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Abstract

This work is composed of three different parts. First of all, a deep study of the
Lorenz equations is done, beginning with its physical deduction, continuing with
its dynamical properties and ending with the discussion of three typical properties
of chaotic attractors (Volume contraction, Local instability and global stability and
how they are illustrated by the Lorenz system. The second part is based on Tay-
lor’s method as a numerical integration method for the Lorenz differential equation
system. The order of the expansion and the step size are the parameters to deter-
mine in order to have an error below a certain tolerance and a high computational
efficiency. The last part is the one which gives the title to this project. Once we
have a deep understanding of the dynamical system and a way to integrate it we
can proceed to find an approximation for the invariant stable manifold using the
parameterization method. A general theorem for the analytic case is first intro-
duced and then the method is adapted to the Lorenz model, and hence obtaining a
plot of this manifold.
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1 Introduction

During the twentieth century there was a huge progress in the study of chaotic
theory. Edward Lorenz was highly involved with the evolution of this theory and
among his work there are some findings that especially stand out. For example, in
1960, he tried to duplicate a weather forecast he had previously done, but the result
of his experiment was unexpected. Even though initial conditions were identical, the
two forecast models diverged over few hundred of time steps and were no longer the
same. He discovered that the computer had rounded off the two initial conditions
differently and this difference had grown with each time step, so errors in initial
conditions play an important role. this result forged one revolutionary concept:
small changes can have large consequences, which is known as the butterfly effect.

The Lorenz system has been used in several fields, one of them being numer-
ical weather prediction (NWP). Before the 1950s, weather forecasting was based
on subjective interpretations of synoptic chards. Then, with the acquisition of ex-
perience from past weather situations, forecasts were improved by making use of
historical analogs of the current weather situations. But this technique was lim-
ited because the observation of two very similar patterns has an extremely low
probability. Weather forecasting made a big step with the first equation models
based on dynamical principles and the beginning of NWP. From the fifties to today,
NWP models have considerably improved. For example, Lorenz wrote an atmo-
spheric model governed by 28 ODE and he observed a 4-day doubling time due
to error propagation. He also realized that errors in small scales tend to amplify
and thus becoming relevant in larger scales in a day or so, [Lor84]. Now there is a
higher spatial resolution and a more accurate representation of physical processes,
including parametric representations of unresolved processes (radiation, convection,
diffusion, ...), [Bau15]. These progresses have been possible thanks to the advances
in computer technology and science over the past decades which have remarkably
improved forecast skills. A 3-day forecast has more than a 95% of accuracy and a
7-day forecast almost a 70%, [Wal06].

His work has also been important in the field of mathematics, on which this work
will focus by studying qualitatively the Lorenz system. The qualitative study of a
dynamical system starts considering its fixed points and periodic orbits and then
considering the invariant manifolds associated with them. We focus the third and
fourth sections on studying the computational aspects of numerical integration of
differential equations and high order power series expansions of parameterizations
for invariant manifolds of vector fields, in concrete the Lorenz system.
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2 The Lorenz System

In this section we will begin with the physical deduction of the Lorenz equations
inspired by one of the most important papers of E. Lorenz: Deterministic Nonpe-
riodic Flow [Lor63]. In this paper he also gave some great ideas to prove that the
Lorenz model can have a chaotic behavior and how we can numerically integrate
the differential equations.

2.1 Physical deduction of the Lorenz equations

We are going to introduce an overview of the deduction of the Lorenz equations
from the Navier-Stokes and thermal energy diffusion equation based on [Lor63] and
[Hil00].

x

z

h

Tw

δT

Tc

Figure 1: Fluid under Rayleigh-Bénard conditions. h is the heigh of the cell and
δT = Tw − Tc.

The Lorenz model describes the motion of a fluid under Rayleigh-Bénard condi-
tions i.e. an incompressible fluid contained in a cell which has a higher temperature
at the bottom (Tw) and a lower temperature (Tc) at the top, as shown in figure 1.
When the vertical temperature gradient becomes sufficiently large, a small packet
of fluid moves upwards and experiences a net upward force (buoyancy force). If
it is sufficiently strong, the packet will move more quickly than its temperature
can drop, otherwise there will be no convection. This is regulated by one of the
parameters of the equations, the Rayleigh number R.

Before starting with the equation deduction it is important to give physical
meaning to the Rayleigh number.Considering that the packet finds itself displaced
upwards by a small amount ∆z, the temperature of the new region will be Tn = Tw−
δT
h

∆z (figure 1). The introduction of an important parameter is now needed: the
thermal relaxation time i.e. the time a small packet needs to reach the temperature
of its surroundings. tr

dT
dt

= Tn − Tw. Using the thermal diffusion equation (TDE)
and an approximation of the Laplacian for small displacements:

dT

dt
= DT∇2T ≈ −DT · δT ·∆z

h3
→ tr =

h2

DT

(2.1)

where DT is the thermal diffusion coefficient. If tr is bigger than the time of dis-
placement (td) then there will be a convective state, otherwise the state will be
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stable. To calculate td, the buoyant force (FB = −g dρ
dT

∆T ) and the fluid viscous
force (Fv ≈ µ vz

h2
) are set to be equal.

µ vz
h2

= µ
h2

dz
dt
≈ µ

h2
h
td

−g dρ
dT

∆T ≈ −g dρ
dT
δT

→ td =
µ

αρ0ghδT
(2.2)

where α = − 1
ρ0

dρ
dT

is the thermal expansion coefficient, ρ0 the initial density and µ
the fluid viscosity. So the critical parameter of convection, R, takes the form:

R =
tr
td

=
αρ0gh

3δT

DTµ
(2.3)

At this point we can begin with the deduction of the Lorenz equations. It is pos-
sible to assume that the fluid flow is two dimensional and that it is incompressible,
hence the density of an infinitesimal volume that moves with the flow velocity is
constant. Therefore, only the x and z components are taken into account and the
conservation law for the fluid density

(
∂ρ
∂t

= −div(ρ~v)
)

becomes div(~v) = 0. So the
Navier-Stokes equations (NSE) and TDE are:

ρ
∂(vx)

∂t
+ ~v · ρ∇(vx) = −∂p

∂x
+ µ∇2vx (2.4)

ρ
∂(vz)

∂t
+ ~v · ρ∇(vz) = −ρg − ∂p

∂z
+ µ∇2vz (2.5)

∂T

∂t
+ ~v · ∇T = DT∇2T (2.6)

where vx and vz are the horizontal and the vertical components of the velocity. In
the vertical NSE, on the right hand side three different forces are considered: grav-
ity, pressure gradient force and viscosity (per unit volume). And the left hand side
represents the force per unit volume, that a packet receives with the Lagrangian
point of view. This explanation is equivalent for the TDE. It is necessary to intro-
duce some new variables and change some of the previous ones in order to obtain
dimensionless NSE. The suggested changes are:

A new temperature function that describes the temperature deviation from its
linear behavior:

τ(x, z, t) = T (x, z, t)− Tw +
z

h
δT (2.7)

The Taylor expansion of the density around Tw, truncated at second order, that
takes into account its change with temperature.

