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GRAPHICAL ABSTRACT: 

 
 

ABSTRACT: The dicyclohexylborane–mediated addition of allene 1 to (E)-2-tridecenal 

affords a quaternary protected 2-amino-2-vinyl-1,3-diol in good yield as a single 

diastereomer. This compound is readily transformed into the four stereoisomers of the 

quaternary (E)-2-vinyl analogs of sphingosine. The metabolic fate and the effect of these 

compounds on the basal sphingolipid metabolism in human A549 lung adenocarcinoma cells 

has been studied, together with the ceramide analog of the most relevant vinylsphingosine 

derivative. 

  

N
O

O

Bz

C

H
H

H2N
HO

OH

C10H21
H2N

HO

OH

C10H21

H2N
HO

OH

C10H21
H2N

HO

OH

C10H21
RS

SS

RR

SR



3	
	

Introduction 

Sphingolipids are a family of natural products that play essential roles as structural cell 

membrane components and also in cell signaling through a complex metabolic network 

involving specific enzymes. From a structural point of view, most mammalian sphingolipids 

share a common 2-amine-1,3-diol moiety arising from (E)-2-amino-4-octadecen-1,3-diol 

(sphingosine). Interestingly, some structural analogs of sphingosine and/or ceramides (N-acyl 

sphingosines) can act as selective inhibitors of sphingolipid metabolism enzymes and they 

exhibit interesting pharmacological properties.1–3 In particular, Boumendjel and Miller 

reported that compound 2 (Figure 1, mixture of isomers), a quaternary vinyl analog of 

dihydrosphingosine 1-phosphate, exhibits potent inhibition of sphingosine 1-phosphate lyase.4 

Based on the above precedents, it is conceivable that the introduction of the 2-amino-2-vinyl-

1,3-diol core as part of the sphingolipid framework represents an attractive modification for 

the design of new modulators of sphingolipid metabolism. In this work, we present an 

adaptation of our previously reported protocol5 to the enantioselective synthesis of quaternary 

2-vinyl sphingosines 9 (Figure 1). In addition, studies on their cellular metabolism, cellular 

toxicity and effects on basal sphingolipid metabolism in human A549 lung adenocarcinoma 

cells are discussed. 
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Fig. 1 Sphingolipids, 2-vinyl dihydrosphingosine 1-phosphate (2), and 2-vinylsphingosines (9) 

 

Results and discussion 

Chemistry 

We recently reported a highly stereoselective addition of N-tosyl allene 3 to aldehydes leading 

to protected tosylcarbamates (±)-4.5 This one-pot process is based on the hydroboration of the 

allene with (c-C6H11)2BH at the less hindered face of the terminal double bond to generate an 

allylborane which could be added in situ to an aldehyde (Scheme 1). However, in practice, the 

use of tosyl as N-protecting group suffers from some drawbacks. First, the robust tosyl group 

may be difficult to remove in the final steps of a multi-step synthetic sequence. Secondly, the 

N-tosyl group favors an facile acid or base-catalyzed partial isomerization to the 

corresponding inner N-tosylcarbamates 5 during work-up and/or chromatographic purification 

of compounds 4, leading to mixtures that are difficult to separate. 
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Scheme 1 Preparation of N-tosylcarbamates (±)-4 and their isomerization to (±)-5 

These disadvantages can be avoided almost completely by using allene 1 (Scheme 2), 

obtained from but-2-yn-1,4-diol in 61% yield,6 in which the more easily removable N-benzoyl 

group is used as protecting group.7 We envisaged that the addition of allene 1 to (E)-2-

tridecenal would provide access to 2-vinyl sphingoid analogs 9 (Figure 1), structurally related 

to sphingosine. Considering the incorporation of the vinyl unit in 9, the use of (E)-2-

tridecenal would afford a C17 long chain base, which is expected to be endowed with 

appropriate properties for cell permeabilization. As expected, hydroboration of 1 with (c-

C6H11)2BH, in CH2Cl2 at 0 ºC followed by addition of (E)-2-tridecenal, afforded carbamate 

(±)-6 in very high diastereochemical purity (>95:5 by 1H NMR) after a hydrolytic work-up 

with triethanolamine and column chromatography. It should be remarked that complete 

migration of the benzoyl protecting group from the nitrogen atom to the newly formed 

secondary alcohol was observed, in this way avoiding the isomerization of 6 to the inner 

carbamate (±)-7’ (Scheme 2), as was observed in the isomerization of 4 into 5 (Scheme 1). 

