
PHYSICAL REVIEW C 74, 054317 (2006)

Entropy of a correlated system of nucleons
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Realistic nucleon-nucleon interactions induce correlations to the nuclear many-body system, which lead to a
fragmentation of the single-particle strength over a wide range of energies and momenta. We address the question
of how this fragmentation affects the thermodynamical properties of nuclear matter. In particular, we show that the
entropy can be computed with the help of a spectral function, which can be evaluated in terms of the self-energy
obtained in the self-consistent Green’s function approach. Results for the density and temperature dependences
of the entropy per particle for symmetric nuclear matter are presented and compared to the results of lowest order
finite-temperature Brueckner-Hartree-Fock calculations. The effects of correlations on the calculated entropy
are small, if the appropriate quasiparticle approximation is used. The results demonstrate the thermodynamical
consistency of the self-consistent T -matrix approximation for the evaluation of the Green’s functions.
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I. INTRODUCTION

Entropy is a key quantity in the study of the thermody-
namical (TD) properties of fermionic systems. In the context
of correlated Fermi liquids, the study of entropy has been
triggered by the experimental and theoretical studies of 3He
[1–6]. The specific heat of this system is experimentally
known to have a nontrivial temperature dependence [7] of
the type T 3 ln T . Such a nonanalytical behavior can be seen to
arise within Fermi liquid theory from the coupling between
quasiparticles and incoherent spin fluctuations (quasiholes
in the triplet state), which give rise to nonanalytical energy
dependences in the self-energy [8]. These nonanalyticities are
in fact a very general feature of all normal Fermi liquids and
their existence is not related to the particular details of 3He
systems.

Hot symmetric nuclear matter (SNM), on the other hand,
is an infinite fermionic system composed of nucleons at very
high densities. In this ideal system, only the strong interaction
among nucleons is considered and any other interaction, such
as the electromagnetic one between protons, is neglected. The
temperatures usually considered for this system are of the
order of tenths of MeV and are somewhat small if compared
with the typical energy scales of nuclear matter (e.g., the free
Fermi energy at saturation density is about εF ∼ 40 MeV,
and thus T/εF ∼ 0.5 for T = 20 MeV, the highest temper-
atures considered here). We expect that a finite-temperature
approach to SNM can fairly describe the properties of the
hot environments that could exist either inside the cores of
supernovae at the latest stage of their evolution [9] or in the
collisions of heavy nuclei at intermediate energies [10]. The
TD properties of these systems and, in particular, the entropy
are important quantities for understanding astrophysical and
heavy-ion-physics phenomena. In core-collapse supernovae,
for instance, the evolution and dynamics occur at a fixed
entropy per baryon [11]. Moreover, the entropy produc-
tion in multifragmentation events in heavy-ion collisions is

considered to be a crucial quantity for determining the mass
fragment distribution [12].

Hot SNM has been usually studied in a mean-field approx-
imation with effective phenomenological nucleon-nucleon
(NN ) forces, such as the Skyrme or Gogny interactions
[13,14], or within a relativistic mean-field approximation [15].
Other many-body approaches that have been used in the study
of SNM include lattice models [16] or three-loop calculations
within chiral perturbation theory at finite temperature [17].
However, when dealing with realistic NN potentials, more
sophisticated many-body techniques are needed. The strong
short-range repulsion and the tensor components of these
potentials modify substantially the many-body wave function,
which is no longer well described in terms of a free Fermi gas
Slater determinant. Particle-particle correlations, for instance,
are crucial for a correct description of SNM properties
from realistic NN potentials. The Brueckner-Hartree-Fock
(BHF) approach accounts for such correlations by means of a
summation of an infinite series of suitable ladder diagrams
[18]. In fact, the BHF approximation arises from a well-
defined expansion for the energy of a fermionic system at
zero temperature, the so-called Brueckner-Bethe-Goldstone
expansion [19]. At finite temperature, a similar summation
can be achieved in the so-called Bloch-de Dominicis (BdD)
approach [20]. However, this approach is not devised to
reproduce the energy of the system. Instead, it aims at
computing the TD grand potential and, from it, all the
TD properties of the system. In particular, the entropy includes
the correlations embedded in the approach [21].

Traditionally, however, the BHF approach has been ex-
tended to finite temperatures in a more naive way: The energy
of the system is computed from a simple generalization of
the T = 0 formalism to finite temperature and the entropy of
the system is computed from a mean-field expression [22,23].
Finally, let us also note that relativistic BHF-type calculations
at finite temperature have also been reported in the literature
[24,25].
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A consistent treatment of correlations in quantum many-
body systems requires the inclusion of particle-particle and
hole-hole scattering terms. The usual approach is the so-called
ladder approximation, or T -matrix approximation, in which an
expansion of the single-particle Green’s function in terms of
diagrams is achieved. Such an expansion goes beyond the BHF
approach in the sense that the propagation of both particles and
holes are treated in the same footing. Within this approach, the
propagator of a correlated fermion is not simply described
in terms of one quasiparticle pole. Instead, the strength of
a momentum state k is fragmented over a wide range of
energies. The process of finding the Green’s function for such
a many-body system is unavoidably self-consistent, since the
propagation of a nucleon is affected by the interactions with
the surrounding nucleons, which in turn are also described
in terms of the Green’s function. Although one can easily
write down the diagrammatic expansion that gives rise to this
self-consistent Green’s function (SCGF), it has taken a lot
of time to obtain a numerical solution of the full problem.
A major well-known issue is related to the so-called pairing
instability that appears in the zero-temperature formalism
when the propagation of holes is considered [26–28]. Never-
theless, calculations have been performed at the SCGF level
at zero temperature within different approximations: with a
quasiparticle self-consistent approach [29], with a discretized
parametrization of the spectral function [30], or with a simpli-
fied separable NN interaction [31]. In all these approaches
the final output is the single-particle spectral function of
a nucleon inside matter, which can also be obtained from
other many-body approaches, such as correlated basis function
theory [32].

In the case of SCGF, a finite-temperature treatment has
been the keystone for obtaining a complete numerical solution
from a realistic NN potential [33–35]. Once the self-consistent
propagator is obtained in this method, one can easily obtain
information on the microscopic properties (such as the
momentum distributions, self-energies, or spectral functions
of the nucleon) as well as on the bulk properties of the
system (the energy per particle via the Galitski-Migdal-Koltun
(GMK) sum rule, for instance [36,37]). For a complete TD
description of the system, however, one should compute the
relevant TD potential of a statistical quantum mechanical
system (i.e., the free energy). A suitable calculation of the
entropy is thus required if this formalism is to be used in
any practical description of hot SNM. Here, we will follow
the Luttinger-Ward (LW) approach [6,38], in which the grand
potential is computed from the full single-particle propagator.
An analysis of the properties of SNM within this formalism
has been recently published by Soma and Bożek [39]. In the
following we shall show that one does not need to compute
TD quantities within a full LW approach as is done in [39],
provided that some approximations for the entropy are valid.
Finally, let us notice that the LW formalism has been widely
used in other many-body physics problems, ranging from
relativistic plasmas [40] to resonances in heavy-ion collisions
[41].

In the following section, we will describe in detail the SCGF
approach at finite temperature and the LW formalism that we
will use in our calculations of the entropy. The numerical

results derived from this formalism will be divided in two
different parts. Section III will be devoted to the microscopic
results, and Sec. IV will describe the bulk TD properties of a
correlated system of nucleons. Finally, a brief summary will
be given in Sec. V.