ρ(T ) = ρ(Tw) +
∂ρ

∂T
(T − Tw) = ρ0 +

∂ρ

∂T
(τ − z

h
δT ) (2.8)
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The Boussinesq approximation ignores the density variation when the force due

to gravity is not involved, hence all the terms involving ∂ρ
∂T

will be zero unless it
also appears the gravity force.

An effective pressure (pef ), that for non convecting states satisfies ∇pef = 0.

pef = p+ ρ0gz − z2
∂ρ

∂T

∂T

2h
(2.9)

Finally, the time, space, temperature and pressure variables (t, x, z, τ, peft) are
converted into dimensionless variables.

t′ =
DT

h2
t, x′ =

x

h
, z′ =

z

h
, τ ′ =

τ

δT
, p′ =

pefh
2

µDT

With all these changes the NSE and TDE become:

1

σ

(
∂(v′x)

∂t′
+ ~v′ · ρ∇′(v′x)

)
= −∂p

′

∂x′
+∇′2v′x (2.10)

1

σ

(
∂(v′z)

∂t′
+ ~v′ · ρ∇′(v′z)

)
= −∂p

′

∂z′
+Rτ ′ +∇′2v′z (2.11)

δτ ′

δt′
+ ~v′ · ∇τ ′ − v′z = ∇′2τ ′ (2.12)

where the Prandtl number (σ = µ
ρ0DT

) is the parameter of the Lorenz equations
that measures the importance of viscosity in contrast to that of thermal diffusion.

In order to arrive to the common expression of the Lorenz equations a stream
function related to the fluid velocity components is needed, which will then be
substituted in equations 2.11, 2.10 and 2.12. This stream function can be defined
because of the incompressibility of the fluid and the two dimentionlity of the flow.

vx = −∂Ψ(x, z, t)

∂z
vz =

∂Ψ(x, z, t)

∂x

and then,

1

σ

(
∂2Ψ

∂t∂x
− ∂Ψ

∂z

∂2Ψ

∂x2
+
∂Ψ

∂x

∂2Ψ

∂x∂z

)
= −∂p

′

∂z
+Rτ +∇2∂Ψ

∂x
(2.13)

1

σ

(
∂2Ψ

∂t∂z
+
∂Ψ

∂z

∂2Ψ

∂x∂z
+
∂Ψ

∂x

∂2Ψ

∂z∂x

)
= −∂p

′

∂x
−∇2∂Ψ

∂z
(2.14)

∂τ

∂t
− ∂Ψ

∂z

∂τ

∂x
+
∂Ψ

∂x

∂τ

∂z
− ∂Ψ

∂x
= ∇2τ (2.15)
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All the variables are dimensionless but we have simplified the notation. If we scale
the dimension of the convective cell we can consider that the bottom is at z = 0 and
the top at z = 1. In this points the variation of temperature τ is zero, because the
temperatures are Tw and Tc respectively. The vertical velocity of the flow is zero,
vz = 0, and the variation of the horizontal velocity vx with heigh is also null. This
is because the shear forces are proportional to ∂vx

∂z
and at the top and the bottom

surfaces we neglect them. Consistent with boundary conditions, and with the aim
of simplifying the results, the suggested solutions are:

Ψ(x, z, t) = Ψ(t) sin(πz) sin(ax) (2.16)

τ(x, z, t) = T1(t)sin(πz)cos(ax)− T2(t) sin(2πz) (2.17)

T1T2

x

z

Figure 2: Convective cell. In green an approximation of the behavior of T1(x, z, t)
and in orange an approximation of the behavior of T2(x, z, t).

The first term of the temperature deviation, T1(x, z, t), is the temperature dif-
ference between the upward and downward moving parts of a convective cell. The
second term,T2(x, z, t), gives the deviation of the vertical temperature profile from
linearity in the center, where it is considered zero (in red at figure 3 ). It is impor-
tant to notice that the term T1(x, z, t) is proportional to the velocity vz, and that
the biggest gradients of T2(x, z, t) are located on the top and the bottom of the cell.

Finally, we use the suggested solutions in the equations 2.13, 2.14, 2.15 where
some trigonometric terms involving sin(3πz) appear and are omitted. This implies
that if the temperature difference between the top and the bottom of the convective
cell becomes too large, this equations no longer provide a useful model of the dy-
namics of the fluid. The non linear system of differential equations for convection
under Rayleigh-Bénard conditions, in other words, the Lorenz System is:


Ẋ = −σX + σY

Ẏ = −XZ + rX − Y
Ż = XY − bZ

with


X(t) = aπ√

2(a2+π2)
Ψ(t)

Y (t) = rπ√
2
T1(t)

Z(t) = πrT2(t)

(2.18)
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where r = R/C and b is a new parameter which solely depends on a. C =
(π2 + a2)3/a2 is the critical value for R, so when it exceeds the value of C , con-
vection will start. The physical interpretation of the variables which appear in the
Lorenz equation is: x is proportional to the intensity of convective motion, y is pro-
portional to the temperature between the raising (warm) and sinking (cool) fluid of
a convective cell and z is proportional to the deviation of the vertical temperature
profile from linearity.

2.2 Dynamics of the equations

In this section is given a general view of the dynamics of the Lorenz System.
ẋ = −σx+ σy

ẏ = −xz + rx− y
ż = xy − bz

(2.19)

Note 1. : during the discussion in some cases are used the most common values
for σ = 10 and b = 8/3, also used by Lorenz, [Lor63]. The dynamic discussion then
is done around the parameter r.

2.2.1 Fixed points and stability

Let us show that Lorenz equations exhibit the following symmetry: s(x, y, z) =
(−x,−y, z), Ds · F = F ◦ s = F (s), by proving that F (s(x, y, z)) = F (x, y, z).

Proof.

F (s(x, y, z)) =


−ẋ = −σ(−x) + σ(−y)
−ẏ = xz + r(−x)− (−y)

ż = (−x)(−y)− bz
=


−ẋ = +σx− σy
−ẏ = xz − rx+ y

ż = xy − bz
= F (x, y, z)

�

Fixed points of a dynamical system F (x) = ẋ are those which F (x∗) = 0. In the
Lorenz system: 

−σx+ σy = 0
xz + rx− y = 0
xy − bz = 0

⇒


x = y
x(−z + r − 1) = 0

x = ±
√
zb

x = 0→ O = (0, 0, 0)

−z + r − 1 = 0→ C± =
(
±
√

(r − 1)b,±
√

(r − 1)b, r − 1
)

Note 2. Notice that the origin is a fixed point for all values of r > 0 but C± only
for r ≥ 1.
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Here we can introduce an important concept, the omega limit set, which will be
useful to characterize the famous Lorenz attractor.

Definition 2.2.1.1. We define the ω-limit set of a trajectory x(t) to be all those
points of the domain which are limits of a sequence of the form x(tn) for t→∞.

The stability of the fixed points is studied by calculating the eigenvalues of the
DF (x) matrix evaluated at the different fixed points.