Thus, compound (±)-6 was obtained in an acceptable 75% yield, after chromatographic 

purification, as a single diastereomer (as racemic mixture of both enantiomers). 

N
O

O
Ts

C

H

H

1) (c-C6H11)2BH
2) RCHO
3) N(CH2CH2OH)2

N
O

O

OH

R

3

Ts

4

5

N O

O

R

Ts
HO

acid or base 
catalyst



6	
	

 

Scheme 2 Synthesis of sphingoid precursor (±)-7 from allene 1 and attempts of selective hydrolysis of 

benzoate (±)-6  

 

Hydrolysis of the benzoate group in (±)-6 to the desired alcohol (±)-7 avoiding isomerization 

to the inner carbamate was not a trivial task. A number of hydrolytic treatments with different 

basic (K2CO3, LiOH) or acidic (H2SO4, HCl) aqueous or methanolic media, as well as 

reductive treatment of (±)-6 with LiBH4 in THF, were performed leading to mixtures of both 

carbamates arising from the primary or the secondary alcohol ((±)-7 and (±)-7'). Gratifyingly, 

the use of EtMgBr in THF at 0 ºC afforded the required alcohol (±)-7 in good yield with 

negligible isomerization. Since we were interested in the influence of the different 

stereoisomers of 2-vinyl sphingosines in sphingolipid metabolism, we undertook the 

resolution of (±)-7. This was accomplished by transformation of (±)-7 into a mixture of the 

corresponding diastereomeric esters 8 derived from (R)-methoxyphenylacetic acid [(R)-

MPA]8 using EDC as coupling reagent in the presence of a catalytic amount of DMAP. Esters 

8 were then easily isolated by column chromatography and their configuration at C3 was 

inferred from Δδ between selected pair of protons, following the empirical method of Riguera 

et al,9 as indicated in Table 1. Since the relative configuration between C2 and C3 had already 

been established based on mechanistic grounds,5 the absolute configuration at both 

stereogenic centers in esters 8 was thus assigned. 
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3S configuration assigned from Δδ [(2R,3S) or (2S,3R)] (R)-MPA esters 

 δHC(*) δHD(*) δHE δHF δHG(*) δHH δHI(*) δHJ 

2R3S 1.16 1.88 5.59 5.18 5.83 5.28 4.11 5.90 

2S3R 1.29 2.02 5.91 5.30 5.62 5.06 3.85 5.72 

ΔδSR -0.13 -0.14 -0.32 -0.12 +0.21 +0.22 +0.26 +0.18 

3R configuration assigned from Δδ [(2R,3R) or (2S,3S)] (R)-MPA esters 

 δHC(*) δHD(*) δHE δHF δHG(*) δHH δHI(*) δHJ 

2R3R 1.32 2.01 5.82 5.29 5.62 5.16 3.90 5.42 

2S3S 1.01 1.80 5.24 5.09 5.81 5.34 4.17 5.78 

ΔδRS +0.31 +0.21 +0.58 +0.20 -0.19 -0.18 -0.27 -0.36 

(*) δ from the center of the system 

Table 1: Configurational assignment at C3 position of (R)-MPA esters 8 

 

Enantiopure (2S,3R)-8 and (2R,3S)-8 we independently treated in basic aqueous-alcoholic 

media to obtain free aminodiols (2S,3R)-9 and (2R,3S)-9, respectively, in good yields 

(Scheme 3). 
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Scheme 3 Resolution of (±)-7 and conversion of enantiopure esters 8 into (2S,3R)-9 and (2R,3S)-9 

 

