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Leading chiral logarithms to the hyperfine splitting of the hydrogen and muonic hydrogen
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We study the hydrogen and muonic hydrogen within an effective field theory framework. We perform the
matching between heavy baryon effective theory coupled to photons and leptons and the relevant effective field
theory at atomic scales. This matching can be performed in a perturbative expansion ina, 1/mp , and the chiral
counting. We then compute theO(ml i

3a5/mp
23 logarithms) contribution~including the leading chiral loga-

rithms! to the hyperfine splitting and compare with experiment. They can explain about 2/3 of the difference
between experiment and the pure QED prediction when setting the renormalization scale at ther mass. We
give an estimate of the matching coefficient of the spin-dependent proton-lepton operator in heavy baryon
effective theory.
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I. INTRODUCTION

Years have passed since the advent of QCD. After num
ous attempts to understand QCD by using several mod
more studies now move towards trying to parametrize
QCD properties in a model independent way with the help
different systematics that are usually highlighted by the s
cific kinematic situation under study. One could hope t
this approach may bring some light on the understanding
QCD or at least provide some consistency check betw
different models. Therefore, it becomes important to be a
to relate as many observables as possible in a model i
pendent framework. Effective field theories~EFTs! may play
an important role in this approach.

Within the above philosophy, the study of hydrogen (ep)
and muonic hydrogen (mp), in particular of the high preci-
sion measurement of different splittings, can provide ac
rate determinations of some hadronic parameters relate
the proton elastic and inelastic electromagnetic form fac
like the proton radius and magnetic moment, polarizat
effects, etc.

In theep andmp we are basically testing the proton wit
different probes (e, m, g). They correspond to the simple
possible probes since they are pointlike particles and the
teraction is perturbative~the analogy with deep inelasti
scattering is evident and it has already been used since
ago @1–4# in order to obtain some of these hadronic para
eters from dispersion relations!. They also provide the firs
natural step towards more complicated systems like exoti
heavy~muonic! atoms.

The ep and mp systems are, in a first approximatio
states weakly bound by the Coulomb interaction and th
typical binding energy and relative momentum areE
; me(m)a

2 and upu ; me(m)a, respectively. We will switch
off the weak interactions in this work. Therefore, theep and
mp systems become stable, andC, P, andT are exact sym-
metries of these systems. In any case, several different s
are involved in their dynamics: For theep system they are
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. . . , mea
2, mea, me , Dm5 mn2mp , D 5 mD2mp , mp ,

mp , mr , Lx , . . . , that we will group and name in the fol
lowing way.

~i! mea
2: ultrasoft ~US! scale.

~ii ! mea: soft scale.
~iii ! mep5memp /(me1mp), D m5mn2mp , me : hard

scale.
~iv! mm , D5mD2mp , mp : pion scale.
~v! mp , mr , Lx : chiral scale.
For the mp system they are. . . , mma2, mma, mm ,

Dm5mn2mp , me , D5mD2mp ,mp , mp , mr , Lx , . . . ,
that we will group and name in the following way.

~vi! mma2: US scale.
~vii ! Dm5mn2mp , me , mma: soft scale.
~viii ! mmp5mmmp /(mm ,1mp), mm , D5mD2mp , mp :

hard/pion scale.
~ix! mp , mr , Lx : chiral scale.
By doing ratios with the different scales, several sm

expansion parameters can be built. Basically, this will me
that the observables, the spectrum in our case, can be wri
up to large logarithms, as an expansion, in the case of theep,
in a, me /mp , andmp /mp , and in the case of themp, in a
andmm /mp . It will also prove convenient sometimes to us
the reduced massmm(e)p , since it will allow to keep~some
of! the exact mass dependence at each order ina. In order to
be more precise, theep energy will be expanded in the fol
lowing way ~up to logarithms!:

E~ep!52
mepa

2

2n2
~11c2a21c3a31••• !, ~1!

where

cn5 (
i , j 50

`

cn
( i , j )S me

mp
D i S mp

mp
D j

1•••, ~2!

andcn
( i , j ) are functions of dimensionless quantities ofO(1)

like mep /me , mm /mp , etc.
For themp things work analogously,
©2003 The American Physical Society01-1
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E~mp!52
mmpa2

2n2
~11c1a1c2a21c3a31••• !, ~3!

where c1 does not depend on hadronic quantities, only
mma/me , and (n>2),

cn5(
j 50

`

cn
( j )S mp

mp
D j

1•••, ~4!

wherecn
( j ) are functions of dimensionless quantities ofO(1)

like mmp /mm , mm /mp , mma/me , etc.
Let us stress that the coefficientscn can be expanded in

the ratiomp /mp , i.e., in the chiral/heavy-baryon expansio
(mp should also be understood asLx).

