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Abstract

Lie groups and Lie algebras are the basic objects of study of this work. Lie studied them
as continuous transformations of partial differential equations, emulating Galois work with
polynomial equations. The theory went much further thanks to Killing, Cartan and Weyl
and now the wealth of properties of Lie groups makes them a central topic in modern
mathematics. This richness comes from the merging of two initially unrelated mathemat-
ical structures such as the group structure and the smooth structure of a manifold, which
turns out to impose many restrictions. For instance, a closed subgroup of a Lie group
is automatically an embedded submanifold of the Lie group. Symmetries are related to
groups, in particular continuous symmetries are related to Lie groups and whence, by
Noether’s theorem, its importance in modern physics.
In this work, we focus on the Lie group - Lie algebra relationship and on the represen-
tation theory of Lie groups through the representations of Lie algebras. Especially, we
analyze the complex representations of Lie algebras related to compact simply connected
Lie groups. With this purpose, we first study the theory of covering spaces and differential
forms on Lie groups. Finally, an application to particle physics is presented which shows
the role played by the representation theory of SU(3) on flavour symmetry and the theory
of quarks.

Resum

Els grup de Lie i les àlgebres de Lie són els objectes bàsics d’estudi d’aquest treball. Lie els
va estudiar com a transformacions contínues d’equacions en derivades parcials, emulant
Galois amb les equacions polinòmiques. La teoria va anar molt més enllà gràcies a Killing,
Cartan i Weyl. Actualment, la riquesa de propietats del grups de Lie els converteix en
un tema central a les matemàtiques. Aquesta riquesa ve de la unió de dues estructures
matemàtiques inicialment no relacionades com són l’estructura de grup i l’estructura difer-
enciable d’una varietat. Aquesta unió imposa moltes restriccions com, per exemple, que un
subgrup tancat d’un grup de Lie és automàticament una subvarietat incrustada del grup
de Lie.1 Les simetries es relacionen amb els grups, en particular les simetries contínues es
relacionen amb els grups de Lie i d’aquí, pel teorema de Noether, la seva importància a la
física.
En aquest treball, ens centrem en la relació grup de Lie - àlgebra de Lie i en la teoria de
representacions de grups de Lie a través de les representacions d’àlgebres de Lie. En con-
cret, estudiem les representacions complexes d’àlgebres de Lie relacionades amb els grups
de Lie compactes i simplement connexos. Amb aquesta finalitat, estudiem prèviament la
teoria d’espais recobridors i les formes diferencials en grups de Lie. Es presenta finalment
l’aplicació de la teoria de representacions de SU(3) a la física de partícules pel cas de la
simetria de sabor i la teoria de quarks.

1Per incrustada ens referim a embedded.
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1 Introduction

1.1 Motivation

Lie groups are objects rich in algebraic, geometric and analytic structure. They are named
after Sophus Lie (1842-1899) a Norwegian mathematician who was the first to work on
them setting their theoretical foundation. Lie studied transformations of partial differen-
tial equations which took solutions to solutions, just in a similar way as Galois did with
polynomial equations. As explained in [8], Lie worked first geometrically, together with
Klein, and then more analytically following Jacobi’s work. After his death, Lie’s theory
was improved, above all, by Killing, Cartan and Weyl, leading to what we understand
now as Lie groups.

Lie groups go hand in hand with their corresponding Lie algebras, which preserve part
of the information encoded in the Lie group. For instance, simply connected Lie groups are
in one-to-one correspondence with their Lie algebras and have equivalent representations.
Since the underlying structure of a Lie algebra is a vector space, it is usually easier to
study Lie algebras than Lie groups. Consider in this regard the fact that all semisimple
Lie algebras over the complex numbers have been classified.

As a student of Mathematics and Physics, Lie groups constitute a topic which fits my
interests as they are an interesting mathematical topic with many applications to Physics.

1.2 Structure

As we will see, Lie groups are smooth manifolds and groups, at the same time. This fact
has deep implications in the structure of the smooth manifold, one of the most remarkable
being that the vector space of left invariant smooth vector fields is isomorphic to its tangent
space at the identity, and both spaces have a Lie algebra structure.

We first study Lie groups and matrix Lie groups. Next, we turn to the matrix exponential
to begin to grasp the properties that will be seen later for the Lie algebra. After studying
Lie algebras as abstract algebraic structures, as sets of left invariant vector fields and as
sets of matrices, we shortly study the theory of covering spaces, define universal coverings
and consider the universal covering space of a Lie group. With these tools, we move on
to the relationship between Lie groups and Lie algebras and prove the Closed subgroup
theorem.

Subsequently, we introduce the representation theory of groups, first on finite groups, then
extended to Lie groups with the help of the Haar measure associated to a volume form.
Following that, we examine the basic properties of Lie group representations. The case of
the double covering of SO(3) is undertaken along with the representations of SU(2) and
SU(3) through the complex Lie algebra representations of sl(2;C) and sl(3;C).

Finally, we present the Eightfold Way and its historical context as well as its mathematical
background.

Throughout this work, K will denote any of the fields R or C and C∞ will stand for
infinitely differentiable (i.e., smooth).
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2 Lie Groups

2.1 Definition and properties

Definition 2.1. A Lie group G is a differentiable manifold with a group structure such
that the map

G×G −→ G
(x, y) 7→ xy−1 (2.1)

is smooth.

The identity element will be usually denoted e (for German Einselement).

Remark 1: The definition is often stated differently, in a more intuitive sense, requiring
that the group product µ(x, y) = xy and the inverse i(x) = x−1 are smooth operations.
Both definitions are equivalent. Using the fact that the composition of smooth maps is
smooth, µ(x, i(y)) = µ(x, y−1) = xy−1 and vice versa, x → (e, x) → x−1 is C∞ and
(x, y)→ (x, y−1)→ xy is also C∞.

Remark 2: Smoothness implies continuity and hence a Lie group is also a topological
group (a topological space with a group structure such that the previous operation is
continuous). It can be proved that a certain inverse also holds. This is known as Hilbert’s
fifth problem, or at least one of its interpretations, and it was solved by Montgomery-
Zippin [15] and Gleason [5] in 1952, as it is explained by T. Tao in [23]: Every locally
euclidean topological group is isomorphic as a topological group to a Lie group. Another
interpretation (or generalisation) of the problem is the Hilbert-Schmidt conjecture, which
deals with locally compact topological groups and their action over manifolds, and it has
been proven for the case of 3-dimensional manifolds in 2013 by J. Pardon [17].

Definition 2.2. A Lie subgroup H of a Lie group G is a subgroup of G which has a
smooth structure making it into a Lie group and an immersed submanifold of G, with the
immersion being a group homomorphism.

Every subgroup H of G which is also an embedded submanifold of G is a Lie subgroup
since the restriction of the operation (g1, g2)→ g1g

−1
2 to H ×H maps to H and it will be

also smooth because H is an embedded submanifold.

Moreover, every open submanifold H which is also a subgroup of G will automatically be
a Lie subgroup, since open submanifolds are embedded submanifolds of G. Besides, H
will also be closed. This comes from the fact that H is the complement of the union of its
own cosets, which are open subsets. Thus,

Proposition 2.3. Any open subgroup of a Lie group is closed.

Later we will prove a theorem by Élie Cartan that states that every (topologically) closed
subgroup of a Lie group is an embedded submanifold (and hence a Lie group).

Definition 2.4. Let g ∈ G, the left translation by g and the right translation by g
are respectively the diffeomorphisms of G→ G defined for all h ∈ G by

Lg(h) = gh
and Rg(h) = hg.

These operations, which can be seen as actions of the group on himself, are indeed diffeo-
morphisms, their inverses are left and right translation by g−1. For every pair of elements
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h, g ∈ G, there are two diffeomorphisms of G→ G which have g as the image of h, namely
Lgh−1 and Rh−1g. We see now why the cosets of an open subgroup are open, since they
are related by the diffeomorphisms Lg and Rg.

Definition 2.5. A Lie group G is said to be compact if it is compact in the usual
topological sense as a smooth manifold.

Definition 2.6. The identity component of G, denoted G0, is the path connected
component of G which contains the unit element e ∈ G.

Remark: A Lie group, being a smooth manifold, is locally path-connected. Hence, is
path connected if and only if it is connected.
For a Lie group G, a neighbourhood U of its identity will generate a subgroup, namely the
intersection of all subgroups which contain the neighbourhood U or, equivalently, the set
of elements which can be expressed as a word formed by elements of U and their inverses.
Furthermore,

Proposition 2.7. Let G a connected Lie group and W ⊂ G an open neighbourhood of the
identity. The subgroup generated by W is G.

Proof. Let V be an open subset of W containing e such that V = V −1 := {g−1; g ∈ V },
for instance we can take V = W ∩ W−1. Let H be the subgroup generated by V . It
is open, since g ∈ H implies that gV ⊂ H and therefore H is a union of open subsets.
Moreover, as we have seen, it is also closed because each of its cosets is open. Since G is
connected and e ∈ H, H is non-empty, so H = G. �

Corollary 2.8. G0 is the only connected open subgroup of G.

Definition 2.9. Let G and H be Lie groups. A map F : G → H is a Lie group ho-
momorphism if it is smooth and also a group homomorphism. If, in addition, F is a
diffeomorphism, which implies that it has an inverse that is also a Lie group homomor-
phism, then it is called a Lie group isomorphism . In the latter case, G and H are said
to be isomorphic Lie groups.

Remark: We will see (Theorem 6.12 ) that the definition can be stated in a less restrictive
way, becayse a continuous map between Lie groups is automatically a smooth map. Hence,
requiring F to be a continuous homomorphism would be enough to show that F is a Lie
group homomorphism.
Now, we see one of the first important properties of Lie groups, which holds thanks to the
existence of left translations.

Proposition 2.10. Let F : G → H be a Lie group homomorphism. Then, the rank of
dgF is the same for all g ∈ G. That is, every Lie group homomorphism has constant rank.

Proof. Let e and e′ be the unit elements of G and H, respectively. Let g ∈ G, since F is
a homomorphism,

F (Lg(h)) = F (gh) = F (g)F (h) = LF (g)(F (h)).

Taking differentials at both sides,

dFg ◦ (dLg)e = (dLF (g))e′ ◦ dFe

Lg and LF (g) are diffeomorphisms so dFg and dFe have the same rank, for any g ∈ G. �
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Since a bijection of constant rank between smooth manifolds has smooth inverse, one has

Corollary 2.11. A bijective Lie group homomorphism is a Lie group isomorphism.

Definition 2.12. A one-parameter subgroup of G is a Lie group homomorphism γ :
R → G, with R seen as a Lie group under addition. The image of the homomorphism is
a Lie subgroup.

As we will see, most Lie groups can be realized as matrix groups, and hence we will make
use of the next definition.

Definition 2.13. The matrix space Mn(K) is the set of all n×n matrices with entries in
K. Mn(K) can be identified with Kn2

and we can use the standard notion of convergence
of Kn2

in Mn(K). Being explicit, let {Am}m be a sequence of matrices in Mn(K). We
say that the sequence of matrices {Am}m converges to A ∈Mn(K) if (Am)jk converges
to Ajk as m→∞ for all 1 ≤ j, k ≤ n.

Definition 2.14. The general linear group over a field K, denoted GL(n;K), is the
group of all n× n invertible matrices with entries on K.

2.2 Examples of Lie groups

1. Rn and Cn. The Euclidean space Rn is a Lie group under addition because addition
is a smooth operation. Similarly, Cn is a Lie group under addition (of dimension
2n).

2. C∗. The non-zero complex numbers form a Lie group under multiplication of dimen-
sion 2. It can be identified with GL(1,C). Similarly, R∗ forms a Lie group under
multiplication of dimension 1 which is identifiable with GL(1,R).

3. S1. The unit circle is a Lie group with the multiplication induced from that of C∗.

4. Let G be an arbitrary Lie group and H ⊂ G a subgroup which is also an open subset
of G. Then, H is a smooth manifold which has a group operation which is smooth
and hence H is a Lie group with the inherited group and manifold structure.

5. Mn(K). The matrix space is a Lie group under addition since it can be identified
with Rn

2
when K = R or R2n2

for K = C.

6. GL(n;K). GL(n;K) is a Lie group. It is an open subset of Mn(K) and hence,
a smooth manifold. Furthermore, it is a group under matrix multiplication and
the entries of the product of a matrix multiplication are polynomials, so it is a
smooth operation. Finally, inversion is smooth because the determinant of invertible
matrices does not vanish.

7. Given two Lie groups, G and H, their direct product G×H is also a Lie group with
the group structure given by componentwise multiplication

(g, h)(g′ , h′) = (gg′, hh′).

8. The n-torus Tn = S1 × · · · × S1 is a n-dimensional abelian Lie group.
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2.3 Matrix Lie groups

Definition 2.15. A matrix Lie group is a subgroup G of GL(n;K) which is a closed
subset of GL(n;K). For matrix Lie groups, we will denote the identity element by I.

2.3.1 Examples of matrix Lie groups

1. SL(n;K). The special linear group, SL(n;K), is the group of n × n matrices in
GL(n;K) having determinant +1. Since the determinant is a continuous function,
it is a closed subgroup of GL(n;K).

2. O(n). O(n;R) is the orthogonal group, written O(n) because it is generally consid-
ered over R. It is defined as O(n)= {A ∈ Mn(R)|AA⊤ = I}. That is, the column
vectors of all A ∈ O(n) are orthonormal with respect to the standard metric in Rn.
Thus, A is orthogonal if and only if it preserves the inner product on Rn

(A~x) · (A~y) = ~x⊤A⊤A~y = ~x⊤~y = ~x · ~y.

Since detA = detA⊤ we have

detAA⊤ = (detA)2 = det I = 1.

So, an orthogonal matrix has determinant ±1. O(n) is also easily seen to be a group
and a subgroup of GL(n;R). It is closed in GL(n;R) because the matrix product and
the transpose operation are continuous and hence it is a matrix Lie group.

3. SO(n). SO(n) := O(n) ∩ SL(n;R) is the subgroup of matrices in O(n) with de-
terminant one and it is called the special orthogonal group. It is also a matrix Lie
group. Geometrically, the elements of SO(n) are rotations and the elements of O(n)
are rotations and reflections. (We have seen that the matrices in O(n) are inner
product-preserving linear operators in Rn. That is, isometries which leave the origin
fixed. Moreover, the matrices of SO(n) have determinant +1 and hence preserve the
orientation).

4. U(n). The unitary group, U(n), is the set of all n × n complex matrices whose
column vectors are orthonormal with respect to the standard hermitian product on

Cn. Denoting A† = (A)
⊤

the conjugate transpose matrix of A (its adjoint), the
definition can be written as

I = A†A =
n∑

i=1

(A)⊤jiAik =
n∑

i=1

AijAik = (δjk)jk.

An equivalent definition is to say that A is unitary if and only if it preserves the
standard hermitian product on Cn, 〈x, y〉 =∑i xiyi for x, y ∈ Cn. It can be checked
as we did for orthogonal matrices.
For any matrix A, detA† = det(A

⊤
) = detA = detA. So, if A is a unitary matrix,

det(A†A) = detA† detA = detAdetA = |detA|2 = det I = 1

and then detA = eiθ for some θ ∈ R.
From A†A = I, we see that a matrix is unitary if and only if

A† = A−1.
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In particular, every unitary matrix is invertible and since (A†)† = A = (A−1)† the
inverse of a unitary matrix is also unitary.
From (AB) = (A)(B) and (AB)⊤ = B⊤A⊤ we have (AB)† = B†A†. Hence, if A
and B are unitary, then

(AB)†(AB) = B†A†AB = I.

We have just seen that U(n) is, in effect, a group.
For the same argument used for O(n), it is closed in GL(n;C) and hence it is a matrix
Lie group.

5. SU(n). The special unitary group, SU(n), is the subgroup of U(n) of matrices with
determinant one.

6. SP(n;C). The set of 2n × 2n matrices which preserve the antisymmetric bilinear
form on C2n

ω(x, y) =
n∑

j=1

(xjyn+j − xn+jyj)

is the complex symplectic group, SP(n;C). If

Ω =

(
0 I
−I 0

)

,

then

ω(x, y) =
n∑

j=1

(

xj

2n∑

i=1

Ωjiyi

)

:= (x,Ωy).

A matrix A preserves it if

(x,Ωy) = ω(x, y) = ω(Ax,Ay) = (Ax,ΩAy) = (x,A⊤ΩAy).

So A preserves the form if and only if

Ω = A⊤ΩA ⇐⇒ −ΩA⊤Ω = A−1; Ω−1 = −Ω = Ω⊤.