II. FORMALISM

A. The ladder approximation

With the help of the single-particle propagator, we can
obtain all the one-body (and even some two-body) properties
of a many-body system [42]. In the Green’s function approach,
one aims to compute the single-particle propagator, which, in
the grand-canonical ensemble, is defined according to

iG(kt, k′t ′) = Tr
{
ρ̂T

[
ak(t)a†

k′(t ′)
]}

, (1)

where we have introduced the density matrix operator

ρ̂ = 1

Z
e−β(Ĥ−µN̂) (2)

and the partition function

Z = Tr{e−β(Ĥ−µN̂)}. (3)

In Eq. (1), T is the time-ordering operator in such a way that
the Heisenberg creation (annihilation) operator a

†
k(t) [ak(t)]

with the largest time argument t (or it if t is imaginary) is put
to the left, with a minus sign included for each commutation.
In these equations β denotes the inverse temperature and µ

is the chemical potential of the system. For simplicity, we
will neglect the spin-isospin structure of this propagator in
the following. Finally, the traces Tr are to be taken over all
the energy and particle number eigenstates of the system.
The cyclic invariance of these traces imply the following
quasiperiodicity condition for the Green’s function:

G(kt = 0, k′t ′) = −eβµG(kt = −iβ, k′t ′). (4)

One can thus Fourier transform the time dependence of the
propagator in terms of some Fourier coefficients G(k, zν), de-
pending on the discrete Matsubara frequencies zν = (2ν+1)π

−iβ
+

µ. A Lehmann decomposition of these coefficients is achieved
by means of the spectral function A(k, ω):

G(k, zν) =
∫ ∞

−∞

dω

2π

A(k, ω)

zν − ω
. (5)

The function G(k, zν) evaluated at the Matsubara frequencies
can be analytically continued for all nonreal z. By using the
Plemelj formula, the spectral function can be related with the
values of G close to the real axis:

A(k, ω) = −2Im G(k, ω+) (6)

(where we use the notation ω+ = ω + iη). The single-particle
Green’s function can be obtained from Dyson’s equation,
which for a translationally invariant system reduces to the
algebraic equation[

ω − k2

2m
− �(k, ω)

]
G(k, ω) = 1, (7)
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where �(k, ω) denotes a complex self-energy. By expanding
the self-energy in terms of one-particle Green’s function, it
can be shown that � and G share the same analytic properties.
Thus, one writes the following spectral decomposition for �:

�(k, z) = �HF(k) +
∫ ∞

−∞

dω

2π

	(k, ω)

z − ω
, (8)

where the width 	(k, ω) is related to the imaginary part of �

by

	(k, ω) = −2 Im �(k, ω+), (9)

and it is real and positive for all energy and momenta [43]. The
term �HF(k) in Eq. (8) is a real energy-independent generalized
Hartree-Fock contribution to the self-energy.

The self-energy can be derived from an in-medium two-
body interaction (the so-called scattering T matrix) that
includes the correlations induced by the strong short-range and
tensor components of a realistic two-body NN force. Within
the ladder approximation, one can indeed relate the self-energy
and the retarded T matrix by [44,45]

Im �(k, ω+) =
∫

d3k′

(2π )3

∫ ∞

−∞

dω′

2π
〈kk′|Im T (ω + ω′

+)|kk′〉A
×A(k′, ω′)[f (ω′) + b(ω + ω′)], (10)

where we have introduced the Fermi-Dirac distribution

f (ω) = 1

eβ[ω−µ] + 1
(11)

and the Bose-Einstein distribution

b(
) = 1

eβ[
−2µ] − 1
. (12)

The pole of the Bose function b(
) at 
 = 2µ is exactly
canceled by a zero in the T matrix [27,46] and thus the
integrand remains finite as long as the T matrix does not
acquire a pole at this energy. This pole appears only for
temperatures below a certain critical temperature and it is
closely related to the onset of pairing among nucleons [27,47].

Within the ladder approximation, the in-medium T matrix
is determined as a solution of the integral equation

〈kk′|T (
+)|pp′〉A = 〈kk′|V |pp′〉A
+

∫
d3q

(2π )3

∫
d3q ′

(2π )3
〈kk′|V |qq′〉A

×G0
II (qq′,
+)〈qq′|T (
+)|pp′〉A, (13)

where we have introduced the two-particle Green’s function
of two noninteracting but dressed nucleons:

G0
II (k1, k2,
+) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
A(k1, ω)A(k2, ω

′)

× 1 − f (ω) − f (ω′)

+ − ω − ω′ . (14)

Diagrammatically, the T -matrix approximation is depicted in
Fig. 1, where the dressed one-particle propagators are given by
two double lines. In general, the equations of motion arising
within the Green’s function method couple the N -particle
propagator to the (N + 1)-particle propagator whenever we
have a two-body interaction. The Dyson equation for the

FIG. 1. Diagrammatical representation of the T matrix within the
ladder approximation.

single-particle Green’s function involves, for instance, the full
two-particle Green’s function GII . In the SCGF approach
within the ladder approximation, however, one ignores the
effects of three- and more particle propagators by using a
function, G0

II , which is a product of two dressed one-body
propagators. In that way, one solves self-consistently the
equations for the one-body G and the approximated two-body
G0

II propagators.
If one wants to solve Eq. (13) in an efficient way, a partial

wave decomposition is needed. After expressing G0
II as a

function of the total P = k1 + k2 and the relative momenta
kr = (k1 − k2)/2, one can perform the usual angle-average
approximation on the angle between P and kr, so that G0

II is
expressed only in terms of the modulus P and kr :

Ḡ0
II (P, kr ,
+) = 1

2

∫ 1

−1
d(cos θ )

×G0
II (|P + kr|, |P − kr|,
+). (15)

This approximation leads to a decoupling of the partial waves
with different total angular momentum J , which in its turn
implies that Eq. (13) becomes a one-dimensional integral
equation:〈
kr

∣∣T JST
LL′ (P,
+)

∣∣k′
r

〉
A

= 〈
kr

∣∣V JST
LL′

∣∣k′
r

〉
A

+
∑
L′′

∫ ∞

0

dk′′
r

(2π )3
k′′2
r 〈kr |V JST

LL′′ |k′′
r 〉A

× Ḡ0
II (P, k′′

r , 
+)

×〈k′′
r |T JST

LL′′ (P,
+)|k′
r〉A. (16)

By summing over all partial waves, we get the T matrix as
needed in the solution of Eq. (13):

〈kk′| Im T (
+)|kk′〉A = 1

4π

∑
JST L

(2J + 1)(2T + 1)

×〈q| Im T JST
LL (P,
+)|q〉A (17)

The only remaining piece is now the generalized Hartree-Fock
contribution to the self-energy:

�HF(k) = 1

8π

∑
JST L

(2J + 1)(2T + 1)

×
∫

d3k′

(2π )3
〈q(k, k′)|V JST

LL |q(k, k′)〉An(k′), (18)

where we have introduced the momentum distribution

n(k) =
∫ ∞

−∞

dω

2π
A(k, ω)f (ω). (19)

In a self-consistent procedure, Eqs. (8), (10), and (13)–(16)
are solved at a given temperature and density. The chemical
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potential µ is determined at each iteration by inverting

ρ = ν

∫
d3k

(2π )3
n(k, µ), (20)

where ν denotes the spin-isospin degeneracy of the system
(ν = 4 in the case of symmetric nuclear matter). As a final
output, once convergence is reached, one obtains the single-
particle propagator from Dyson’s equation and, from its imag-
inary part, the spectral function A(k, ω). From this function,
several micro- and macroscopic properties of the system can
be computed. For instance, the momentum distribution given
by Eq. (19) or the total energy per particle of the system,
accessible from the GMK sum rule, is

EGMK

A
= ν

ρ

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π

1

2

(
k2

2m
+ ω

)
A(k, ω)f (ω),

(21)

where A is the total number of particles of the system. Further
on, we will assess the question of how to compute the partition
function and the entropy of a system of nucleons from the
spectral function A.

Before doing so, however, let us consider some interesting
approximations to the SCGF method. By using Dyson’s
equation, it is straightforward to show that the spectral function
can be written as

A(k, ω) = 	(k, ω)[
ω − k2

2m
− Re�(k, ω)

]2
+ [

	(k,ω)
2

]2
. (22)

It is interesting to note that this is a positive defined function
for all energy and momenta [43], fulfilling the following sum
rule [48–50]: ∫ ∞

−∞

dω

2π
A(k, ω) = 1. (23)

One can obtain a simplified set of equations by taking the zero-
width limit, 	 → 0 in the previous expression, thus obtaining
the δ function:

A(k, ω) = 2πδ[ω − εqp(k)], (24)

where the quasiparticle spectrum is derived by means of the
real part of the self-energy:

εqp(k) = k2

2m
+ Re�[k, εqp(k)]. (25)

This is the so-called quasiparticle self-consistent Green’s
Function method. In the following, we will not use this
approximation. However, we shall extensively use the δ-peak
approximation to the spectral function, Eq. (24), with the
single-particle energies εqp(k) defined by Eq. (25) with the
self-energy of our SCGF calculation.