Regarding the preparation of the enantiomeric series, (2S,3S) and (2R,3R), we first attempted 

a direct inversion of the secondary alcohol in (±)-7 by Mitsunobu reaction, using benzoate as 

nucleophile, without success. We then turned our attention to a redox two-step process based 

on the oxidation of (±)-7 to ketone (±)-11, followed by reduction. In practice, the Dess-Martin 

oxidation of (±)-7 gave ketone (±)-11, which was used without further purification. The 

reduction of (±)-11 under Luche conditions (Ce(III)/NaBH4)10 turned out to be only 

minimally stereoselective, since a roughly 1:1 mixture of the corresponding diastereomeric 

alcohols in a satisfactory 63% yield (over two steps) was obtained (Scheme 4). Unfortunately, 

we were not able to efficiently isolate both diastereomeric racemates by column 

chromatography. Thus, we attempted the resolution of the mixture of alcohols through the 

formation of the corresponding diastereomeric esters 8 derived from (R)-MPA (Scheme 4). 

To our satisfaction, the four stereoisomeric esters exhibited sufficient separation by TLC. 
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After column chromatographic isolation of (2R,3R)-8 and (2S,3S)-8, the amino diols (2R,3R)-

9 and (2S,3S)-9 were obtained in 85% and 65% yield, respectively, by basic hydrolysis. 

Again, the configuration at C3 of the diasteromeric esters (2R,3R)-8 and (2S,3S)-8 was 

inferred by the method of Riguera et al, based on the Δδ values indicated in Table 1. 

 

Scheme 4 Resolution of (±)-11 and preparation of (2S,3S) and (2R,3R) 8 and 9. 

 

Metabolism of amino diols 9. 

Treatment of A549 cells with sub-toxic concentrations (Fig. S1) of amino diols 9 revealed 

that only the 2S,3R stereomer was N-acylated (Fig. 2A,B). Interestingly, only the C22, C24 

and C24:1 acyl derivatives were formed (Fig. 2A). Since A549 cells also produce ceramides 

with other N-acyl chains, with C16 being also abundant11,12 (See Figure 3), this result 

suggests that (2S,3R)-9 is a substrate of ceramide synthase 2 (CerS2), which produces long 

chain ceramides, but it is not a good substrate of CerS5 and CerS6, which catalyze the 

formation of C16 ceramide.13 This is the first example of a sphingoid base selectively used by 

a specific CerS. On the other hand, only (2S,3R)-9 and, to a significantly lower extent, 

(2S,3S)-9 are phosphorylated at C1OH (Figure 2B), which supports the idea that, despite the 
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presence of the vinyl group, sphingosine kinase activity takes place preferentially on the 2S 

stereoisomer. Importantly, the above long chain N-acyl derivatives of (2S,3R)-9 were 

metabolically stable, as neither the sphingomyelin analogs nor the glucosylceramide analogs 

were detected in the extracts.  

To investigate the metabolic stability of amides of (2S,3R)-9 against ceramidases, N-

octanoylamide 10, obtained by acylation of (2S,3R)-9 with octanoic acid (EDC/DMAP), was 

incubated with A549 cells at sub-toxic concentrations (Figure S1). As shown in Figure 2C, 

the free base (2S,3R)-9 was detected in the extracts. Furthermore, the C22, C24 and C24:1 

acyl derivatives of (2S,3R)-9 were also formed (Figure 2D), indicating that amide 10 is 

hydrolyzed by ceramidases and further reacylated with other acyl moieties. However, which 

of the 5 different ceramidases13 is responsible for the hydrolysis of (2S,3R)-10 is, so far, 

unknown. 
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Fig. 2 Metabolism of compounds 9 and (2S,3R)-10 . Cells were incubated with: A-B, the four 

stereoisomers of 9 (15 µM) and C-D, amide (2S,3R)-10 (30 µM) for 24 h. Lipid analysis was 

carried out by UPLC/TOF MS in ESI + (free bases and amides) or ESI – (phosphates). A-B, 

amounts of amides (A) and phosphates (B) present in cells treated with the different 

stereoisomers of 9; (C): amounts of incorporated amide (2S,3R)-10 and of its hydrolysis 

product (2S,3R)-9; (D): reacyclation products present in cells treated with amide (2S,3R)-10. 