Taking the determinant of any of both formulas, we get (detA)2 = 1. In fact, it is
always +12. In particular, since Ω ∈ SP(n;C), det(Ω) = 1.
It is a closed subgroup of GL(2n;C); therefore, it is a matrix Lie group.

As explained in [14], the group SP(n;R) arises from the study of the Hamilton equa-
tions for a system with n degrees of freedom. These are, writing z = (q1, . . . , qn, p1, . . . , pn),

ż = Ω dH(z, t)

where qi are the configuration variables, pi their canonically conjugate momentum
and H is the Hamiltonian. This is the same as writing the more typical expression

q̇i =
∂H

∂pi
; ṗi = −

∂H

∂qi
.

7. SP(n). The compact symplectic group, SP(n), is defined as

SP(n) = SP(n;C) ∩ U(2n).

It is the group of 2n× 2n matrices that preserve at the same time the inner product
and the bilinear form ω. The group SP(n) can be seen as the unitary group over the
quaternions.

2See [18], where there is a proof without the use of Pfaffians.
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2.3.2 Examples of subgroups of GL(n;C) which are not matrix Lie groups:

1. GL(n;Q) is a subgroup of GL(n;C) but it is not closed. To see it, for m ∈ N consider
the matrix

Am =






(
1 + 1

m

)m
0

. . .
0

(
1 + 1

m

)m




 −−−−→

m→∞
A =






e 0
. . .

0 e




 .

All matrices of this form are in GL(n;Q) but their limit A = limm→∞Am is not in
GL(n;Q).

2. For some fixed a ∈ R \Q, consider the set

G =

{(
eit 0
0 eita

)

| t ∈ R

}

.

Clearly, G is a subgroup of GL(n;C). Since for t = 0, we have that I2 ∈ G, to get
the inverse matrix we only have to make the change t→ −t and the product of two
matrices of this form is of this form.
Now, −I2 /∈ G since eit = −1 implies that t = (2m + 1)π for some integer m, and
(2m + 1)a with a irrational cannot be an odd multiple of π. For some well chosen
n ∈ Z, t = (2n+ 1)π, we can make ta arbitrarily close to some odd integer multiple
of π. This is possible because the set

{
ei2πma with m ∈ Z

}
is dense in S1. So we

can find a sequence of matrices in G which converges to −I2. It follows that G is
not closed.

Figure 1: G is dense in S1 × S1

Remark: The definition of a matrix Lie group is motivated by Theorem 6.17, which
states that every closed subgroup of a Lie group is an embedded Lie subgroup. However,
there are groups of matrices, such as the line on the torus with irrational slope, which are
immersed and not embedded Lie subgroups of GL(n;C) (cf. [24]). Thus, our definition of
matrix Lie group does not include every Lie group of matrices, only the embedded ones.
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3 The matrix exponential and its properties

Definition 3.1. The exponential of a square matrix , A ∈Mn(K), is defined by the
power series

eA :=

∞∑

n=0

An

n!
. (3.1)

The series is convergent for all A ∈Mn(K) and eA is a continuous function of A. This can
be seen using the norm of the matrix together with the properties of the real exponential.
Furthermore, since matrix multiplication is a smooth operation,

Proposition 3.2. The exponential map is an smooth map of Mn(K) into Mn(K).

Proposition 3.3 (Properties). Let X,Y ∈Mn(K), C ∈ GL(n;K). Then,

1. e0 = I.

2. (eX)† = eX
†

(for X ∈Mn(R), X
† = X⊤).

3. eX is invertible and (eX)−1 = e−X .

4. If X and Y commute, then eX+Y = eXeY = eY eX .

5. eCXC
−1

= CeXC−1.

Proof. The third and fourth properties are the only ones not so obvious. The third follows
from the fourth and the fourth can be seen using the binomial formula, which can only be
used when X and Y commute

eXeY =

∞∑

n=0

n∑

k=0

Xk

k!

Y n−k

(n − k)! =
∞∑

n=0

1

n!

n∑

k=0

n!

k!(n− k)!X
kY n−k =

∞∑

n=0

(X + Y )n

n!
= eX+Y .

�

From item 3 we see that the map exp : Mn(K) → Mn(K) actually maps Mn(K) into
GL(n;K), and hence Proposition 3.2 can be improved. Item 5 gives a way to compute the
exponential of a matrix from its Jordan form.

Proposition 3.4. Let X be a n×n complex matrix. Then etX is a smooth curve in Mn(C)
and

d

dt
etX = XetX = etXX. (3.2)

In particular, d
dte

tX
∣
∣
t=0

= X.

The validity of the proposition comes from the convergence of the series. In particular,
every element of the matrix etX is given by a convergent power series in t, and we can
differentiate it.

Definition 3.5. For a square matrix A ∈Mn(K), its matrix logarithm is defined by

lnA =

∞∑

n=1

(−1)n+1 (A− I)n
n

(3.3)

whenever the series converges.
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Next two theorems give us information about the matrix exponential and logarithm: the
domain of the logarithm and the image of the exponential. A proof of them can be found
in [7].

Theorem 3.6. The function lnA is defined and it is a continuous function for all A ∈
Mn(C) with ‖A− I‖ < 1. In this case, elnA = A. Furthermore, for all X ∈ Mn(C) with
‖X‖ < ln 2,

∥
∥eX − I

∥
∥ < 1 and ln eX = X.

Theorem 3.7. Every square invertible matrix can be expressed as eX for some X ∈
Mn(C).

This is, the exponential of complex matrices is surjective over GL(n;C). For real matrices
it is not true ( for n = 1 it already fails).

Theorem 3.8 (Lie product formula). For all X,Y ∈Mn(C),

eX+Y = lim
m→∞

(

e
X
m e

Y
m

)m
. (3.4)

Proof. We have that

e
X
m e

Y
m = I +

X

m
+
Y

m
+O

(
1

m2

)

.

Therefore,
lim
m→∞

e
X
m e

Y
m = I.

So there exists an m0 ∈ N such that
∥
∥
∥e

X
m e

Y
m − I

∥
∥
∥ < 1 for all m ≥ m0. Hence, we can take

the logarithm for such m.

ln
(

e
X
m e

Y
m

)

= ln

(

I +
X

m
+
Y

m
+O

(
1

m2

))

=
X

m
+
Y

m
+O

(
1

m2

)

.

The last equality is obtained from the Taylor series of the logarithm. Now taking the
exponential on both sides,

(

e
X
m e

Y
m

)

= exp

(
X

m
+
Y

m
+O

(
1

m2

))

=⇒
(

e
X
m e

Y
m

)m
= exp

(

X + Y +O

(
1

m

))

.

Whence,

eX+Y = lim
m→∞

(

e
X
m e

Y
m

)m
.

�

Proposition 3.9. For any A ∈ C,

det eA = etrA. (3.5)

Proof. This result can be seen as a corollary of Liouville’s theorem on Differential Equa-
tions. Consider the linear homogeneous differential equation, where A : I ⊂ R→ Cn×Cn,

x′ = A(t)x.

If M(t) is a matrix solution, Liouville’s theorem states that

detM(t) = detM(t0)e
∫ t

t0
trA(s)ds

.

10



Now, setting the Cauchy problem with initial time t = 0 and initial value Id, and with
our matrix A {

x′ = Ax
x(0) = Id

⇒
{
M(t) = etA

M(0) = Id

Setting t = 1, Liouville’s theorem gives

detM(1) = det eA = detM(0)e
∫ 1
0 trAds = etrA.

�

Definition 3.10. A function A : R→ GL(n;C) is called a one-parameter subgroup of
GL(n;C) if

1. A is continuous,

2. A(0) = I,

3. A(t+ s) = A(t)A(s) for all t, s ∈ R.

This definition is consistent with the one given for general Lie groups.

Theorem 3.11. If A(·) is a one-parameter subgroup of GL(n;C), there exists a unique
X ∈Mn(C) such that

A(t) = etX .

The proof of this result, which can be found in [7], is based in the fact that near enough
to the identity, the exponential is injective with a continuous inverse, the logarithm. This
yields to the property that every matrix A(t0) in a suitable neighbourhood of the iden-
tity has a unique square root in the neighbourhood, given by exp(12 ln(A(t0))). Writing
X = 1

t0
ln(A(t0)), so that t0X = ln(A(t0)). Hence, exp(t0X) = A(t0) and it belongs

to the neighbourhood, just as exp(t0X/2) = A(t0/2), the unique square root. This can
be repeated and we obtain for any k ∈ Z exp(t0X/2

k) = A(t0/2
k) and for m ∈ Z,

exp(t0X/2
k)m = A(mt0/2

k). The result is valid for a dense set of R, the numbers of the
form mt0/2

k, and for continuity, R. Uniqueness comes from taking the derivative at t = 0.

4 Lie Algebras

4.1 Definition and properties

Lie algebras are usually defined independently of Lie groups. However, one of the main
examples are the Lie algebras associated to Lie groups.

Definition 4.1. Let K be a field, a (finite-dimensional) K-Lie algebra is a (finite-
dimensional) K-vector space, g, with a map

[·, ·] : g× g → g

(X,Y ) → [X,Y ]

with the following properties for all X,Y,Z ∈ g

1. [·, ·] is K-bilinear.

2. [·, ·] is antisymmetric: [X,Y ] = −[Y,X].

11



3. The Jacobi identity holds,

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

We say that two elements X and Y of g commute if [X,Y ] = 0. We say that a Lie algebra
is commutative if [X,Y ] = 0 for all X,Y ∈ g.

Remark: This operation, called the bracket or Lie bracket operation, is usually not
associative. The Jacobi identity can be seen as a substitute for the associative property:

[X, [Y,Z]] − [[X,Y ], Z] = −[Y, [Z,X]].

As an example, the vector space R3 forms a Lie algebra defining the Lie bracket of two
vectors as its cross product

[u, v] = u× v for u, v ∈ R3.

Definition 4.2. A subalgebra of a real or complex Lie algebra g is a subspace h of g
such that [H1,H2] ∈ h for all H1,H2 ∈ h.

Next definition is analogous to the one for Lie groups.

Definition 4.3. If g and h are Lie algebras, then a linear map φ : g → h is called a Lie
algebra homomorphism if φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g. If, in addition, φ
is bijective, then it is called a Lie algebra isomorphism . In the latter case, if g = h,
then it is called a Lie algebra automorphism.

Definition 4.4. For a fixed X ∈ g, we can define a linear map adX : g→ g by

adX : g → g

Y → adX(Y ) = [X,Y ]

Linearity comes from the bilinearity of the bracket operation. The map X → adX is called
the adjoint map or adjoint representation and can be seen as the linear map

ad: g → End(g)
X → adX : g→ g

Notice that adX(Y ) is just the same as [X,Y ], but it is useful to see it this way. Rewriting
the Jacobi identity,

adX([Y,Z]) + [Y,−adX(Z)] + [Z, adX(Y )] = 0.

We see that adX can be considered as a derivation with respect to the Lie bracket:

adX([Y,Z]) = [adX(Y ), Z] + [Y, adX(Z)].

Let ϕ,ψ ∈ End(g), its Lie bracket is defined by [ϕ,ψ] = ϕ ◦ ψ − ψ ◦ ϕ. Thus, for the
images of the adjoint map it is [adX , adY ] := adXadY − adY adX and it is easy to see that
it is again a Lie algebra.

Proposition 4.5. If g is a Lie algebra, then ad: g→ End(g) is a Lie algebra homomor-
phism.
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Proof. We only have to see that

ad[X,Y ] = [adX , adY ].

Let Z ∈ g, then
ad[X,Y ](Z) = [[X,Y ], Z]

whereas

[adX , adY ](Z) = adXadY (Z)− adY adX(Z) = [X, [Y,Z]] − [Y, [X,Z]].

The equality of both expressions comes from the Jacobi identity. �

Definition 4.6. If g1 and g2 are Lie algebras, the direct sum of g1 and g2 is the vector
space g1 ⊕ g2, with Lie bracket given by

[(X1,X2), (Y1, Y2)] = ([X1, Y1], [X2, Y2]).

If g is a Lie algebra and g1 and g2 are subalgebras, g decomposes as the Lie algebra direct
sum of g1 and g2 if, as vector spaces, g = g1 ⊕ g2 and [g1, g2] = 0, i.e. [X,Y ] = 0 for all
X ∈ g1, Y ∈ g2.

Definition 4.7. Let g be a finite-dimensional Lie algebra, X1, . . . ,XN a basis for g. Then
the unique constants cjkl ∈ K such that

[Xj ,Xk] =

N∑

l=1

cjklXl.

are called the structure constants of g for the basis X1, . . . XN .

4.2 Lie algebras of Lie groups

Recall that Lie brackets of smooth vector fields on smooth manifolds are defined. The
Lie bracket sends smooth vector fields to smooth vector fields and it has the following
coordinate expression,

[X,Y ] =

(

Xi∂Y
j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
.

It can also be seen as a derivation, [X,Y ] := LXY is called the Lie derivative of Y along
the flow generated by X.

Now, we want to define the Lie algebra associated to a Lie group, we will see that its
elements are left invariant vector fields on G.

Definition 4.8. A vector field X on G is called left invariant if for each g ∈ G,

dLg ◦X = X ◦ Lg.

Since Lg is a diffeomorphism, left invariance can be expressed with the pushforward of the
vector field

(Lg)∗X = X.

Proposition 4.9. Let G be a Lie group and g the set of its left invariant vector fields.
Then:

13



1. Left invariant vector fields are smooth.

2. The Lie bracket of two left invariant vector fields is itself a left invariant vector field.

3. g is a real vector space and the map α : g → TeG defined by α(X) = Xe is an
isomorphism of R−vector spaces between g and the tangent space TeG to G at the
identity. Hence, dim g = dimTeG = dimG.

4. g forms a Lie algebra under the Lie bracket operation on vector fields.

Proof. From the fact that, if F : G→ G is a diffeomorphism, its pushforward acts on Lie
brackets like

F∗[X1,X2] = [F∗X1, F∗X2]

we have proved item 1, since

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ].

The linearity of α is clear. The fact that g is a real vector space comes from (Lg)∗(aX +
bY ) = a(Lg)∗X + b(Lg)∗Y for a, b ∈ R. It is injective, if α(X) = Xe = 0 for some X ∈ g,
the left invariance of X implies that Xg = d(Lg)e(Xe) = 0 for all g ∈ G, so X = 0. To see
that it is a surjection, let v ∈ TeG and define a vector field on G by

vL|g = d(Lg)e(v).

It is left invariant,

d(Lh)g
(
vL|g

)
= d(Lh)g ◦ d(Lg)e(v) = d(Lh ◦ Lg)e(v) = d(Lhg)e(v) = vL|hg.

So vL ∈ g and α(vL) = vL|e = v because Le is the identity map of G. Thus, α is surjective
and we have proved the second item.
To see item 3, let X ∈ g and let f ∈ C∞(G), if we show that Xf ∈ C∞(G) we are done.
Now,

(Xf)g = Xgf = d(Lg)eXef = Xe(f ◦ Lg)
and this function is a composition of smooth maps.
Since left invariant vector fields are smooth, their Lie bracket is defined and it is also a
left invariant vector field. Hence, g is a Lie algebra. �

We have seen that the set of smooth left invariant vector fields on a Lie group G, denoted
Xli(G), together with the Lie bracket operation, forms a Lie algebra which as a vector
space is isomorphic to TeG. From this, we have the definition,

Definition 4.10. Let G be a Lie group. We define the Lie algebra of G, denoted g, as
the Lie algebra of left invariant vector fields on G.

Remark: The Lie algebra g of a Lie group G can be realized equivalently as the tangent
space to the identity, TeG, with the Lie bracket inherited from the isomorphism as vector
spaces between g and TeG.

Now, since every left invariant vector field on a Lie group is smooth, any basis of the Lie
algebra will give us a left invariant global frame. Recalling that a manifold is parallelizable
if it admits a global frame, we get the following important property.

Corollary 4.11. Every Lie group is parallelizable.
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This result is applicable for the case of studying the spheres Sn and looking for which
n ∈ N the manifold has a differentiable structure and an operation which makes it into
a Lie group. Since Sn is only parallelizable for n = 0, 1, 3, 7, we can restrict the study to
these cases. It is interesting to note that these cases are, respectively, the unit elements
of the real numbers, the complex numbers, the quaternions and the octonions. It turns
out that the only one which is not a Lie group is S7, which is related with the fact that
the octonions are not a group with the multiplication. The case S3 will be studied later.

4.3 Lie algebras of matrix Lie groups

Definition 4.12. The Lie algebra of a matrix Lie group G, denoted g, is the set of
all matrices X such that etX ∈ G for all t ∈ R.

Theorem 4.13. Let G be a matrix Lie group with Lie algebra g. For X,Y ∈ g, the
following results hold.