In order to disentangle all the different scales mention
above it is convenient to use EFTs. In order to obtain
relevant one for these systems we first need to decide w
are the degrees of freedom we want to describe. In our c
we want to describe theep and mp systems at ultrasoft o
smaller energies. Therefore, degrees of freedom with hig
energies can~and will! be integrated out in order to obtai
the EFT to describe these systems. One EFT that fulfills
requirement is potential NRQED~pNRQED! @5,6# ~for some
applications see@7# and see also@8,9#!. pNRQED appears
after integrating out the soft scale from NRQED@10# and it
shares some similarities with the approach followed in R
@11#. We will obtain pNRQED by passing through differe
intermediate effective field theories after integrating out d
ferent degrees of freedom. The path that we will take is
following ~in some cases, instead of this chain of EFTs o
can use dispersion relations, or direct experimental data
order to obtain the matching coefficients!:

HBET→~QED!→NRQED→pNRQED.

This way of working opens the possibility to compute t
observables of atomic physics with the parameters obta
from heavy baryon effective theory~HBET!, which is much
closer to QCD since it incorporates its symmetries autom
cally, in particular the chiral symmetry. Besides, it is t
matching with HBET that will allow us to relate the matc
ing coefficients used forep with the ones used inmp. HBET
@12# describes systems with one heavy baryon: the pro
the neutron, or the delta@13# at the pion mass scale. Th
chiral scale explicitly appears in the Lagrangian as an exp
sion in 1/Lx and 1/mp and any other smaller scale remai
dynamical in this effective theory. In short, HBET is a EF
defined with an UV cutoffn such thatn!Lx but larger than
any other dynamical scale in the problem.

In themp, NRQED appears after integrating out the ha
scale, whereas in theep, NRQED appears after integratin
out the pion and hard scales. In this last case one could
through an intermediate theory~QED! defined by integrating
out the pion scale, and profit from the fact that pion and h
scales are widely separated. Nevertheless, we will do
matching here in one step for simplicity.

pNRQED is obtained after integrating out the soft sca
We refer to@5,6# for further details. The above methodolog
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allows one to compute~or parametrize in a model indepen
dent way! the coefficientsc’s in a systematic expansion i
the different small parameters on which these systems
pend.

It is the aim of this paper to use this procedure for t
computation of the leading-logarithm hadronic contributio
to the hyperfine splitting for both theep andmp. This means
to compute the spin-dependent piece ofc3 with
O@(me /mp)23 logarithms# and O@(mm /mp)23 logarithms#
accuracy for theep andmp, respectively.

II. EFFECTIVE FIELD THEORIES

In this section, we will consider the different EFTs th
will be necessary for our calculation.

A. HBEFT

Our starting point is the SU~2! version of HBEFT coupled
to leptons, where the delta is kept as an explicit degree
freedom. The degrees of freedom of this theory are the p
ton, neutron, and delta, for which the nonrelativistic appro
mation can be taken, and pions, leptons~muons and elec-
trons!, and photons, which will be taken to be relativistic.

Our first aim will be to present the effective Lagrangian
this theory. It corresponds to a hard cutoffm!mp , Lx , and
is much larger than any other scale in the problem. The
grangian can be split into several sectors. Most of them h
already been extensively studied in the literature, but so
will be new. Moreover, the fact that some particles will on
enter through loops, since only some specific final states
desired, will simplify the problem. The Lagrangian can
structured as

LHBET5Lg1Ll1Lp1Llp1L(N,D)1L(N,D) l1L(N,D)p

1L(N,D) lp , ~5!

representing the different sectors of the theory. In particu
the D stands for the spin 3/2 baryon multiplet~we also use
D5mD2mp , the specific meaning in each case should
clear from the context!.

The Lagrangian can be written as an expansion ine and
1/mp . Our aim is to obtain the hyperfine splitting wit
O@ml i

3a5/mp
23(lnmq ,lnD,lnmli

)# accuracy, wheremq stands

for the mass of the light,u andd ~or s), quarks andml i
for

the mass of the lepton@the leading order contribution to th
hyperfine splitting readsEF5(8/3)cF

(p)ml i
2a4/mp , wherecF

(p)

is defined in Eq.~10!#. Therefore, we need, in principle, th
Lagrangian withO(1/mp

2) accuracy. Let us consider the di
ferent pieces of the Lagrangian more in detail.