Data were obtained from two independent experiments with triplicates.  

 

Effect on natural sphingolipids 

Cells treated with amino diols 9 did not give rise to any remarkable change in the natural 

sphingolipids content (data not shown). In contrast, cells exposed to amide (2S,3R)-10 (30 

µM/24 h) contained significantly lower total ceramide levels than vehicle treated controls, all 

the different N-acyl species being similarly reduced (Figure 3A). This reduction is translated 

into significantly lower levels of glucosylceramide (GlcCer) (Fig. 3B) and sphingomyelin 

(SM) (Fig. 3C). 

 

Fig. 3 Effect of (2S,3R)-10 on natural sphingolipids. Cells were incubated with (2S,3R)-10 

(30 µM/24 h). Lipids were extracted and analyzed by UPLC/TOF MS. (A): amounts of 
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natural ceramides (Cer); (B): amounts of natural glucosyl ceramides (GlcCer) and (C): 

amounts of natural sphingomyelins (SM). Data were obtained from 2 independent 

experiments with triplicates. Asterisks indicate statistical difference with vehicle (control) 

(P<0.05. Unpaired, two-tail t test). 

 

These results are consistent with inhibition of ceramide synthesis de novo. Since no increase 

in dihydroceramides was observed upon treatments (data not shown), dihydroceramide 

desaturase is not a likely candidate for inhibition. On the other hand, a decrease in CerS 

activity results in an increase in long chain bases and their phosphates.14,15 However, either 

sphinganine, sphingosine or their corresponding phosphates were not detected in extracts after 

cell treatment with amide (2S,3R)-10, arguing against inhibition of CerS. Furthermore, no 

accumulation of 3-ketosphinganine was found in extracts from cells incubated with (2S,3R)-

10, which is against inhibition of 3-ketosphinganine reductase. Therefore, we suggest that 

serine palmitoyl transferase (SPT), the rate-limiting enzyme in ceramide synthesis de novo, is 

the likely target of (2S,3R)-10. Although this amide is N-deacylated to (2S,3R)-9, this amino 

alcohol has no effect on Cer, GlcCer and SM levels, which argues against its involvement in 

the observed inhibition. Collectively, our data support that (2S,3R)-10 could be responsible 

for the putative SPT inhibition. 

 

Conclusions 

The first stereoselective preparation of the four stereoisomers of quaternary 2-vinyl analogs of 

sphingosine has been achieved in a small number of steps and the effect of these compounds 

on basal sphingolipid metabolism in human A549 lung adenocarcinoma cells has been 

studied. A stereoselective borane-mediated addition of allene 1 to (E)-2-tridecenal very 

recently developed in our research group was used, giving only a single diastereomer [(R,S)-7 
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and (S,R)-7]. Resolution of enantiomers was readily accomplished by chromatography of the 

corresponding mixture of (R)-MPA diastereomeric esters followed by basic hydrolysis. 

Among the 2-vinyl sphingosines, only the 2S,3R isomer was N-acylated to produce long chain 

ceramides, presumably by CerS2. The metabolic stability of these amides was studied with 

the corresponding (2S,3R)-N-octanoyl amide 10, which confirmed the operation of 

deacylation and reacylation metabolic pathways. Interestingly, the effects of amide 10 on 

natural sphingolipidome are in agreement with the inhibition of SPT, the first enzyme of the 

de novo biosynthesis of sphingolipids. 

 

Experimental section 

Chemistry 

All reactions involving moisture- or air-sensitive reagents were performed in oven-dried 

glassware under N2. Chemical shifts (δ) are quoted in parts per million and referenced for 1H 

NMR to internal TMS (for CDCl3) or residual solvent peak d 2.50 ppm (for DMSO-d6). 13C 

NMR are referenced to CDCl3 (d 77.0 ppm) or DMSO-d6 (d 39.5 ppm). Column 

chromatography was performed on silica gel (Merck 230-400 mesh). HRMS analyses were 

recorded on a LC/MSD-TOF mass spectrometer. 