1. AXA−1 ∈ g ∀A ∈ G.

2. sX ∈ g ∀s ∈ R.

3. X + Y ∈ g.

4. XY − Y X ∈ g.

Proof. Using the properties of the exponential in (3.3) and the Lie product formula (3.8)
we have the first three properties proven. The proof of the fourth comes from the facts
that if two matrix-valued functions of t ∈ R, A(t), B(t), are smooth, then A(t)B(t) is
smooth and

d

dt
[A(t)(B(t)] =

dA

dt
B(t) +A(t)

dB

dt

and that, as we have seen in 3.4,

d

dt
etX
∣
∣
∣
∣
t=0

= X.

Now,
d

dt

(
etXY e−tX

)
∣
∣
∣
∣
t=0

= (XY )e0 + (e0Y )(−X) = XY − Y X.

For item 1,
(
etXY e−tX

)
∈ g, for all t ∈ R. For items 2 and 3, we see that g is a real

subspace of Mn(C), so it is a closed subset of Mn(C). We have, then

XY − Y X = lim
h→0

ehXY e−hX − Y
h

∈ g.

�

Defining the bracket operation as [X,Y ] = XY −Y X, one easily checks that it is bilinear,
antisymmetric and the Jacobi identity holds. Thus, the Lie algebra of a matrix Lie group
is a Lie algebra in the sense of Definition 4.1.
Noticing that for every X ∈ g, eX and the identity matrix I = e0 are connected by the
path t→ etX , for t ∈ [0, 1], we have the following proposition.
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Proposition 4.14. Let G be a matrix Lie group and X an element of its Lie algebra.
Then, eX is an element of the identity component G0 of G.

Next examples are the Lie algebras associated to the examples given for matrix Lie groups.

4.3.1 Examples

1. gl(n;K). The Lie algebra of GL(n;K), denoted gl(n;K), is the space Mn(K). For
every matrix X ∈Mn(K), eX is invertible and with coefficients on K.

2. sl(n;K). If X is any matrix with det(etX ) = 1 for all t ∈ R, then, for proposition 3.9,
t · trace(X) = i2πn for all t ∈ R for some n ∈ Z. Which means that trace(X) = 0.
sl(n;K):= {X ∈Mn(K)|trace(X) = 0} is the Lie algebra of SL(n;K).

3. o(n). Given the matrix X ∈ Mn(R), etX is orthogonal if and only if (etX)⊤ =

(etX )−1 = e−tX = etX
⊤
, the last two equalities come from 3.3. If −tX = tX⊤ the

equalities hold. And if it holds for all t, then

−X = X⊤.

So the Lie algebra of O(n) is o(n):= {X ∈Mn(R) s.t. −X = X⊤}.
4. so(n). The property −X = X⊤ is the same as saying that the matrix is antisym-

metric. In particular, this implies that the trace of the matrix is zero. And we have
seen that if the trace of X is zero, then det(etX) = 1 for all t. So, every matrix
in o(n) is also in so(n), the Lie algebra of SO(n) and by definition, every matrix in
so(n) is in o(n). Thus, o(n) and so(n) are equal.

5. u(n). etX is unitary if and only if

(etX)† = (etX)−1.

Which, using properties of the exponential, is equivalent to

etX
†

= e−tX .

This holds if X† = −X. And if the equality holds for all t, then the condition is
necessary. Thus, the Lie algebra of U(n) is the set of those X ∈ Mn(C) with the
property X† = −X. It is denoted u(n).

6. su(n). X† = −X doesn’t imply that its trace is zero, so the Lie algebra of SU(n) is
the subset of u(n) of matrices with trace zero, denoted su(n).

7. sp(n;C). The Lie algebra of SP(n;C), denoted sp(n;C), is the space of matrices
X ∈Mn(C) which verify etX ∈ SP(n;C). That is, those which satisfy −Ω(etX)⊤Ω =
(etX )−1. Now, the next equalities are a straightforward computation,

−Ω(etX)⊤Ω = −ΩetX⊤

Ω = e−tX .

This has to hold for all real t, so

−Ω d

dt
etX

⊤

Ω =
d

dt
e−tX

16



also has to hold for all real t, and for t = 0 we have

−ΩX⊤Ω = −X ⇐⇒ ΩX⊤Ω = X.

Then, sp(n;C) is the set of complex matrices for which this last equality holds.

8. sp(n). The Lie algebra of SP(n) is the space of complex matrices X such that
ΩX⊤Ω = X and X† = −X.

Before going further, we will take a look at covering spaces. We do so in order to see that
every Lie group has a universal covering space which is also a Lie group. This fact will
have implications which will be useful for the study of the relationship between Lie groups
and Lie algebras.

5 Covering spaces

In this section X will denote a path connected and locally path connected topological
space and I the compact metric space [0, 1] ⊂ R.

Definition 5.1. A covering space of X is a pair (X̃, p) consisting of a space X̃ and
a continuous map p : X̃ → X such that for all x ∈ X there is an open path connected
neighbourhood, Ux, and for each path connected component Ui of p−1(Ux), the map
p|Ui

: Ui → Ux is a homeomorphism.

Remark: This definition requires p−1(Ux) to be non-empty i.e. p is a surjection. Every
neighbourhood U satisfying the condition stated is called an elementary neighbour-
hood . The map p is called a projection . It is easily seen that if (X̃, p) is a covering
space of X, then p is a local homeomorphism3. This comes from the fact that the path
connected components of an open set of a locally path connected space are open. A local
homeomorphism is an open map, so if (X̃, p) is a covering space, then p is an open map.

R

S1

p : θ → eiθ

Figure 2: R is a covering space of S1

Definition 5.2. If (X̃, p) is a covering space and f : A → X is a continuous map, a lift
of f is a continuous map f̃ : A→ X̃ such that p ◦ f̃ = f .

Now let’s introduce some useful lemmas and theorems. Some of the next results are direct
and some more arduous, we will not prove any of them though. Proofs can be found in
many introductory book of Algebraic Topology (we have followed [13]).

3See definition A.2
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Lemma 5.3 (Unique lifting property). Let (X̃, p) be a covering space of X and let Y be
a space which is connected. Given any two continuous maps f0, f1 : Y → X̃ such that
p ◦ f0 = p ◦ f1, the set {y ∈ Y | f0(y) = f1(y)} is either empty or all of Y .

Lemma 5.4. Let (X̃, p) be a covering space of X and let g0, g1 : I → X̃ be paths in X̃
which have the same initial point. If pg0 ∼ pg1, then g0 ∼ g1. In particular, g0 and g1
have the same terminal point.

Lemma 5.5. If (X̃, p) is a covering space of X, then the sets p−1(x) have the same
cardinal number for all x ∈ X.

This cardinal number is called the number of sheets of the covering space.

Theorem 5.6. Let (X̃, p) be a covering space of X, x̃0 ∈ X̃, and x0 = p(x̃0). Then, the
induced homomorphism p∗ : π(X̃, x̃0)→ π(X,x0) is injective.

Theorem 5.7. Let (X̃, p) be a covering space of X, x̃0 ∈ X̃. Then, the subgroups
p∗π(X̃, x̃) for x̃ ∈ p−1(x0) are exactly a conjugacy class of subgroups of π(X,xo).

Notation: (X,x) is a pointed space and f : (Y, y) → (X,x) means that f : Y → X and
f(y) = x.

Theorem 5.8. Let (X̃, p) be a covering space of X,Y a connected, locally path connected
space, y0 ∈ Y , x̃0 ∈ X̃ and x0 = p(x̃0). Given a map ϕ : (Y, y0)→ (X,x0), there exists a
lifting ϕ̃ : (Y, y0)→ (X̃, x̃0) if and only if ϕ∗π(Y, y0) ⊂ p∗ π(X̃, x̃0).
Definition 5.9. Let (X̃1, p1), (X̃2, p2) covering spaces of X. A homomorphism of
(X̃1, p1) into (X̃2, p2) is a continuous map ϕ : X̃1 → X̃2 such that the diagram

X̃1 X̃2

X

p1

ϕ

p2

commutes. If there is an homomorphism ψ of (X̃2, p2) into (X̃1, p1) such that ψϕ and ϕψ
are identity maps then we say that the two spaces are isomorphic.

Lemma 5.10. Let (X̃1, p1) and (X̃2, p2) be covering spaces of X and x̃i ∈ X̃i , i = 1, 2
points such that p1(x̃1) = p2(x̃2). Then, there exists a homomorphism ϕ of (X̃1, p1) into
(X̃2, p2) such that ϕ(x̃1) = x̃2 if and only if p1∗π(X̃1, x̃1) ⊂ p2∗π(X̃2, x̃2)

Theorem 5.11. Two covering spaces (X̃1, p1) and (X̃2, p2) of X are isomorphic if and
only if for any two points x̃i ∈ X̃i , i = 1, 2 such that p1(x̃1) = p2(x̃2) = x0 the subgroups
p1∗π(X̃1, x̃1) and p2∗π(X̃2, x̃2) belong to the same conjugacy class in π(X,x0).

Lemma 5.12. Let (X̃1, p1) and (X̃2, p2) covering spaces of X and let ϕ be a homomor-
phism of the first covering space into the second. Then, (X̃1, ϕ) is a covering space of
X̃2.

Let (X̃, p) be a covering space of X such that X̃ is simply connected. If (X̃ ′, p′) is another
covering space of X then, by Lemma 5.10 there exists a homomorphism ϕ of (X̃, p) onto
(X̃ ′, p′) and, by Lemma 5.12, (X̃, ϕ) is a covering space of X̃ ′. Hence, X̃ can be a covering
space of any covering of X and this leads to the definition:

Definition 5.13. A simply connected covering space (X̃, p) of X is called a universal
covering space .
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Remark: By Theorem 5.11, any two universal covering spaces of X are isomorphic.
Now we want to see the necessary conditions for X to have a universal covering space:
Let (X̃, p) be a universal covering space of X, x ∈ X an arbitrary point, x̃ ∈ X̃ a point
of p−1(x), U an elementary neighbourhood of x and V the component of p−1(U) which
contains x̃. We then have the following commutative diagram

π(V, x̃) −−−−→ π(X̃, x̃)


y(p|V )∗



yp∗

π(U, x)
i∗−−−−→ π(X,x)

First of all, since (p|V ) is a homeomorphism of V onto U , (p|V )∗ is an isomorphism.
Moreover, noting that π(X,x) = {1} and that the diagram is commutative, we obtain
that i∗ is a trivial homomorphism, i.e., i∗(π(U, x)) = {1}. Thus, the space X has the
property stated in the next definition.

Definition 5.14. We say that a space X is semilocally simply connected if every

point x ∈ X has a neighbourhood U such that the homomorphism π(U, x)
i∗−→ π(X,x) is

trivial. This is, any loop in U can be shrunk to a point within X.

Every nice topological space is semilocally simply connected, so it is not a very restric-
tive condition. Spaces which are not semilocally simply connected are often considered
pathological, an example would be the Hawaiian earring. For instance, all manifolds and
manifolds with boundary are semilocally simply connected. Going further, one can can
find the sufficient conditions for a more general case,

Theorem 5.15. Let X be a topological space which is connected, locally path connected
and semilocally simply connected. Then, given any conjugacy class of subgroups of π(X,x),
there exists a covering space (X̃, p) of X corresponding to the given conjugacy class (i.e.
such that p∗π(X̃, x̃) belongs to the conjugacy class).

and as a result,

Corollary 5.16. Suppose that X is a connected, locally path connected and semilocally
simply connected topological space. Then, X has a universal cover.

The existence and uniqueness (up to homeomorphism) of the universal covering space are
guaranteed by this result. Furthermore, for smooth manifolds,

Corollary 5.17. If X is a connected smooth manifold, X has a universal covering space.

Comment: These properties of the universal covering lead to a different definition of a
simply connected space, used in texts as [1]. A simply connected space is defined as a
connected, locally connected space which admits only covering spaces that are isomorphic
to the trivial covering space. However, this definition is not equivalent to ours, as it is
shown in [4], and it is not used here.

We are interested in universal covers of Lie groups which are Lie groups, so we have to
go a little further. The next results can be found in [11]. For a topological covering map
here we mean a covering map in the previous sense. We will use another kind of covering
map, a smooth covering map, which is a covering map that is a local diffeomorphism.
The next result shows that every covering map over a smooth manifold can be converted
into a smooth covering map.
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Proposition 5.18. Suppose M is a connected smooth n-manifold, and p : E → M is a
topological covering map. Then E is a topological n-manifold, and has a unique smooth
structure such that p is a smooth covering map.

The proof consists in, firstly, show that the covering space E is Hausdorff and second
countable, inheriting it from M with the fact that they are locally homeomorphic, and
then, with the coordinate charts and the elementary neighbourhoods one can build its
unique smooth structure.

Corollary 5.19. If M is a connected smooth manifold, it has a universal smooth covering.

And now, the awaited final result that we were looking for.

Theorem 5.20 (Existence and Uniqueness of a Universal Covering Group). Let G be a
connected Lie group. There exists a simply connected Lie group G̃, called the universal
covering group of G, that admits a smooth covering map p : G̃ → G that is also a
Lie group homomorphism. Furthermore, the universal covering group is unique up to
isomorphism.

Proof. Let G̃ be the universal covering manifold of G and p : G̃ → G the corresponding
smooth covering map. The map p × p : G̃ × G̃ → G × G is also a smooth covering map.
We denote by m : G × G → G the multiplication map and by i : G → G the inversion
map. Let ẽ ∈ p−1(e) ⊂ G̃. Since G̃ is simply connected, it is connected and we can apply
the Lemma 5.3 and we have that the map m ◦ (p × p) : G̃ × G̃ → G has a unique lift
m̃ : G̃ × G̃ → G̃ such that m̃(ẽ, ẽ) = ẽ and p ◦ m̃ = m ◦ (p × p). We have the following
commutative diagram

G̃× G̃ m̃−−−−→ G̃


yp×p



yp

G×G m−−−−→ G

From the fact that p is a local diffeomorphism and that p ◦ m̃ is smooth, it follows that
m̃ is smooth. With the same reasoning as before we get the commutative diagram for the
inversion map

G̃
ĩ−−−−→ G̃



yp



yp

G
i−−−−→ G

where ĩ : G̃→ G̃ is the smooth lift of i◦p : G̃→ G which satisfies ĩ(ẽ) = ẽ and p◦ ĩ = i◦p.
We define these two smooth operations as the multiplication and inversion maps in G̃.
This is, m̃(x, y) = xy and ĩ(x) = x−1, for all x, y ∈ G̃. With the commutative diagrams,
we have that:

p(xy) = p(x)p(y) and p(x−1) = p(x)−1 (5.1)

and so proving that G̃ with these operations is a Lie group we would have that p is a
homomorphism. The proof that G̃ is a Lie group is quite simple. Using the unique lifting
property, it is easily seen that ẽ is the neutral element, that xx−1 = x−1x = ẽ and that
the multiplication is associative.
Finally, the uniqueness announced is in the sense that if G̃ and G̃′ are both universal
covering groups of G, with smooth covering maps p and p′, then there exists a Lie group
isomorphism Φ : G̃→ G̃′ such that p′ ◦Φ = p. From the fact that G is a smooth manifold,
we know that its universal cover is unique in the sense that we have a diffeomorphism
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Φ : G̃ → G̃′ such that p′ ◦ Φ = p. It can be seen that Φ is also a homomorphism, this is,
the following diagram

G̃× G̃ Φ×Φ−−−−→ G̃′ × G̃′


ym̃



ym̃′

G̃
Φ−−−−→ G̃′

is commutative. Due to the fact that Φ ◦ m̃ and m̃′ ◦ (Φ × Φ) are lifts of the map
m ◦ (p× p), if we fix Φ(ẽ) = ẽ′, Φ ◦ m̃ and m̃′ ◦ (Φ×Φ) agree on (ẽ, ẽ) and for the unique
lifting property (Lemma 5.3), are the same map. Finally, a diffeomorphic homomorphism
is an isomorphism. �

6 Lie Groups and Lie Algebras

A Lie group homomorphism, namely F : G → H, maps the identity of e ∈ G to the
identity of e′ ∈ H. Hence, the differential at the identity dFe : TeG → Te′H is R-linear.
Since TeG and Te′H are canonically isomorphic (as vector spaces) to the Lie algebras of G
and H, g and h, dFe induces a linear transformation from g to h. We denote this induced
map by dF : g→ h. For X ∈ g, dF (X) will be the unique left invariant vector field on H
such that

dF (X)e′ = dFe(Xe), (6.1)

(see Proposition 4.9). Furthermore, this linear map is a Lie algebra homomorphism:

Theorem 6.1. Let F : G → H be a Lie group homomorphism and X a left invariant
vector field in G. The left invariant vector field dF (X) on H is the unique left invariant
vector field such that [dF (X), dF (Y )] = dF ([X,Y ]) for all left invariant vector fields Y in
G. Hence,

dF : g→ h

is a Lie algebra homomorphism.