DF (x∗) =

 −σ σ 0
−z∗ + r −1 −x∗
y∗ x∗ −b


So we need to solve A(Fi)− λI = 0 for i = 1, 2, 3.

i = 1

det (A(r)− λI) =

∣∣∣∣∣∣
−σ − λ σ 0

r −1− λ 0
0 0 −b− λ

∣∣∣∣∣∣ = 0

→ (b+ λ)(σ(r − 1) + (1 + σ)λ+ λ2) = 0

{
λ2 = −b ∈ R

λ3,1 =
−1−σ±

√
(σ+1)2−4σ(1−r)

2
∈ R

For 0 < r < 1, λ1,2,3 < 0→ O is stable

For r ≥ 1, λ1,2 < 0 and λ3 > 0→ O is unstable

The notation of the eigenvalues tries to be consistent with section 4.

i = 2, 3

det (A(C±)− λI) =

∣∣∣∣∣∣
−σ − λ σ 0

1 −1− λ ∓
√

(r − 1)b

±
√

(r − 1)b ±
√

(r − 1)b −b− λ

∣∣∣∣∣∣ = 0

→ P (λ) = λ3 + (σ + b+ 1)λ2 + b(r + σ)λ+ 2bσ(r − 1) = 0

Since σ, b, and r are positive parameters, P ′(λ) > 0 for all λ ≥ 0. And for λ = 0,
P (0) > 0, [Pei92]. So we conclude that at least one of the roots of the characteristic
polynomial has to be real and negative, λ1 < 0. For the other two roots we can
consider two options: then can be both real and negative or they can be a complex
conjugate pair. λ2,3 = α± iβ.

Depending on the sign of the real part of the complex numbers the stability of
the fixed points will change.

7



For α < 0, C± will be stable. The stability boundary lies at α = 0:

P (iβ) = (iβ)3 + (σ + b+ 1)(iβ)2 + b(r + σ)(iβ) + 2bσ(r − 1)

=
(
2bσ(r − 1)− (b+ σ + 1)β2

)
+ i
(
b(σ + r)− β2

)
β = 0

Solving the two equations for r(σ, b),

2b(r − 1)− (b+ σ + 1)β2 = 0
b(σ + r)− β2 = 0

}
→ rH =

σ(σ + b+ 3)

σ − b− 1

For the current values of b and σ, rH ≈ 24.74. It is also observed that for
r∗ ≈ 24.06 the chaotic attractor shown in figure 8 is observed numerically i.e. the
choice of almost any initial condition in a neighborhood set results in a similar
figure.

Summing up all this information:

• For 0 < r < 1, the origin is the only fixed point and it is globally stable.

• For r = 1, a super critical pitchfork bifurcation occurs. So the stable fixed
point r loses its stability and in its place appear to new fixed stable points
C±.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−1

−0.5

0

0.5

1

r

x

• For 1 < r < rH , C± are stable fixed points and the origin remains as an
unstable fixed point. If r ≤ r∗ then there are chaotic orbits but not chaotic
attractors and for r ≥ r∗ there is a chaotic attractor coexisting with the
attracting fixed points C±.

• For r = rH , a subcritical Hopf bifurcation occurs. So C± lose their stability
and the three fixed points become unstable. The chaotic attractor still exists.
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2.2.2 Invariant Manifolds

For a fixed point x∗ in a nonlinear system, the stable manifold of x∗, Ws(x∗) is the
set of initial conditions for which the solution x(t) tends to x∗ as t→∞, while the
unstable manifold Wu(x∗) is the set of initial conditions for which the solution x(t)
tends to x∗ as t→ −∞

The Stable Manifold Theorem states that if the eigenvalues of the linearized
system (Df) have all real part different from zero then Ws(x∗) and Wu(x∗) exist
and their dimension is the same as the stable and unstable subspaces generated by
the eigenvectors, respectively.

The Lorenz System around the origin has one stable manifold of dimension two,
two of the eigenvalues have negative real part, and one unstable manifold of dimen-
sion one, the remaining eigenvalue has positive real part. In section 4 we will give
a parametrization of the stable manifold Ws.

2.3 Chaos

Definition 2.3.0.1. The so called Lorenz attractor is the ω-limit set of an orbit
x(t) of the Lorenz system, with initial conditions x(t0) = x0.

But, is the Lorenz attractor chaotic? This is not an easy question to be an-
swered. It was affirmatively answered by Warwick Tucker in 2002, when he proved
that the Lorenz attractor is a strange attractor, [Tuc02]. We want to illustrate its
chaotic properties. There are three typical properties of chaotic attractors: volume
contraction, global stability and local instability . So we will begin showing how they
can be illustrated by the Lorenz attractor, [All96].

1. Volume contraction: The system is dissipative i.e. volumes in phase space
contract under the flow.

Let F (x) = ẋ be a dynamical system and u(t) = ϕt(x0). Consider then the
volume of u(t) defined by V (t) = vol(u(t)). Then the Liouville theorem we
saw in the course of EDOs tells us that:

dV (t)

dt
=

∫
u(t)

divF (x)dx (2.20)

In our particular dynamical system, the Lorenz system:

divf =
δσ(y − x)

δx
+
δ(−xz + rx− y)

δy
+
δ(xy − bz)

δz
= −σ − 1− b

which is constant. So dV (t)
dt

=
∫
u(t)

divF (x)dx =
∫
u(t)

(−σ − 1− b)dx = −(σ +

1 + b)V and the evolution in volumes on the phase space is:

V (t) = V (0)e(−σ−1−b)t

9



As −σ − 1 − b < 0 the evolution of volumes in the phase space is to shrink
until a limiting set of zero volume.

2. Global stability: If there exists a trapping region around the origin then
the orbits do not diverge to infinity and the system presents global stability.

Lemma 2.3.0.1. [All96] Let u(t) = (x(t), y(t), z(t)) and let E(u) be a smooth
real-valued function with the property that E(u)→∞ as ||u|| → ∞. Assume
that there are constants a1, a2, a3 > 0 and b1, b2, b3, c such that ∀x, y, z:

Ė(x, y, z) ≤ −a1x2 − a2y2 − a3z2 + b1x+ b2y + b3z + c

Then there is a B > 0 such that every trajectory u(t) satisfies |u(t)| ≤ B for
all sufficiently large time t.

Taking E(x, y, z) = 1
2

(x2 + y2 + (z − σ − r)2), then Ė(x, y, z) = −σx2− y2−
bz2 + b(σ + r)z, which satisfies the lemma 2.3.0.1. All the trajectories stay
bounded in some three-dimensional space.

3. Local instability: looking the trajectory of the Lorenz attractor in figure 8
we can think intuitively that it is chaotic but we don’t have a rigorous proof of
it. We should be able to affirm that the Lyapunov exponents are positive and
that the attractor is not periodic. We will introduce some ideas that leads us
to the conclusion that we have this conditions.

Definition 2.3.0.2. Let f be a smooth one-dimensional map of the real line
R. The Lyapunov exponent h(x1) of the orbit {x1, x2, x3, ...} is defined as

h(x1) = lim
n→∞

1

n
[ln |f ′(x1)|+ · · ·+ ln |f ′(xn)|]

if the limit exist. The Lyapunov number L(x1) is defined as:

L(x1) = lim
n→∞

(|f ′(x1)|+ · · ·+ |f ′(xn)|)1/n

if the limit exists. So the relation between the two parameters is lnL(x1) =
h(x1).