 

3-Benzoyl-4-vinylideneoxazolidin-2-one (1). A solution of benzoyl isocyanate (4.20 g, 25.60 

mmol) in anhydrous CH2Cl2 (20 mL) was added to 2-butyn-1,4-diol (1.00 g, 11.60 mmol) at 0 

ºC under N2 atmosphere. The mixture was stirred for 5 hours at rt and the solvent was 

removed. A solution of Pd2(dba)3·CHCl3 (0.055 g, 0.05 mmol) in anhydrous THF (40 mL) 

and triethylamine (0.087 mL, 0.64 mmol) were added under N2 atmosphere. The mixture was 

stirred for 16 h at rt and filtered through a pad of Celite. The solid was washed with AcOEt. 
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The solvent was removed and the crude residue was purified by column chromatography 

(hexanes/AcOEt 4:1) to afford 0.595 g (61%) of allene 1. 

Compound 1, yellow solid; mp 102-103 ºC (lit.6 101.2-103 ºC); Rf (hexanes/AcOEt 2:1) = 

0.35; 1H NMR (400 MHz, CDCl3): δ 7.68 (m, 2H, ArH), 7.57 (m, 1H, ArH), 7.45 (m, 2H, 

ArH), 5.57 (t, 2H, J = 4.7 Hz, =CH2), 5.04 (t, 2H, J = 4.7 Hz, CH2O); 13C NMR (101 MHz, 

CDCl3): δ 193.6, 167.3, 151.9, 132.8, 129.2, 128.1, 128.0, 103.9, 90.4, 63.9; IR (film, cm-1): 

1792, 1689, 1331, 1308, 1157, 1068; HRMS (ESI+) calculated for C12H10NO3 [M+H]+ = 

216.0655, found = 216.0651. 

 

(RS,E)-1-[(2-oxo-4-vinyloxazolidin-4-yl]tridec-2-en-1-yl benzoate [(±)-6]. 

A solution of the allene 1 (1.24 g, 5.76 mmol, 1.00 eq) in anhydrous CH2Cl2 (4 mL) was 

added to a suspension of dicyclohexylborane16 (1.23 g, 6.91 mmol, 1.2 eq) in CH2Cl2 (6 mL) 

at 0 ºC and under nitrogen atmosphere. The resulting mixture was stirred for 10 min at 0 ºC 

and for 1 h at rt. The resulting solution was then cooled to – 78 ºC, and (E)- 2-tridecenal (1.58 

g, 8.06 mmol, 1.4 eq) was added. The reaction was stirred for 4 h at rt, and was then quenched 

by addition of triethanolamine (2.2 g, 2.5 eq). The resulting mixture was stirred for 1 h at rt. 

Evaporation of the solvent under vacuum gave a crude that was purified by flash column 

cromatography (hexanes/AcOEt 7:3) to afford 1.78 g (4.30 mmol, 75%) of adduct (±)-6. 

Compound (±)-6, yellow oil; Rf (hexanes/AcOEt 3:2) = 0.60; 1H NMR (400 MHz, CDCl3): 

δ 8.06-8.00 (m, 2H, ArH), 7.58-7.53 (m, 1H, ArH), 7.46-7.40 (m, 2H, ArH), 6.65 (bs, 1H, 

NH), 6.05-5.96 (m, 2H, =CH, CHOBz), 5.54-5.41 (m, 3H, =CHH, CH=CH), 5.34 (d, 1H, J = 

10.8 Hz, =CHH), 4.46 (d, 1H, J = 8.7 Hz, OCHH), 4.14 (d, 1H, J = 8.7 Hz, OCHH), 2.05 (td, 

2H, J = 7.9, 1.1 Hz, =CHCH2), 1.38-1.19 (m, 16H, C8H16), 0.87 (t, 3H, J = 6.9 Hz, CH3); 13C 

NMR (101 MHz, CDCl3): δ 165.4, 159.3, 140.6, 136.2, 133.5, 129.8, 129.7, 128.6, 121.8, 

117.3, 77.8, 72.2, 64.4, 32.5, 32.0, 29.7, 29.7, 29.5, 29.4, 29.3, 28.8, 22.8, 14.2; IR (ATR, cm-
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1): 3240, 2923, 1755, 1707, 1263, 709; HRMS (ESI+) calculated for C25H35NNaO4 [M+Na]+ 

= 436.2458, found = 436.2466. 

