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Leading chiral logarithms to the hyperfine splitting of the hydrogen and muonic hydrogen

Antonio Pineda
Departamento d’Estructura i Constituents de la Méeand IFAE, U. Barcelona Diagonal 647, E-08028 Barcelona, Catalonia, Spain
(Received 16 October 2002; published 4 February 2003

We study the hydrogen and muonic hydrogen within an effective field theory framework. We perform the
matching between heavy baryon effective theory coupled to photons and leptons and the relevant effective field
theory at atomic scales. This matching can be performed in a perturbative expansioiviin, , and the chiral
counting. We then compute tk@(mﬁa5/m§xlogarithms) contribution(including the leading chiral loga-
rithms) to the hyperfine splitting and compare with experiment. They can explain about 2/3 of the difference
between experiment and the pure QED prediction when setting the renormalization scalg ahalss. We
give an estimate of the matching coefficient of the spin-dependent proton-lepton operator in heavy baryon
effective theory.
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I. INTRODUCTION ..., Mea?, Mea, M, AM=my—my, A=my—my, m,,
m,, m,, A,, ..., that we will group and name in the fol-

Years have passed since the advent of QCD. After numetowing way.
ous attempts to understand QCD by using several models, (i) mea?: ultrasoft(US) scale.
more studies now move towards trying to parametrize the (i) mea: soft scale.
QCD properties in a model independent way with the help of (i) sep=mMemy/(Me+mp), A m=m,—m,, me: hard
different systematics that are usually highlighted by the spescale.
cific kinematic situation under study. One could hope that (V) m,, A=my—m,, m;: pion scale.
this approach may bring some light on the understanding of (¥) My, m,, A, chiral scale.
QCD or at least provide some consistency check between FOr the up system they are..., m,a?, m,a, m,,
different models. Therefore, it becomes important to be abléM=Ma— My, Mg, A=My—My, My, My, My, Ay, oo,
to relate as many observables as possible in a model ing&1at we WI||ng’0up and name in the following way.
pendent framework. Effective field theoriéSFT9 may play (vi) m,a®: US scale.
an important role in this approach. (vii) Am:_mn_mp' Me, M, a: soft 5C51_|e- _
Within the above philosophy, the study of hydrogep) har(g}gi)oﬁ"é%;g"mp/(m" T Mp), My, A=my—mg, m:
and muonic hydrogenu(p), in particular of the high preci- : .
X i o . (ix) m,, m,, A : chiral scale.
sion measurement of different splittings, can provide accu- hr P X

L . By doing ratios with the different scales, several small
rate determinations of some hadronic parameters related Q(pansion parameters can be built. Basically, this will mean

the proton elastic and inelastic electromagnetic form factor,[hat the observables, the spectrum in our case, can be written,
like the proton radius and magnetic moment, polarizatiorhp to large logarithms, as an expansion, in the case o the
effects, etc. _ _ __ina, mg/m,, andm,/m,, and in the case of thep, in a

In theep and up we are basically testing the proton with angm,, /my . It will also prove convenient sometimes to use
different probes €, w, ). They correspond to the simplest ine reduced Masg ,(e)p, Since it will allow to keep(some
possible probes since they are pointlike particles and the irbf) the exact masslaependence at each order im order to

teractiqn i_s pe_rturbative{the analogy with deep ine_lastic be more precise, thep energy will be expanded in the fol-
scattering is evident and it has already been used since |°r18wing way (up to logarithm

ago[1-4] in order to obtain some of these hadronic param-

eters from dispersion relationsThey also provide the first

natural step towards more complicated systems like exotic or ,Mepol2

heavy(muonig atoms. E(ep)=- on2
The ep and up systems are, in a first approximation,

states weakly bound by the Coulomb interaction and their

typical binding energy and relative momentum afe WNEre

~ Mg(ya? and|p| ~ Mgy, respectively. We will switch

off the weak interactions in this work. Therefore, #p and ~ o (mg\ i m, )]

up systems become stable, a@d P, andT are exact sym- CnZ,E Cﬂ'J)(—) (F) +oey 2

metries of these systems. In any case, several different scales 1=0 P

are involved in their dynamics: For thep system they are

(1+cra?+cza’+--), (1)

m’TT

andc') are functions of dimensionless quantities@f1)
like pep/me, m,/m,, etc.
*Email address: pineda@ecm.ub.es For theup things work analogously,
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@2 allows one to computéor parametrize in a model indepen-
E(up)=— “pz (1+cia+cra’+cgal+---), (3) dent way the coefficientsc’s in a systematic expansion in
2n the different small parameters on which these systems de-
end.
wherec, does not depend on hadronic quantities, only onp It is the aim of this paper to use this procedure for the
m,a/me, and =2), computation of the leading-logarithm hadronic contributions

to the hyperfine splitting for both theep andwp. This means
to compute the spin-dependent piece af; with
O[(me/mp)leogarithmi and O[(m#/mp)leogarithmg
accuracy for theep and up, respectively.

m,\’
Mp

+ ..