The photonic Lagrangian reads~the first corrections to
this term scale likea2/mp

4)

Lg52
1

4
FmnFmn . ~6!

The leptonic sector reads (iD m5 i ]m2eAm)
1-2
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Ll5(
i

l̄ i~ iD” 2ml i
!l i , ~7!

wherei 5e,m. We do not include the term

2
egl i

mp
l̄ ismnl iF

mn, ~8!

since the coefficientgl i
is suppressed by powers ofa and the

mass of the lepton. Therefore, it would give contributio
beyond the accuracy we aim. In any case, any eventual
tribution would be absorbed in a low energy constant.

The pionic LagrangianLp is usually organized in the chi
ral counting. From the analysis of Sec. II B we will see th
the free pion propagators provide with the necessary pr
sion. Therefore, we only need the free-particle pionic L
grangian:

Lp5~]mp1!~]mp2!2mp
2 p1p2

1
1

2
~]mp0!~]mp0!2

1

2
mp

2 p0p0. ~9!

The one-baryon LagrangianL(N,D)p is needed at
O(1/mp

2). Nevertheless a closer inspection simplifies t
problem. A chiral loop produces a factor 1/(4pF0)2

;1/mp
2 . Therefore, the pion-baryon interactions are on

needed atO(mp), the leading order, which is know
@12,13#.1 For the explicit expressions we refer to these ref
ences.

Therefore, we only need the one-baryon Lagrang
L(N,D) at O(1/mp

2) coupled to electromagnetism. This wou
be a NRQED-like Lagrangian for the proton, neutron~of
spin 1/2!, and delta~of spin 3/2!. The neutron is actually no
needed at this stage. The relevant term for the proton re

dL(N,D)5Np
†H iD 01

Dp
2

2mp
1

Dp
4

8mp
3

2eZp

cF
(p)

2mp
s•B

2 ieZp

cS
(p)

8mp
2

s•~Dp3E2E3Dp!J Np , ~10!

where iD p
05 i ]01ZpeA0, iDp5 i“2ZpeA. For the proton

Zp51. We have not included a term like

1Actually terms that go into the physical mass of the proton a
into the physical value of the anomalous magnetic moment of
proton mp5cF

(p)21 should also be included~at least in the pure
QED computations!, and will be assumed in what follows. For ou
computation these effects would be formally subleading. In a
case, their role is just to bring thebarevalues ofm0 andm0 to their
physical values. Therefore, once the values ofmp andmp are mea-
sured by different experiments, they can be distinguished from
effects we are considering in this paper.
02520
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(p)

mp
2

Np
†@“•E#Np . ~11!

We could have done so but it may also be eliminated
some field redefinitions. In any case it would give contrib
tion to the spin-independent terms so we will not conside
further in this work.

As for the delta~of spin 3/2!, it mixes with the nucleons a
O(1/mp) @O(1/mp

2) are not needed in our case#. The only
relevant interaction in our case is thep-D1-g term, which is
encoded in the second term of

dL(N,D)5T†~ i ]02D!T1
eb1,F

2mp
~T†s(1/2)

(3/2)
•B t(1/2)

3(3/2)N

1H.c.!, ~12!

whereT stands for the delta 3/2 isospin multiplet,N for the
nucleon 1/2 isospin multiplet and the transition spin/isos
matrix elements fulfill~see@14#!

s(3/2)
i (1/2)s(1/2)

j (3/2)5
1

3
~2d i j 2 i e i jksk!,

t(3/2)
a(1/2)t(1/2)

b(3/2)5
1

3
~2dab2 i eabctc!. ~13!

The baryon-lepton Lagrangian provides new terms that
not usually considered in HBET. The relevant term in o
case is the interaction between the leptons and the nucl
~actually only the proton!:

dL(N,D) l5
1

mp
2 (

i
c3,R

pli N̄pg0Np l̄ ig0l i

1
1

mp
2 (

i
c4,R

pli N̄pg jg5Np l̄ ig jg5l i . ~14!

The above matching coefficients fulfillc3,R
pli 5c3,R

p and c4,R
pli

5c4,R
p up to terms suppressed byml i

/mp , which will be
sufficient for our purposes.

Let us note that with the conventions above,Np is the
field of the proton~understood as a particle! with positive
charge if l i represents the leptons~understood as particles!
with negative charge. This finishes all the needed terms
this paper, since the other sectors of the Lagrangian wo
give subleading contributions.