Proof. Let g, h ∈ G, using the fact that F is a homomorphism, F (gh) = F (g)F (h), we
obtain that LF (g) ◦ F = F ◦ Lg, so

dF (X)F (g) = (dLF (g))e′dF (X)e′ from left invariance
= (dLF (g))e′dFe(Xe) from the value of dF (X) at e′

= d(LF (g) ◦ F )e(Xe) by the chain rule
= d(F ◦ Lg)eXe from F being a homomorphism
= dFg(Xg) by the chain rule again.

The equality dF (X)F (g) = dFg(Xg) holds for all g ∈ G so dF (X) and X are F−related4.
Having seen this, the fact that that dF is a Lie algebra homomorphism comes from the
fact that two pairs of F−related vector fields have F−related Lie brackets, known as the
naturality of Lie brackets. This can be seen considering the way that F−related vector
fields act on functions or with the expression of the Lie bracket as a Lie derivative. �

We have seen that dF is the unique Lie algebra homomorphism which makes the following
diagram commutative.

4See Definition A.7

21



g
dF−−−−→ h

∼=


y



y∼=

TeG
dFe−−−−→ Te′H

F

g
Xg F (g)

dFg(Xg)

dF

X dF (X)

Figure 3: Sketch of Theorem 6.1

The identity map Id : G → G induces the identity map on g. That is, d(Id) = Idg.
Moreover, the differential obeys the chain rule and hence, the induced map of a composition
of homomorphisms, d(F1 ◦ F2), will be the composition of the induced maps dF1 ◦ dF2.
Isomorphic Lie groups have isomorphisms which go both ways. Whence,

Corollary 6.2. Isomorphic Lie groups have isomorphic Lie algebras.

Remark: In fact, we have seen that there is a functor from the category of Lie groups to
the category of finite-dimensional real Lie algebras.

The converse of this result is not usually true but it is enough to require Lie groups to be
simply connected,

Theorem 6.3. Let G and H be Lie groups with Lie algebras g and h and with G simply
connected. Let φ : g→ h be a homomorphism. Then there exists a unique homomorphism
Φ : G→ H such that dΦ = φ.

The proof can be found in [26]. As a result, we have

Corollary 6.4. Simply connected Lie groups with isomorphic Lie algebras are isomorphic.

To finish this section, we introduce a useful result, the proof of which is in [26] too.

Proposition 6.5. Let G and H be connected Lie groups with Lie algebras g and h, let
F : G→ H be a Lie group homomorphism. Then F is a smooth covering map if and only
if dF : g→ h is a Lie algebra isomorphism.

6.1 The exponential map

First of all, we state two propositions regarding integral curves, vector fields and one-
parameter subgroups. Recall that a complete vector field is a vector field which has every
maximal integral curve defined for all t ∈ R,

Proposition 6.6. Every left invariant vector field on a Lie group is complete.

The proof is based on the Uniform Time Lemma5 applying the left translation over the
identity to every g in the Lie group. Having seen this, next proposition’s proof can be
done using the naturality6 of integral curves (cf. [11]),

Proposition 6.7. The one-parameters subgroups of a Lie group G are the maximal integral
curves γ : R → G of left invariant vector fields with γ(0) = e, which implies that γ′(0) ∈
TeG ∼= g.

5See A.12
6See A.13
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Now, let G be a Lie group, g its Lie algebra and d/dt a left invariant vector field on R,
i.e. an element of the Lie algebra of R, we can define a homomorphism

d

dt
7→ X

where X is an element of g. Since R is simply connected, by Theorem 6.3 this induces the
unique homomorphism

γ : R→ G

such that

dγ

(
d

dt

)

= X.

Since γ is a homomorphism from R→ G, γ(0) = e, and γ is a one-parameter subgroup of
G. It is determined by

γ′(0) = dγ0

(
d

dt

∣
∣
∣
∣
0

)

= Xγ(0)

and hence it is the maximal integral curve generated by X such that γ(0) = e. Left
invariant vector fields are determined by its value at the identity so every one-parameter
subgroup is determined by its velocity in TeG.

As we have seen, the matrix exponential is the tool which relates matrix Lie groups with
their Lie algebras. This is the reason of the next definition

Definition 6.8. Let G be a Lie group with Lie algebra g. For any X ∈ g, the exponential

map

exp : g→ G

is defined by setting
expX = γX(1), (6.2)

where γX is the one-parameter subgroup generated by X or, equivalently, the maximal
integral curve of X starting at e.

Theorem 6.9. Let X ∈ g, the Lie algebra of the Lie group G. Then,

a) exp(sX) = γX(s) for all t ∈ R.

b) exp(t1 + t2)X = exp(t1X) exp(t2X).

c) exp(−tX) = (exp tX)−1.

d) (expX)n = exp(nX).

e) The exponential map is smooth.

f) (d exp)0 : T0g→ TeG is the identity map with the usual identifications of T0g and TeG
with g.

g) The exponential map is a local diffeomorphism around the identities of g and G.

h) If H is another Lie group with Lie algebra h and F : G→ H is a Lie group homomor-
phism, the following diagram commutes

G
F−−−−→ H

exp

x



x

exp

g
dF−−−−→ h
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Proof. Let s ∈ R, we define γ̃sX(t) = γX(st) and it is just the integral curve of sX starting
at e. Setting t = 1 we obtain the first item a)

exp sX = γ̃sX(1) = γX(s).

The validity of b) and c) comes from the fact that γX is a homomorphism. The fourth can
be seen by induction for positive integers, and by induction and c) for negative integers.
For e), we define a vector field V on G× g by

V(g,X) = (Xg, 0) ∈ TgG⊕ TXg ∼= T(X,g)(G× g),

where g ∈ G. Then V is a smooth vector field. The integral curve of V through (g,X) is

t 7→ (g exp tX,X)

since Lg ◦ γX is the unique integral curve of X which takes the value g at 0. That is, the
local flow

Φt(g,X) = (g exp tX,X).

V is complete so we can take the value for t = 1 and with the projection πG : G× g→ G,
at g = e we get

πG ◦ Φ1(e,X) = πG ◦ (e · expX,X) = expX

and this is a composition of smooth mappings. To prove f), we only have to observe that
tX is a curve in g whose tangent vector at t = 0 is X and the tangent vector of the curve
in G exp tX at t = 0 is γ′X(0) = Xe and g) is a direct result from this. Finally, we need
to prove that F (expX) = exp dF (X) for any X ∈ g. Let e′ be the unit element of H.
Consider the curve t 7→ F (exp tX), it is smooth in H and its tangent at 0 is dFe(Xe).
Besides, since it is a homomorphism from R to H, it is a one-parameter subgroup. Now,
t → exp t(dF (X)) is the unique one-parameter subgroup of H whose tangent at 0 is
dF (X)e′ . By the condition (6.1), we get that

F (exp tX) = exp tdF (X)

so, for t = 1,
F (expX) = exp dF (X).

�

Let A ∈ Mn(K), the map t 7→ etA of R into GL(n;K) is smooth and a homomorphism,
as we have seen in section 3. Moreover, it is a one-parameter subgroup and its tangent
vector at t = 0 is A. Whence, the exponential map for GL(n;K) is

exp(A) = eA for A ∈ gl(n;K) (6.3)

as expected. Moreover, for a matrix Lie group homomorphism Φ : G → H, we have the
following identity

dΦ(X) =
d

dt
Φ(etX)

∣
∣
∣
∣
t=0

(6.4)

for any element X in the Lie algebra of the matrix Lie group. This is the usual way to
compute dΦ.

Remark: The exponential map is a diffeomorphism between the identities of the Lie
group and Lie algebra so for connected Lie groups, by Proposition 2.7, one could say that
the image of the exponential generates the Lie group. However, this does not mean that
that the exponential is surjective and, in general, it is not true.
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6.2 Subgroups and homomorphisms

Now that we have the exponential map defined, we can study deeper properties of Lie
group homomorphisms as well as Lie subgroups of Lie groups and their associated Lie
subalgebras.

Proposition 6.10. Let G be a Lie group and H a Lie subgroup of G. The one-parameter
subgroups of H are the one-parameter subgroups of G whose initial velocities lie on TeH.

The proof is done using the composition with the inclusion and uniqueness of one-parameter
subgroups.
As a consequence, the exponential map of a Lie subgroup H of G with Lie algebra h will
be the restriction of the exponential map from the Lie algebra of g of G to h. Furthermore,
we have the following result (see [11] for a proof)

Proposition 6.11. Let H a Lie subgroup of a Lie group G with respective Lie algebras h

and g. Then,
h = {X ∈ g | exp tX ∈ H for all t ∈ R}.

Remark: It is clear now the reason for the definition of Lie algebras of matrix Lie groups.
Matrix Lie groups are subgroups of GL(n;K), which we have seen that is a Lie group, and
its Lie algebra, gl(n;K), is just the space of matrices Mn(K). Thus, once we have proven
that closed groups of a Lie group are Lie subgroups, the definitions will be equivalent.
Now a previously announced result,

Theorem 6.12. Let ϕ : H → G be a continuous homomorphism of Lie groups. Then ϕ
is smooth.

The validity of this result comes from the case H = R and the extension of the proof is
simple (cf. [26]).

Theorem 6.13. Let G be a Lie group with Lie algebra g and ϕ : R→ G be a continuous
homomorphism. Then it is smooth.

Proof. The proof is quite similar to the one sketched in Theorem 3.11. It is enough to
prove that ϕ is smooth in a neighbourhood of 0 and then composing with suitable left
translations extend the smoothness to R. Let V be a neighbourhood of e ∈ G diffeomorphic
with a starlike neighbourhood U of 0 ∈ g under the exponential map. By starlike we mean
tX ∈ U for t ∈ [0, 1] whenX ∈ U (recall that g is a vector space). Let U ′ = {X/2 |X ∈ U}.
Setting a t0 > 0 such that ϕ(t) ∈ exp(U ′) for all |t| ≤ t0 and a positive integer n, there
exist X,Y ∈ U ′ such that they are the unique ones which hold

expX = ϕ(t0/n) and expY = ϕ(t0).

Then,
exp(nX) = ϕ(t0) = exp(Y ).

Now, let 1 ≤ j < n, for j = 1, jX ∈ U ′. Assume jX ∈ U ′ for some j, then 2jX ∈ U
and in particular (j + 1)X ∈ U . Thus, exp((j + 1)X) = ϕ((j + 1)t0/n) and it belongs to
exp(U ′) because (j + 1)t0/n < t0. Since exp is injective on U , (j + 1)X ∈ U ′. We have
proven by induction that nX ∈ U ′ and the injectivity of exp on U implies injectivity on
U ′. Hence,

nX = Y.
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For every positive integer 0 < m ≤ n we have

ϕ(mt0/n) = ϕ(t0/n)
m = exp(Y/n)m = exp(mY/n).

For every negative integer −n ≤ m < 0 we will have the same using ϕ(mt0/n) =
ϕ((−m)t0/n)

−1. The numbers m/n are dense in [−1, 1]. Then, by continuity,

ϕ(t) = exp(tY/t0) for |t| ≤ t0.

We have that ϕ is smooth in a neighbourhood of 0. Therefore, ϕ is smooth. �

We do not have the tools to prove the next theorem (a prove can be found in [10]), but it
is a result with important consequences.

Theorem 6.14 (Ado’s theorem). Every finite-dimensional Lie algebra is isomorphic to a
matrix Lie algebra.

As we will see, this is the same as saying that every Lie algebra has a faithful finite-
dimensional linear representation. The result does not hold for Lie groups (f.e., the meta-
plectic group). From this, we see that if g is a Lie algebra, it is (or is isomorphic to) a
subalgebra of gl(n,K) for some n ∈ N. This, together with the next result, (see [11]),

Theorem 6.15. Let G be a Lie group and g its Lie algebra. If h is any subalgebra of g,
then there is a unique connected Lie subgroup H of G whose Lie algebra is h.

leads us to a deep result:

Theorem 6.16. There is a one-to-one correspondence between isomorphism classes of
simply connected Lie groups and isomorphism classes of Lie algebras.

gl(n,R) is the Lie algebra of the Lie group GL(n,R), so because of this last theorem there
is a connected Lie subgroup, G, of GL(n,R) with Lie algebra g. Moreover, if G̃ is the
universal covering group of G, then by Proposition 6.5, g and the Lie algebra of G̃ are
isomorphic. Taking into account Corollary 6.4, we have proven Theorem 6.16.

6.3 The closed subgroup theorem

Theorem 6.17 (Closed subgroup theorem (Cartan, 1930)). Let G be a Lie group and
H a subgroup that is also a closed subset of G. Then H is an embedded Lie subgroup.

Proof. We need to show that H is an embedded submanifold of G. Let g be the Lie
algebra of G, we define

h = { X ∈ g s.t. exp tX ∈ H for all t ∈ R}.

First, we show that h is a linear subspace of g. The product by a scalar is clear, since tX
belongs to H for all t ∈ R and X ∈ h. Now, if X,Y ∈ h, then exp t

nX and exp t
nY are in

H for all integer n. H is a group, so the product of both elements is in H and the product
of n times the product too. Since H is closed, the limit for n→∞ will also be in H, and
for the Lie product formula (3.8), which is also valid for Lie groups (and can be proved
equivalently, c.f. [11]),

lim
n→∞

(

exp
t

n
X exp

t

n
Y

)n

= exp t(X + Y ) ∈ H.
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This holds for all t ∈ R and follows that X + Y ∈ h. So h is a linear subspace of g.
Now, let U be a neighbourhood of 0 ∈ g such that the exponential is a diffeomorphism.
By the definition of h, we have

exp(U ∩ h) ⊂ (expU) ∩H.

We want to see that the inclusion goes in the other way too. Assuming that it does not, let
f be the linear subspace of g such that h⊕ f = g as vector spaces. The map φ : h× f→ G
such that φ(X,Y ) = exp(X) exp(Y ) can be seen that is a diffeomorphism between suitable
neighbourhoods of (0, 0) and e, since dφ|(0,0) = idg.
In order to see the inclusion, we want to show that there is an open neighbourhood of
0 ∈ f, Uf such that

H ∩ exp(Uf \ {0}) = ∅. (6.5)

If this does not hold, then there exists a sequence (Xj) ⊂ Uf with exp(Xj) ∈ H for

Xj → 0. Let ‖·‖f be a norm in Uf, the sequence (X ′
j) =

Xj

‖Xj‖f
is in the compact unit

ball. Hence, there exists a convergent partial sequence (X ′
jk
) → Y ∈ f, with Y 6= 0.

Denoting tjk = ‖Xjk‖f, as tjk → 0, for every t we can choose integers njk(t) such that
tjknjk(t) → t. This can be seen with these integers being the ones which make tjknjk(t)
the closest possible value to t for each jk. That is,

∣
∣
∣
∣
njk(t)−

t

tjk

∣
∣
∣
∣
≤ 1⇒ |njk(t)tjk − t| ≤ tjk → 0.

And we have, using the fact that H is closed,

exp(tY ) = exp(t limX ′
jk
) = exp(limnjk(t)tjkX

′
jk
) = exp(limnjk(t)Xjk) =

= lim exp(Xjk)
njk

(t) ∈ H ⇒ Y ∈ h⇒ Y = 0

because 0 is the only element shared by h and f. We have arrived to a contradiction
with Y 6= 0. Thus, we can choose Uf with this property and such that φ : Uh × Uf → G
is a diffeomorphism with its image, Im(φ|Uh×Uf

), which we denote W . W is an open
neighbourhood of e ∈ G. For x ∈W ∩H we have that

x = exp(X) exp(Y )

with X ∈ Uh, Y ∈ Uf. exp(X) ∈ H, so exp(Y ) ∈ H ∩ exp(Uf) and by our choice of Uf,
Y = 0 and x ∈ exp(Uh × {0}). That is, we have proven that (expU) ∩H ⊂ exp(U ∩ h)
for U = Uh × Uf. Hence, there is a neighbourhood U of 0 ∈ g such that

exp(U ∩ h) = (expU) ∩H.