In addition, we will also consider the BHF approach to
nuclear matter. This can be derived from the SCGF method
if one takes the quasiparticle approximation, Eq. (24), and, in
addition, one makes the following substitution:

[1 − f (ω) − f (ω′)] → [1 − f (ω)][1 − f (ω′)] (26)

in the two-particle propagator, Eq. (14). In the T → 0 limit,
this expression becomes the Pauli operator and G0

II reduces to

the particle-particle propagator. From this approximation, one
can see that the T matrix reduces to the well-known G-matrix
in-medium interaction:

〈kk′|G(
+)|pp′〉A = 〈kk′|V |pp′〉A
+

∫
d3q

(2π )3

∫
d3q ′

(2π )3
〈kk′|V |qq′〉A

× [1 − f [εBHF(q)]][1 − f [εBHF(q ′)]]

+ − εBHF(q) − εBHF(q ′)

×〈qq′|G(
+)|pp′〉A, (27)

where the single-particle spectra of nucleons in the BHF
approach, εBHF(k), are given by

εBHF(k) = k2

2m
+ Re�BHF(k). (28)

In this approximation, the self-energy is given in terms of the
G matrix by

�BHF(k) =
∫

d3k′

(2π )3
f [εBHF(k′)]

×〈kk′|G[εBHF(k) + εBHF(k′)]|kk′〉A (29)

and the total energy per particle is obtained from

EBHF

A
= ν

ρ

∫
d3k

(2π )3

[
k2

2m
+ 1

2
Re�BHF(k)

]
f [εBHF(k)]. (30)

We shall make two more comments concerning this finite-
temperature generalization of the BHF approach. On the one
hand, one must be aware that hole-hole propagation is the
cause of the Bose term in Eq. (10). If the BHF is to be derived
from the SCGF approach, one should neglect this term, so that
the imaginary part of the self-energy reads

Im �BHF(k) =
∫

d3k′

(2π )3
f [εBHF(k′)]

×〈kk′|Im G[εBHF(k) + εBHF(k′)]|kk′〉A (31)

On the other hand, one should say that the BHF approach
obtained from this approximation of the SCGF method is not
fully justified from basic first principles. Indeed, the finite-
temperature generalization of the T = 0 Bethe-Goldstone
expansion is given by the BdD approach. In that theory, a
similar expression to Eq. (27) for the in-medium temperature-
dependent interaction can be obtained, but in principle there
is not a straightforward relation with Eq. (30) for the energy
per particle of the finite-temperature system. Nevertheless, one
can see that this approximation is a reasonable one, because
the dominant diagrams of the BdD expansion reduce to this
finite-temperature BHF approach at low temperatures [21]. In
the BHF approach that we will use here, the free energy is
obtained from the energy per particle of Eq. (30) together with
the mean-field expression for the entropy of the system:

SBHF = −ν

∫
d3k

(2π )3
{f [εBHF(k)] ln f [εBHF(k)]

+ (1 − f [εBHF(k)]) ln(1 − f [εBHF(k)])}. (32)
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B. Luttinger-Ward formalism

From a statistical mechanics point of view, the macroscopic
information of the system is contained solely in the partition
function. Once this function is known, its derivatives give
access to the TD properties of the system. However, from a
microscopic point of view, it is well known that the one-body
properties can be derived from the dressed single-particle
propagator of the system. Now one may ask whether there is
a connection between both functions and, in particular, if the
single-particle propagator is enough for building the partition
function. The answer, given by Luttinger and Ward [39] more
than forty years ago, is yes. The expression for the partition
function thus obtained turns out to have some interesting
properties that were later on exploited by Baym [51] in his
well-known discussion of the TD consistency of many-body
approaches. The starting point is the so-called Luttinger-Ward
expression of the partition function of the system:

ln Z = Tr�(k, zν) G(k, zν) + Tr ln[−G−1(k, zν)] − �[G],

(33)

where the functional �[G] has been introduced and where the
trace Tr means a sum over all momentum states and Matsubara
frequencies:

Tr →
∑
�k,ν

ezνη, (34)

with η = 0+ small and positive and such that
limRez→∞ ηRez = ∞. In TD equilibrium, the grand-partition
function is stationary under variations of the Green’s function,

δ ln Z

δG

∣∣∣∣
G0

= 0, (35)

and thus the functional � should satisfy the following
condition:

δ�

δG

∣∣∣∣
G0

= �. (36)

To obtain the previous expression, we have used Dyson’s
equation, Eq. (7), to functionally derive the self-energy �

with respect to G. In fact, within the LW formalism, � is a
functional of the propagator and one can take Eq. (36) as its
definition. Usually, however, in a given many-body approach
one assumes a certain approximation to the self-energy (in
our case, the ladder approximation). The functional � is then
fixed by Eq. (36) and the propagator is given by Dyson’s
equation, G−1 = G−1

0 + �. These ideas can be depicted
diagrammatically. For the ladder approximation, we show in
Fig. 2 the nth-order contribution to the self-energy �(n) (where
n denotes the number of bare interaction lines in the diagram).
By closing this diagram in its free vertices with a propagator,
we obtain the corresponding nth-order contribution to �. At
each order, however, this contribution should be divided by a
factor of 2n that takes into account the 2n possible places where
one can cut each propagator to obtain � from Eq. (36) [51].
The corresponding series for the functional is shown in terms
of diagrams in Fig. 3.

Σ(n)(k,ω) =

FIG. 2. nth order contribution to the ladder self-energy.

The evaluation of the sum in the partition function has to be
done with special care because of the cut in the logarithm. The
final expression for the grand potential 
 = −T ln Z reads


 = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
f (ω)2Im{ln[−G−1(k, ω+)]

+�(k, ω+)G(k, ω+)} + T �[G]. (37)

In this expression, the propagator and the self-energy are
computed above but close to the real axis. We have also
introduced the Fermi-Dirac distribution f (ω), Eq. (11). One
can now readily obtain the entropy by means of the TD relation

S = − ∂


∂T

∣∣∣∣
µ

. (38)

The stationarity of 
 with respect to changes in G is now very
useful, because it implies that in Eq. (37) only the temperature
derivatives of the Fermi functions are needed:

S = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π

∂f (ω)

∂T
2 Im {ln[−G−1(k, ω+)]

+�(k, ω+)G(k, ω+)} + ∂

∂T
T �[G]. (39)

This expression gives the entropy per unit volume of a
correlated system of fermions as a function of G,�, and � and
it is the fundamental equation from which we will derive most
of our results. The usefulness and applications of this formula
in the context of Fermi liquids were extensively discussed
in the pioneering work of Carneiro and Pethick [6]. In the
following, we will closely follow this reference and discuss
some of the more relevant approximations for our case.

One can explicitly compute the imaginary parts of the two
terms inside the integrals. The first term is the imaginary part
of a logarithm (i.e., the phase of its argument). We can thus
decompose the argument into its real and imaginary parts:

G−1(k, ω+) = ω − k2

2m
− Re�(k, ω) − iIm�(k, ω+)

= Re G−1(k, ω) + i

2
	(k, ω). (40)

We consider that the logarithm has a cut in the real negative
axis and we work in the sheet where ln(1) = 0. The arctan(z)
function goes from −π/2 to π/2 and is normally used to obtain
the phase of a complex number. Nevertheless, whenever the

FIG. 3. � functional for the T -matrix approximation.
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real part of G−1 becomes positive and provided that 	(k, ω)
is positive defined, the complex phase of the logarithm’s
argument will be in the quadrant III of the complex plane
and thus a factor π needs to be subtracted from the arctan
function to match the argument of −G−1. The result of the
imaginary part can thus be recast in the following form:

Im{ln[−G−1(k, ω+)]} = arctan λ(k, ω) − πθ

× [ReG−1(k, ω)], (41)

where we have introduced the function

λ(k, ω) = 	(k, ω)

2ReG−1(k, ω)
, (42)

which is nothing but the quotient between the imaginary and
the real part of the complex inverse propagator. The imaginary
part of the second term in the integral of Eq. (39) is given by

Im{�(k, ω+)G(k, ω+)} = Re�(k, ω+)ImG(k, ω+)

+ Im�(k, ω+)ReG(k, ω+)

= −1

2
Re�(k, ω)A(k, ω)

− 1

2
	(k, ω)ReG(k, ω). (43)

Using Eqs. (41) and (43), we can divide the entropy S into two
terms,

S = SDQ + S ′, (44)

given by

SDQ = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π

∂f (ω)