B. NRQED„µ…

In the muon-proton sector, by integrating out themp

scale, an effective field theory for muons, protons, and p
tons appears. In principle, we should also consider neutr
but they play no role at the precision we aim. The effect
theory corresponds to a hard cutoffn!mp , and therefore
pions and deltas have been integrated out. The Lagrangia
equal to the previous case but without pions and deltas
with the following modifications: Ll→Le1L m

(NR) and

d
e

y

e

1-3
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L(N,D) l→LNe1L Nm
(NR) , where it is made explicit that the

muon has become unrelativistic. Any further difference go
into the matching coefficients, in particular into the matchi
coefficients of the baryon-lepton operators. In summary,
Lagrangian reads

LNRQED(m)5Lg1Le1L m
(NR)1LN1LNe1L Nm

(NR), ~15!

where

L m
(NR)5 l m

† H iD m
0 1

Dm
2

2mm
1

Dm
4

8mm
3

1eZm

cF
(m)

2mm
s•B

1 ieZm

cS
(m)

8mm
2

s•~Dm3E2E3Dm!J l m ~16!

and

L Nm
NR5

c3,NR
plm

mp
2

Np
†Npl m

† l m2
c4,NR

plm

mp
2

Np
†sNpl m

† sl m , ~17!

with the following definitions: iD m
0 5 i ]02ZmeA0, iDm

5 i“1ZmeA and Zm51. Le stands for the relativistic lep
tonic Lagrangian@Eq. ~7!# andLNe for Eq. ~14!, both for the
electron case only. A term of the type

2
egl e

mm
l̄ esmnl eF

mn ~18!

is not taken into account because of the same reason
Sec. II A.

C. QED„e…

After integrating out scales ofO(mp) in the electron-
proton sector, an effective field theory for electrons coup
to protons~and photons! appears. Again, we should also co
sider neutrons, but they play no role at the precision we a
This effective theory has a cutoffn!mp and pions, deltas
and muons have been integrated out. The Lagrangian re

LQED(e)5Lg1Le1LN1LNe . ~19!

This Lagrangian is similar to the previous subsection
without the muon.

D. NRQED„e…

After integrating out scales ofO(me) in the electron-
proton sector, we still have an effective field theory for ele
trons coupled to protons and photons. Nevertheless, now
electrons are nonrelativistic. The Lagrangian is quite sim
to the one in Sec. II B but without a light fermion and wi
the replacementm→e. The Lagrangian reads

LNRQED(e)5Lg1L e
(NR)1LN1L Ne

(NR). ~20!
02520
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E. pNRQED

After integrating out scales ofO(ml i
a) one ends up in a

Schrödinger-like formulation of the bound-state problem. W
refer to @5,6# for details. The pNRQED Lagrangian for th
ep ~the nonequal mass case! can be found in Appendix B of
the second reference in@6# up to O(ma5). The pNRQED
Lagrangian for themp is similar except for the fact that ligh
fermion ~electron! effects have to be taken into account. T
explicit Lagrangian and a more detailed analysis of this c
will be presented elsewhere. For the purposes of this pa
we only have to consider the spin-dependent delta poten

dV52
c4,NR

mp
2

S2d (3)~r !, ~21!

which will contribute to the hyperfine splitting.

III. FORM FACTORS: DEFINITIONS

It will turn out convenient to introduce some notation b
fore performing the matching between HBET and NRQE
We first define the form factors, which we will understand
pure hadronic quantities, i.e., without electromagnetic c
rections.

Our notation is based on the one of Ref.@15#. We define
Jm5( iQi q̄ig

mqi , wherei 5u,d ~or s). The form factors are
then defined by the following equation:

^p8,suJmup,s&5ū~p8!FF1~q2!gm1 iF 2~q2!
smnqn

2m Gu~p!,

~22!

whereq5p82p and F1 , F2 are the Dirac and Pauli form
factors, respectively. The states are normalized in the follo
ing ~standard relativistic! way:

^p8,l8up,l&5~2p!32p0d3~p82p!dl8l ~23!

and

u~p,s!ū~p,s!5
P” 1mp

2mp

11g5s”

2
, ~24!

wheres is an arbitrary spin four vector obeyings2521 and
P•s50.

The form factors could be~analytically! expanded as

Fi~q2!5Fi1
q2

m2 Fi81••• ~25!

for very low momentum. Nevertheless, we will be interest
instead in their nonanalytic behavior inq since it is the one
that will produce the logarithms.

We also introduce the Sachs form factors

GE~q2!5F1~q2!1
q2

4m2 F2~q2!,

GM~q2!5F1~q2!1F2~q2!. ~26!
1-4
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We will also need the forward virtual-photon Compto
tensor

Tmn5 i E d4xeiq•x^p,suTJm~x!Jn~0!up,s&, ~27!

which has the structure (r5q•p/m)

Tmn5S 2gmn1
qmqn

q2 D S1~r,q2!1
1

mp
2 S pm2

mpr

q2
qmD

3S pn2
mpr

q2
qnD S2~r,q2!2

i

mp
emnrsqrssA1~r,q2!