=3, o
]=0

wherec!) are functions of dimensionless quantities(f1)

like 4,p/m,, m,/m;, m,alme, etc. _ Il. EFFECTIVE FIELD THEORIES
Let us stress that the coefficierts can be expanded in

the ratiom,/m,, i.e., in the chiral/heavy-baryon expansion In this section, we will consider the different EFTs that

(m, should also be understood as). will be necessary for our calculation.
In order to disentangle all the different scales mentioned
above it is convenient to use EFTs. In order to obtain the A. HBEFT

relevant one for these systems we first need to decide what ) . )

are the degrees of freedom we want to describe. In our case OUr Starting point is the S(@) version of HBEFT coupled

we want to describe thep and up systems at ultrasoft or to leptons, where the delta is kept as an explicit degree of
smaller energies. Therefore, degrees of freedom with highdfe€dom. The degrees of freedom of this theory are the pro-
energies cartand will) be integrated out in order to obtain ton,_neutron, and delta, for Whlch the nonrelativistic approxi-
the EFT to describe these systems. One EFT that fulfills thigh@tion can be taken, and pions, leptdnsuons and elec-
requirement is potential NROENRQED) [5,6] (for some trons, a_nd photor)s, which will be taken tq be relat|V|s_t|c.
applications seé7] and see als§8,9]). pNRQED appears 'Ourﬁrst aim will be to present the effective Lagrangian of
after integrating out the soft scale from NRQELD] and it  this theory. It corresponds to a hard cutpficm,, A, and
shares some similarities with the approach followed in Ref!S much larger than any other scale in the problem. The La-
[11]. We will obtain pNRQED by passing through different 9rangian can be spllt.mto seve_ral sectors. Most of them have
intermediate effective field theories after integrating out dif-2lréady been extensively studied in the literature, but some
ferent degrees of freedom. The path that we will take is th&Vill be new. Moreover, the fact that some particles will only
following (in some cases, instead of this chain of EFTs ongEter through loops, since only some specific final states are
can use dispersion relations, or direct experimental data, iA€Siréd. will simplify the problem. The Lagrangian can be
order to obtain the matching coefficients structured as

Luger=Ly+ L+ Lo+ Lzt Linay T Linay T Linayn

. : . T LN A s 5
This way of working opens the possibility to compute the

observables of atomic physics with the parameters obtainggyresenting the different sectors of the theory. In particular,
from heavy bary_on e_ffe_ctlve theOMBET)' Wh'ch is much the A stands for the spin 3/2 baryon multiplete also use
closer to QCD since it incorporates its symmetries automau-A:mA_m the specific meaning in each case should be
cally, in particular the chiral symmetry. Besides, it is the clear from ?He context

matching with HBET that will allow us to relate the match-

) . : _ The Lagrangian can be written as an expansioe and
ing coefficients used fog p with the ones used ipp. HBET m,. Our aim is to obtain the hyperfine spliting with

[12] describes systems with one heavy baryon: the proto P3 5, 2
the neutron, or the deltpl3] at the pion mass scale. The IAb[m'ia /mpx(lnmq,lnA,Inmi)] accuracy, wherem, stands

chiral scale explicitly appears in the Lagrangian as an expard®' the mass of the lights andd (or s), quarks andn; for

sion in 1A, and 1m, and any other smaller scale remains the mass of the leptofthe leading order contribution to the

dynamical in this effective theory. In short, HBET is a EFT hyperfine splitting readEF=(8/3)c(Fp’m|2ia4/mp, wherec®

defined with an UV cutoft such thatv<A, but larger than s defined in Eq(10)]. Therefore, we need, in principle, the

any other dynamical scale in the problem. Lagrangian withO(1/m3) accuracy. Let us consider the dif-
In the .p, NRQED appears after integrating out the hardferent pieces of the Lagrangian more in detail.