∂T
�(k, ω) (45)

and

S ′ = − ∂

∂T
T �[G] + ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π

∂f (ω)

∂T

×A(k, ω)Re�(k, ω), (46)

where we have introduced the function

�(k, ω) = 2πθ [ReG−1(k, ω)] − 2 arctan λ(k, ω)

+	(k, ω)ReG(k, ω). (47)

SDQ is a dynamical quasiparticle (DQ) entropy, which partially
takes into account the correlations of the dressed particles in
the medium. It includes some finite-width effects, as seen by
the fact that it is computed with a nonzero 	. The term S ′
accounts for higher order correlations. As was shown in [6],
this term arises from the cancellation between the temperature
derivative of T � and the second term of Eq. (46). The only
nonzero contributions that survive this cancellation come from
terms in the perturbation expansion that have at least two
vanishing energy denominators. In the following, we shall
make the assumption that S ′ is negligible. In this way, our
formalism is simplified because there is no need to evaluate
the � functional. This assumption, of course, needs to be
validated, and that is what we will do in the final part of
this work. As we will see, our approximation leads to TD
consistent results, which confirms that the contribution of S ′ is
small in the density and temperature range explored as far as

short-range correlations are concerned. In addition, it is worth
mentioning that it is precisely from the S ′ contribution that all
the anomalous temperature dependences of the entropy arise.
These anomalies, however, are mainly generated by terms in S ′
involving long-range correlations, which we do not consider in
our approach. Thus, by restricting ourselves to computing the
entropy with SDQ, we will lose these contributions and only
find analytical (S ∼ T , T 3) temperature dependences.

To study the DQ entropy, it is interesting to analyze the
properties of the function �(k, ω). The first term of � in
Eq. (47) is a step function with argument ReG−1. For a fixed
momentum k and as a function of the energy, this argument
is negative for energies below the quasiparticle peak εqp(k),
whereas it is positive for ω greater than εqp(k). Thus the step
function can be rewritten as

�1(k, ω) = 2πθ

[
ω − k2

2m
− Re�(k, ω)

]
= 2πθ [ω − εqp(k)].

(48)

At a fixed momentum, then, �1 equals zero at energies below
the quasiparticle pole and 2π above it. By using the relation

∂f (ω)

∂T
= −∂σ (ω)

∂ω
, (49)

where we have introduced the function

σ (ω) = −{f (ω) ln f (ω) + [1 − f (ω)] ln[1 − f (ω)]}, (50)

the contribution of �1 to the entropy is given by

S
DQ
1 = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π

∂σ (ω)

∂ω
2πθ [ω − εqp(k)]

= ν

∫
d3k

(2π )3

∫ εqp(k)

−∞
dω

∂σ (ω)

∂ω

= ν

∫
d3k

(2π )3
σ [εqp(k)] ≡ SQP. (51)

This expression corresponds to the entropy of a system of
undamped quasiparticles with real quasiparticle energies given
by Eq. (25). Whenever quasiparticles have long lifetimes, we
expect it to be a good approximation to the entropy. Indeed,
for any many-body approximation where the quasiparticle
energies are real (such as the Hartree-Fock case, for instance)
the full DQ entropy is simply given by Eq. (51). The rest of
the terms in � can be rewritten as a function of λ(k, ω):

�2(k, ω) = −2 arctan[λ(k, ω)] (52)

for the second term and

�3(k, ω) = 2λ(k, ω)

1 + λ2(k, ω)
, (53)

for the third one. Their total contribution to the entropy is then
given by

S
DQ
2 = ν

∫
d3k

(2π )3

∫
dω

2π

∂f (ω)

∂T

{
2λ(k, ω)

1 + λ2(k, ω)

− 2 arctan [λ(k, ω)]

}
. (54)

This expression involves a nonvanishing width 	 and it can
thus be thought of as a lifetime correction to the DQ entropy.
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It is clear that for infinitely long lived quasiparticles (	 = 0),
this contribution will be zero, but for large widths it can have
a non-negligible effect on the total entropy.

Let us return to Eq. (45) for the DQ entropy. After
performing a partial integration and using relation (49), we
see that the following expression for the DQ entropy holds:

SDQ = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
σ (ω)B(k, ω), (55)

provided that the B spectral function is defined as

B(k, ω) = ∂�(k, ω)

∂ω
. (56)

Equation (55) has several interesting properties. First, in the
free and the Hartree-Fock cases the B function reduces to
a delta peak and SDQ becomes the expected expression for
the entropy per particle. However, this does not mean that
SDQ neglects the finite width of quasiparticles, as we already
commented. In addition, it is easy to check that the B function
fulfils the following sum rule:∫ ∞

−∞

dω

2π
B(k, ω) = 1

2π
�(k, ω)

∣∣∞
−∞ = 1. (57)

Finally, let us remark that this expression is somewhat intuitive,
in the sense that it is a product of the statistical weighting factor
for the entropy σ (ω) times a spectral function that takes into
account the width of quasiparticles.

An alternative way to obtain the entropy within the LW
formalism is obtained by starting from Eq. (37) and using the
fact that

βf (ω) = − ∂

∂ω
ln[1 + e−β(ω−µ)]. (58)

Integrating by parts one easily obtains


 = −ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
T ln[1 + e−β(ω−µ)]B(k, ω)

+ T �[G], (59)

where we have introduced the function

B(k, ω) = − ∂

∂ω
2 Im {ln[−G−1(k, ω+)]

+�(k, ω+)G(k, ω+)}. (60)

The entropy is now obtained via the temperature derivative of
Eq. (59), which will only affect the explicit temperature factors
because of the stationarity condition, Eq. (35):

S = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
σ (ω)B(k, ω) + ∂

∂T
T �[G]. (61)

Different expressions for B can be obtained depending on
whether the derivative or the imaginary part is taken first. By
taking first the imaginary part and then the derivative, we see
that the following relation holds between � and B:

B(k, ω) = ∂

∂ω
�(k, ω) + ∂Re�(k, ω)

∂ω
A(k, ω)

+ Re�(k, ω)
∂A(k, ω)

∂ω
. (62)

For the first term of Eq. (60), however, it is instructive to
proceed in the opposite direction; first differentiating and then
taking the imaginary part, we obtain

B1(k, ω) = −2 Im

{
∂

∂ω
ln[−G−1(k, ω+)]

}

= −2 Im

{
G(k, ω+)

[
1 − ∂�(k, ω+)

∂ω

]}

= A(k, ω)

[
1 − ∂Re�(k, ω)

∂ω

]

− Re G(k, ω)
∂	(k, ω)

∂ω
. (63)

The derivative of the second term is easily computed and can
be separated into two parts:

B2(k, ω) = ∂Re G(k, ω)

∂ω
	(k, ω) + ReG(k, ω)

∂	(k, ω)

∂ω
(64)

and

B3(k, ω) = ∂Re�(k, ω)

∂ω
A(k, ω) + Re�(k, ω)

∂A(k, ω)

∂ω
.

(65)

Now we can write a compact expression for the B function:

B(k, ω) = A(k, ω) + ∂A(k, ω)

∂ω
Re �(k, ω)

+ ∂ Re G(k, ω)

∂ω
	(k, ω). (66)

In addition, if one uses the fact that B3 equals the last two
terms of Eq. (62), it is easy to obtain the following relation
between the B and the B spectral functions:

B(k, ω) = B1(k, ω) + B2(k, ω) =A(k, ω)

[
1 − ∂ Re �(k, ω)

∂ω

]

+ ∂ Re G(k, ω)

∂ω
	(k, ω), (67)

which also gives B as a function of A and the real and
imaginary parts of the propagator.

The expression for the entropy of Eq. (61), in terms of the
� functional plus a term containing the integral of a statistical
factor σ (ω) and the weighting function B(k, ω), has already
been obtained in, for instance, Ref. [40]. However, one should
take into account that our approximation for the entropy, SDQ,
differs from the first term of Eq. (61). In our case, we have
neglected the terms of Eq. (46), which are in fact canceling
each other to a certain degree, whereas by approximating the
entropy with the term of the B spectral function one would be
ignoring this cancellation. In fact, there is no reason to believe
that the first term of Eq. (61) should be a good approximation
to the full entropy, while the DQ entropy, given by the
convolution of the statistical factor σ (ω) and the B spectral
function, gives very reasonable results as we shall see in the
following.