2
i

mp
3

emnrsqr@~mpr!ss2~q•s!ps#A2~r,q2!, ~28!

depending on four scalar functions. It is usual to consider
Born approximation of these functions. They read

S1
Born~r,q2!522F1

2~q2!2
2~q2!2 GM

2 ~q2!

~2mpr!22~q2!2
, ~29!

S2
Born~r,q2!52

4mp
2q2 F1

2~q2!2~q2!2 F2
2~q2!

~2mpr!22~q2!2
, ~30!

A1
Born~r,q2!52F2

2~q2!1
4mp

2q2 F1~q2!GM~q2!

~2mpr!22~q2!2
,

~31!

A2
Born~r,q2!5

4mp
3r F2~q2!GM~q2!

~2mpr!22~q2!2
. ~32!

In the following section, we will use the results of Ji an
Osborne@16#. Their notation relates to ours in the followin
way ~for the spin-dependent terms!: S1

JO5A1 /mp
2 and S2

JO

5A2 /mp
3 . Note, however, thatA1

Born above is different from

the S̄1 definition in Ref.@16# by theF2
2 term.

IV. MATCHING

The matching between HBET and NRQED can be p
formed in a generic expansion in 1/mp , 1/mm , and a. We
have two sort of loops: chiral and electromagnetic. T
former are always associated to 1/(4pF0)2 factors, whereas
the latter are always suppressed bya factors. Any scale left
to get the dimensions right scales withmp . In our case we
are only concerned in obtaining the matching coefficients
the lepton-baryon operators of NRQCD withO@a2

3(lnmq ,lnD,lnmli
)# accuracy. Therefore, the piece of the L

grangian we are interested in reads

dL5
c3,NR

pli

mp
2

Np
†Npl i

†l i2
c4,NR

pli

mp
2

Np
†sNpl i

†sl i , ~33!
02520
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where we have not specified the lepton~either the electron or
the muon!. In what follows, we will assume that we ar
doing the matching to NRQED(m). Therefore, we have to
keep the whole dependence onml i

/mp . The NRQED(e)

case can then be derived by expandingme versusmp . In
principle, a more systematic procedure would mean to
through QED(e). Nevertheless, for this paper, as we do
will turn out to be the easier.

In principle, the contributions scaling with 1/mm are the
more important ones. Nevertheless, they go beyond the
of this paper. This is specially so as far as we are only in
ested in logarithms and the spin-dependent termc4,NR

pli . Its
general expression atO(a2) reads~an infrared cutoff larger
thanmla is understood and the expression for the integra
should be generalized for an eventual full computation inD
dimensions!

c4,NR
pli 52

ig4

3 E dDk

~2p!D

1

k2

1

k424ml i
2k0

2

3H A1~k0 ,k2!~k0
212k2!13k2

k0

mp
A2~k0 ,k2!J ,

~34!

consistent with the expressions obtained long ago as in
@3#. This expression has been obtained in the Feynm
gauge. It correctly incorporates the whole dependence on
lepton mass. Therefore, the same expressions are valid
the hydrogen and muonic hydrogen.

In principle one should also consider contributions w
one, two, or three electromagnetic current insertions in
hadronic matrix elements instead of only two as in Eqs.~27!
and~34!. Nevertheless, only the above contribute to the or
of interest.

Within the EFT framework the contribution from energie
of O(mr) or higher in Eq.~34! are encoded inc4,R

pli .c4,R
p

~analogously forc3). The contribution from energies o
O(mp) are usually split into three terms~actually this divi-
sion is usually made irrespective of the energy which is
ing integrated out!: pointlike, Zemach, and polarizability cor
rections. They will be discussed further later. From the po
of view of chiral counting the three terms are of the sa
order. Therefore, at the order of interest we can dividec4,NR
in the following way:

c4,NR
pli 5c4,R

p 1dc4,pointl ike
pli 1dc4,Zemach

pli 1dc4,pol.
pli . ~35!

Indeed, a similar splitting is usually done forc3,NR
pli :

c3,NR
pli 5c3,R

p 1dc3,pointl ike
pli 1dc3,Zemach

pli 1dc3,pol.
pli . ~36!

Let us stress at this point that we are only interested in
logarithms. Therefore, we do not need to take care of
finite pieces. This will significantly simplify the calculation

We obtain the following result for the pointlike contribu
tion:
1-5
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dc4,pointl ike
pli 5

312cF2cF
2

4
a2ln

ml i
2

n2
. ~37!