Definition 2.3.0.3. The Lyapunov exponents (respectively numbers) of a flow
ϕT (v) are defined to be the Lyapunov exponents (numbers) of the associated
time-1 map.

The theory of Lyapunov exponents of a flow can be checked in [All96]. The
Lyapunov exponents themselves quantify the degree of sensitivity with respect
to the initial conditions. Let us explain how to calculate these exponents.
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Let F (x) = ẋ a dynamical system with initial conditions, x(0) = x0, and
ϕ(t;x0) its flow. Define v̇ = DF (x)v with initial conditions v(0) = v0. If
v0 = F (x0) and v(t) = F (ϕ(t;x0)). We want to see if it satisfies:

v̇(t) = DF (ϕ(t;x0)) · v(t) (2.21)

v(0) = F (x0) (2.22)

Condition 2.22 is directly proved from the definitions and condition 2.21 is
also easy to prove using the chain rule:

v̇(t) = DF (ϕ(t;x0))
dϕ

dt
(t;x0) = DF (ϕ(t;x0))·F (ϕ(t;x0)) = DF (ϕ(t;x0))·v(t)

Then the Lyapunov exponent in v direction is:

lim
t→∞

1

t
ln |v(t)| = lim

t→∞

1

t
ln |F (ϕ(t;x0))|

Proposition 2.3.0.1. If the orbit with initial conditions x(0) = x0 is bounded,
then there is one zero Lyapunov exponent.

In the previous point (Global stability) we have proved the existence of a
trapping region. Therefor we can assume one of the Lyapunov exponents of
the Lorenz System to be h2 = 0. In order to find the other two it is only
necessary to compute the largest one using the program described in section
4.4 and use the following relation. In dynamical systems where the volume
reducing factor is constant, we can deriva a relation between the Lyapunov
exponents. Since e

∑
i hi is equal to the volume reduction, this must be equal

to the exponential of the divergence of our dynamical system, edivF . So,

−σ − 1− b = h1 + h2 + h3 (2.23)

For σ = 10, b = 8/3 and r = 28 the result is h1 ≈ 0.9, h2 = 0, h3 ≈ −14.57.
Therefore, h1 > 0 and its Lyapunov number is L1 = 2.47 so the distance
between a pair of points that start out close together increases by a L1 factor
per unit of time.

Is the attractor periodic? That was also a question that Lorenz asked to him-
self. In the paper he wrote in 1963, [Lor63] he decided to study the behavior
of successive maxima of the z-coordinate. More specifically, he plotted the
next maximum of the z-coordinate (zn+1) as a function of the current (zn).
We have repeated this plot with our dates extracted using the Taylor method
and the result is shown in figure 3.
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Figure 3: Z-map: Next maximum zn+1 as a function of the current maximum zn

As suggested in [All96] we can say from the plot that the slope of the function
is always greater than one so the trajectories will either be non periodic orbits
or unstable periodic orbits, but never asymptotically periodic. However, we
will go a little bit further. We will do two approximations to study easily the
behavior of figure 3. The simplest one will be a tent map and then we will do
a real function approximation.

Tent map approximation: The shape of the z-map is similar to a tent map.

zn+1(zn) =

{
2zn if zn ≤ 1

2

2− 2zn if zn ≥ 1
2

The map is continuous but not differentiable at x = 1
2
. To calculate the

Lyapunov exponents we will avoid the orbits that map to this point.

h = lim
n→∞

1

n
[ln |f ′(x1)|+ · · ·+ ln |f ′(xn)|] = lim

n→∞

1

n

n∑
i=1

ln 2 = ln 2 (2.24)

If the Lyapunov exponent is always positive, ln 2, so proving that the tend
map contains chaotic orbits reduces to check that the orbits are not asymptotic
periodic orbits. We will use the itineraries method.

12



Figure 4: Tent map

We set the left subinterval L = [0, 1/2] and the right subinterval R = [1/2, 1].
In the next figure we show a scheme of the itineraries for the tent map. Given
an initial point x0 we construct its itinerary by listing the L or R intervals
that contain the point and its further iterations.

As seen in the figure the length of the subintervals is the same in each step.
More precisely, a set of points with the same itinerary x0, . . . xk has length
2−k+1. And each of the orbits (which not contain x = 1

2
) corresponds to an

itinerary i.e. an infinite sequence of L and R symbols.

So we can show the existence of chaos by proving this theorem, [All96].

Theorem 2.3.0.1. The tent map T , has infinitely many chaotic orbits

Proof. The Lyapunov exponent of an orbit of the tent map, as seen before, is
ln 2. If an orbit, that avoids x = 1

2
is not asymptotically periodic, then is a

chaotic orbit.

In the tent map, the derivative of T k at a period-k orbit has module 2k. For ex-
ample, the derivative of T 2 at its period-two point x0 = 0.3 is T ′(0.3)T ′(0.6) =
−4. This means that all periodic orbits are sources i.e. all orbits sufficiently
close to one concrete orbit are repelled from it.

Any asymptotically periodic orbit of the tent map must be eventually periodic
and any eventually periodic orbit must have an eventually periodic itinerary.
So there exist infinite non repeating itineraries that correspond to distinct
chaotic orbits.

�
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Figure 5: Schematic itineraries for the tent map.

L R

Figure 6: Transition graph map of the tent map T .

Real function approximation: Using gnuplot we have reached this approx-
imated function which we will evaluate with the same method that the tent
map.

zn+1(x) =

{
−5.00319(38.43515− zn)0.51372 + 45.5156 if 28 < zn < 38.43515
−4.93892(zn − 38.43515)0.51596 + 45.444 if 38.43515 < zn < 50

If the orbits that contain zn ≈ 38.43515 are ignored, then we can compute
the Lyapunov exponent, which is approximately 0.679. As in the tent map it
is positive. So following an analogous reasoning we arrive at the existence of
infinitely many chaotic orbits.

14



Figure 7: Z-map with approximate functions

Due to the topological similarities between the two approximations and the
Z-map we can attribute the characteristics proved to the Z-map, but this
does not mean the existence of chaos in the Lorenz attractor. The proof of
the existence of chaos is so complicated, [Tuc02], so we will consider that we
have signs of it but not the real proof. Even though, and after Tucker’s work,
we can say that the Lorenz System is locally unstable.
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3 Numerical Integration

3.1 Intregration: Taylor method

There exist a bunch of numerical methods to integrate differential equations, for
example, the Runge-Kutta methods. In our case, we will use the Taylor method.
It is not the most used but it is, as we will see, a great method to obtain accurate
results, with a small error and a optimized computational cost. Let us take a look to
this method in differential equations solving problems. Consider a Cauchy problem{

x′(t) = f(t, x(t))
x (t0) = x0

We want to find a smooth function x : [a, b] → Rm;m ∈ N,m > 0 which is a
solution for our problem.