Also illustrative is the following decomposition of SDQ into
two terms:

SA
1 = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
σ (ω)A(k, ω) (68)
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and

SA
2 = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
σ (ω)

{
∂ReG(k, ω)

∂ω
	(k, ω)

−A(k, ω)
∂Re�(k, ω)

∂ω

}
. (69)

This justifies somehow the naive generalization to the expres-
sion of the entropy, that has been used in the literature [52,53]
and which consists in approximating the entropy by formula
(68). This is, of course, not justified from TD grounds, but it
would be a natural extension of Eq. (19) to the case of the
entropy. In particular, within a quasiparticle approximation,
when both A(k, ω) and B(k, ω) become quasiparticle delta
functions, SDQ and SA

1 coincide and become the quasiparticle
approximation to the entropy, SQP,

SQP = ν

∫
d3k

(2π )3
σ [εqp(k)]. (70)

The DQ entropy, however, goes beyond the naive quasiparticle
approach. It introduces the corrections of Eq. (69), which, as
we will see later on, are non-negligible.

Another justification for Eq. (55) comes from the gen-
eralization of the �-functional technique to nonequilibrium
quantum systems. In Ref. [54], it was shown that, within certain
�-derivable approaches out of equilibrium, an H theorem
could be proved for a nonequilibrium kinetic entropy expressed
in terms of the full Green’s function and the self-energy. For
equilibrium systems, this kinetic entropy reduces to the sum
of SDQ, the local or Markovian part of the kinetic entropy
(Sloc in the language of Ref. [54]), plus S ′, the memory or
non-Markovian part of the entropy (Smem), which coincides
with the expression of the entropy Eq. (44).

If SDQ is close to the real entropy of the correlated system
S, we should recover TD consistency (i.e., the microscopically
computed quantities should coincide with the macroscopically
computed ones). The ladder approximation is known to
be a well-defined �-derivable approach [51]. In particular,
the (microscopic) chemical potential µ̃ computed from the
normalization condition

ρ = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
A(k, ω)f (ω, µ̃) (71)

should coincide with the (macroscopic) chemical potential
coming from the TD expression

µ(ρ, T ) = ∂F (ρ, T )

∂ρ

∣∣∣∣
T

, (72)

with F the free-energy per unit volume. At T = 0, this has been
numerically checked for the SCGF with separable potentials
in [55]. However, it is also well known that some many-body
approximations do not fulfill this check of consistency. The
BHF approach, for instance, badly violates the Hugenholtz-van
Hove theorem [56], which states that, at saturation density, the
chemical potential µ̃ and the free energy per particle F/A

should coincide. The difference between these two quantities
can be as large as 20 MeV [57].

In the following, we will present the numerical results
for the B spectral function and the different approximations
to the entropy obtained from SCGF calculations. Our aim is
twofold. On the one hand, we will show that the computation of
the DQ entropy is enough to maintain TD consistency; that is,
that for the range of densities and temperatures considered
SDQ gives a free energy that respects the Hugenholtz-van
Hove theorem. This consistency is embedded in the ladder
approximation (as shown by Baym [51]), but it is lack-
ing in other many-body approaches. In addition, the TD
consistency of our results seems to indicate that the S ′
contribution to the entropy is not crucial in the nuclear
matter case. Note that an exact evaluation of S ′ would
require knowledge of the � functional. This functional has
recently been computed also within a ladder approximation
[40], in a SCGF computation that differs from ours only
in some numerical details. The results that we will present
(specially those concerning the temperature dependence of
the entropy) agree substantially with those of Ref. [40]. We
believe that this is an indication of the consistency of both
approaches.

III. MICROSCOPIC RESULTS

All the results quoted in this and the following sections
have been obtained with the finite-temperature SCGF approach
of Ref. [33] using the CDBONN potential [58]. In the
numerical treatment, partial waves up to J = 8 have been
included. The Born approximation has been used for J � 3.
The quoted BHF results have been computed with the same
NN potential with partial waves up to J = 4. None of
the calculations includes three-body forces. We are thus unable
to reproduce the saturation point of SNM. In this sense,
the results presented here should be taken as a first study
of the TD properties within SCGF theory, focused on the
effects that correlations induce on the entropy of SNM.

In the previous section we have mentioned that the
properties of the B spectral function are very close to those of
the usual spectral function A(k, ω). It fulfils a sum rule and it
accounts somehow for the effect of the width of quasiparticles
in the DQ entropy. It is thus natural to compare the two
functions on the same plot. We can get a rough idea of
the differences of both functions following an argument first
proposed by Carneiro and Pethick. Let us express the spectral
function A as a function of the real and imaginary parts of
the self-energy. We will of course obtain the well-known
Lorentzian-like function of Eq. (22). For a given momentum,
the spectral function will have a peak around the quasiparticle
energy of height A ∼ 4/	[k, εqp(k)]. However, the B spectral
function can also be rewritten in terms of the self-energy.
Starting from Eq. (47) and taking the derivative with respect
to the energy, we get

B(k, ω) = 1

2

	3(k, ω)[[
ω − k2

2m
− Re�(k, ω)

]2 + [
	(k,ω)

2

]2]2

×
{

1 − ∂Re�(k, ω)

∂ω

}
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− 1

2

	2(k, ω)[[
ω − k2

2m
− Re�(k, ω)

]2 + [
	(k,ω)

2

]2]2

×
{
ω − k2

2m
− Re�(k, ω)

}
∂	(k, ω)

∂ω
. (73)

If one assumes that the frequency dependence of 	 and Re�
are smooth close to the quasiparticle energy, we will have

B(k, ω) ∼ 1

2

	3(k, ω)[[
ω − k2

2m
− Re�(k, ω)

]2
+ [

	(k,ω)
2

]2
]2 , (74)

which corresponds to a function that decays faster than a
Lorentzian close to εqp(k), but which has a stronger peak at
the quasiparticle energy, B ∼ 8/	[k, εqp(k)].

One can check that this schematic scenario is true in Fig. 4,
where we show the B (full lines) and the A (dashed lines)
spectral functions as a function of the energy at three different
momenta k = 0, k = kF , and k = 2kF , at the experimental
saturation density ρ = 0.16 fm−3 and at a temperature of T =
10 MeV. In all three panels, corresponding to the three different
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FIG. 4. (Color online) B (solid lines) and A (dashed lines)
spectral functions at ρ = 0.16 fm−3 and T = 10 MeV for three
different momenta k = 0, kF , and 2kF .

momenta, we see that both functions are peaked around
the same energy values, corresponding to the quasiparticle
energies given by Eq. (25). The peaks shift from negative
values (with respect to the chemical potential) to positive
values when going from zero-momentum to higher momentum
states, just following the position of the quasiparticle peak.
However, although the A spectral function has high-energy
tails that contribute in a non-negligible way to the total
strength of the nucleon, the B spectral function has lower
and less extended energy tails. This is easily understood if one
considers that both functions fulfill the same sum rule. Since
the B function has a higher quasiparticle peak, the strength
of the peak is contributing substantially to the total sum
rule and there is no need to generate high-energy tails. The
presence of these high-energy tails in the A function is an
indication of the importance of the correlations that go beyond
the mean-field approach [33]. Thus, the lack of such tails in
the B function signals that these correlations will have a small
influence on the total entropy of the system.

This idea is also in accordance with the behavior of the
width of both spectral functions. Far away from the Fermi
momenta, both functions are relatively broad around the peak.
Again, in the case of the A function this is a consequence of
the correlations that redistribute the nucleon single-particle
strength within a wide range of energies. The B function
has a smaller width, which indicates that it is less affected
by correlations. Close to the Fermi momentum, however,
both functions approach a delta-peak behavior, reminiscent
of the fact that at zero temperature, even when correlations are
included, the spectral function has a delta-peak contribution.
At this momentum and for the temperature considered, the B
function is narrower and much more peaked than the usual
spectral function A.

Also note that the values for the B function are positive for
all the energies and momenta that we have considered in our
investigation. This contrasts with the weighting function B,
which is defined in Eq. (60) and has been used in Ref. [40].
The fact that the evaluation of the entropy using the weighting
function B exhibits strong cancellation effects (see Fig. 4 of
Ref. [40]) may be taken as an indication that the splitting of
the entropy into the two contributions according to Eq. (61)
might not be optimal.