Usually, in the literature, the computation of this type
contributions is made considering the proton pointlike a
relativistic, i.e., using standard QED computations even
scales ofO(mp). The fact that the proton has some anom
lous magnetic moment that is due to hadronic effects or
other words, the fact that proton has structure makes s
theory no-renormalizable. This makes the result of the co
putation divergent. Within this philosophy, the result to t
hyperfine splitting due to pointlike contributions in Ref.@3#
was proportional to2

312cF2cF
2

4
a2ln

ml i
2

mp
2

1
3

4
~cF21!2ln

mp
2

L2 , ~38!

whereL is the cutoff of this computation. This computatio
would make sense if the scales on which the structure of
nucleon appears were much larger than the mass of
nucleon~then L could run up to this scale!. Unfortunately,
this is not the case and the structure of the nucleon appea
scales ofO(mp) or even before. Therefore, to compute loo
at the scale ofO(mp) assuming the proton to be pointlik
produces problems~divergences!, as we have seen. The pro
cedure we use in this paper to deal with this issue is to w
with effective field theories where the nucleon is conside
to be nonrelativistic. In other words, only at scales mu
smaller than the mass of the nucleon it is a good approxi
tion to consider the nucleon to be pointlike. The other us
method is to use some parametrization of the form fac
fitted to the experimental data~see, for instance,@18,19#!.
This regulates the ultraviolet divergences, providing pred
tions for the hadronic correction to the hyperfine splittin
This is a very reasonable attitude in the cases where we
mainly interested in getting a number for the hadronic c
rection to the hyperfine splitting. Nevertheless, this is not
procedure we will follow in this paper, since our aim here
to gain as much understanding as possible of the structu
the proton from QCD and chiral symmetry. We want to u
derstand how much of the coefficient can be understood f
logarithms and energies ofO(mp), for which a chiral La-
grangian can be used. This is something that could no
done with the standard form factors used to fit the exp
mental data, since they do not incorporate the correct
mentum dependence at low energies due to chiral symm

The Zemach correction is due to what is called theelastic
contribution@Eq. ~27! of Ref. @16## for A1 and analogously
for A2 ~neverthelessA2 does not appear to give a contrib
tion!. It reads

2Yet relativistic-type computations can be very useful sometim
like in identifying some ln(mli

/mp)→ln(mli
/n) logarithms and

ml i
/mp corrections in an efficient way; see@17#.
02520
d
t

-
in
ch
-

e
he

at

k
d
h
a-
l

rs

-
.
re
-
e

of
-
m

e
i-
o-
ry.

dc4,Zemach
pli 5~4pa!2mp

2

3E dD21k

~2p!D21

1

k4
GE

(0)GM
(2) .

~39!

Equation ~39! can be obtained directly from Eq.~34! or
working directly with the nonrelativistic expressions and i
troducing the form factors. Either way, it is comforting
find the Zemach expression@1#.

The upper index inGE andGM has to do with the chiral
counting.GE

(0)51. It is illustrative to split the contribution to
GM

(2) from u and d, and theD, GM
(2)5GM ,u,d

(2) 1GM ,D
(2) , and

analogously for the Zemach contribution

dc4,Zemach
pli 5dc4,Zemach2u,d

pli 1dc4,Zemach2D
pli . ~40!

Another strong simplification comes from the fact that w
are just searching for logarithms. Therefore, we are only
terested in the behavior of the form factors formp@k@mp

and not analytical ink2. In particular, for the logarithms, we
are only interested in the linear behavior inuku. From Refs.
@20,21# ~also see@22#!, we obtain

GM ,u,d
(2) 8

mp

~4pF0!2

p2

12
uku@23gA

2 #, ~41!

GM ,D
(2) 8

mp

~4pF0!2

p2

12
ukuF24gpND

2

3 G , ~42!

dc4,Zemach2u,d
pli .

mp
2

~4pF0!2 a2
2

3
p2gA

2 ln
mp

2

n2 , ~43!

dc4,Zemach2D
pli .

mp
2

~4pF0!2 a2
8

27
p2gpND

2 ln
D2

n2 . ~44!

It is remarkable that the above results arep-enhanced.
Just for completeness, we also give the expression

dc3,Zemach
pli :

dc3,Zemach
pli 54~4pa!2mp

2ml iE dD21k

~2p!D21

1

k6
GE

(0)GE
(2).

~45!

This term appears to be finite to the order of interest~it
produces no logarithms!, and it agrees with the result ob
tained by Pachucki@23# at leading order.

The Zemach corrections~both spin dependent and sp
independent! correctly incorporate the whole dependence
the lepton mass. Therefore, the same expressions are
for the hydrogen and the muonic hydrogen.