The Theorem of existence and uniqueness of solutions for Cauchy’s problem,
seen in the course of EDOs ,tells us that the function we are searching exists and
it’s unique. Now we need a method to compute this solution.

Idea of Taylor method: assuming we have an initial condition x(tn) = xn we will
approximate the value of x(tn + h) by a Taylor series:

x(t0) = x0
...
x(tn) = xn

x(tn + h) = x(0)(tn) + x(1)(tn)
1!

(tn + h− tn) + x(2)(tn)
2!

(tn + h− tn)2 + . . .

· · ·+ x(p)(tn)
p!

(tn + h− tn)p =

= x(0)(tn) + x(1)(tn)
1!

h+ x(2)(tn)
2!

h2 + . . . x
(p)(tn)
p!

hp =
∞∑
k=0

x[k](tn) · hk

(3.1)

In our case, Lorenz equations, the vector x will be a 3-dimensional vector with the
cartesian coordinates x = (x, y, z). For this method the only things that we need
to compute are the x[i](t), the normalized derivatives. As we know x[1](t) we could
proceed deriving one and another time this derivates and using the previous to
obtain their expressions. As you can imagine this becomes a difficult, and specially
long and complicated, method because at each step the expressions of this derivates
become more and more complex.
So we need to find a different method: automatic differentiation.
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3.2 Automatic differentiation

Automatic differentiation is a recursive method to calculate the value of the derivates
of certain functions at a given point. This functions have to be obtained by sum,
product, quotient or composition of elementary functions (polynomials, trigonomet-
ric functions, real powers, exponentials ad logarithms). For the Lorenz equations
the method is straightforward but we will introduce it to give an idea of how it
works. We only need to consider two elementary functions: sum and product of
polynomials.

Proposition 3.2.0.2. [Jor01] If the functions g, h are of class Cm then we have:

If f(t) = g(t)± h(t), then f [n](t) = g[n](t)± h[n](t)
If f(t) = g(t) · h(t), then f [n](t) =

n∑
i=0

g[n−i](t) · h[i](t)

where f [i](t) = f (i)(t)
i!

is the normalized i-th derivate. (idem for g[i](t) and h[i](t))

3.3 Step size control and degree

As we have explained, we are using the Taylor method to integrate of the equations
and following the paper [Jor01]. So, given an initial value of the time tn and the
its coordinates x(tn) we want to compute the coordinates for the next point in the
trajectory x(tn+h). We will approximate it by a Taylor series but, which has to be
the p-order of the series? And, what is more, how big has to be the step size = h
to obtain an error of the approximation less than a certain tolerance, ε, but at the
same time have an efficient program. In other words, we have to choose a value of
h and p, such that:

||x(tn + h)− x[≤p](tn + hn)|| ≤ ε,∀n

where x[≤p](tn + hn) is the truncated Taylor series at order p. More precisely, we
are going to choose a hn for each n, so each step will have the optimized size. So
hn and p will be those such that:

1. ||x(tn + hn)− x[≤p](tn + hn)|| ≤ ε,∀n
2. The total number of operations of the numerical integration is as small as

possible.

If we break our Taylor series in the p order we can approximate the error by the
first (of the maximum between the two first) therms after the truncation:

x(tn + hn) =

p∑
k=0

xk · hk +
∞∑
k>p

xk · hk

error ≈ max
(
|xp+1|hp+1, |xp+2|hp+2

)
≤ ε

17



h ≤ p+1

√
ε

|xp+1|
or h ≤ p+2

√
ε

|xp+2|

From now on, and to simplify notation, we consider that the error is |xp+1|hp+1.
The result for error ≈ max (|xp+1|hp+1, |xp+2|hp+2) = |xp+12|hp+2 would be the
same replacing p+ 1 with p+ 2.

h ≈ p+1

√
ε

|xp+1|
≈ ε

1
p+1 · ρ

where ρ is an approximation of the radius of convergence of the series. On the other
hand, we have to consider the computational effort.

Corol·lari 3.3.0.1. The number of arithmetic operations to compute the derivates
up to order p of a vector field written by elementary functions is of O(p2).

Using the previous corollary for the Lorenz system, the number of arithmetic
operations we need to obtain the derivates up to order p is of O(p2) ≈ A · (p+ 1)2.
So the number of operations per unit of time is:

o(p) =
A · (p+ 1)2

h
=
A · (p+ 1)2

ε
1

(p+1) · ρ

If we differentiate this expression as a function of p and we equal it to zero to
minimize it we obtain:

o′(p) =
A

ρ

2 · (p+ 1) · ε
1

p+1 − (p+ 1)2 · ln(ε) · ε
1

p+1

(
− 1

(p+1)2

)
ε

2
(p+1)


If o′(p) = 0→ 2 · (p+ 1) + ln(ε) = 0→ p = −1

2
ln(ε)− 1

when ε→ 0 =⇒ p ≈ −1

2
ln(ε)

Finally,

h ≈ ε
1

p+1 · ρ ≈ ε
−2

ln(ε) · ρ =
ρ

e2

Observation 1. The value of h can be very big, is what we call a dangerous step
size because it can create big errors or a wrong approximation, see more in [Jor01].
To avoid this situation we are going to use a parameter control in our program.
So if when calculating the step size it is bigger than a given value h∗ (in our case
h∗ = 0.01) then we will use automatically h∗ as the step size.
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3.4 Example: The Lorenz System

In our specific case, as we said, the difficulty is really low. Nevertheless as the
automatic differentiation is a really useful method we will used it for the compu-
tation of Lorenz equations. To use the Taylor method we need to compute the
n-derivates of the coordinates (x(t), y(t), z(t)) from the equations. After we will
discuss the degree of truncation of the Taylor series to optimize the computation
and fit the solution with a fixed error. Using the automatic differentiation we obtain
the following formulas for the commutation of the derivates:

x[n](t) =
σ

n+ 1

(
y[n−1](t)− x[n−1](t)

)
y[n](t) =

1

n+ 1

(
−y[n−1](t) + ρ · x[n−1](t)−

n∑
i=0

x[n−i](t) · z[i](t)

)

z[n](t) =
1

n+ 1

(
−b · z[n−1](t) +

n∑
i=0

x[n−i](t) · y[i](t)

)

As we know
(
x[1](t), y[1](t), z[1](t)

)
we can compute all the other derivates to con-

struct the Taylor series of each coordinate.

We have developed two different programs using C code. The first one to com-
pute the integration explained, taking into account the calculation of the most
suitable step size in each time step. We also have introduced a Newton’s method to
calculate accurately the maximums of the z coordinate used in section 2.3 to plot
the one dimensional Z-map. Once we had the integration method we developed the
second program to calculate the largest Lyapunov exponent of the Lorenz equations
following the method explained in [Bov04].

We have done different computations of the Lorenz attractor. In the following
figures appears a sample of them. The error chosen is ε = 10−21 and then p = 25
in concordance with the expressions deduced in the previous section. Some other
choices we had made are: the value of the parameters is the same as Lorenz used in
his work: r = 28, σ = 10 and b = 8

3
, we have used different initial conditions, here

are shown results for (x0, y0, z0) = (0.6, 0.6, 0.7) and (x0, y0, z0) = (−1.2, 0.9, 0.1),
the integration time generally is t = 1000 but we have done some computations with
t = 10000 and the control parameter h∗ = 0.01 has been changed for h∗ = 0.001 in
one of the cases.