scale, whereas in thep, NRQED appears after integrating  The photonic Lagrangian readthe first corrections to
out the pion and hard scales. In this last case one could pagss term scale likew2/m®)
P

through an intermediate theof@ED) defined by integrating
out the pion scale, and profit from the fact that pion and hard
. . 1
scales are widely separated. Nevertheless, we will do the L,=—-FKF_ . (6)
matching here in one step for simplicity. 7 4 .
pNRQED is obtained after integrating out the soft scale.
We refer to[5,6] for further details. The above methodology The leptonic sector readsl{ ,=id,—eA,)

HBET— (QED)—NRQED— pNRQED.
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cP)

=ST1.(ip—- . D
L Z LD —mp)l;, (7) — NI[V-EIN,. (11)
p
wherei=e,u. We do not include the term We could have done so but it may also be eliminated by
some field redefinitions. In any case it would give contribu-
eg tion to the spin-independent terms so we will not consider it
h— o
— — 10,0 F*", (8)  further in this work.
p As for the delta(of spin 3/2, it mixes with the nucleons at

O(1/my) [O(l/m,zj) are not needed in our cdsé’he only
since the coefficierg|i is suppressed by powers @fand the  relevant interaction in our case is theA * -y term, which is
mass of the lepton. Therefore, it would give contributionséncoded in the second term of
beyond the accuracy we aim. In any case, any eventual con- b
tribution would be absorbed in a low energy constant. — 1t LR ot (312) 3(312)

The pionic Lagrangiatt, is usually orgagi);ed in the chi- OLnay=TH1d0= A)T+ 2m, (Toi) B 71z N
ral counting. From the analysis of Sec. Il B we will see that
the free pion propagators provide with the necessary preci-

ZirZZ'g;;T]?refore’ we only need the free-particle pionic La-hereT stands for the delta 3/2 isospin multiplé,for the

nucleon 1/2 isospin multiplet and the transition spin/isospin
matrix elements fulfill(see[14])

+H.c), (12

L= (3,m" ) (o*m ) —mia a”

) ) 1 . .
1 1 ool =5 (280~ a¥),
- 0y 940y _ =200 3
+ 2((7M7T Y(o*ar®) 2m7.r'77 . (9

1
(112) b(3/2)_ = ;5 sab_; _abc
The one-baryon LagrangianC(y ), is needed at Ta2) 1{31’2) 3(25a1 5575, 13

O(l/mf)). Nevertheless a closer inspection simplifies the

problem. A chiral loop produces a factor 1#E,)?  The baryon-lepton Lagrangian provides new terms that are

needed atO(m.), the leading order, which is known CaSe is the interaction between the leptons and the nucleons
ml 1

[12,13. For the explicit expressions we refer to these refer-@ctually only the proton
ences. L

Therefore, we only need the one-baryon Lagrangian SC _ - P NN Tovel:
L(n,ay atO(1/mj) coupled to electromagnetism. This would (N.A) m? El sReY Np LYol
be a NRQED-like Lagrangian for the proton, neutr(of

spin 1/2, and deltaof spin 3/2. The neutron is actually not 1 phinr | —

needed at this stage. The relevant term for the proton reads + 2 2. CarNpY ¥sNp 1iyjysli.  (14)
p
N D: D c® The above matching coefficients fulfidig"gf cBr and cf:"ge
OLN,2)=Np) IDo+ 2mp+8m3_ezp2mp o B =chr Up to terms suppressed by /m,, which will be
P sufficient for our purposes.
o _c® Let us note that with the conventions abowé, is the
—Iezpw o (DpXE—EXDp) (Ny, (100 field of the proton(understood as a partiglevith positive
p charge ifl; represents the leptor{isinderstood as particles

with negative charge. This finishes all the needed terms for
whereiDp=ido+Z,eA’, iD,=iV—Z,eA. For the proton this paper, since the other sectors of the Lagrangian would
Z,=1. We have not included a term like give subleading contributions.