Finally, let ι : g → Rn be an isomorphism of vector spaces which sends h to Rk. We can
build the composite map near the identity

ϕ = ι ◦ exp−1 : expU → Rn

which is a smooth chart for G and ϕ((expU) ∩ H) = ι(U ∩ h) is the slice of the chart
obtained setting the last n − k coordinates to zero. Now, let h ∈ H, Lh(expU) is a
diffeomorphism from expU to a neighbourhood of h. H is invariant under Lh because
h ∈ H, so

Lh(expU ∩H) = Lh(expU) ∩H
and ϕ◦L−1

h = ϕ◦Lh−1 is a chart for H in a neighbourhood of h. Thus, H is an embedded
submanifold of G and therefore it is a Lie subgroup. �
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Applying this to matrix Lie groups, which are closed subgroups of the Lie group GL(n;K),
we obtain that they are Lie subgroups of GL(n;K). Hence,

Corollary 6.18. Every matrix Lie group is a Lie group.

7 Representation Theory

Let V be a vector space over K and let GL(V ) be the group of isomorphisms of V onto
itself. When V is finite dimensional and we fix a basis of V , each linear map a is defined
by a square invertible matrix (aij) of order n. In this case, GL(V ) can be identified with
GL(n,K).

Definition 7.1. Let G be a group, with identity element e and with composition (s, t)→
st and let V be a vector space over K. A linear representation of G in V is a homo-
morphism ρ : G→ GL(V ). If G is a Lie group, the homomorphism has to be continuous.
If ρ is one-to-one, the representation is called faithful .

The definition is the same as saying that we associate with each element s ∈ G an element
ρ(s) ∈ GL(V ) in such a way that

ρ(st) = ρ(s) · ρ(t), ρ(e) = I, ρ(s−1) = ρ(s)−1 for s, t ∈ G.

When ρ is given, it is said that V is a representation space of G or, directly, a representation
of G. We will use the notation ρ(s) = ρs. The dimension n of V is called the degree of
the representation.

Definition 7.2. Given a basis (ei) of V , to every ρs we can associate a matrix Rs =
rij(s) ∈ GL(n,K) so that

det(Rs) 6= 0, Rst = Rs ·Rt = rik(st) =
∑

j

rij(s) · rjk(t), for s, t ∈ G.

Conversely, given invertible matrices Rs = rij(s) satisfying the preceding identities, there is
a corresponding linear representation ρ of G in V . We say we have given a representation
of G in matrix form .

Definition 7.3. Let ρ and ρ′ be two representations of the same group G in vector
spaces V and V ′. These representations are said to be isomorphic if there exists a linear
isomorphism τ : V → V ′ which satisfies

τ ◦ ρs = ρ′s ◦ τ ∀s ∈ G.

When ρ and ρ′ are given in matrix form by {Rs}s∈G and {R′
s}s∈G, this means that there

exists an invertible matrix T ∈ GL(n,K) such that

T ·Rs = R′
s · T, ∀s ∈ G.

Since τ is an isomorphism of vector spaces, V and V ′ have the same dimension and hence
ρ and ρ′ have the same degree.

Definition 7.4. Let ρ : G → GL(V ) be a linear representation and let W be a vector
subspace of V . If ρs(W ) ⊂W for all s ∈ G, we say that W is stable or invariant under
the action of G.
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Let W be a stable subspace of a representation ρ : G → GL(V ). The restriction ρWs of
ρs to W is then an isomorphism of W onto itself, and we have ρWst = ρWs · ρWt . Thus,
ρW : G→ GL(W ) is a linear representation of G in W and we can make the next definition

Definition 7.5. Let ρ : G → GL(V ) be a linear representation and let W be a vector
subspace of V stable under the action of G. W is said to be a subrepresentation of V .

For finite groups, we have the next two results:

Theorem 7.6. Let ρ : G → GL(V ) be a linear representation of a finite group G in V
and let W be a vector subspace of V stable under G. Then there exists a complement W 0

of W in V 7 which is stable under G.

Proof. We can assume that V is endowed with a hermitian scalar product 〈 , 〉 invariant
under G, 〈ρsv, ρsw〉 = 〈v,w〉 for all v,w ∈ V and s ∈ G. We can always get this by
choosing an arbitrary hermitian product ( , ) in V and defining

〈v, ω〉 =
∑

t∈G
(ρtv, ρtw).

It is easy to see that 〈 , 〉 is also a hermitian product and if W is invariant under G, its
orthogonal complement W⊥ is also invariant and we can take W 0 =W ⊥. �

It is worth noting that the invariance of the scalar product 〈 , 〉 implies that the matrices
of the representation ρ are unitary in a basis of orthogonal vectors.
Now, if V =W ⊕W 0 with W invariant under ρ, every element of V can be written as the
sum of elements of W and W 0. Besides, since W and W 0 are invariant under ρ, every the
representation ρ will determine representations of W and W 0. If W and W 0 are given in
the matrix form Rs and R0

s, the representation of W ⊕W 0 is given in matrix form by
(
Rs 0
0 R0

s

)

.

We can state the definition

Definition 7.7. Let G be a group and ρ1, ρ2 two representations of G acting on the vector
spaces V1, V2. The direct sum of ρ1 and ρ2 is the representation of G, denoted ρ1 ⊕ ρ2
acting on the space V1 ⊕ V2 by

(ρ1s ⊕ ρ2s)(v1, v2) = (ρ1s(v1), ρ
2
s(v2)).

Definition 7.8. Let ρ : G → GL(V ) be a linear representation. We say that it is irre-
ducible or simple if V 6= ~0 and if no non-trivial vector subspace of V is stable under
G.

The definition is equivalent to saying that V is not the direct sum of two representations.
For finite groups, irreducible representations are the building blocks used to construct all
the others.

Theorem 7.9. Every representation of a finite group is a direct sum of irreducible repre-
sentations

7By saying that W 0 is a complement of W , we mean that W ⊕W 0
= V , where "⊕" is the direct sum

of subspaces.
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Proof. The proof is done by induction. Let ρ : G→ GL(V ) be a representation of degree
n. For n = 0, the theorem holds. For n ≥ 1, if the representation is irreducible, we are
done. Otherwise, by the previous theorem, it can be decomposed as a direct sum of a
proper stable subspace W and its complement W 0. Both have dimension smaller than
n and by the induction hypothesis are direct sums of irreducible representations, so the
same holds for V . �

Definition 7.10. Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) two representations of a
group G. The tensor product of the representations is the representation ρ := ρ1⊗ρ2
of G acting on the tensor product of the vector spaces, V1 ⊗ V2, by

ρs(x1 ⊗ x2) = ρ1s(x1)⊗ ρ2s(x2) for x1 ∈ V1, x2 ∈ V2, s ∈ G.

Recall that Mm(K)⊗Mn(K) ∼=Mmn(K). In general, the tensor product of two irreducible
representations is not irreducible. However, it can be decomposed as a direct sum of
irreducible representations. This process is called Clebsch-Gordan theory and is widely
used in physics.

Definition 7.11. Let ρ : G→ GL(V ) be a representation of a group G and let V ∗ be the
dual space of V . The dual representation of ρ is the representation ρ∗ : G → GL(V ∗)
defined by

ρ∗sω(v) = ω(ρ−1
s v) for all s ∈ G,ω ∈ V ∗ and v ∈ V.

When given in matrix form it can be equivalently defined by

R∗
s = R⊤

s−1 = (R−1
s )⊤. (7.1)

We have seen a basic result for representations of finite groups and we want to extend it
to Lie groups. We will see that for compact Lie groups we can arrive to similar results.
In order to do this, we have to work with differential forms and integration on manifolds,
so that integrals over Lie groups play the role of finite sums indexed over finite groups.

8 Differential Forms and Integration on Manifolds

In this section we use some definitions introduced in the Appendix A such as a covariant
k-tensor and the pullback of a smooth map.

8.1 Differential Forms

Definition 8.1. A covariant k-tensor is said to be alternating if any permutation of the
argument causes its value to be multiplied by the sign of the permutation. Alternating
covariant k-tensors are called exterior forms or simply k-forms. The space of all k-
forms on V is denoted by Λk(V ∗).

If n is the dimension of V , it can be seen that

dimΛk(V ∗) =

(
n

k

)

=
n!

k!(n − k)! . (8.1)

Thus, the dimension of the space of n-forms is 1.
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8.2 Orientations

Definition 8.2. Let M be a smooth n-manifold. A pointwise orientation on M is a
choice of orientation of each tangent space. If (ei) is a local frame for TM , we say that (ei)
is positively (negatively) oriented if (e1|p, . . . , en|p) is a positively (negatively) oriented
basis for TpM at each point p ∈ U . A pointwise orientation is said to be continuous if
every point of M is in the domain of an oriented local frame. An orientation of M is a
continuous pointwise orientation. If there exists an orientation for M , we say that M is
orientable . Otherwise, we say that it is nonorientable .

Proposition 8.3. Let M be a smooth n-manifold. Any nonvanishing n-form ω on M
determines a unique orientation of M for which ω is positively oriented at each point.

Proof. Since it is non-vanishing, ω defines a pointwise orientation, so we only need to check
that it is continuous. For n ≥ 1, given p ∈ M , let (ei) be a local frame on a connected
neighbourhood U of p, and let (εi) be the dual coframe. The expression for ω in this frame
is ω = fε1 ∧ · · · ∧ εn for some continuous nonvanishing function f . Therefore,

ω(e1, . . . , en) = f 6= 0

at all points of U . The fact that U is connected implies that the previous expression is
either always positive or always negative. If it is always positive, the frame is positively
oriented and we are done. If it is negative, we can replace e1 by −e1, to obtain a new
frame positively oriented. �

8.3 Integration on Lie Groups

Definition 8.4. Let G be a Lie group. A covariant tensor field A on G is said to be
left-invariant if L∗

gA = A for all g ∈ G.

Proposition 8.5. Let G be a Lie group endowed with a left-invariant orientation. Then
G has a positively oriented left-invariant n-form ωG unique up to a constant.

Proof. For dimG > 0, let (ei) be a left-invariant global frame on G. That is, a basis of g.
We can assume that the frame is positively oriented, replacing e1 with −e1 if necessary.
Let (εi) be the dual coframe. Since ei is left invariant,

(L∗
gε
i)(ej) = εi(Lg∗ej) = εi(ej) = δij

and hence, L∗
gε
i = εi and εi is left-invariant. Now we define

ωG = ε1 ∧ · · · ∧ εn.

Then,
L∗
g(ωG) = L∗

gε
1 ∧ · · · ∧ L∗

gε
n = ε1 ∧ · · · ∧ εn = ωG

ωG is also left invariant. Any other positively oriented left-invariant n-form, ω̃G will be a
positive constant multiple of ωG: we can write ω̃G|e = cωG|e and then

ω̃G|g = L∗
g−1 ω̃G|e = L∗

g−1cωG|e = cωG|g.

�
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This form has a measure associated, dµ, which means that
∫
fdµ =

∫
fωG, called the

Haar measure . For compact groups, the integral over the group is finite. So we can
normalize putting

ωG =

(∫

G
ω̃G

)−1

ω̃G.

Corollary 8.6. If G is a compact Lie group, then there is a unique left-invariant volume
form ωG such that ∫

G
ωG = 1.

Right and left multiplication commute, hence, the form R∗
g(ωG) is left invariant. So, for the

previous proposition, R∗
g(ωG) = λ(g)ωG. It can be seen that the map λ is a homomorphism

of G into (R+, ·), it is called the modular function . Now, ωG will be right invariant if
and only if λ = 1 for all g ∈ G. In this case, G is called unimodular . Every compact Lie
group G is unimodular, since for each g ∈ G

1 =

∫

G
ωG = λ(g)

∫

G
ωG = λ(g).

Thus, every compact Lie group has a unique normalized right and left-invariant volume
form.

9 Lie group representations

A representation of a Lie group, G, is a group homomorphism ρ : G → GL(V ) with V
a real or complex vector space, which is also continuous (recall that by Proposition 6.12,
then it is automatically smooth). For the case of matrix Lie groups, there is an immediate
one,

Definition 9.1. Let G be a matrix Lie group. By definition, it is a subgroup of GL(n,K) =
GL(Kn). Thus, the inclusion map i : G →֒ GL(Kn) is a representation, called the standard
representation of G.

With integrals defined on compact Lie groups thanks to the Haar measure, we can make
the representations of G unitary.

Proposition 9.2. Let G be a compact Lie group and V a complex vector space. Let ρ be
a representation of G into End(V ). Then there is an inner product on V with respect to
which ρ is unitary.

Proof. Let 〈v,w〉0 be an inner product on V and dµ the Haar volume form on G. We set

〈v,w〉 =
∫

G
〈ρgv, ρgw〉0 dµ(g) (9.1)

where dµ(g) denotes that the integrand is a function of g ∈ G. It is an inner product and
ρ is unitary, since for h ∈ G,

〈ρhv, ρhw〉 =
∫

G
〈ρgρhv, ρgρhw〉0 dµ(g) =

∫

G
〈ρghv, ρghw〉0 dµ(g).
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Using the right invariance of dµ(g),
∫

G f(gh)dµ(g) =
∫

G f(g)dµ(g),

=

∫

G
〈ρgv, ρgw〉0 dµ(g) = 〈v,w〉 .

�

With the unitarity, we can extend the results from finite groups to compact Lie groups,

Theorem 9.3. Every stable subspace of a representation of a compact Lie group has a
stable complement.

Theorem 9.4. If G is a compact Lie group, every finite dimensional representation of G
is completely reducible.

Furthermore, one can develop a character theory for compact Lie groups as for finite
groups up to some extent, as it is explained in [20].

10 SU(2) and SO(3)

Let us consider the Lie group G = SU(2) of 2 × 2 special unitary matrices. Taking into
account the restrictions imposed by being unitary and having determinant one, they are
the matrices of the form

SU(2) =

{(
α β

−β α

)

; α, β ∈ C, |α|2 + |β|2 = 1

}

. (10.1)

Writing α = x1 + ix2, β = x3 + ix4, where xi ∈ R, the condition is

x21 + x22 + x23 + x24 = 1 (10.2)

which is the same condition that defines S3. Whence, SU(2) and S3 are homeomorphic and
therefore SU(2) is simply connected. Even more, as explained in [22], S3 can be considered
as the set of unit quaternions, which is a group under quaternion multiplication.

The Lie algebra of SU(2), su(2), is the set of matrices of M2(C) of the form

{(
ia v
−v −ia

)

| a ∈ R, v ∈ C

}

and we can define a map

ρ : SU(2) −→ GL(su(2))
A 7−→ ρ(A) : su(2) → su(2)

X 7→ AXA−1
(10.3)

From Theorem 4.13, it is well defined and is a representation of SU(2) in the R-vector
space su(2), which has a basis

E1 =

(
i 0
0 −i

)

, E2 =

(
0 1
−1 0

)

, E3 =

(
0 i
i 0

)

(10.4)
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and a norm defined by
‖X‖ = +

√
detX. (10.5)

We see then that su(2) ∼= R3 and GL(su(2)) ∼= GL(R3), so ρ : SU(2)→ GL(R3). Moreover,
ρ(A) preserves the norm for all A ∈ SU(2), so ρ(A) are isometries of R3, which are the
matrices that form the matrix Lie group O(3). Moreover, SU(2) is connected and ρ(I) = I,
so it will map to the connected component of the identity in O(3). Hence, we have a map

ρ : SU(2) −→ SO(3) (10.6)

which verifies

i) ρ is surjective and a Lie group homomorphism.

ii) ker ρ = {±Id}.
iii) ρ is the universal covering map.

Indeed,
ρ(AB)(X) = ABX(AB)−1 = ABXB−1A−1 = ρ(A) ◦ ρ(B)(X)

and ρ(I) = Id. So, it is a homomorphism. It is a continuous homomorphism between Lie
groups and hence it is a Lie group homomorphism (Theorem 6.12). −I−1 = −I and then
we see that −I ∈ ker(ρ). To see that there is no other element in the kernel except ±I,
observe that

A =

(
α β

−β α

)

∈ ker ρ⇒ AX = XA−1

for all X ∈ su(2). Operating a little bit, this leads to the conditions α = α and β = 0.
The unique matrices with determinant 1 which fulfill this condition are {±I}.
Now, Lie group homomorphisms have constant rank (Proposition 2.10) and the rank is
equal to the codimension of the kernel, which has dimension 0 (as a smooth manifold). So,
the map ρ has full rank and so it is a local diffeomorphism around the identities of SU(2)
and SO(3). Furthermore, SO(3) is connected and, by Proposition 2.7, it is generated by
a neighbourhood of its identity. Thus, ρ is a covering map and since SU(2) is simply
connected, it follows that SU(2) is the universal cover of SO(3).