See the results in next page.
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Figure 8: Lorenz attractor with h∗ = 0.01 and computation time t = 10000.

Figure 9: Lorenz attractor with h∗ = 0.01 and computation time t = 1000.

Figure 10: Orbit ending in the Lorenz attractor with i.c. (0.6, 0.6, 0.7), h∗ = 0.001
and computation time t = 10000.
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Observations: we have dropped out the first terms of the integration since
they don not belong to the Lorenz attractor. It is also visible that an increase in
the integration time can have two effects. In figure 8 the Lorenz attractor is better
defined since it has done some more orbits that in 9. On the other hand, in figure 10
the attractor is difficult to see, this occurs because the step size control parameter
is smaller (h∗ = 0.001) and the orbits are more accurate from the beginning, hence
it is not necessary a long integration time.

4 The parameterization method for invariant man-

ifolds

First of all we will give a general theoretical framework of the method of parame-
terization for flows, [Cab04]. Then we will focus on the computation of the param-
eterized invariant manifolds of a vector field, [Har10].

4.1 The parameterization method for flows

Consider an n-dimensional vector field, F : U → Rn

ẋ = F (x) (4.1)

where the vector field F (x) is in U ⊂ Rn, U is an open set containing the origin
and F (0) = 0.

If V L is a subspace of Rn of dimension d invariant by DF (0). In this method we
look for a parameterization.

W : U1 ⊂ V L −→ Rn (4.2)

and a vector field f , f : U1 → Rd, in U1 ⊂ V L such that

F ◦ w = DK · f (4.3)

At the range of K, the vector field F is tangent to the range of K. This means
that the range of K is invariant under the flow of F . What is more, the vector
field f is the representation in parameters of the restriction of X to the invariant
manifold.
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4.2 Manifolds associated to a fixed point of a vector field

It is necessary to introduce some terminology used in the following section.

We say that a function is in Cω if it is analytic.

The spectrum of a linear operator Λ in Rn is denoted by Spec(Λ) which is a
compact subset of C.

For j ∈ N and S ⊂ C we use the notation:

jS := {a1 + · · ·+ aj|ai ∈ S}

Consider a vector field F (z) in U ⊂ Rn such that F (0) = 0, and a linear subspace
V L ⊂ Rn invariant under DF (0). Now consider the correspondent invariant mani-
fold under the flow of F which passes through the origin and it is tangent to V L in
this point.

Theorem 4.2.0.2. Let F be a Cω vector field on an open set U of Rn with 0 ∈ U ,
such that F (0) = 0. Let Λ = DF (0) and M ∈ N, M ≥ 1. Suppose that:

1. There is a linear subspace V L of Rn such that Λ(V L) ⊂ V L. Hence there is a
decomposition Rn = V L ⊕ V N and, with respect to it, Λ has de form(

ΛL T
0 ΛN

)
(4.4)

where, in our case, ΛL = diag(λ1, . . . , λd).

2. Spec(ΛL) ⊂ {z ∈ C|Re(z) < 0}.

3. jSpec(ΛL) ∩ Spec(ΛN) = ∅ for j ≥ 2.

Then, there exist a Cω map K : U1 ⊂ E −→ Rn, where U1 is a neighborhood of 0
in V L, and a linear f : V L −→ V L, f(s) = ΛLs, such that

F ◦W = DW · f in U1, (4.5)

W (0) = 0, DW (0)V L = V L, (4.6)

f(0) = 0, Df(0) = ΛL (4.7)

4.3 Computation of Invariant Manifolds

The computation of invariant manifolds will be done using the parametrization
method explained in the following section. We will introduce the invariance equation
and from it some different ways of parametrizing. Finally we will apply this method
for the specific case of the Lorenz System, [Har10].
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4.3.1 The invariance Equation

In this section we want to compute a high order approximation, later we will discuss
which has to be this order, of an invariant manifold for a n-dimensional vector field.
We have tried to be consistent with the notation used in 4.1

Consider an n-dimensional vector field

ż = F (z) (4.8)

where its coordinates are z = (z1, . . . , zn) and let z∗ ∈ Cn be a fixer point of it.
Then, let V L ⊂ Cn be a d-dimensional subspace invariant for the linearization
DF (z∗) around the fixed point z∗. Let W be a parameterization of d-dimensional
invariant manifold for ż = F (z) tangent to the subspace V L in z∗.

The parameterization method consists in finding an expression of the way z =
W (s) of the d-dimensional invariant manifold W, where s = (s1, . . . , sd) are the
coordinates of the manifold. We can also point that W (0) = z∗, since it is tangent
to V L in z∗, as said before. The dynamics on the manifold will be described as a
function of he coordinates s, ṡ = f(s) with f(0) = 0.

The invariance equation is,

F (W (s)) = DW (s)f(s) (4.9)

We can prove easily the validity of this expression by using the elements de-
scribed: F (W (s)) = Ẇ (s) = DW (s)ṡ = DW (s)f(s).

The approximation of the manifold will be of the form:

W (s) = W (0) +
∑
k≥1

Wk(s) = z∗ +
∑
k≥1

Wk(s) (4.10)

where Wk is a n-dimensional vector of homogeneous polynomials of degree k and
d-variables.

We also want to approximate the dynamics in the manifold, so we will do it the
same way.

f(s) = f(0) +
∑
k≥1

fk(s) =
∑
k≥1

fk(s) (4.11)

where fk is a d-dimensional vector of homogeneous polynomials of degree k and
d-variables.

To compute this high approximations we will use the Invariance Equation but
we have to introduce some changes.

Consider L ∈ Cn×d, the matrix whose column vectors are the vectors of the
the subspace V L. Now, consider an invertible P matrix obtained by joining L and
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a matrix N ∈ Cn×(n−d). The column vectors of N span a (n − d)−dimensional
subspace V N ⊂ Cn and complementary to V L. This subspace can be also invariant
under the linearized flow or not, we will see later the condition.

With the help of this new matrix, P , we can define the matrix Λ as follows,

Λ = P−1DF (z∗)P =

(
ΛL T
0 ΛN

)
(4.12)

where ΛL ∈ Cd×d, ΛN ∈ C(n−d)×(n−d) and T ∈ Cd×(n−d) is the torsion matrix. If V N

is invariant under the linearized flow then the torsion is zero. The eigenvalues of ΛL

will be called tangent eigenvalues and the eigenvalues of ΛN , normal eigenvalues.
In this section we will make the assumption that ΛL and ΛN are diagonal, so we
can express them as: ΛL = diag(λ1, . . . , λd) and ΛN = diag(λd+1, . . . , λn).

The linear terms (the first order ones) of the approximation of W (s) and f(s)
are already known:

W1(s) = Ls (4.13)

f1(s) = ΛLs (4.14)

in the next section we will find a procedure to find the higher order therms.