B. NRQED(p)
Actually terms that go into the physical mass of the proton and

into the physical value of the anomalous magnetic moment of the In the muon.-pro'ton sector, by integrating out the,
proton zz,=cP — 1 should also be includeht least in the pure scale, an effective field theory for muons, protons, and pho-

QED computations and will be assumed in what follows. For our {ONS appears. In principle, we should also consider neutrons,
computation these effects would be formally subleading. In anyout they play no role at the precision we aim. The effective
case, their role is just to bring there values ofmy andu, to their  theory corresponds to a hard cutofi<m., and therefore
physical values. Therefore, once the valuesmgfand ., are mea- ~ Pions and deltas have been integrated out. The Lagrangian is
sured by different experiments, they can be distinguished from th@qual to the previous case but without pions and deltas and
effects we are considering in this paper. with the following modifications: £;— L+ £'®  and
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E. pNRQED

muon has become unrelativistic. Any further difference goes After integrating out scales dd(m, a) one ends up in a
I

into t_h(_a matching coefficients, in particular into the matCthSchr'tdinger-like formulation of the bound-state problem. We
coefficients of the baryon-lepton operators. In summary, thestar to [5,6] for details. The pNRQED Lagrangian for the

Lagrangian reads

Laroenu =Lyt Lot LEPV+Ly+ Lyt LD, (15)
where
D> D¢ cw
LOR=THiDO+ 2t £t ez 0B
Iz Iz " Zmu Smi 'U'ZITIM
C(/L)
+iez, — o (D,XE—EXD,)l, (16)
o
and
Pl pl,
NR_ “3NR ity f ANR Gt T
LNR= > NN, — - NjoNyITal,, (17
p p

with the following definitions: iDZzi&O—ZMeA", iD,
=iV+Z,eA andZ,=1. L, stands for the relativistic lep-
tonic LagrangiadEg. (7)] and £y for Eq. (14), both for the
electron case only. A term of the type

€0, .
— —mﬂleawleF

(18)

ep (the nonequal mass casean be found in Appendix B of
the second reference {i6] up to O(ma®). The pNRQED
Lagrangian for thewp is similar except for the fact that light
fermion (electron effects have to be taken into account. The
explicit Lagrangian and a more detailed analysis of this case
will be presented elsewhere. For the purposes of this paper,
we only have to consider the spin-dependent delta potential,

C
SV=2""R53)(r),

m,

(21)

which will contribute to the hyperfine splitting.

IIl. FORM FACTORS: DEFINITIONS

It will turn out convenient to introduce some notation be-
fore performing the matching between HBET and NRQED.
We first define the form factors, which we will understand as
pure hadronic quantities, i.e., without electromagnetic cor-
rections.

Our notation is based on the one of Rf5]. We define

J#=3,Q,q;v*q; , wherei=u,d (or s). The form factors are
then defined by the following equation:

ot'q,
2m

(p',8|3#/p,s)=u(p")| F1(q?) y*+iF 2(9?) }U(p),

(22)

is not taken into account because of the same reason as\Wwhereq=p’—p andF, F, are the Dirac and Pauli form

Sec. Il A.

C. QED(e)
After integrating out scales o®(m,) in the electron-

factors, respectively. The states are normalized in the follow-
ing (standard relativisticway:

(P, \'|p,\)y=(2m)°2p°5%(p' —p) Sy, (23

proton sector, an effective field theory for electrons coupledind

to protons(and photonsappears. Again, we should also con-
sider neutrons, but they play no role at the precision we aim.

This effective theory has a cutoff<m_ and pions, deltas,

and muons have been integrated out. The Lagrangian reads

'CQED(e):L:y+ [,e'f‘ ‘CN+’CNE' (19)

2mp 2

u(p,s)u(p,s)= (24)

wheres is an arbitrary spin four vector obeyirgg=—1 and
P.-s=0.
The form factors could bénalytically expanded as

This Lagrangian is similar to the previous subsection but 5

without the muon.

D. NRQED(e)
After integrating out scales o®(m,) in the electron-

q

Fi(q2)=Fi+WFi’+~-- (25)

for very low momentum. Nevertheless, we will be interested
instead in their nonanalytic behavior ipsince it is the one

proton sector, we still have an effective field theory for elec-that will produce the logarithms.
trons coupled to protons and photons. Nevertheless, now, the We also introduce the Sachs form factors

electrons are nonrelativistic. The Lagrangian is quite similar
to the one in Sec. Il B but without a light fermion and with

the replacementt—e. The Lagrangian reads

Lnroene=Ly+ LI+ L+ LIR. (20)

92
Ge(q)=F1(g?)+ WFz(qz),

Gm(9?)=F1(g®) +F,(g?). (26)
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We will also need the forward virtual-photon Compton where we have not specified the lepi@ither the electron or

tensor
T‘“’=if d*xe9X(p,s| TI*(x)I*(0)|p,s),  (27)
which has the structurepE&q- p/m)