The map ρ is an example of a widely used map related by the exponential map to the
adjoint representation of Lie algebras,

Definition 10.1. Let G be a Lie group with Lie algebra g. We define the adjoint
representation of G as the map

Ad : G −→ GL(g)
A 7−→ Ad(A) : g → g

X 7→ AXA−1

Recall that by Proposition 6.5, there is an isomorphism between su(2) and so(3) given by
the induced Lie algebra homomorphism of Ad. Hence, su(2) and so(3) are isomorphic Lie
algebras, a fact that will be used later.
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10.1 A geometric interpretation

The group of rotations of the three dimensional space, SO(3), can be represented geomet-
rically as the three-dimensional ball of radius π with the antipodal points of the surface
identified. To see this, note that every rotation, fixing a convention (left or right hand
screw), is determined by the angle α ∈ [−π, π] (two rotations that differ a multiple of 2π
are equal) and a normal vector ~n ∈ R3 pointing in the direction of the axis according to
the convention. This information can be compressed into a single vector ~α pointing in the
direction of ±~n with ‖~α‖ ∈ [0, π], the sign being determined by the sign of α.
Fixing an origin, the points pointed by these vectors form the previous solid sphere with

the antipodal points of the surface identified, since ~α ≡ −~α when ‖~α‖ = π.

From SU(2) being a double cover of SO(3) and SU(2) being simply connected, it can be
seen that the fundamental group of SO(3) is Z/2Z. In fact, it can also be seen that SO(3)
is homeomorphic to RP3 (c.f. [7]).

Geometrically, this can be seen taking a path of rotations which starts at the identity (the
point in the middle of the sphere), goes to the surface and returns to the centre from the
antipodal point, making a closed loop representing a rotation of angle 2π. This loop is
not contractible. On the other hand, if we take a path which crosses the boundary twice
and returns to the centre, we can contract it to the identity point. (There is another way
to visualize this phenomenon, called the Dirac’s belt trick).

Figure 4: Non-contractible Figure 5: Contractible

11 Lie algebra representations

Analogously to the case of groups, we can define representations of Lie algebras and
properties such as faithfulness or reducibility.

Definition 11.1. A (finite-dimensional) representation of a Lie algebra , g, is a
Lie algebra homomorphism of g into the set of endomorphisms of a (finite-dimensional)
K−vector space, V . That is, it is a K−linear map

ψ : g→ End(V )

which preserves the Lie bracket operation.

We can see now that the adjoint map adX : g→ gl(g) (Definition 4.4) is our first example
of a Lie algebra representation. It is the representation of a Lie algebra g over g (regarded
as a K−vector space).
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As for groups, for finite-dimensional vector spaces over a field K, fixing a basis, to every
endomorphism we can associate a square matrix but now including non-invertible matrices.
We have,

End(V ) ∼= gl(n,K) and, for X,Y ∈ g, ψ([X,Y ]) = ψ(X)ψ(Y )− ψ(Y )ψ(X)

where n is the dimension of the vector space and, again, it is called the degree of the
representation. By Ado’s theorem (6.14), we know that every finite-dimensional real Lie
algebra will have a faithful finite-dimensional representation on Rn so, for the study of
Lie algebras of Lie groups, which are real and finite-dimensional, we will always have a
faithful representation.

Any Lie group representation induces, by Theorem 6.1, a Lie algebra representation. More-
over, Theorem 6.4 tells us that representations of a simply connected Lie group are in
one-to-one correspondence with representations of its Lie algebra. We see then that a
motivation to study representations of Lie algebras is to find representations of simply
connected Lie groups. Complex representations of Lie algebras are generally easier to
study than their real ones, so we introduce the next definitions.

11.1 Change of scalars

Definition 11.2. Let K be a field, L a K Lie algebra and K ′ ⊃ K another field. A
K ′-representation of L is a homomorphism of K-Lie algebras

L −→ EndK ′(V ) ∼= gl(n,K ′)

where V is a K ′-vector space.

If G is a Lie group with Lie algebra g and ρ : G → GL(n,C) a complex representation of
G. Then, ρ induces the Lie algebra homomorphism

dρ : g→ gl(n,C)

which is R-linear and a C-representation of the R-Lie algebra g.

Definition 11.3. Let gC a C-Lie algebra. A real form of gC is an R-Lie algebra, gR,
such that

gC = gR ⊗R C

gC is called the complexification of g.

Examples: Let gC = sl(2;C) = {A ∈ gl(2;C) | trA = 0}. Then,

a) g1 = sl(2,R) = {A ∈ gl(2,R) | trA = 0} is a real form of gC.

b) g2 = su(2) = {A ∈ gl(2;C) | trA = 0, A† +A = 0} is another real form of gC.

Both statements can be proved using the fact that in both Lie algebras, if X ∈ gj then
iX /∈ gj, for j = 1, 2. The first one is indeed a real form of sl(2;C) because it has only
real matrices and the second one too, since X† = −X ⇒ (iX)† = iX ⇒ iX /∈ g2. Hence,
the complexification can be written as the matrices of the form X + iY for X,Y ∈ gi.
Alternatively, the tensor product with C preserves the property tr(A) = 0 and not the
other one, A† +A = 0.
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We have seen that the R-Lie algebras sl(2,R) and su(2) are real forms of the same C-Lie
algebra sl(2;C) and both have dimension three over R. However, they are not isomorphic
because sl(2,R) has a 2-dimensional subalgebra and su(2) does not have it.

We introduce the notation RepK(gK ′) that denotes the set of K−representations of the
K ′−Lie algebra g.

Proposition 11.4. Let gR be a real form of g̃C. Then the natural map

RepC(g̃C) → RepC(gR)
ρ 7→ ρ|gR

is bijective.

Proof. We omit the subscripts R and C, keeping in mind that g is an R-Lie algebra and
g̃ a C-Lie algebra. Let ρ1, ρ2 be two C-linear representations of g̃. We have

g →֒ g̃
ρi−→ gl(ni,C).

If ρ1|g = ρ2|g, since g generates g̃ as a C-Lie algebra and ρ1 and ρ2 are linear, this implies
that ρ1 = ρ2.
To prove exhaustivity it is enough to see that for a given ρ : g → gl(n,R), we can take
ρ ⊗ idC as an antiimage. �

In particular, since SU(2) is simply connected, we have

RepC(SU(2)) ←→ RepC(su(2)R) ←→ RepC(sl(2;C)C) ←→ RepC(sl(2,R)R).

In general, if G is a simply connected Lie group, we can study its complex representations
through the representations of its Lie algebra g or through the representations of its
complexification gC.

11.2 Representations of sl(2;C)

Recall that the matrix Lie algebra sl(2;C) is the Lie algebra of 2 × 2 traceless complex
matrices. That is, matrices of the form

(
a b
c −a

)

where a, b, c ∈ C.

We choose a basis for this algebra

H =

(
1 0
0 −1

)

, X =

(
0 1
0 0

)

, Y =

(
0 0
1 0

)

which has the commutation relations

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H. (11.1)

Now, consider an irreducible representation of the Lie algebra sl(2;C) over a complex
vector space V of dimension m,

ψ : sl(2;C)→ gl(V ).
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The images of the basis vectors will satisfy the same commutation relations that H,X
and Y . Let u ∈ V be an eigenvector of ψ(H) (it exists since V is a complex vector space)
with eigenvalue α,

ψ(H)(u) = αu.

From now on, to simplify the notation we write H,X, Y in the place of ψ(H), ψ(X) and
ψ(Y ). Using the commutations relations we can see that X(u) is also an eigenvector of
H with eigenvalue α+ 2,

H(X(u)) = X(H(u)) + 2X(u) = (α+ 2)X(u)

and similarly for Y , H(Y (u)) = (α− 2)Y (u). Moreover, applying it repeatedly n times,

H(Xn(u)) = (α+ 2n)Xn(u), H(Y n(u)) = (α− 2n)Y n(u).

Since an operator on a finite-dimensional space has a finite number of eigenvalues, there
is some N ≥ 0 such that

XN (u) 6= 0 and XN+1(u) = 0

Defining λ = α+ 2N and u0 = XN (u), we have

H(u0) = λu0, X(u0) = 0.

Furthermore, if we set uk = Y k(u0) for k ≥ 0, then

H(uk) = (λ− 2k)uk (11.2)

and the operator Y will act on uk like

Y (uk) = uk+1. (11.3)

Besides, X acts on uk in the following way,

X(uk) = X(Y k(u0)) = H(Y k−1(u0)) + Y X(Y k−1(u0))
= (λ− 2(k − 1))uk−1 + Y X(uk−1)

Now, using
k∑

j=1

λ− 2(k − j) = k[λ− (k − 1)]

we get
X(uk) = k[λ− (k − 1)]uk−1. (11.4)

Again, H cannot have an infinite number of eigenvalues, then there is a positive integer
m such that

uk 6= 0 for k ≤ m and um+1 = Y m+1u0 = 0.

This last equality, in particular, leads to

0 = X(um+1) = (m+ 1)(λ−m) = 0⇒ m = λ ∈ Z.

That is, we have proven that for every irreducible representation of sl(2;C), ψ : sl(2;C)→
gl(V ), there exists a positive integer m and m + 1 vectors u0, . . . , um ∈ V such that
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the images of the basis H,X, Y will act on the vectors as in (11.2), (11.4) and (11.3),
respectively. That is,







ψ(H)(uk) = (m− 2k)uk
ψ(X)(uk) = k[m− (k − 1)]uk−1 if k > 0 and ψ(X)(u0) = 0
ψ(Y )(uk) = uk+1 if k < m and ψ(Y )(um) = 0

(11.5)

The vectors uk are linearly independent, since they have different eigenvalues for ψ(H).
The vector space they generate is invariant under these three operators (and hence un-
der any element of the representation). Since ψ is an irreducible representation, V =
〈u0, . . . , um〉.

Uk−2 Uk−1 Uk Uk+1 Uk+2
ψ(Y ) ψ(Y ) ψ(Y ) ψ(Y )

ψ(X) ψ(X) ψ(X) ψ(X)

. . . . . .

Figure 6: Action of ψ(X) and ψ(Y ) over the eigenspaces of ψ(H), Uk = 〈uk〉.

Thus, we have seen that every irreducible representation of dimension m + 1 will have
a basis of eigenvectors of the image of H with eigenvalues −m,−m + 2, . . . ,m − 2,m.
So, two irreducible representations with the same dimension are isomorphic and we can
label every irreducible representation by its dimension. From now on, ψm will mean the
irreducible representation of dimension m+ 1.

We have seen the rules that have to obey the representations of sl(2;C). Moreover, we
can define on every complex vector space V of dimension m+1 the operators ψ(H), ψ(X)
and ψ(Y ) acting on a basis by (11.5). It can be seen that they will obey the commutation
relations (11.1) and they will generate an irreducible representation of sl(2;C). Thus,
every irreducible representation of sl(2;C) is realizable.

Furthermore, as we have already pointed out, the representations of SU(2) are in one-to-one
correspondence with the representations of sl(2;C). Now the usefulness goes in the other
direction: since SU(2) is a compact Lie group, by Theorem 9.4 it is completely reducible
and hence every representation of sl(2;C) will also be completely reducible. Then, every
representation of sl(2;C) is a direct sum of representations which satisfy (11.5). We have
classified the representations of sl(2;C).

As a consequence, for any (finite dimensional) complex representation ψ : sl(2;C)→ gl(V ),
working separately on each one of the irreducible representations it can be seen that the
operators ψ(X) and ψ(Y ) are nilpotent and that if k is an eigenvalue of ψ(H), then it is
an integer and the integers

−|k|,−|k| + 2, . . . , |k| − 2, |k|

are also eigenvalues of ψ(H).

11.3 Representations of SO(3)

We know the representations of sl(2;C) and are in one-to-one correspondence with the ones
of su(2). These ones in turn are in one-to-one correspondence with the representations of
SU(2) due to the fact that it is simply connected.
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We have seen that su(2) is isomorphic to so(3) and now we want to study the relation
between the representations of SO(3), which is not simply connected, and those of so(3).
Take the basis

F1 =





0 0 0
0 0 −1
0 1 0



 , F2 =





0 0 1
0 0 0
−1 0 0



 , F3 =





0 −1 0
1 0 0
0 0 0



 . (11.6)

of so(3). It has the same commutation relations that the basis Ej of su(2) given previously
in (10.4) and both Lie algebras are of dimension 3. Hence, the linear map φ : su(2)→ so(3)
which sends Ej → Fj , for j = 1, 2, 3, will be a Lie algebra isomorphism. Note that the
matrix E1 = iH/2.

Whence, the irreducible representations of so(3) will be of the form σm = ψm ◦ φ−1 :
so(3) → gl(V ) and we want to see which ones come from a representation Σm of the Lie
group SO(3). That is, the ones which satisfy

Σm(expX) = exp(σm(X)) ∀X ∈ so(3). (11.7)

First, we assume that m is an odd integer and that this representation exists. Computing

e2πF1 =





1 0 0
0 cos 2π − sin 2π
0 sin 2π cos 2π



 = I.

We will have
Σm(e

2πF1) = I (11.8)

whereas

σm(F1) = ψm(φ
−1(F1)) = ψm(E1) =

i

2
ψm(H)

the eigenvectors of ψm(H), uk, will be then eigenvectors of σm(F1) with eigenvalue i(m−
2k)/2. Thus, in the basis formed by the uk, σm(F1) will be a diagonal matrix with the
eigenvalues on the diagonal. The eigenvalues of exp(2πσm(F1)) will be e2πi(m−2k)/2 and
since m is odd, so is m− 2k. Hence,

e2πσm(F1) = −I. (11.9)

Looking at (11.8) and (11.9), we have obtained

Σm(exp(2πF1)) = I 6= exp(σm(2πF1)) = −I.

Thus, there is no irreducible representation of SO(3) of even dimension (m odd implies
m+ 1 even).

11.3.1 A representation of SU(2)

We make a pause here to introduce a representation of SU(2) which will come in handy
for the construction of the representation Σm.

Let Vm be the vector space of homogeneous polynomials of degree m in two complex
variables. That is, the space of polynomials of the form

f(z1, z2) =

m∑

k=0

akz
m−k
1 zk2 , ak ∈ C.

40



We define a linear transformation on the (m+ 1)-dimensional space Vm

Πm(U) : Vm → Vm
f(z) → [Πm(U)f ](z) = f(U−1z)

(11.10)

where U ∈ SU(2), z ∈ C2 and f ∈ Vm. We check that it is a representation,

Πm(U1)[Πm(U2)f ](z) = [Πm(U2)f ](U
−1
1 z) = f(U−1

2 U−1
1 z) = [Πm(U1U2)f ](z).

We can find the associated representation of su(2), which we will denote by πm, with the
formula (6.4),

[πm(X)f ](z) =
d

dt
f(e−tXz)

∣
∣
∣
∣
t=0

.

Computing it,

d

dt
f(e−tXz)

∣
∣
∣
∣
t=0

= Dzf(−X
(
z1
z2

)

) =
∂f

∂z1
(−X11z1 −X12z2) +

∂f

∂z2
(−X21z1 −X22z2)

and applying it to the basis of su(2), H,X, Y , we get

πm(H) = −z1
∂

∂z1
+ z2

∂

∂z2
, πm(X) = −z2

∂

∂z1
, πm(Y ) = −z1

∂

∂z2

and they satisfy the commutation relations (11.1). In fact, it can be seen that πm ∼= ψm
(cf. [7]). Hence, we have found the irreducible representations of SU(2) associated to the
ones of sl(2;C).

11.3.2 Irreducible representations of SO(3)

Now, returning to the case of SO(3), assume that m is an even integer and consider the
representation Πm.

e2πE1 = −I =⇒ Πm(−I) = Πm(e
2πE1) = eπm(2πE1).

Recall the universal cover ρ that we found in the previous section. It has kernel {I,−I}
and hence for two elements U and −U

ρ(−U) = ρ(−I)ρ(U) = ρ(U)

so every element R ∈ SO(3) will have two antiimages. Now, πm(2πE1) has eigenvalues
2πi(m − 2j)/2 for j = 0, . . . ,m. Then its exponential will be diagonal on the basis
u0, . . . , um and, since m is even, the eigenvalues will be e2πi(m−2j)/2 = 1. Thus,

Πm(−I) = I.

So we see that Πm(−U) = Πm(U) too, for any element U ∈ SU(2). We can define then

Σm = Πm ◦ ρ−1

because every two related antiimages of ρ, U and −U , will go to the same element Πm(U).
Finally, the map

σm = πm ◦ φ−1

is the one related by the exponentials with Σm = Πm ◦ ρ−1 and πm ∼= ψm.
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11.4 Representations of sl(3;C)

Before studying the representations of sl(3;C), we introduce a definition that will be used.
Recall the tensor product of representations for Lie groups, its associated Lie algebra
representation comes from applying formula (6.4) to the tensor product representation:

Definition 11.5. Let g be a Lie algebra and let π1 : g → gl(U) and π2 : g → gl(V ) be
representations acting on vector spaces U and V . The tensor product of the representations
is defined for all X ∈ g by

π1 ⊗ π2 : g → gl(U ⊗ V )
X → π1(X)⊗ I + I ⊗ π2(X)

Now, for the case of sl(3;C) and SU(3) we have the same equivalence between the complex
representations as for sl(2;C) and SU(2):

RepC(SU(3)) ←→ RepC(su(3)R) ←→ RepC(sl(3;C)C).