To understand the density dependence of the DQ entropy,
we show in Fig. 5 the B spectral function as a function of the
energy for different densities (ρ = 0.1, 0.2, 0.3, 0.4, 0.5 fm−3)
at the same three different momenta previously compared and
at a fixed temperature of T = 10 MeV. In addition, we plot
with a dotted line the statistical weighting function σ (ω). It is
precisely the product of these two functions, integrated over
energies and momenta, that gives rise to the DQ entropy, so it
is interesting to study their overlap.

The general features of the B spectral function as a function
of density are very close to those of the usual spectral function
A. In the case of k = 0, the quasiparticle peak moves to more
and more attractive energies as density increases, reflecting
the fact that the binding energy of a zero-momentum nucleon
increases with density. Above the Fermi surface (at k = 2kF ),
the situation is the opposite and the peak of the B function
moves to higher energies with increasing density. The width
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FIG. 5. (Color online) B spectral function for five different
densities (from ρ = 0.1 to ρ = 0.5 fm−3 in equidistant steps) at
a fixed temperature of T = 10 MeV and three different momenta
k = 0, kF , and 2kF .

of these peaks, both at zero momentum and at twice the Fermi
momentum, is broadened with density. This is in accordance
with the naive idea that correlation effects increase with
density. In addition, as a consequence of this broadening, the
high-energy tails (visible at high positive energies for the k = 0
state) decrease with density, allowing the sum rule [Eq. (57)]
to be fulfilled.

The situation is different at the Fermi surface: When the
density is increased, the peak remains at a fixed energy ω = µ,
whereas its width becomes narrower and concentrates more
strength. This can be understood if one takes into account
that, as already commented, at zero temperature (i.e., for the
fully degenerate system), the correlated A spectral function
shows a delta peak that would also be present for the B
spectral function. At a fixed nonzero temperature, however,
the system moves toward the degenerate limit (the ratio T/εF

decreases) with increasing density and thus the B spectral
function becomes closer to a delta peak. This is actually what
can be seen in the central panel of Fig. 5. At high densities
(ρ � 0.2 fm−3), a clear separation between the quasiparticle

peak and the background contribution to the B spectral
function is observed.

It is clear from Fig. 5 that the quasiparticle peak and the peak
of the σ function only coincide for momenta close to kF and
energies around ω = µ. Thus, the important contributions to
the DQ entropy of the system will be that of the momenta close
to the Fermi surface and the energies close to the chemical
potential. It is precisely the interplay between σ and B that
gives rise to the density dependence of the entropy. Since the
value of B at k = kF and ω = µ increases with density, one
may expect that the entropy per particle would increase with
density. However, it is also true that, for lower densities, the
quasiparticle peak is closer to µ at all momenta and thus there
are contributions of the quasiparticle peak for momenta not
necessarily close to kF . In fact, when these contributions are
summed, one finds that the entropy per particle decreases with
density.

To illustrate these results, we plot in Fig. 6 the momentum-
dependent integrand of Eq. (55):

ζ (k) = ν

2π2
k2

∫ ∞

−∞

dω

2π
σ (ω)B(k, ω), (75)

which measures the contribution to the DQ entropy from each
momentum state. It is clear that, as density increases, the
integrand becomes larger at the Fermi surface but less extended
in momenta. This is in agreement with the previously discussed
ideas, that is, that for less degenerate systems the contributions
at all momenta are relevant, whereas for degenerate systems
the contribution of the k = kF state is the most important
one. In addition, the circles in the figure show the ζ function
obtained within a quasiparticle approximation:

ζ QP(k) = ν

2π2
k2σ [εqp(k)], (76)
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FIG. 6. (Color online) Momentum dependence of the ζ function
[see Eq. (75)] for five different densities (from ρ = 0.1 to ρ =
0.5 fm−3 in equidistant steps) at a fixed temperature of T = 10 MeV.
The dots correspond to the quasiparticle approximation ζ QP for the
same densities and temperature. The arrows signal the position of the
Fermi momentum at each density.
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with the quasiparticle peak given by the maximum of the
spectral function, Eq. (25). The differences are only relevant
for the lowest densities and in a range of momenta close to the
Fermi momentum. This is again a signature of the small role
played by the correlations that deplete the quasiparticle states
on the entropy. Therefore, we expect that the quasiparticle
approximation to the entropy, Eq. (70), will describe the full
DQ entropy SDQ quite well.

To gain insight into the temperature dependence of the DQ
entropy, we show in Fig. 7 the B spectral function as a function
of energy for the same three different momenta considered
previously at a fixed density ρ = 0.16 fm−3 and at five different
temperatures T = 4, 8, 12, 16, 20 MeV. It is clear that, for
all momenta, the variations of temperature mainly result in
changes of the width of the quasiparticle peak, whereas the
position in energy of this peak relative to the chemical potential
is nearly unchanged. In addition, the momentum states far
above the Fermi surface are not affected by temperature, as
is seen in the lowest panel, corresponding to k = 2kF . At the
Fermi surface, however, the effects are much more important.
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FIG. 7. (Color online) B spectral function for five different
temperatures (from T = 4 to T = 20 MeV in equidistant steps)
at a fixed density of ρ = 0.16 fm−3 and three different momenta
k = 0, kF , and 2kF .

As temperature increases, the height of the quasiparticle peak
decreases, whereas its width increases. Moreover, at the lowest
temperature (T = 4 MeV) a clean separation is observed be-
tween a quasiparticle peak and a particle and hole background.
This separation is softened at T = 8 MeV and disappears
completely above this temperature. Such a behavior is again
understood in terms of the degeneracy of the system: The lower
the temperature, the higher the degeneracy and the smaller the
width of the B spectral function. For the k = 0 state, a similar
situation is found. The peak lies below the chemical potential,
and it is clearly split from the particle background at T =
4 MeV. For temperatures above T = 12 MeV this separation
disappears and a smooth transition from particle to hole states
is found in the B function. It is also interesting to notice that
the width of the peak remains more or less constant, thus
indicating that temperature-induced effects on the width of the
quasiparticle peak are more important at k = kF .

For the total contribution to the DQ entropy, the con-
volution between σ (ω) and B(k, ω) is again crucial. At
low temperatures, σ (ω) is very peaked around ω ∼ µ. The
convolution will thus only be different from zero whenever
the quasiparticle peak is close to µ (i.e., at k ∼ kF ). However,
at higher temperatures σ (ω) differs from zero in a wider
region of energies, which results in a nonzero convolution
at all momenta. When we integrate over momenta, the final
DQ entropy is higher for the higher temperature. Thus, in
accordance with intuition, the entropy of this correlated system
will grow with temperature.

IV. MACROSCOPIC RESULTS

In this section we will explore the density and temperature
dependences of the entropy computed within different approx-
imations. To begin, we show in Fig. 8 the density dependence
of the entropy per particle at a fixed temperature T = 10 MeV.
The approximations to the entropy per particle that appear in
this figure are as follows:

(i) SDQ, the full dynamical quasiparticle entropy of
Eq. (45) and equivalently Eq. (55) (solid lines);

(ii) SQP, the quasiparticle approximation to the entropy of
Eq. (70) (dotted lines);

(iii) SBHF, the Brueckner-Hartree-Fock entropy computed
from expression Eq. (32) (dashed lines); and

(iv) SA
1 , the contribution to the entropy from the A spectral

function (dash-dotted line).

As a general feature, we can say that all of these entropies
decrease substantially with density, from values of around 2.5
at densities of around 0.02 fm−3 down to values of around 0.4
for the highest density considered here, ρ = 0.5 fm−3.

One important result that arises from Fig. 8 is the fact that,
at all densities, SDQ and SQP are very close. This is somehow
in agreement with the idea that the inclusion of the width of
quasiparticles has a small effect on the entropy. As discussed
in relation with Fig. 6, the effect is larger at lower densities,
where both approximations differ more, but it is never higher
than 5%. At high densities, the difference is so small that
it cannot be appreciated in the figure. This result is not at
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FIG. 8. (Color online) Different approximations to the entropy as
a function of density for a T = 10 MeV temperature. The full lines
correspond to SDQ, the dotted lines to SQP, the dashed lines to SBHF,
and the dot-dashed lines to SA

1 .

all intuitive. It indicates that S
DQ
2 , which is nothing but the

difference between SDQ and SQP, decreases with density. But,
since we have argued that S

DQ
2 represents somehow the finite

width effects on the entropy and since correlations grow with
density, we would also expect it to grow with density. However,
we have also seen that the higher the density, the smaller the
width of the B spectral function at k = kF (which is the more
relevant contribution at high densities) and thus the lower the
effects of correlations. This is why at higher densities both
approximations to the entropy tend to be similar. The fact
that S

DQ
2 is negative at intermediate densities (say from ρ =

0.05 fm−3 to 0.30 fm−3) is quite interesting: In addition to
stressing the fact that finite-lifetime effects to the entropy are
small, one can say that it looks like correlations (i.e., the width
of the quasiparticle) tend to order the system.