TR =| —grr+

rq 1 m
2 )Sl(p,q2)+—2(p“——p2pq“)
q m3 q

X

v mpp v 2 I vpo 2
p _?q )SZ(p!q )_m_pEM P quuAl(qu )

= L g, [(myp)s,— (0-9)P,TAs(p. ), (28)

p

depending on four scalar functions. It is usual to consider the

Born approximation of these functions. They read

2(0%)? GH(g?)

gBomn , 2y = _2F2(g2 - 29
e ) = 2R e @
4mig® Fi(g?)—(9*)® F5(q)
Bomy 1, 42)=2 P 1 2 , (30
SZ (P q ) (Zmpp)2_(q2)2 ( )
4m2q2 F1(a®)Gw(g?)
ABom ,2=—F2 2 p
1 (p99) 2(g9) + (2mpp)2_(q2)2
(3D
amip Fo(q?)Gu(g?
AzBorn(p,qZ): mpp Z(q ) M(q ) (32)

(2mpp)*—(g?)?

In the following section, we will use the results of Ji and
Osborng 16]. Their notation relates to ours in the following
way (for the spin-dependent termsS}®=A, /mj and S;°
—A2/m Note, however, thah?°" above is dn‘ferent from

the S, definition in Ref.[16] by the F3 term.

IV. MATCHING

the muon. In what follows, we will assume that we are
doing the matching to NRQELX). Therefore, we have to
keep the whole dependence omi/mw. The NRQEDE)

case can then be derived by expanding versusm,. In
principle, a more systematic procedure would mean to go
through QEDE). Nevertheless, for this paper, as we do it
will turn out to be the easier.

In principle, the contributions scaling withrt/, are the
more important ones. Nevertheless, they go beyond the aim
of this paper. This is specially so as far as we are only inter-
ested in logarithms and the spin-dependent teﬁr,‘QR Its
general expression &(a?) reads(an infrared cutoff larger
thanm,« is understood and the expression for the integrand
should be generalized for an eventual full computatio®in
dimensiony

o |gJ' d’k 1 1
Sanr" (2m)° K kA= am?K3

K
X Aq(ko,k2) (K2+ 2k2)+3k2m—0A2(k0,k2) ,
p

(34)

consistent with the expressions obtained long ago as in Ref.
[3]. This expression has been obtained in the Feynman
gauge. It correctly incorporates the whole dependence on the
lepton mass. Therefore, the same expressions are valid for
the hydrogen and muonic hydrogen.

In principle one should also consider contributions with
one, two, or three electromagnetic current insertions in the
hadronic matrix elements instead of only two as in Eg3)
and(34). Nevertheless, only the above contribute to the order
of interest.

Within the EFT framework the contribution from energies
of O(m,) or higher in Eq.(34) are encoded |r1:p'~c4vR
(analogously forc;). The contribution from energies of
O(m,) are usually split into three term@&ctually this divi-
sion is usually made irrespective of the energy which is be-
ing integrated out pointlike, Zemach, and polarizability cor-
rections. They will be discussed further later. From the point
of view of chiral counting the three terms are of the same
order. Therefore, at the order of interest we can didglgr

The matching between HBET and NRQED can be perin the following way:

formed in a generic expansion innlf, 1/m,, and . We

have two sort of loops: chiral and electromagnetic. The cP
former are always associated to 1#B,)? factors, whereas
the latter are always suppresseddyactors. Any scale left
to get the dimensions right scales with.. In our case we
are only concerned in obtaining the matching coefficients of

the lepton-baryon operators of NRQCD witlD[ o Cgle_ cBr+ 5c3p0|m,|ke+ 5C2IZemach+ 5cglp0, (36)
X (Inmy,InA,Inm )] accuracy. Therefore, the piece of the La-

grangian we are interested in reads

+ 5P

4pol.” (35)

+ 5P

NR_ C4R+ sc, 4Zemach

4, 4p0|ntI|ke

Indeed, a similar splitting is usually done foglli\m:

Let us stress at this point that we are only interested in the
logarithms. Therefore, we do not need to take care of the

g'NR Z'NR finite pieces. This will significantly simplify the calculation.
SL=—"=N! N I*I - NJr oN I*(rl,, (33 We obtain the following result for the pointlike contribu-
m; tion:
P p
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2
pl; _ F F o i pli _ 2 =
5C4,p0intlike_ 4 aln 2 : (37 504,Zemach (4ma) mp3 (27T)D_1 K4

d°k 1
—GPlGYH.

