the dipo-
lar energy. The general case considering large field amplitude
is more complex and out of the scope of this article, it will be
treated in a separate work.

6 Discussion and conclusions

The model introduced in the previous section allows explain-
ing the ribbon orientation perpendicular to the applied field.

With no applied field, the magnetic energy of a chain of
dipoles is minimal when these dipoles are oriented along the
chain axis in the head to tail configuration. A coherent devia-
tion of the magnetic moments of the particles from the direc-
tion of chain axis will increase the dipolar energy. As shown
in Appendix A, this situation is similar to the increase of the
demagnetizing energy of an homogeneously magnetized ellip-
soid when the magnetization direction deviates from the direc-
tion of its long axis. Under an external field, the direction of
the dipoles in the chain is determined by the interaction with
the field and by the effective anisotropy field along the chain
axis, Eq. 2 of the model.
If the applied field oscillates, the chain will try to reorient
along the field direction. However when the period of the
applied field is small compared with the characteristic reori-
entation time of the chain, the chain will not follow the field.
In this situation, during a semi-period the applied field will
point in the opposite direction with respect to the dipole mo-
ments in the chain, and this will raise the magnetic energy of
chain. In order to reduce this energetic contribution, the chain
will tend to orient perpendicular to the applied field.
In Fig.4 we show the results from an average over more than
15 experiments where we measure the evolution of the ny com-
ponent for a ribbon composed by 4 ellipsoids. The latter are
subjected to an external oscillating field oriented along the x
axis and at different amplitudes of the applied field (angu-
lar frequency ω = 314.1rads−1). In all the experiments the
earth magnetic field was compensated and the ribbons were
initially oriented along the x direction. In agreement with the
behaviour predicted by Eq. 10, as time proceeds the chains
align perpendicular to the direction of the applied field, and
the process speeds up by increasing the field amplitude. The
compact ribbons behave as rods composed by four stacked el-
lipsoids, thus having a total length L = 4b, a diameter a and
a corresponding rotational friction coefficient ξ = πηL3

3log [L/a] .
We fit the experimental data with Eq. 10, using the initial
chain orientation, tan(ϑ(0)), and the ratio β ≡ ωc/h2

a as ad-
justable parameters. In particular we use a multiple fit taking
tan(ϑ(0)) as a common parameter and extracting the depen-
dence β = β (H), which is showed in the inset of Fig.5. We
use these results to estimate the demagnetization factor, which
in International System units is ∆N = µwVc

4πξ β
= 3.2. Eq. 3 gives

a similar value of ∆N ∼= 2.6. It should be noted that ∆N is cal-
culated using the approximation of a chain of spherical parti-
cles and assuming that the field generated by each particle is
equal to the field generated by a dipole located at the particle
center. Considering ellipsoids rather than spherical particles
would only introduce a small correction to the demagnetiza-
tion factor since the ratio between the long and the short axis
a/b= 0.7 is close to one. We also note that longer chains com-
posed by a higher number of ellipsoids behave qualitatively in
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Fig. 4 Log-Log plot of the ny component for a ribbon subjected to a
magnetic field oscillating along the x direction with angular
frequency ω = 314.1rads−1 and different amplitudes. Continuous
lines are fit following Eq. 10 in the text. Inset: variation of the
parameter β ≡ ωc/h2

a obtained from the fits in the main panel versus
field strength H. The continuous red line is β ∼ H2.

the same way, although the corresponding increase in the ro-
tational friction coefficient favours bending and later rupture
of the chain.
In conclusion, we studied experimentally and theoretically the
orientational dynamics of interacting ferromagnetic ellipsoids
subjected to static and time dependent magnetic fields. The
presented model explains the observed behavior where chains
of dipolar particles orient perpendicular to the direction of
the oscillating field. A similar feature will occur for spher-
ical ferromagnetic particles when the flexibility of the mag-
netic filament favours its orientation perpendicularly to the AC
field.54,55 It has also been reported in other soft matter systems
which use ferromagnetic particles,56 thus our findings can be
useful for different systems. On the application side, ferro-
magnetic particles subjected to AC field are often encountered
in magnetorheological and ferrofluid systems. For example,
heating can be induced in ferromagnetic materials by expos-
ing them to high frequency magnetic fields. This technique
known as ”magnetic hyperthermia” is used to destroy danger-
ous cells infecting tissues in living systems.57 Moreover, the
possibility to remotely control microscopic chains and their
assembly/disassembly under an external field can be useful
for microfluidics systems. In this context, optically trapped
chains of colloidal silica particles have been used to displace
fluids into customized microscopic channels.58 More work in
these directions have been done with magnetic colloids,59–62

since low frequency magnetic fields can actuate over particles

without unwanted heating effect such as those caused by ad-
sorption of focalized laser light. Examples of mechanical stir-
rers composed by chains of paramagnetic colloids have been
developed by several groups.63–67 Our approach could pro-
vide further functionality to these systems, since the orienta-
tion of the chains can be controlled via the use of both static
or time dependent magnetic fields. Finally, the ability to align
anisotropic structures perpendicular to the external field gives
new possibilities for microrheological measurements.68

Appendix

A Derivation of the demagnetization energy
from dipolar interactions

In the continuum approximation the magnetic field created by
a given magnetization distribution MMM(rrr) is:

HHH(rrr) =−∇rrr

∫ ∫ MMM(rrr′) · (rrr− rrr′)
|rrr− rrr′|3

drrr′ . (11)

The corresponding dipolar energy reads as:

Ed =−1
2

∫
MMM(rrr)HHH(rrr)drrr . (12)

Taking into account that:

rrr− rrr′

|rrr− rrr′|3
= ∇rrr′

1
|rrr− rrr′|

.