Let us now consider the polarizability contributions.
the SU(2) case~and including theD) they should come from
Eqs. ~30! and ~32!–~36! of Ref. @16#. In principle, in our

s,
1-6
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case, one should consider more diagrams besides those
ted in Ref. @16#, like the ones due to the Wess-Zumin
anomaly action.3 Nevertheless, as already stated in the
scription of the pionic Lagrangian, it turns out that they
not contribute in our case. Finally, we split the polarizabil
contribution as follows@for the SU~2! case#:

dc4,pol.
pli 5dc4,pol.2D

pli 1dc4,pol.2pN
pli 1dc4,pol.2pD

pli . ~46!

It is again a great simplification the fact that we are on
searching for logarithms.

From Eqs.~32! and ~35! of Ref. @16# we obtain~we also
checked this result by doing the computation directly in
nonrelativistic limit!

dc4,pol.2D
pli 5

b1,F
2

18
a2ln

D2

n2 , ~47!

whereb1
F5G1 according to the definition in Ref.@16#. The

consequences this result has in a largeNc analysis are re-
markable enough. In the largeNc , b1

F53/(2A2)mV accord-
ing to the Ji and Osborne definitions, wheremV stands for the
isovector magnetic moment. On the other hand, by using
results of Ref.@24# mp /mn521, one obtains~for practical
purposes! mp5mV/2 in the largeNc . It follows that in this
limit the role of the delta is to cancelall themp contribution
in Eq. ~37! @(312cF2cF

2)/4512mp
2/4#, which effectively

becomes the result of a pointlike particle.
From Eqs.~30! and ~34! of Ref. @16# we obtain

dc4,pol.2pN
pli 52

mp
2

~4pF0!2 gA
2 a2

p

8

3
Cln

mp
2

n2 , ~48!

whereC is defined in the Appendix. From Eqs.~33! and~36!
of Ref. @16# we obtain

dc4,pol.2pD
pli 5

mp
2

~4pF0!2gpND
2 a2

p

64

27
Cln

D2

n2 . ~49!

It is worth noting that Eqs.~48! and~49! cancel each other in
the largeNc limit, sincegpND53/(2A2)gA in this case with
the definitions of Ref.@16#. Moreover, they are suppresse
by 1/p factors and the smallness of the numerical coeffici
compared with the Zemach term. Let us note that Eqs.~47!,
~48!, and~49! may bring some light on why the polarizatio
term is much smaller than the Zemach term in a mod
independent way, since we have an almost analytical res

Our results can be summarized in Eqs.~37!, ~43!, ~44!,
~47!, ~48!, and ~49!. The above computation has been p
formed in SU~2!, it would be interesting to repeat the anal
sis for SU~3!. Indeed, we can compute the Zemach corr
tion due to the strange quark~if we do not consider the spin
3/2 baryons! by using the results of Ref.@25# for GM ,s :

GM ,s
(2) 8

mp

~4pF0!2

p2

12
uku@5D226DF19F2#. ~50!

3We thank T. Hemmert for stressing this possibility to us.
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We then obtain

dc4,Zemach2s
pli 5~4pa!2mp

2

3E dD21k

~2p!D21

1

k4
GE

(0)GM ,s
(2)

.2
mp

2

~4pF0!2 a2
2

9
p2

3~5D226DF19F2!ln
mK

2

n2 . ~51!

In order to obtain a complete result, one should add
strange-related contribution to the Zemach correction du
the baryon spin 3/2 multiplet and to obtain the whole stran
contribution to the polarizability. This would require us
haveA1 andA2 for SU~3! and including the baryon spin 3/
multiplet, which are unfortunately unknown. In any case, o
may wonder whether, for the polarizability corrections, t
largeNc cancellation would also hold in this case as well
the 1/p and numerical factor suppression, so that it would
a very tiny contribution as in the SU~2! case.

Matching to pNRQED: Energy correction

With the above results one can obtain the leading h
ronic contribution to the hyperfine splitting. It reads

EHF54
c4,NR

pli

mp
2

1

p
~m l i p

a!3. ~52!

By fixing the scalen5mr we obtain the following number
for the total sum in the SU~2! case:

EHF,logarithms~mr!520.031 MHz. ~53!

The absolute value of this number would increase for a lar
value ofn and decrease for a smaller value. The main c
tribution to Eq.~53! comes from the Zemach and pointlik
corrections:

EHF,Zemach-u,d~mr!520.022 MHz, ~54!

EHF,Zemach-D ~mr!520.004 MHz, ~55!

EHF,pointlike~mr!520.003 MHz. ~56!

Equation~53! accounts for approximately 2/3 of the di
ference between theory~pure QED! @18# and experiment
@26#:

EHF~QED!2EHF~exp!520.046 MHz. ~57!