(39

Usually, in the literature, the computation of this type of Equation (39) can be obtained directly from Ed34) or
contributions is made considering the proton pointlike andworking directly with the nonrelativistic expressions and in-
relativistic, i.e., using standard QED computations even atroducing the form factors. Either way, it is comforting to
scales ofO(m,). The fact that the proton has some anoma-find the Zemach expressida].

lous magnetic moment that is due to hadronic effects or, in The upper index irGg and Gy, has to do with the chiral
other words, the fact that proton has structure makes suotbunting.G(Eo)zl. It is illustrative to split the contribution to
theory no-renormalizable. This makes the result of the com&(?) from u and d, and theA, GP=G{?, ,+G,, and
putation divergent. Within this philosophy, the result to theanalogously for the Zemach contribution ’

hyperfine splitting due to pointlike contributions in REB]
was proportional to

pl; _ APl pl;
5C4,Zemach_ 5C4,Zemach— u,d+ 504,Zemach—A ) (40)
2
3+ ZcF—cé 5 m. 3 5 m% Another strong simplification comes from the fact that we
4 @ ”F"' 2 (G DfIns, (38 are just searching for logarithms. Therefore, we are only in-
P terested in the behavior of the form factors fop>k>m,

and not analytical irk?. In particular, for the logarithms, we
whereA is the cutoff of this computation. This computation are only interested in the linear behavior|kj. From Refs.
would make sense if the scales on which the structure of thE20,21 (also sed22]), we obtain
nucleon appears were much larger than the mass of the
nucleon(then A could run up to this scale Unfortunately, 2
this is not the case and the structure of the nucleon appears at G@\ 4= ﬁ E|k|[— 39:l, (41
scales ofO(m,) or even before. Therefore, to compute loops 0
at the scale oO(m,) assuming the proton to be pointlike

produces problem&livergencel as we have seen. The pro- @ . Mp w? —4ngNA

cedure we use in this paper to deal with this issue is to work Cun= 7=z 5Kl —=—| (42
: Uuse _ > - (4mFg)c 12 3

with effective field theories where the nucleon is considered

to be nonrelativistic. In other words, only at scales much 5 5

smaller than the mass of the nucleon it is a good approxima- I m 2 =

; ; P och ~——P 42" n2giin—f (43

tion to consider the nucleon to be pointlike. The other usual 4zemach-ud (47F)%" 3 9a 2

method is to use some parametrization of the form factors

fitted to the experimental dat@ee, for instanceg,18,19). ) 5

This regulates the ultraviolet divergences, providing predic- ScPi - Mp aziﬂ_z 2 InA— (44)

tions for the hadronic correction to the hyperfine splitting. aZemach-A" (47F,)2" 27 Gmnall 2

This is a very reasonable attitude in the cases where we are

mainly interested in getting a number for the hadronic COMt is remarkable that the above results ar@nhanced.

rection to the hy_perfme SP"“”FQ- Nevertheless, th'.s IS not the Just for completeness, we also give the expression for
procedure we will follow in this paper, since our aim here is

plj .
to gain as much understanding as possible of the structure 8Fazemach
the proton from QCD and chiral symmetry. We want to un-
derstand how much of the coefficient can be understood from

. : : : ol ) d® %k 1o
logarithms and energies @(m,), for which a chiral La- 5c3£emach=4(4wa)2mpm|if ——— -GG,
grangian can be used. This is something that could not be ' (2m) K
done with the standard form factors used to fit the experi- (45)

mental data, since they do not incorporate the correct mo-
mentum dependence at low energies due to chiral symmetrfThis term appears to be finite to the order of interést
The Zemach correction is due to what is called ¢lastic  produces no logarithmsand it agrees with the result ob-
contribution[Eqg. (27) of Ref.[16]] for A; and analogously tained by PachucKi23] at leading order.
for A, (nevertheles$\, does not appear to give a contribu- The Zemach correctionéoth spin dependent and spin
tion). It reads independentcorrectly incorporate the whole dependence on
the lepton mass. Therefore, the same expressions are valid
for the hydrogen and the muonic hydrogen.
2Yet relativistic-type computations can be very useful sometimes, Let us now consider the polarizability contributions. In
like in identifying some Infy /m,)—In(m /v) logarithms and the SU(2) caséand including thed) they should come from
my,/m, corrections in an efficient way; s¢&7]. Egs. (30) and (32)—(36) of Ref. [16]. In principle, in our
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case, one should consider more diagrams besides those plate then obtain
ted in Ref.[16], like the ones due to the Wess-Zumino