Thus, from now on, we will only consider complex representations. We can take the
following basis for the traceless matrices forming sl(3;C).

H1 =





1 0 0
0 −1 0
0 0 0



 , X1 =





0 1 0
0 0 0
0 0 0



 , Y1 =





0 0 0
1 0 0
0 0 0



 X3 =





0 0 1
0 0 0
0 0 0





H2 =





0 0 0
0 1 0
0 0 −1



 , X2 =





0 0 0
0 0 1
0 0 0



 , Y2 =





0 0 0
0 0 0
0 1 0



 Y3 =





0 0 0
0 0 0
1 0 0



.

Note that, discarding the last row and last column of the matrices H1,X1, Y1, and discard-
ing the first row and first column of the matrices H2,X2, Y2; we recover the Lie algebra
sl(2;C). Thus, 〈H1,X1, Y1〉 ∼= 〈H2,X2, Y2〉 ∼= sl(2;C) and they satisfy the same commuta-
tion relations between them. The other commutation relations are:

[H1,H2] = 0 [X3, Y3] = H1 +H2

[H1,X2] = −X2, [H1, Y2] = Y2, [H1,X3] = X3, [H1, Y3] = −Y3;
[H2,X1] = −X1, [H2, Y1] = Y1, [H2,X3] = X3, [H2, Y3] = −Y3;
[X1,X2] = X3, [Y1, Y2] = −Y3, [X1, Y2] = 0, [X2, Y1] = 0;

[X1,X3] = 0, [Y1, Y3] = 0, [X2,X3] = 0, [Y2, Y3] = 0;

[X2, Y3] = Y1, [X3, Y2] = X1, [X1, Y3] = −Y2, [X3, Y1] = −X2.

Now, we would like to apply the same reasoning as for sl(2;C) and have the representations
determined by the eigenspaces of the image of H ∈ sl(2;C). However, now any traceless
diagonal matrix will be expressed as a linear combination of H1 and H2 instead of being
expressed by a multiple of H. We have the following elementary proposition (c.f. [9]),

Proposition 11.6. Commuting diagonalizable linear operators on a complex vector space
are simultaneously diagonalizable.

Since [H1,H2] = 0, we see that we should study the eigenvectors of the subalgebra spanned
by H1 and H2, namely h = 〈H1,H2〉.
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Definition 11.7. Given V a finite dimensional complex vector space and A ⊂ End(V ) a
subspace. A weight is an element λ ∈ A∗ such that there exists v ∈ V , v 6= 0 satisfying

f(v) = λ(f)v, for all f ∈ A.

Given a weight λ ∈ A∗, a weight vector for λ is a v ∈ V such that

f(v) = λ(f)v, for all f ∈ A.

The dimension of the subspace

Vλ = {v ∈ V | f(v) = λ(f)v ∀f ∈ A }

is called the multiplicity of λ.

In our case, given ψ : sl(3;C) → gl(V ) a Lie algebra representation on a complex vector
space V , our A will be ψ(h).

The following proposition is easily proved (see, for instance, [9]),

Proposition 11.8. Commuting linear operators over a complex vector space have a com-
mon eigenvector.

Thus, we see that every representation of sl(3;C) has at least one weight. Furthermore, if
λ ∈ h∗ is a weight, then λ(ψ(H1)) and λ(ψ(H2)) are integers, as can be seen by restricting
the representation to 〈Hi,Xi, Yi〉, for i = 1, 2. Recall the procedure followed for sl(2;C):
we studied the eigenvalues of H(X(u)) and H(Y (u)) for an eigenvector u of H, which in
fact is equivalent to study the eigenvalues of adH .

Definition 11.9. In the special case ψ = ad : sl(3;C) → End(sl(3;C)), nonzero weights
are called roots and weight vectors are called root vectors.

SinceH1 andH2 form a basis of h, every weight (and in particular every root) is determined
by its value on these two vectors. To denote this, we write a weight λ ∈ ψ(h)∗ as the
ordered pair λ = (λ(ψ(H1)), λ(ψ(H2))). Thus, α ∈ ad(h)∗ is a root if and only if α 6=
(0, 0) and there exists Z ∈ sl(3;C) such that adHi

(Z) = aiZ for i = 1, 2. For example,
X1,X2,X3, Y1, Y2, Y3 are root vectors of roots,

X1 : (2,−1), X2 : (−1, 2), X3 : (1, 1)
Y1 : (−2, 1), Y2 : (1,−2), Y3 : (−1,−1).

(11.11)

In fact, these are the only roots of sl(3;C) and it is said that these six roots form the root
system of sl(3;C).

Remark: For sl(2;C), the root system would be the roots of X,Y which are, respectively,
2 and −2.
Now, let λ = (m1,m2) be a weight and v 6= 0 a corresponding weight vector. Let α =
(a1, a2) be a root and Zα ∈ sl(3;C) a corresponding root vector. Then, for j = 1, 2, using
that the Lie bracket of a root vector is, by definition, [Hj, Zα] = ajZα, we have

Hj(Zα)v = (mj + aj)Zαv. (11.12)

This implies that Zαv is a new weight vector with weight (m1 + a1,m2 + a2) or that
Zαv = 0. Therefore, the root vectors now play the role of X,Y ∈ sl(2;C). We introduce
a result from [7],

43



2-2

Figure 7: Root system of sl(2;C)

(2,-1)

(-1,2)

Figure 8: Root system of sl(3;C)

Proposition 11.10. Weight vectors with different weights are linearly independent.

That will help us to prove the following statement.

Proposition 11.11. Let ψ : sl(3;C) → gl(V ) be an irreducible representation. Then,
ψ(H1) and ψ(H2) can be simultaneously diagonalized (i.e., every irreducible representation
is the direct sum of its weight spaces).

Proof. We have seen that every representation has at least one weight. We denote by λ
this weight and by Eλ its weight space (dimEλ ≥ 1). Now, let Zα be a root vector with
root α, ψ(Zα) maps Eλ into the weight space Eλ+α. Thus, the space W =

⊕

λEλ (by
Proposition 11.10, it is indeed the direct sum) is invariant under the action of the elements
of the basis and hence is invariant under sl(3;C). Since ψ is irreducible, it follows that
W = V . �

Recall again the construction of the representations of sl(2;C): we found the greatest
eigenvalue of H which was associated to the number N which held XN (u) 6= 0 and
XN+1(u) = 0; and then we iterated Y over XN (u) to find all the vectors in V . Looking
at (11.12), we fix a set of roots:

Definition 11.12. Let Φ be the previous root system of sl(3;C), a subset Φ+ is a set of
positive roots if for each α ∈ Φ exactly one of the roots α,−α is contained in Φ+ and
for any two distinct roots α, β ∈ Φ+ such that α+ β ∈ Φ then α+ β ∈ Φ+. The positive
simple roots are the elements of Φ+ which cannot be written as the sum of two elements
of Φ+.

We see that the roots α1 = (2,−1) and α2 = (−1, 2) are a set of positive simple roots of
the root system (11.11). Now, in order to find the analogous to the greatest eigenvalue we
introduce a partial ordering,

Definition 11.13. Let α1 = (2,−1) and α2 = (−1, 2) be the positive simple roots. Let λ1
and λ2 be two weights. λ1 is higher than λ2, denoted λ1 � λ2, if λ1−λ2 is a nonnegative
linear combination of the positive simple roots. That is, if it can be written in the form

λ1 − λ2 = aα1 + bα2, with a ≥ 0 and b ≥ 0.

A weight λ0 is called a highest weight if for all weights λ of the representation, λ0 � λ.
It is an order relation (it is reflexive, antisymmetric and transitive) but it is not total.

The finite-dimensionality of Hj, j = 1, 2, together with (11.12), implies that there is a
weight vector in V that is killed by Xi, for i = 1, 2 and 3. So, consider an irreducible
representation ψ : sl(3;C) → gl(V ) and a weight vector v ∈ V with weight λ such that
ψ(Xj)(v) = 0 for j = 1, 2, 3. Consider the subspace W of V spanned by vectors of the
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form
w = ψ(Yj1)ψ(Yj2) . . . ψ(YjN )v (11.13)

with jk = 1, 2 or 3 and N ≥ 0. For N = 0 we have w = v. Taking the ordered basis of
sl(3;C), {X1,X2,X3,H1,H2, Y1, Y2, Y3}, we apply the Reordering Lemma8 to the action
of an element of the basis over w and rewrite the expression as

ψ(Y3)
i3ψ(Y2)

i2ψ(Y1)
i1ψ(H2)

j2ψ(H1)
j1ψ(X3)

k3ψ(X2)
k2ψ(X1)

k1v.

If kn 6= 0 for n = 1, 2, 3, then the vector is zero because v gets killed by ψ(Xkn). Otherwise,
v is an eigenvector of both ψ(H1) and ψ(H2) so we get a linear combination of elements
of the form

ψ(Y3)
i3ψ(Y2)

i2ψ(Y1)
i1v

which is an element of the subspace W spanned by the elements of the form (11.13). This
procedure works for the action of any element of the basis so W is invariant and W = V .
The elements Y1, Y2 and Y3 are root vectors with roots −α1,−α2 and −α1 − α2, respec-

tively, and, by the formula (11.12), every element of the form (11.13) with N > 0 will be
a weight vector with weight lower than λ. Thus, the only vectors in V with weight λ are
the multiples of v and we have have proven the result:

Proposition 11.14. Every irreducible representation of sl(3;C) has a unique highest
weight and its highest weight space has multiplicity 1.

We introduce a Lemma,

Lemma 11.15. Let ψ : sl(3;C) → V be a (complex) representation with a vector v with
weight λ killed by ψ(Xj) for j = 1, 2, 3 such that the smallest invariant subspace of V
containing v is V . Then v is the unique (up to scalar multiplication) highest weight vector
of the representation.

Proof. The proof is the same as for Proposition 11.14 changing the hypothesis of irre-
ducibility for the hypothesis of V being the smallest invariant space such that v ∈ V .
(Note that both hypotheses can be used to show that W = V ). �

Now we can prove that the highest weight determines the irreducible representation.

Proposition 11.16. Two irreducible representation of sl(3;C) with the same highest
weight are isomorphic.

Proof. Let ψ : sl(3;C)→ gl(V ) and φ : sl(3;C)→ gl(W ) be two irreducible representations
with highest weight λ with respective highest weight vectors v ∈ V and w ∈W . Consider
the direct sum of this representations, ψ ⊕ φ : sl(3;C) → gl(V ⊕W ), and let U be the
smallest invariant subspace of V ⊕W which contains the vector (v,w). This invariant
subspace has an associated subrepresentation with weight vector (v,w) ∈ U killed by the
images of Xi, i = 1, 2, 3. Then, by Lemma 11.15, (v,w) is the highest weight vector of
the subrepresentation. Besides, the subrepresentation is completely reducible (this comes
from the complete reducibility of SU(3)) and we can write it as a direct sum of irreducible
representations,

U =
⊕

j

Uj .

8See A.14.
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Every irreducible representation is the direct sum of its weight spaces (Proposition 11.11),
so (v,w) ∈ Uk for some k. Since U is the smallest invariant space that contains (v,w), it
follows that Uk = U and U is irreducible.
The projections of U on every component of V ⊕W ,

πV : U → V and πW : U → W
(u1, u2) 7→ u1 (u1, u2) 7→ u2

for u1 ∈ V , u2 ∈W such that (u1, u2) ∈ U , hold

πV ◦ (ψ ⊕ φ)|U = ψ ◦ πV and πW ◦ (ψ ⊕ φ)|U = φ ◦ πW .

Besides, U, V and W are all irreducible and we can apply Schur’s Lemma9. Since πV and
πW are nonzero because (v,w) ∈ U , it follows that V ∼= U ∼=W . �

We have seen that the weights of sl(3;C) are pairs of integers. For highest weights we
can restrict even more their possible value: let λ = (m1,m2) the highest weight of an
irreducible representation and v 6= 0 its weight vector. Then, X1v = 0 and X2v = 0 or it
would not be the highest weight vector. The study of the representations of sl(2;C) makes
the values m1 and m2 automatically non-negative. So,

Proposition 11.17. The highest weight of an irreducible representation is a pair of non-
negative integers.

Conversely,

Proposition 11.18. For every pair (m1,m2) of non-negative integers there exists an
irreducible representation of sl(3;C) with highest weight λ = (m1,m2).

Proof. The trivial representation is an irreducible representation with highest weight (0, 0).
The standard representation, the inclusion of sl(3;C) into gl(C3), has the canonical basis
vectors as weight vectors e1, e2, e3 ∈ C3 and corresponding weights (1, 0), (−1, 1), (0,−1).
It is irreducible and has highest weight (1, 0). Analogously to groups, for Lie algebras one
can define the dual of a given representation. In particular, the dual representation of the
standard representation is given by

ψ(Z) = −Z⊤

for every Z ∈ sl(3;C). It is also irreducible and has weight vectors e1, e2, e3 with corre-
sponding weights (−1, 0), (1,−1) and (0, 1). The highest weight being (0, 1).

Now we can build all the other irreducible representations from the tensor product of
these two, called fundamental representations. So, let V = C3 and V ∗ its dual. Let
ψ1 : sl(3;C) → gl(V ) be the standard representation and ψ2 : sl(3;C) → gl(V ∗) its dual
representation and let v1 = e1 and v2 = e3 be the respective highest weight vectors.
Consider the tensor product of the representations,

φ = (ψ1 ⊗ ψ2) : sl(3;C)→ gl(V ⊗ V ∗)

and consider the vector v1 ⊗ v2 ∈ V ⊗ V ∗. It is killed by φ(Xj) for j = 1, 2, 3 and has
weight (1, 1), as it can be seen by the action of φ(Hj), j = 1, 2 over it:

(ψ1⊗ψ2)(H1)(v1⊗v2) = ψ1(H1)(v1)⊗I(v2)+I(v1)⊗ψ2(H1)(v2) = v1⊗v2+v1⊗0 = v1⊗v2
9See A.15
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and similarly for H2. Thus, applying the same reasoning of the proof of Proposition 11.16
to the smallest invariant subspace W which contains v1⊗ v2, we get that W is irreducible
and φW : sl(3;C)→ gl(W ) is the irreducible representation with highest weight (1, 1).

Moreover, the same reasoning can be applied to the m1-times tensor product of V tensor
product with the m2-times tensor product of V ∗ to get the desired irreducible represen-
tation with highest weight (m1,m2). �

Remark: One could go further and ask what can be said about two given isomorphic
representations which are the direct sum of irreducible representations. As we have said,
the character theory for finite groups can be extended to compact Lie groups and hence,
it is possible to show that the two representations are the same up to the order in which
appear the irreducible representations.

11.4.1 Weight diagrams of sl(3;C)

In this section we show a way to visualize the representations by means of weight diagrams.
Defining an inner product in h by 〈H,H ′〉 = trace(H†H ′), we can identify h∗ with h. Thus,
the matrices associated to the weights λ1 = (1, 0) and λ2 = (0, 1) are,

λ1 = diag(2/3,−1/3,−1/3), λ2 = diag(1/3, 1/3,−2/3). (11.14)

Therefore, the roots α1 = 2λ1 − λ2 and α2 = −λ1 + 2λ2 are the matrices,

α1 = diag(1,−1, 0), α2 = diag(0, 1,−1).

Now, as vectors, λ1 and λ2 span a two dimensional real space. With the defined inner
product they have norm

√
2 and the angle between them is 60o. Then, the weight dia-

gram for the standard representation will be the weights (1, 0), (−1, 1), (0,−1) in the basis
(λ1, λ2).

(1, 0)

(−1, 1)

(0,−1)

Figure 9: Weight diagram

of the standard representation,

highest weight (1, 0).

λ1
λ2

α2

α1

Figure 10: The vectors corre-

sponding to λ1, λ2 and α1, α2.

(−1, 0)

(0, 1)

(1,−1)

Figure 11: Weight diagram of

the dual representation, highest

weight (0, 1).

Note that all the weights, if not killed, are connected by the root vectors α1, α2. Moreover,
we can see that a given weight connected by α1, α2 or α1 + α2 to other weights spans a
representation of sl(2;C). We can construct the irreducible representation corresponding
to a given highest weight with the repeated translation by −α1 and −α2, keeping in mind
that the new weights cannot be higher than the highest weight.
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(1, 1)

Figure 12: Weight diagram of

the representation with highest

weight (1, 1). The multiplicity

of (0, 0) is 2.