4.3.2 The Cohomological Equations

First of all we have to find a way of solving the equation 4.9. We will proceed with
a recursive method. In each step we are going to find the homogeneous polynomials
of degree k by using the previous polynomials of degree ≤ k. So, we suppose to
have computed the k− 1 order terms of the equation 4.9 and we will write them as
[F (W (s)<k)]<k. Our goal is to compute the term [F (W (s)<k)]k.

Substituting the approximations for W (s) and f(s), equations 4.10 and 4.11, in
the Invariance Equation we obtain:

F (W<k(s) +Wk(s) + . . . ) = D (W<k(s) +Wk(s) + . . . ) (f<k(s) + fk(s) + . . . )
(4.15)

As we only want to compute de term of order k we will only take the terms of
the expression with this order. In the left hand side of 4.15 we do Taylor around
W<k(s).

F (W<k(s) +Wk(s) + . . . ) = F (W<k(s)) +DF (W<k(s))(Wk(s) + . . . ) + . . .

The only terms of k order in the left handside are:

[F (W<k(s)]k +DF (z∗)Wk(s)
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In the right side of 4.15 we will only take the termos of order k:

[DW<k(s)f<k(s)]k +DWk(s)f1(s) +DW1(s)fk(s)

Finally, the Cohomological Equation for Wk and fk is:

[F (W<k(s)]k +DF (z∗)Wk(s) = [DW<k(s)f<k(s)]k +DWk(s)f1(s) +DW1(s)fk(s)
(4.16)

Reorganizing and substituting 4.13 and 4.14,

DF (z∗)Wk(s)−DWk(s)ΛLs−Lfk(s) = [DW<k(s)f<k(s)]k− [F (W<k(s)]k = −Ek(s)
(4.17)

where we have defined a order-k error term, Ek(s) = [F (W<k(s))]k−[DW<k(s)f<k(s)]k.
Defining the n-dimensional vectors ξk(s) = P−1Wk(s) and ηk(s) = −P−1Ek(s) the
equation 4.17 becomes:

P−1DF (z∗)Pξk(s)− P−1PDξk(s)ΛLs− P−1Lfk(s) = −P−1Ek(s)

→ Λξk(s)−Dξk(s)ΛLs−
(
Id
0

)
fk(s) = ηk(s) (4.18)

The notation used for the n-dimensional vectors of order k is the following, where
each component is an homogeneous polynomial of degree k.

ξk(s) = (ξ1k(s), . . . , ξ
n
k (s))

ηk(s) = (η1k(s), . . . , η
n
k (s))

fk(s) = (f 1
k (s), . . . , fdk (s))

From 4.18 the normal and the tangent cohomological equations are obtained.
Writing metrically the equation 4.18 it is easier to see.

(
ΛL T
0 ΛN

)(
ξLk (s)
ξNk (s)

)
−
(
DξLk (s)ΛLs
DξNk (s)ΛLs

)
−
(
fk(s)

0

)
=

(
ηLk (s)
ηNk (s)

)
(4.19)

Normal cohomological equation : ΛNξ
N
k (s)−DξNk (s)ΛLs = ηNk (s) (4.20)

Tangent cohomological equation : ΛLξ
L
k (s)−DξLk (s)ΛLs− fk(s) = ηLk (s)− TξNk (s)

(4.21)
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Solving each equation we will compute the k-order homogeneous polynomials ξNk (s),
ξLk (s), fk(s). And from these the k + 1 component of ηk+1(s) that will lead us to
the next step.

Normal cohomological equation. Equation 4.20 is written:

λiξ
i
k(s)−Dξik(s)ΛLs = ηik(s) (4.22)

for i = d + 1, . . . , n and using the diagonal expression for ΛN . These equations
are diagonal in the coefficients ξim of the homogeneous polynomials ξik(s), where1

m = (m1, . . . ,md), |m| = m1 + · · ·+md = k. So, for i = d+ 1, . . . , n and |m| = k:

(λi − λLm)ξim = ηim ⇒ ξim =
ηim

λi − λLm
(4.23)

where λLm = λ1m1 + · · ·+λdmd. The equation can be solved unless there are cross
resonances, i.e. pairs (m, i) ∈ N×{d+ 1, . . . , n} with |m| ≥ 2 such that λi = λLm.

Tangent cohomological equation. Equation 4.21 is written:

λiξ
i
k(s)−Dξik(s)ΛLs− fk(s) = ηik(s)− Tξik(s) (4.24)

for i = 1, . . . , d and using the diagonal expression for ΛN . With the same procedure
as for the normal equations we obtain:

(λi − λLm)ξim − f im = ηim − Tξim ⇒ ξim =
ηim − Tξim + f im
λi − λLm

(4.25)

The equation can be solved unless there are internal resonances i.e. pairs (m, i) ∈
N× {1, . . . , d} with |m| ≥ 2 such that λi = λLm

4.3.3 The Normal Form Style

There are different styles of parameterization. One of them is The Graph Style.
It consists in parameterizing the manifold in the simplest possible way by taking
ξLk (s) = 0 and fk(s) = −ηik(s) + Tξik(s).

Another one is The Normal Form Style. In this case the simplified expression is
in the dynamics on the manifold. To simplify the expression of fk(s) we will find a
normal form for it, in the case of non-ressonances the internal vector field is linear.
This means that for i = 1, . . . , d, |m| = k:

1A multi index notation is introduced
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 f im = 0 and ξim = ηim−Tξim
λi−λLm

if λi 6= λLm

f im = −ηim + Tξim and ξim = 0 if λi = λLm

(4.26)

It is useful specially in cases with a finite number of resonances, or in our case,
without resonances. Hence dynamics on the manifold can be described by a poly-
nomial vector field. The most suitable situations occur when working with stable
or unstable manifolds because the d internal eigenvalues lie all in the half-plane or
in the right-plane.

4.4 Example: Lorenz System

Now we will use the method of parameterization using the normal form style to
compute the stable manifold of dimension 2 of the Lorenz System described in 2.2.
The parameters of the equations used are σ = 10, r = 28 and b = 8

3
.

Summing up the information needed: this dynamical system has simple charac-
teristics that makes it an easy example for the parameterization. It has three fixed
points but we will take the origin (henceforth z∗ = (0, 0, 0)). The three eigenvalues
of the differential matrix of the vector field around the origin are:

λ1 =
−1− σ −

√
(σ + 1)2 − 4σ(1− r)

2
= −22.82772

λ2 = −b = −2.66667

λ3 =
−1− σ +

√
(σ + 1)2 − 4σ(1− r)

2
= 11.82772

From the eigenvalues we can affirm that there are no possible resonances. The
dimension of the vector field is n = 3 and the dimension of the manifold d = 2,
therefore the coordinates of the parameterization will be s = (s1, s2) and ξ1(s) =
(s1, s2, 0). The P matrix has as columns the unitary eigenvectors of eigenvalues λ1,
λ2 and λ3 in this order. P−1 is its inverse matrix.