The effects of the self-consistent propagation of holes are
responsible for the difference between SDQ and SBHF. This can
be clearly seen by rewriting Eq. (32) to give

SBHF = ν

∫
d3k

(2π )3
σ [εBHF(k)], (77)

which differs from Eq. (70) in the position of the single-particle
peaks [given by εqp(k) in the first case and by εBHF(k) in
the second] and also in the different values of the chemical
potentials in the statistical factor σ . Since the effect of the
width on SDQ is small at this temperature, the difference
between both entropies arises from the different quasiparticle
energies and chemical potentials of the two approaches. Each
of these quantities can differ by at most 20 MeV [33]. However,
the correction in the entropy is small probably because of a
cancellation between both differences in the argument of σ ,
where ε(k) and µ are subtracted. In the intermediate-density
region, the BHF entropy has values that are about 10%
below the DQ one. The presence of hole-hole correlation thus
increases the entropy (i.e., the thermal disorder). This is of
course related to the fact that hole-hole correlations tend to

increase the density of single-particle states close to the Fermi
energy. If one tries to parametrize the quasiparticle spectrum
close to µ in terms of an effective mass m∗, one obtains larger
values for the parametrization of the SCGF spectrum than for
BHF [33].

Finally, we also show the contribution of SA
1 to the DQ

entropy. As we have already mentioned, this expression comes
from a naive generalization to incorporate width effects, but
nevertheless it gives a reasonable first guess to the entropy
per particle. Intuitively, one would expect that, since the A
spectral function is wider than the B one, the overlap between
A(k, ω) and σ (ω) at a given momentum should be higher and
the final SA

1 entropy would overestimate SDQ. However, this
is not the case, except for the lowest densities. This can be
understood from the height of the quasiparticle peak for A
being, roughly speaking, a factor of 2 lower than that for B.
Thus, although more extended in momentum, the ζ (k) function
for the A spectral function is smaller and gives rise to a lower
entropy. The difference of both entropies is between 20 and
30% for the intermediate-density region. The origin of such
differences is the SA

2 contribution of Eq. (69), which is the
integral of two terms. Both terms are of the same order at
ρ ∼ 0.1fm−3 but, although the contribution proportional to A
decreases with density, the one proportional to 	 increases,
and above ρ = 0.3 fm−3 it carries more than 80% of the total
correction.

In Fig. 9 we show the temperature dependence of the
entropy for a density ρ = 0.16 fm−3 computed with the same
approximations as just discussed. In addition, we have also
computed another approximation, SNK , which is displayed
with a double-dotted dashed line. This corresponds to the
entropy of the correlated momentum distribution, Eq. (19),
obtained from the mean-field-like expression:

SNK = −ν

∫
d3k

(2π )3
{n(k) ln n(k) + [1 − n(k)] ln[1 − n(k)]} .

(78)
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FIG. 9. (Color online) Different approximations to the entropy as
a function of temperature at a density of ρ = 0.16 fm−3. The full lines
correspond to SDQ, the dotted lines to SQP, the dashed lines to SBHF,
the dot-dashed lines to SA

1 , and the double dot-dashed lines to SNK .
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One can say that all the approximations to the entropy of
Fig. 9 decrease with temperature (as expected) and approach
a linear dependence at low T . It is a well-known feature
of Fermi liquids that the slope coefficient for such a linear
behavior is proportional to the zero-temperature density of
states computed at the Fermi surface, N (T = 0):

Slow

A
= π2

3ρ
N (0)T . (79)

Each of our approximations goes to the T = 0 limit with
different slopes, and we can thus obtain different densities
of states. To calculate N (0) for each approximation, however,
we should extrapolate our results to the T = 0 limit, which
we cannot do within our approach reliably. Instead, from a
low-temperature expansion of Eqs. (55) and (68) we obtain an
expression of N (0) in terms of the B and A spectral functions
that we extend to finite temperatures. Namely, we get the
“density of states” related to the B spectral function,

NB(T ) = ν

∫
d3k

(2π )4
B(k, ω = µ), (80)

and the usual one, related to the A spectral function,

NA(T ) = ν

∫
d3k

(2π )4
A(k, ω = µ), (81)

where T denotes that these have been computed at the
finite temperature at which the spectral functions have been
computed. Note that at low T and ω = µ the functions A
and B differ basically by a factor Z (where Z denotes the
renormalization of the quasiparticle pole):

A(k, ω = µ) ∼ Z−1(k, ω = µ)B(k, ω = µ), (82)

and thus the two densities of states will also differ by such a
factor. Nevertheless, the density of states that gives the correct
linear fit to the DQ entropy is that of Eq. (80). In fact, we have
numerically checked that it is this quantity that reduces to the
well-known quasiparticle expression

NQP(0) = νkF m∗(kF )

2π2h̄2 (83)

at low enough temperatures, where the effective mass is
obtained through the derivative

m∗

m
= 1

2m

(
dεqp(k)

dk2

)−1

(84)

evaluated at the Fermi surface using the finite-temperature
SCGF quasiparticle spectrum, εqp(k). This can be seen in
Table I, where we give the densities of states computed with
the A and the B spectral functions together with that obtained
from the QP expression, Eq. (83), at ρ = 0.16 fm−3 for low
temperatures. The effective mass at kF is given in the fifth
column of Table I. The numerical values confirm that at low
temperatures the density of states from the B spectral function
reduces to the quasiparticle one, hence indicating that from a
TD point of view this is the correct density of states. However,
from a microscopic point of view, the A density of states is the
one that has been commonly used [59,60]. One should keep in
mind that in a mean-field approximation both of them would

TABLE I. Densities of states related to the A (first column) and
B (second column) spectral functions at ρ = 0.16 fm−3 for different
temperatures. The quasiparticle approximation to the density of
states, Eq. (83), is displayed in the fourth column, together with
the effective mass at the Fermi surface in the fifth column.

T (MeV) NA(T ) NB(T ) NQP(T ) m∗/m

(MeV−1 fm−3) (MeV−1 fm−3) (MeV−1 fm−3)

4 0.00435 0.00608 0.00608 0.935
6 0.00430 0.00585 0.00586 0.901
8 0.00424 0.00566 0.00570 0.875

10 0.00416 0.00548 0.00557 0.855

reduce to the same expression, Eq. (83). It is also interesting
to note that if we compute the entropy with the help of the
“densities of states” coming from the B spectral function,
Eq. (80), and from the QP expression, Eq. (83) (both of them
being evaluated at the corresponding finite temperature), and
we use them instead of N (0) in Eq. (79), we can reproduce
the DQ expression of the entropy for temperatures up to T =
10 MeV with less than a 10% discrepancy.

In the context of nucleus-nucleus collisions at intermediate
energies, there exists a growing amount of experimental data
[61,62] that should be useful to constrain the thermal properties
of nuclei and nuclear matter. In particular, the liquid-gas phase
transition and the caloric curve give a hint on the properties of
nuclei at low temperatures. In the study of the caloric curve,
it is customary to parametrize the excitation energy at low
temperatures in terms of the so-called inverse level density
parameter K (see [63] for a theoretical description), which
is inversely proportional to the density of states introduced
here. The values we obtain for K [defined as K−1 = π2

6 NB(0)]
are close to the Fermi gas value K ∼ 14.6 MeV for ρ =
0.16 fm−3. This can be understood from the fact that NB
reduces to the quasiparticle value of Eq. (83), which, in
addition, is similar to the free Fermi gas value because in
our case the effective mass is almost equal to the bare-nucleon
mass at low temperatures. A word of caution must be raised,
however. Our value for K is obtained from a calculation in
infinite isospin symmetric matter in which only short-range
correlations are treated. Nevertheless, it is clear that a study of
the inverse level parameter should include both the effects
of finite size and long-range correlations, which are very
important in determining the low-energy excitations of nuclei.