What is left gives the expected size of the counterterm.
perimentally what we have isc4,NR5248a2 and c4,R(mr)
.216a2. This last figure gives the expected size of t
counterterm of the Lagrangian. A more detailed analy
would require to work in an specific scheme~for instance
MS! to fix the finite pieces. We expect to come back to th
issue in the future. A point to stress is that this number
1-7



u
a

e

pl
ra

e

ro

n-
ga

hy
io

ol
f

e

e
e

al
f

the
n-

r

ther

f

ing

and

hin

ns
for
by

lta
five

d-

ANTONIO PINEDA PHYSICAL REVIEW C67, 025201 ~2003!
universal, i.e., the same for the electron and for the muon
to corrections suppressed by the ratio of the lepton m
versus the proton mass:

c4,R
pe ~mr!.c4,R

pm~mr!. ~58!

This observation could be used in an eventual measurem
of the hyperfine splitting of the muonic hydrogen.

The introduction of the partial SU~3! computation would
worsen the above prediction by

EHF,Zemach-kaon~mr!50.003 MHz, ~59!

bringing the total sum down to20.027 MHz andc4,R(mr)
to 220a2.

V. CONCLUSIONS

We have performed a first exploratory study on the ap
cation of effective field theories emanated from chi
Lagrangians on atomic physics.4 We have computed the
c4,NR

pli matching coefficient of the NRQED Lagrangian for th
e-p andm-p sectors withO(a23@ lnmq ,lnD,lnmli

#) accuracy.
The hyperfine splitting of the hydrogen and muonic hyd
gen has been computed with O(ml i

3a5/mp
2

3@ lnmq ,lnD,lnmli
#) accuracy. We note that our results i

clude the complete expression for the leading chiral lo
rithms.

The difference between the experimental value of the
drogen hyperfine splitting and the pure QED computat
reads

EHF~QED!2EHF~exp!520.046 MHz, ~60!

whereas our theoretical prediction reads

EHF,logarithms~mr!520.031 MHz. ~61!

We are then able to obtain an estimate ofc4,R
p (mr)

.216a2 which is valid for bothe-p andm-p systems.
One could improve these results by performing the wh

computation in the MS scheme or alike~in this case some o
the expressions in this paper should be rewritten inD dimen-
sions!. It would follow that not only the logarithms but th
finite pieces~in a specific scheme! of the matching coeffi-
cient would be obtained too. This would fix with a great
precision the value ofc4,R

p (mr) and, thus, the respective siz
of the effects due to the physics at scales ofO(mr) and at
scales ofO(mp). This is important since the experiment
number is precise enough to give an accurate number
c4,R

p (mr), which could be used to test models atO(mr)

4The pionium, which has received quite attention recently@27–
32#, has also been studied within a similar nonrelativistic effect
field theory philosophy@27,29,30,32#. Specially close to ours is the
approach followed in@30#. The pionic hydrogen has also been stu
ied using effective field theories very recently@33#.
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scales. To perform the full computation in SU~3! would be
also highly desirable. A partial SU~3! result brings Eq.~61!
down to20.027 MHz.

Our results may help to better understand the fact that
Zemach correction is much larger than the polarizability co
tribution, since we have~almost! analytical expressions fo
these contributions. The polarizability term@except Eq.~47!#
vanishes in the largeNc and it is 1/p and numerical-factor
suppressed with respect the Zemach terms. On the o
hand, Eq.~47!, in the largeNc limit, cancelsall the mp con-
tribution in Eq.~37!, which effectively becomes the result o
a point-like particle.

Several lines of research are worth pursuing. One is try
to computec3,NR within HBET, since its numerical value
could be obtained from measurements of the Lamb shift,
it is related to~and in a way defines! the proton radius. An-
other could be to consider more complicated atoms wit
this effective field theory formalism~see, for instance,@9# for
helium!.
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APPENDIX: CONSTANTS

F0592.5 MeV,

gA51.25,

mp5140 MeV,

mp5mn5938 MeV,

D5294 MeV,

gpND51.05,

b1
F53.86,

F51/2,

D53/4,

mr5770 MeV. ~A1!

b1
F andgpND have been obtained from the decays of the de

in the nonrelativistic limit~consistent with the accuracy o
our calculation!.

The values ofF and D are consistent with the largeNc
limit. Finally,
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0

1E
0

1
A12y2 H 22x~21y2!1

1

yF2 ~12x!x~21y2! A 1

x2x21x2 y2

23~122x!y2 A x

12x~12y2!
Gsinh21FAS x

12xD yGdydxJ 520.165 037. ~A2!
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