Eq. 11 can be expressed as:

HHH(rrr) = ∇rrr

(
−
∫ Mn(rrr′)
|rrr− rrr′|

dS′+
∫ div(MMM(rrr′))
|rrr− rrr′|

drrr′
)
, (13)

where Mn is the surface magnetization. For an ellipsoid with
uniform magnetization (div(MMM) = 0) and the first term gives
the homogeneous field in the particle body, that can be ex-
pressed in terms of the demagnetizing field coefficients. For
an ellipsoid of revolution of volume V , H‖ = −N‖M‖ and
H⊥ = −N⊥M⊥, where subscripts ‖,⊥ denote the components
parallel and perpendicular to the symmetry axis of ellipsoid,
respectively. As a result the dipolar interaction energy reads
as:

Ed =
V
2
(N‖M

2
‖ +N⊥M2

⊥) . (14)

In the case of a chain of N dipoles, the dipolar energy (Eq.12)
can be expressed as follows:

Ed =−1
2 ∑

j 6=i
mmmiHHH i j (15)

where,

HHH i j =−
mmm j

|rrri j|3
+

3rrri j(mmm j · rrri j)

|rrri j|5
(16)
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mmmi is the magnetic moment of particle i, and rrri j is the radius
vector between the particles i and j. If all the magnetic mo-
ments in the chain are equal, we can write:

Ed =
N−1

∑
i=1

N

∑
j=i+1

( mmm2

|rrri j|3
− 3(mmm ·nnn)2

|rrri j|3
)
. (17)

For an ensemble of spherical particles having diameter d, the
dipolar interaction energy reads as:

Ed =−3m2(eee ·nnn)2
N−1

∑
i=1

N

∑
j=i+1

1
r3

i j
=−3m2(eee ·nnn)2 1

d3

N−1

∑
l=1

N− l
l3

where nnn denotes the unit vector along the axis of the chain
and eee is the unit vector along the magnetic moments of the
particles. Since the total volume of the chain is V = πNd3/6
we obtain:

Ed =−π

2
M2V

(eee ·nnn)2

N

N−1

∑
l=1

N− l
l3 (18)

The sum can be expressed through digamma and zeta func-
tions as:

1
N

N−1

∑
l=1

N− l
l3 = ζ (3)+

1
2

ψ
(2)(N)− 1

N

(
π2

6
−ψ

(1)(N)
)

(19)

where ψ(i)(x) is the i order derivative of the digamma function
ψ(x). Finally we obtain Eq.3 of the main text.

B Derivation of Equation 6 in the text

By considering a small amplitude of the field HHH, one can find a
solution of Eq. 4 using the power series: eee = eee0+eee1+eee2. The
zero order solution is eee0 = nnn and the condition eee2 = 1 gives
eee0 · eee1 = 0, and eee0 · eee2 = −eee2

1/2. Up to the second order term
eee ·nnn = 1+ eee2 ·nnn and Eq. 4 reads as:

−MH cos(ωt)eee×hhh−∆NM2eee ·nnn[eee×nnn] = 0 .

This expression in the first order gives:

−MH cos(ωt)eee0×hhh−∆NM2[eee1×nnn] = 0 , (20)

and up to the second order,

−MH cos(ωt)eee1×hhh−∆NM2[eee2×nnn] = 0 .

Eq. 20 can be rewritten as:

eee1 =−
MH cos(ωt)[nnn× [nnn×hhh]]

∆N M2 , (21)

and Eq. 4 in the main text as:

−ξ nnn× ṅnn =−∆NM2V eee ·nnn[nnn× eee] . (22)

By considering terms up to the second order,

−ξ nnn× ṅnn =−∆N M2V [nnn× eee1 +nnn× eee2] . (23)

As a result, Eq. 23 reduces to:

−ξ nnn× ṅnn =−∆NM2V nnn · eee1−MH cos(ωt)V [eee1×hhh] (24)

Finally, using Eq. 21 we have:

ξ nnn× ṅnn = ∆NM2V
{

nnn · eee1−
(H cos(ωt)

∆N M

)2
[[nnn× [nnn×hhh]×hhh]

}
In the slow time scale of the particle motion this equation re-
duces to Eq.6 in the main text by taking the average with re-
spect to one period of the AC field.
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