anomaly actiori. Nevertheless, as already stated in the de- ol 5 d® 1k 1 ©) (2)
scription of the pionic Lagrangian, it turns out that they do  9C47emach s~ (47) mpgf 2mP 1 k4G Gy
not contribute in our case. Finally, we split the polarizability (
contribution as followgfor the SU2) cas4: m>2 2
_—— P 27 2
pli pl; pl; pl; T (GnFg)2Y 9"
5C4 pol. 504 pol.— at 5C4 pol.— nT 5C4 pol.—7A* (46) ( o )
m
It is again a great simplification the fact that we are only ><(5D2—6DF+9F2)In—§. (51)
14

searching for logarithms.

From Egs.(32) and(35) of Ref.[16] we obtain(we also
checked this result by doing the computation directly in the
nonrelativistic limip

In order to obtain a complete result, one should add the
strange-related contribution to the Zemach correction due to
the baryon spin 3/2 multiplet and to obtain the whole strange

| ;11F A2 contribution to the polarizability. This would require us to
6cgp0| = 1—éa2In7, (47 haveA; andA, for SU(3) and including the baryon spin 3/2

multiplet, which are unfortunately unknown. In any case, one
may wonder whether, for the polarizability corrections, the
large N, cancellation would also hold in this case as well as
the 1/ and numerical factor suppression, so that it would be
a very tiny contribution as in the SP) case.

whereb? =G, according to the definition in Ref16]. The
consequences this result has in a laieanalysis are re-
markable enough. In the lardé,, b% =3/(2./2) . accord-
ing to the Ji and Osborne definitions, wherg stands for the
isovector magnetic moment. On the other hand, by using the
results of Ref[24] u,/u,=—1, one obtaingfor practical
purposes w,= u\/2 in the largeN. It follows that in this With the above results one can obtain the leading had-
limit the role of the delta is to cancall the u, contribution  ronic contribution to the hyperfine splitting. It reads

in Eq. (37) [(3+2¢cg— cF)/4 1-u /4] which effectively
becomes the result of a pointlike part|cle. Cin

Matching to pNRQED: Energy correction

R
From Egs.(30) and (34) of Ref.[16] we obtain Enr= 4? ;(Mlipa)a- (52
p
m? a® 8 m? . . .
5C2|p0| - ﬁzgf\_ §Cln—§, (48) By fixing the scal_ey= m, we obtain the following number
™™o ™ v for the total sum in the S(@2) case:

whereC is defined in the Appendix. From Eq®83) and(36) ' _
of Ref.[16] we obtain EvFiogarinméMy) = —0.031 MHz. ®3

The absolute value of this number would increase for a larger

2 2 2
pl; My », o 64 A value of » and decrease for a smaller value. The main con-
OCapol. s~ (4mFq)29m™a 27¢Imz 49 tribution to Eq.(53) comes from the Zemach and pointlike
, i . corrections:
It is worth noting that Eqs(48) and(49) cancel each other in
the largeN, limit, sinceg.y,=3/(2y2)g, in this case with E e zemach-uiM,) = —0.022 MHz, (54)
the definitions of Ref[16]. Moreover, they are suppressed ' '
by 1/7 factors and the smallness of the numerical coefficient EnF zemacra (M,) = —0.004 MHz, (55)
compared with the Zemach term. Let us note that E4j8), '
(48), and(49) may bring some light on why the polarization Eie pointid M,) = —0.003 MHz. (56)

term is much smaller than the Zemach term in a model-

independent way, since we have an almost analytical result. Equation(53) accounts for approximately 2/3 of the dif-

Our results can be summarized in E€37), (43), (44),  ference between theorfpure QED [18] and experiment
(47), (48), and (49). The above computation has been per-[2g]:

formed in SU2), it would be interesting to repeat the analy-

sis for SU3). Indeed, we can compute the Zemach correc- Er(QED)—Er(exp = —0.046 MHz. (57)
tion due to the strange quafk we do not consider the spin
3/2 baryons by using the results of Ref25] for Gy s: What is left gives the expected size of the counterterm. Ex-

penmentally what we have is;nr=— 48 and c4R(mp)