(2, 0)

Figure 13: Weight diagram of

the representation with highest

weight (2, 0).

(3, 0)

Figure 14: Weight diagram of

the representation with highest

weight (3, 0).

12 The Eightfold way

This section is devoted to the study of a classification scheme which, as we will see, is
related to the representations of the Lie algebra sl(3;C). This geometric approach is
known as the Eightfold way, a term coined by Gell-Mann in reference to the buddhist
Noble Eightfold Path. It led to the realization of the existence of a symmetry between
elementary particles and this, in turn, to the postulation of the existence of quarks.

In 1947, the known particles (the nucleons p and n, the leptons e, µ, their neutrinos νe, νµ
and the mesons π+, π−) were almost10 understood and classified until a new particle
entered the game: a neutral particle, denoted K0, which decayed into two oppositely
charged pions,

K0 −→ π+ + π−.

In the following years, new decays associated to new particles were observed:

K+ −→ π+ + π+ + π−

Λ −→ p+ π−.

The decaying particles were assumed to be different from the first particle, K0, by charge
conservation for K+ and by baryon number conservation for Λ. The differences between
the time of production of the particles and their time of decay led physicists to assume that
the processes involved were different (now it is said that the particles are produced by the
strong interaction and decay, way more slowly, by the weak interaction). Gell-Mann and
Nishijima, independently, assigned to the new particles a new quantum number, called
strangeness, with integer value. In particular, the proton and neutron were assigned zero
strangeness. From the observed decays, they derived the Gell-Mann-Nishijima formula

Q = I3 +
1

2
(B + S) (12.1)

where Q is the charge, I3 the third component of isospin, B the baryon number (1 for
baryons and 0 for mesons) and S the strangeness. This last property was assumed to
be conserved in the creation of the particles but not conserved in their decay. That is,
strangeness is conserved by the strong force but not conserved by the weak force. This
simple idea solved the apparent contradictions between possible and observed decays.
More particles were discovered and each one was assigned a strangeness value coherent

10The muon and its neutrino were still puzzling.
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with their production and decay. However, there seemed to be no logic behind the zoo of
particles.

In 1961, Gell-Mann and Ne’eman independently arranged particles with the same spin by
strangeness and charge, obtaining the following geometric figures:

Λ
Σ0

Σ+Σ−

Ξ− Ξ0

n p

Q = 0 Q = 1Q = −1

S = −1

S = −2

S = 0

Figure 15: The Baryon octet (spin = 1
2)

ηπ0
π+π−

K−

K
0

K0 K+

Q = 0 Q = 1Q = −1

S = 0

S = −1

S = 1

Figure 16: The Meson octet (spin = 0)

They are clearly reminiscent of the weight diagram of the sl(3;C) representation with
highest weight (1, 1). Furthermore, by that time, the following diagram was not complete:

Σ∗0
∆++

Ξ∗−

Σ∗−

∆−

∆0

Ξ∗+
Ω−

Σ∗+

∆+

Q = 0

Q = 1

Q = 2

Q = −1

S = 0

S = −1

S = −2

S = −3

Figure 17: The baryon decuplet (spin = 3
2 )

There was no known baryon with Q = −1 and S = −3. Gell-Mann predicted its existence
(he even predicted its mass with another empirical formula) and in 1964 the Ω− was
discovered.

The Eightfold way was, hence, the equivalent to Mendeleev’s Periodic Table for particle
physics: a geometric representation of the known particles provided empirical formulas
and led to predictions that were later verified. It was a matter of time for somebody to
find the analogue to the electron shells in nuclear physics.

12.1 Lie Groups and Lie Algebras in Physics

Symmetries in physics were already studied through Lie groups and Lie algebras before
the Eightfold way. A symmetry of a physical system is a set of transformations acting on
the system such that the physical observables are invariant. Moreover, symmetry trans-
formations correspond to elements of a group and one symmetry transformation followed
by another corresponds to group multiplication. If the transformation is continuous, then
the group is a Lie group (physicists work on locally euclidean spaces).
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Noether’s theorem asserts, in an informal way, that every continuous symmetry has a
corresponding quantity constant in time. Thus, studying the symmetries of a system one
can obtain its conservation laws.

In quantum mechanics, the group associated to a symmetry must be unitary in order to
preserve the probability of a system to be in a given state. In the case of the wave functions
describing electrons, the group associated to the rotational invariance is SU(2). Recall that
RepC(SU(2))↔ RepC(sl(2;C)C) and the irreducible representations of sl(2;C) are the ψm.
The representation acting on a single electron is ψ1 (dimension 2) and the ladder operators
(X and Y ) change its spin from down to up and vice versa. The representation of the
coupling of two electrons is ψ1 ⊗ ψ1, which is isomorphic to ψ2 ⊕ ψ0.

Comment: It is usually said that rotating an electron 360o adds a minus sign to its
wave function. The reason for this is the fact that electrons are fermions and hence have
semi-integer spin. That is, the irreducible representations of SU(2), ψm, acting on them
have odd m. Thus, there is no irreducible representation of SO(3) associated to ψm and
the exponential of an element of so(3) times 2π is −I (c.f. (11.9)). On the other hand, if
the factor is 4π, the value of the exponential is I.

The proton and the neutron have very similar masses and this led Heisenberg to consider
them as two states of the same particle, the hypothetical nucleon. That is, like the two
states of an electron (spin up/down). Thus, it was introduced the approximate11 symmetry
of isospin, which is therefore associated to the group SU(2). Isospin is short for "isotopic
spin", in reference to different isotopes having different isospin.

12.2 The quark model

In 1964, Gell-Mann (again) and Zweig, inspired by the concept of symmetry of isospin
and seeing that the group underlying the symmetry of the diagrams was the group SU(3),
proposed that all hadrons are composed of a more elementary particle, which Gell-Mann
called quark. The symmetry was even more approximate than the isospin symmetry, since
masses in the same octet or decuplet vary considerably. The quark appeared in three
different states, called flavours: up, down and strange. Each one with spin = 1/2 and
carrying baryon number 1/3. Moreover, the strange quark carried strangeness S = −1 and
they had charge 2/3, −1/3 and −1/3, respectively (cf. (11.14)). They were represented
by the vectors

u =





1
0
0



 , d =





0
1
0



 , s =





0
0
1



 .

These are the basis vectors of the irreducible representation of sl(3;C) of highest weight
(1, 0), which we denote now by 3. The antiparticles of these quarks, u, d, s, are the
basis of the dual representation, denoted 3. The previous quantum numbers will be
represented by the operators I3 = 1

2H1 = diag(1/2,−1/2, 0), B = diag(1/3, 1/3, 1/3)
and S = diag(0, 0,−1). The Gell-Mann-Nishijima formula (12.1) holds with Q = λ1 =
diag(2/3,−1/3,−1/3).
They postulated that mesons are formed by pairs of quarks and antiquarks, hence, they will
be in the representation of the tensor product of both representations, 3⊗ 3. As we have
seen, this representation decomposes as the direct sum of an irreducible representation of

11Since their mass (energy) is not the same (but close), the symmetry is approximate.
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highest weight (1, 1) with dimension 8 and a representation of dimension 1 (highest weight
(0, 0)). Thus, the irreducible representation forms the Meson octet, which together with

the weight (0, 0) (which represents the particle η′ = uu+dd+ss√
3

, invariant for the action of

SU(3)), forms the Meson nonet.

In the following diagrams we have represented the fundamental representations (quarks
and antiquarks) and their tensor product, the Meson nonet. The multiplicity of the weight
(0, 0) in the Meson nonet is 3, one corresponds to η′ and the other two to π0 = 1√

2
(uu−dd)

and η = 1√
6
(uu + dd − 2ss). In the diagram, we show the quark content. Being specific,

the highest weight vector is u⊗ s and from it we can compute the quark states with the
images of the Yi, i = 1, 2, 3 acting iteratively on u⊗ s.

u

d

s

Figure 18: Quarks u, d, s.

us

ud

du

su

sd

ds

π0η

η′

Figure 19: The Meson nonet.

u

s

d

Figure 20: Antiquarks u, d, s.

Baryons are considered to be composites of three quarks. Thus, they arise in the represen-
tation 3 ⊗ 3 ⊗ 3. This representation has an irreducible representation of highest weight
(3, 0) and dimension 10, the baryon decuplet, two of dimension 8 and one of dimension 1.
That is, 3⊗3⊗3 = 10⊕8⊕8⊕1. This can be seen with the help of weight diagrams and
using that 3⊗3 = 6⊕3, with highest weights (2, 0) and (0, 1). Then, 3⊗3⊗3 = (6⊕3)⊗3
and the highest weights will be (3, 0), (1, 1), (1, 1) and (0, 0).

However, there was no experimental evidence of the existence of quarks and the beauty
of this construction is not compelling enough. Besides, there were flaws in the theory.
For instance, the baryon ∆++ ought to be composed of three quarks u and have spin
= 3

2 . Thus, since quarks have spin = 1
2 , the three quarks should be in the same state, in

contradiction with the Pauli exclusion principle.

In 1964, Greenberg introduced a new quantum property of quarks, called color, which
could be red, green or blue. The associated symmetry was again the one of SU(3) but
this time it was an exact symmetry: quarks with different color are indistinguishable
except for their color. This solved the problem with Pauli exclusion principle (the three
quarks in ∆++ had different color) and proposed that naturally occurring particles are
colorless, thus, explaining the non direct observation of quarks. This initiated Quantum
Chromodynamics, a theory of exact symmetry called color SU(3), in contrast with the
approximate symmetry of flavour SU(3). Since the symmetry is exact, the implications
are deeper and it is associated to an elementary interaction, the strong interaction.

Even though the theory was flawless, it seemed artificial. It was not widely accepted until
the discovery of a new particle that was only explainable through the quark theory, adding
a new flavour, charm.

Nowadays, the known flavours are up, down, strange, charm, top (or truth) and bottom
(or beauty).
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Conclusions and further work

Following a differential geometry approach along with a matrix group approach we have
studied Lie groups and Lie algebras, first separately and next, with the exponential map,
in relationship to each other. That way we have been able to prove the Closed subgroup
theorem which has allowed us to prove that matrix Lie groups are Lie groups.

Studying the universal covering space of a connected Lie group, which can be made into a
Lie group, the condition of simple connectedness arises to ensure that Lie algebra homo-
morphisms induce Lie group homomorphisms. Thus, we have seen the equivalence between
the category of simply connected Lie groups and the category of real Lie algebras, and
hence the equivalence between the representations of a simply connected Lie group and
the representations of its associated Lie algebra.

Moreover, the existence of left invariant forms on Lie groups allow to describe in concrete
terms the Haar measure on compact Lie groups. Then, the left invariant normalized
volume form is also right invariant and thanks to this fact every representation of a compact
Lie group can be shown to be completely reducible.

Finally, the study of complex representations of Lie algebras simplifies the study of their
associated Lie groups, especially when they are compact and simply connected. This
relation between representations of Lie algebras and Lie groups has been key to the field
of elementary particle physics, leading to the concept of quarks.

Although we left Lie algebra representations at sl(3;C), the generalization of our results
to include any semisimple Lie algebra should be simple since the basic concepts in relation
to weights and roots are the same. In other words, a further extension of the present
study would deal with the theory of representations of semisimple Lie algebras. This, in
turn, could be completed with the classification of semisimple Lie algebras via Dynkin
diagrams.

Another natural extension of our study would be to explore the Lie group - Lie algebra
relationship in depth along with the Baker-Campbell-Hausdorff formula. Furthermore, the
characters and orthogonality relations for compact Lie groups might also be explored since,
as mentioned before, we left them out of the current work. Examples of representations
of non-compact Lie groups such as the Lorentz group would be another interesting topic
as well.

We have seen the irruption of Lie groups and Lie algebras in physics. After that, they
were implemented in all gauge theories. Furthermore, it would be really interesting to
study how string theory deals with the exceptional Lie algebra E8.
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A Basic definitions and results

Definition A.1. A differentiable or smooth manifold of dimension m and class C∞
is a topological space M , Hausdorff, satisfying the second axiom of countability and an
equivalence class of atlas of dimension m and class C∞.
Definition A.2. A continuous mapping f : X → Y is a local homeomorphism if every
x ∈ X has an open neighbourhood V such that f(V ) is open and f is a homeomorphism
of V over f(V ).
Definition A.3. The diameter of a non-empty bounded subset S of a metric space X
is defined to be the least upper bound (or supremum) of the set {d(x, y) |x, y ∈ S} ⊂ R.
Definition A.4. For any X ∈Mn(C), we define the Hilbert-Schmidt norm as

‖X‖ =





n∑

j,k=1

|Xjk|2




1/2

Definition A.5. If M and N are smooth manifolds and F : M → N is a smooth map,
for each p ∈M the map

dFp : TpM → TF (p)N

is the differential of F at p. Let v ∈ TpM and f ∈ C∞, the map is defined by

dFp(v)(f) = v(f ◦ F )

Definition A.6. Let M be a smooth manifold and TM its tangent bundle, a vector
field is a continuous map

X : M → TM
p → Xp

with the property that Xp ∈ TpM for all p ∈ M . When TM is given its natural smooth
structure, the vector field is said to be a smooth vector field if it is a smooth map. The
set of all smooth vector fields in M is denoted by X(M).

Definition A.7. Let F : M → N be a smooth map between smooth manifolds, X ∈
X(M), Y ∈ X(N). We say that X and Y are F−related if and only if for all p ∈M

dFp(Xp) = YF (p)

Definition A.8. Let F :M → N be a smooth map between smooth manifolds, let p ∈M .
The differential dpF : TpM → TF (p)N yields the pullback by F at p, the dual linear map

dF ∗
p : T ∗

F (p)N → T ∗
pM

Definition A.9. Let M and N be smooth manifolds and F :M → N a diffeomorphism.
Let X be a smooth vector field on M , the unique smooth vector field on N that is
F−related to X is called the pushforward of X by F . For p ∈M , it is defined by

(F∗X)p = dFF−1(p)(XF−1(p))

Definition A.10. Let V be a finite-dimensional vector space. If k is a positive integer,
a covariant k-tensor on V is an element of the tensor product of the dual space of V ,
V ∗, k times, V ∗ ⊗ · · · ⊗ V ∗, typically thought as a real-valued multilinear function of k
elements of V :

α : V × · · · × V
︸ ︷︷ ︸

k

→ R (A.1)
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k is called the rank . The space of all covariant k-tensors on V is denoted

T k(V ∗) = V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

k

(A.2)

A contravariant tensor of rank k is an element of

T k(V ) = V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k

(A.3)

The space of mixed tensors on V of type (k,l) is defined as

T (k,l)(V ) = V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k

⊗V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

l

(A.4)

It is called the space of k times contravariant and l times covariant tensors. An element
of T (1,0) is a vector and an element of T (0,1) is a form.

Lemma A.11 (Lebesgue’s number Lemma). For every open cover {Ui} of a compact
metric space X, there is a positive real number ǫ, called Lebesgue’s number, such that
every subset of X of diameter less than ǫ is contained in some element of {Ui}.
Lemma A.12 (Uniform Time Lemma (from [11])). Let V be a smooth vector field on a
smooth manifold M , and let φ be its flow. Suppose there is a positive number ε such that
for every p ∈M , the domain of φ(p) contains (−ε, ε). Then V is complete.
Lemma A.13 (Naturality of integral curves (from [11])). Let M and N be smooth man-
ifolds and F : M → N a smooth map. Then X ∈ X(M) and Y ∈ X(N) are F−related if
and only if for each integral curve γ of X, F ◦ γ is an integral curve of Y .
Lemma A.14 (Reordering Lemma (from [7])). Suppose that g is any Lie algebra and that
π is a representation of g. Suppose that X1, . . . ,Xm is an ordered basis for g as a vector
space. Then any expression of the form

π(Xj1)π(Xj2) . . . π(XjN )

can be expressed as a linear combination of terms of the form

π(Xm)
kmπ(Xm−1)

km−1 . . . π(X1)
k1

where each kl is a non-negative integer and where k1 + k2 . . . km ≤ N .
Lemma A.15 (Schur’s Lemma (from [20])). Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2)
be two irreducible representations of G over complex vector spaces and let f : V1 → V2 be
a linear mapping such that ρ2s ◦ f = f ◦ ρ1s for all s ∈ G. Then,

1. If ρ1 and ρ2 are not isomorphic, we have f = 0.

2. If V1 = V2 and ρ1 = ρ2, f is a homothety.

Remark: The Lemma is valid for Lie algebras (changing GL for gl).
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