We have decided to compute the parameterization using the normal form style
described in section 4.3.3, thus the dynamics on the manifold will be described by
the simplest possible form of f(s) which will be linear: f(s) = (λ1s1, λ2s2). Since
the torsion is zero and f(s) has only linear part, the tangent equations become so
simple and similar to the normal equations. At this point starts the computation
of the proceeding components of the vectors ξk(s) and ηk(s), with k ≥ 2. We need
to remember that ξ(s), η(s), W (s) are vectors of three components and that ξk(s),
ηk(s), Wk(s) are the homogeneous polynomials of degree k for each component.

ξk(s) = (ξ1k(s), ξ
2
k(s), ξ

3
k(s))

ηk(s) = (η1k(s), η
2
k(s), η

3
k(s))

fk(s) = (f 1
k (s), f 2

k (s), f 3
k (s))
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The steps that our program will follow are:

Computation of the homogeneous polynomials of degree k = 2 knowing ξ1(s)
already.

1. From ξ1(s) we obtain W<2(s) = W1(s) = z∗ + Pξ<2(s) = Pξ<2(s) = Pξ1(s).

2. Then it calculates the order-2 error term: E2(s) = [F (W<2(s))]2−[DW<2(s)f<2(s)]2

= [F (Pξ<2(s))]2− [DW<2(s)(λ1s1, λ2s2)]2. Notice that the second term is not
needed to be calculated. Since f<k(s) = (λ1s1, λ2s2),∀k > 0, and fk = 0,
∀k > 2, the term will never reach the k-order. Then, in this step the error
is calculated with the simpler expression: E2(s) = [F (Pξ<2(s))]2 We also
notice that the only parts of the vector field important in this computation
are the multiplying terms (xz and xy in the second and the third equation
respectively). The other ones can never reach order k.

3. From E2(s) we obtain ηk(s) = −P−1E2(s).

4. Because there are no resonances the last calculation is also simple: ξim =
ηim

λi−λLm
for i = 1, 2, 3 and |m| = 2. The normal equation and the tangent

equation become the same and λLm = λ1m1 + λ2m2.

Now we can move forward and compute the homogeneous polynomials of degree
k = 3 and go one until the last k order. Knowing W2(s) we can start again the
process from step 1 to 4. It is really important in step 2 to take into account all the
components and degree of W<k since they can become relevant in the multiplying
terms.

4.4.1 Maximum order and error

We have mentioned that the parameterization method computes a high order ap-
proximation of the invariant manifold, but which is this order? As we did in Taylor’s
method, it is necessary to find a balance between the error and the computational
cost. Now we will give relevance to the size of the fundamental domain in which
the approximation is sufficiently accurate and therefore which is highly related with
the order of the expansion. To visualize it is plotted the relation between the error
(ε) and the size of the fundamental domain (δ). They are related by:

ε(δ) = max
θ∈[0,2π)

e0(t, sδ,θ) (4.27)

where sδ,θ = (δ cos θ, δ sin θ) (another option could have been to use a square do-
main). We have chosen the same time step t = 0.3 as in [Har10], to have a maximum
backward-time expansion factor of 1000. e0 is the error in the orbit, defined as:

e0(t, s0) = |W (s(t))− z(t)|∞ (4.28)
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where s0 is an initial condition s.t. z0 = W (s0) and z(t) and s(t) are the numerical
solutions of ż = F (z), z(0) = z0 and ṡ = f(s), s(0) = s0, respectively.

We have compute the error for different values of k, the order of the approxima-
tion of W (s).

Figure 11: Error ε of the approximation of the invariant manifold Ws(P0) as a func-
tion of the radius δ of the fundamental domain, for different orders. Each curve rep-
resents a different order k. From lower right to top left: k = 60, 50, 40, 30, 20, 10, 5.
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4.5 Results

With this results we have chosen an expansion order of k = 50 because we have
observed that is really similar to the upper orders and a δ = 20. The error obtained
then is approximately of order ε ≈ 10−4. Now we will plot the expansion of the sta-
ble manifold with different shapes of the fundamental domain. It is also important
to emphasize that with this representation we also calculate the slow submanifold
(given by s1 = 0) inside the stable manifold.

(a) Squared domain We have taken s1 ∈ [−20, 20] and s2 ∈ [−20, 20] spaced by
a factor d = 0.1 or d = 0.5.

Figure 12: In red: Lorenz attractor. In orange: the expansion of the stable manifold
in a squared fundamental domain of length δ = 20 and with d = 0.1.
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Figure 13: In red: Lorenz attractor. In orange: the expansion of the stable manifold
in a squared fundamental domain of length δ = 20 and with d = 0.5.

(b) Circular domain We have taken 250 values of δ equally spaced in [0.1, 20]
and 100 values of θ equally spaced in [0, 2π]. Then the coordinates of the
parameterization are:

(s1, s2) = (δ cos θ, δ sin θ)

Figure 14: In red: Lorenz attractor. In orange: the expansion of the stable manifold
in a circular fundamental domain of radius δ = 20.
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(c) Circular domain with orbits In this last case we have repeated the previous
plot but we have used specific (s1, s2). Instead of covering all the circular
domain we have taken the initial conditions in the border of the domain s(0) =
(s10, s20) = (20 cos θ, 20 sin θ) and we have plotted the trajectory of each initial
condition according to the dynamics in the manifold.{

ṡ1 = λ1s1 → s1(t) = s10e
λ1t

ṡ2 = λ2s2 → s2(t) = s20e
λ2t (4.29)

We have plot from t = 0 until t = 1 with a step size of 0.001.

Figure 15: In red: Lorenz attractor. In orange: the expansion of the stable manifold
in a circular fundamental domain of radius δ = 20 with several trajectories in the
manifold.
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5 Conclusions

We began this paper with an introduction based on Lorenz’s work in the 1960s,
when he discovered through a small experiment an important property of the Lorenz
system: its sensitive dependance on initial conditions. From that moment on, the
chaotic theory has evolved so much, that we have had to focus this work on certain
specific areas. We have only treated the aspects we considered more interesting for
the goal of this project: the parameterization of invariant manifolds. It is important
to point out that we could not include the proof of the chaotic behavior of the Lorenz
attractor, which could be a further investigated to understand strange attractors
and complement this paper.

It is also important to take into account the importance of computation in this
field. During the development of the work we found that most of the time had to be
dedicated to it. We have developed a program written in C code for the numerical
integration using Taylor’s method, another to compute the Lyapunov exponents
and finally a third one to compute the approximation of the parameterization of
the invariant stable manifold and the orbit errors. However, the obtained results
are worth it and even beautiful. Comparing this work with some other more general
ones we realized that working with the specific case of the Lorenz model has really
simplified our work.

Finally, we would like to go a little bit further in the parameterization of invari-
ant manifolds and explain how this project could continue. We have achieved an
approximation of Ws of the Lorenz System but it can still be globalized. In [Har10]
we can find an introduction of the method of globalization of two dimensional stable
or unstable manifolds. This method consists in integrating the normalized Lorenz
equations departing from the border of the fundamental domain and adding an
extra equation for the derivative of the original time with respect to the arclength.
This is done in order to advance the same arclength distance along each trajectory.
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