@) - mp 2 2 —16a2. This last figure gives the expected size of the

Ghi's= (47Fg) |k|[5D —6DF+OFT. (50 counterterm of the Lagrangian. A more detailed analysis
would require to work in an specific schenff®r instance

MS) to fix the finite pieces. We expect to come back to this

3We thank T. Hemmert for stressing this possibility to us. issue in the future. A point to stress is that this number is
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universal, i.e., the same for the electron and for the muon upcales. To perform the full computation in &Y would be
to corrections suppressed by the ratio of the lepton masalso highly desirable. A partial SB) result brings Eq(61)

versus the proton mass: down to —0.027 MHz.
Our results may help to better understand the fact that the
chr(m,)=chi(m,). (58)  Zemach correction is much larger than the polarizability con-

tribution, since we havéalmos) analytical expressions for
This observation could be used in an eventual measuremetitese contributions. The polarizability tefiexcept Eq(47)]

of the hyperfine splitting of the muonic hydrogen. vanishes in the larg8l. and it is 1/~ and numerical-factor
The introduction of the partial SI3) computation would suppressed with respect the Zemach terms. On the other
worsen the above prediction by hand, Eq(47), in the largeN, limit, cancelsall the w, con-
tribution in Eq.(37), which effectively becomes the result of
Enr zemach-kadiM,) = 0.003 MHz, (59 a point-like particle.

Several lines of research are worth pursuing. One is trying
bringing the total sum down te-0.027 MHz andc,g(m,) to computeczyg Within HBET, since its numerical value
to —20a°. could be obtained from measurements of the Lamb shift, and
it is related to(and in a way defingghe proton radius. An-
other could be to consider more complicated atoms within
V- CONCLUSIONS this effective field theory formalisrtsee, for instancg9] for
We have performed a first exploratory study on the appli-helium).
cation of effective field theories emanated from chiral
Lagrangians on atomic physiéswWe have computed the

cﬁ",i\lR matching coefficient of the NRQED Lagrangian for the

e-p andﬂ_p sectors Witl’O(aZXUnrannA,]nmi]) accuracy. We thank T. Hemmert and J. Soto for useful discussions

- o : _and X.-D. Ji for a correspondence. We also thank J. Soto for
;—Zﬁ hyphe ;2”6 St? (Ialét:]ng Oiglr?ngg éogecvﬁlgdory;gl;lg:])z/dro the reading of the manuscript. This work was supported by
! P MCyT and Feder(Spain, FPA2001-3598, and by CIRIT
><[Inmq,lnA,Inmi]) accuracy. We note that our results in- (Catalonia, 2001SGR-00065.
clude the complete expression for the leading chiral loga-
rithms.
The difference between the experimental value of the hy-
drogen hyperfine splitting and the pure QED computation
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APPENDIX: CONSTANTS

reads Fo=92.5 MeV,
Enr(QED)—Enr(exp = —0.046 MHz, (60) ga=1.25,
whereas our theoretical prediction reads m._=140 MeV,
EnFlogarithméM,) = —0.031 MHz. (61)

my,=m,=938 MeV,
We are then able to obtain an estimate ©fg(m,))

= —16a? which is valid for bothe-p and u-p systems. A=294 MeV,
One could improve these results by performing the whole
computation in the MS scheme or alikie this case some of g.na=1.05,

the expressions in this paper should be rewritteD idimen-
siong. It would follow that not only the logarithms but the

finite pieces(in a specific schemeof the matching coeffi- bf=3.86,
cient would be obtained too. This would fix with a greater

precision the value orﬁﬁR(mp) and, thus, the respective size F=1/2,

of the effects due to the physics at scalesOgm,) and at

scales ofO(m_). This is important since the experimental D=3/4,

number is precise enough to give an accurate number for

c’j‘R(mp), which could be used to test models @(m,) m =770 MeV (A1)
) .

“The pionium, which has received quite attention recef@ly— b} andg,ya have been obtained from the decays of the delta
32], has also been studied within a similar nonrelativistic effectivein the nonrelativistic limit(consistent with the accuracy of
field theory philosophy27,29,30,32 Specially close to ours is the our calculation.
approach followed ifi30]. The pionic hydrogen has also been stud-  The values ofF and D are consistent with the largd,
ied using effective field theories very receniBa]. limit. Finally,
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