In the following, we compare the different approximations
to the entropy that appear in Fig. 9. As a general trend, we
observe the same features that we have already discussed
when we have commented the density dependence of the
various approximations to the entropy. The quasiparticle app-
roximation SQP using SCGF energies reproduces the DQ
entropies at all temperatures very well, especially below
T = 10 MeV. The finite-temperature BHF entropy describes
the entropy of the system, with an error of about 15%. This
difference is thus quite small, which is again a signal that
both the depletion of single-particle strength and the exact
position of the quasiparticle peak are not that crucial in the
final result of the entropy per particle. Let us also note that
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the inclusion of the hole-hole propagation in the quasiparticle
peaks tends to increase the entropy.

The A spectral function contribution to the entropy is again
correct in the temperature behavior, but still it gives a too small
value for the entropy per particle of the system, with errors as
large as a 30%. As we have previously discussed, this is due to
the lower quasiparticle peak of the A spectral function, which
makes the SA

1 contribution to the entropy lower than the SDQ

entropy. The difference between these two functions is given
by the SA

2 contribution to the entropy. This is composed of the
two terms in Eq. (69), which have different relative weights
as temperature changes. Whereas the term proportional to the
A spectral function amounts to 90% of the total correction
at T = 4 MeV, its relative importance decreases linearly to a
30% contribution for the T = 20 MeV case.

Finally, the entropy of Eq. (78) is given in terms of the
fully correlated momentum distributions. This momentum
distribution includes both thermal effects (which are capital
for any entropy computation) plus correlation effects. In fact,
in the final entropy SNK both effects are taken as the same
and correlations somehow mimic extra thermal effects. This
is why this is the only approximation that tends to give a
nonzero entropy at T = 0. In the fully degenerate limit, the
momentum distributions given by Eq. (19) are not Fermi step
functions and they are corrected by correlation effects. These
correlations are responsible for a certain amount of entropy,
when this is computed with Eq. (78) at T = 0. Thus, at finite
temperatures, thermal effects are overestimated in SNK owing
to the presence of correlations, and SNK produces far too large
an entropy (by almost a factor of 3 at T = 5 MeV).

After having computed the entropy, we would like to
address the subject of TD consistency. From first principles,
the ladder approximation is known to be �-derivable [51].
Indeed, we have computed an expression for the entropy within
a formalism that preserves �-derivability. Thus, whenever S ′
is negligible in our approach, we expect our results to preserve
TD consistency. Figure 10 shows the accuracy that we reach
with our SCGF results. For the sake of comparison, we also
show the BHF results. The upper solid lines with full circles
correspond to the free energies per particle computed within
the SCGF approach:

F SCGF = EGMK − T SDQ, (85)

with the energy computed with the GMK sum rule, Eq. (21),
and the entropy with the DQ expression, Eq. (45). The BHF
free energy is shown in a full line with solid diamonds and is
simply given by

F BHF = EBHF − T SBHF, (86)

with the energy computed from the generalization of the T = 0
BHF approach, Eq. (30), and the entropy from Eq. (32). The
dotted lines with empty circles and diamonds correspond to
the microscopic chemical potentials µ̃ obtained from inverting
Eq. (71) for the SCGF and from inverting

ρ = ν

∫
d3k

(2π )3
f (εBHF(k), µ̃BHF) (87)
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FIG. 10. (Color online) Free energies per particle (full lines) and
µ̃ chemical potentials (dotted lines) of the SCGF (circles) and BHF
(diamonds) approaches as a function of density at a temperature
of T = 10 MeV. The µ chemical potentials obtained through a
numerical derivative are displayed as a dashed line for the SCGF
results and as a dot-dashed line for the BHF results.

in the case of BHF, respectively. Both chemical potentials
are compared with the macroscopic chemical potentials, µ,
obtained from the derivatives of the free energies with respect
to density, Eq. (72), shown with a dashed line for the SCGF
and by a dashed-dotted line for SCGF. The derivative has
been performed numerically after adjusting F to a third-order
polynomial. Although the low-density region is not well
reproduced in this rough approximation, the results of the
intermediate-density region can be fully trusted and in addition
they are smooth with density.

The fulfillment of TD consistency for the SCGF approach
is nicely illustrated in Fig. 10. The agreement between µ̃ and µ

is very good above 0.05 fm−3, with discrepancies of less than
1 MeV up to ρ = 0.5 fm−3. As a consequence, the Hugenholtz-
van Hove theorem is also very well fulfilled, and the minimum
of F/A and µ̃ do nicely coincide at about ρ ∼ 0.27 fm−3. The
situation for the BHF approach, in contrast, is much worse,
as is very well known [57]. The chemical potentials µ̃ and
µ differ by about 10 MeV at ρ = 0.16 fm−3 and by almost
30 MeV at the highest density considered here. In addition,
the Hugenholtz-van Hove theorem is badly violated, and the
value of F/A at saturation differs from µ̃ by about 20 MeV.
Finally, we note that the propagation of holes seems to have
a global repulsive effect on the free energy. Such a repulsive
effect has already been detected for the energy per particle [33].
It is interesting to note, however, that the differences in free
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energies between the BHF and the SCGF are smaller than
the differences in energies, because of the different entropy
contributions.

The results presented here should be taken as a first step
toward a full treatment of the thermal properties of infinite
nuclear matter within a formalism that includes short-range
correlations in a TD consistent way. From our point of view,
this formalism can find several applications within the many-
body and nuclear physics community. A first outcome could
be, for instance, the study of the liquid-gas phase transition
of symmetric nuclear matter from a realistic NN potential.
A critical study of the usually assumed low-temperature
dependences for the relevant TD properties of matter (of
the type T 2) could also be assessed. Other applications,
such as the study of the finite-temperature equation of state,
will probably demand inclusion of three-body forces in the
formalism to reproduce the empirical saturation properties of
nuclear matter. We expect that our results could have possible
consequences for the study of intermediate-energy heavy-ion
collisions [64], affecting analyses based on transport models.
The use of spectral functions in the description of correlated
nucleons goes beyond the quasiparticle picture customarily
used in transport codes. Although some results point out that
off-shell effects in the propagation of nucleons are small [65], a
treatment of a kinetic equation including full spectral functions
obtained from realistic NN potentials (following, for instance,
[66] or [67]) is, to our knowledge, still lacking. Moreover,
even within the usual quasiparticle description, some of the
in-medium modifications of nucleons (such as effective masses
or NN cross sections) are taken as simple parametrizations
[68]. Our model permits the calculations of these quantities
from realistic NN potentials in a fully microscopical and TD
consistent basis, which, properly parameterized, could be used
in this kind of study.

V. SUMMARY AND CONCLUSIONS

The ladder or T -matrix approximation of the SCGF method
is a �-derivable approach and thus theoretically it should
fulfill TD consistency. We have checked the numerical TD
consistency of this approach for symmetric nuclear matter
at finite temperature by computing an approximation to the

entropy, the dynamical quasiparticle entropy SDQ, which has
been discussed by Carneiro and Pethick [6]. Using this SDQ

approximation we obtain good agreement between the chem-
ical potentials determined within the SCGF calculation and
the corresponding values derived from the thermodynamical
relations. Therefore, the ladder approximation of the SCGF
approach supplemented by the evaluation of the entropy SDQ

provides a method of calculating thermodynamic properties
of nuclear matter, which accounts for correlations beyond the
mean-field picture in a consistent way.

The entropy SDQ can be evaluated in terms of a weighting
function B, which is connected to the usual single-particle
spectral function A of the SCGF. This means that B can be
calculated in terms of the nucleon self-energy and an explicit
evaluation of the generating functional � can be avoided.
The B spectral function and its momentum, energy, density,
and temperature dependences have been studied. In general,
one can say that this function exhibits a more pronounced
quasiparticle structure than the corresponding spectral func-
tion A. As a consequence, the correlation effects related to the
broadening of the quasiparticle peak are not very important and
a quasiparticle approximation to the evaluation of the entropy
is a very good approximation if the quasiparticle energies are
derived from the SCGF self-energy. Even if the quasiparticle
energies are approximated by the single-particle energies
derived from the temperature-dependent BHF approximation,
the values for the calculated entropy deviate only by as
much as 10 to 20%. In contrast to the SCGF, however, the
BHF approximation fails to fulfill thermodynamic consistency.
The microscopic and the thermodynamic chemical potential
deviate substantially in the case of BHF and the Hugenholtz-
van Hove theorem is violated by more than 20 MeV.
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