(RS,E)-4-(1-hydroxytridec-2-en-1-yl)-4-vinyloxazolidin-2-one [(±)-7].  

A 3M solution of EtMgBr in Et2O (1.3 mL, 3 eq) was dropwise added to a solution of 

compound (±)-6 (537 mg, 1.30 mmol, 1 eq) in dry THF (8 mL) at 0 ºC. The reaction was 

followed by TLC (hexanes/AcOEt 3:2). After 2 h at 0 ºC, the reaction was partitioned by 

addition of pH 7 buffer and CH2Cl2. The organic layer was washed with additional pH 7 

buffer solution, dried over MgSO4 and filtered. The evaporation of the solvent under vacuum 

gave a crude which was purified by flash column cromatography (hexanes/AcOEt 3:2) to 

afford compound (±)-7 (341 mg, 1.11 mmol, 85%): 

Compound (±)-7, mp = 70-2 ºC; Rf (hexanes/AcOEt 3:2) = 0.34; 1H NMR (400 MHz, 

CDCl3): δ 6.70 (bs, 1H, NH), 5.92 (dd, 1H, J = 17.3, 10.7 Hz, =CH), 5.80 (dt, 1H, J = 15.4, 

6.7 Hz, =CHCH2), 5.39-5.25 (m, 3H, CH=CH, =CH2), 4.44 (d, 1H, J = 8.5 Hz, OCHH), 4.05 

(d, 1H, J = 7.1 Hz, CHOH), 4.01 (d, 1H, J = 8.5 Hz, OCHH), 3.68 (bs, 1H, OH), 2.01 (q, 2H, 

J = 6.9 Hz, =CHCH2), 1.37-1.19 (m, 16H, C8H16), 0.85 (t, 3H, J = 6.9 Hz, CH3); 13C NMR 

(101 MHz, CDCl3): δ 160.2, 137.1, 136.9, 125.6, 116.4, 75.9, 71.7, 65.5, 32.5, 32.0, 29.7, 

29.5, 29.4, 29.3, 29.1, 22.7, 14.2; IR (ATR, cm–1): 3287, 2922, 2851, 1742, 1042, 936; 

HRMS (ESI+) calculated for C18H32NO3 [M+H]+ = 310.2377, found = 310.2384. 

 

(4SR,5RS,E)-5-(dodec-1-en-1-yl)-4-(hydroxymethyl)-4-vinyloxazolidin-2-one [(±)-7']. 

A solution of NaOH (0.04 g, 1.0 mmol) in 9:1 MeOH/H2O (1 mL) was added to a stirred 

solution of compound (±)-6 (300 mg, 0.73 mmol, 1 eq) in 9:1 MeOH/H2O (10 mL) at r.t. The 

advance of the reaction was followed by TLC (hexanes/AcOEt 3:2). After 6 h, the mixture 

was heated at 50 ºC for additional 3 h and no more changes was observed (TLC). The reaction 

was partitioned by addition of a saturated aqueous solution of NH4Cl (20 mL) and CH2Cl2 (20 
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mL). The phases were decanted and the aqueous phase was washed with more CH2Cl2 (2 x 10 

mL). The combined organic portions were dried over anhydrous MgSO4, filtered, and 

concentrated under reduced pressure. The residue was purified by column chromatography 

using silica gel (hexanes/AcOEt 7:3) to afford (±)-7' (0.112 g, 50%) and (±)-7 (0.072 g, 32%). 

Compound (±)-7': colourless oil; Rf (hexanes/AcOEt 3:2) = 0.18; 1H NMR (400 MHz, 

CDCl3): δ 6.70 (broad band, 1H, NH), 5.86 (dt, 1H, J = 15.2, 6.7 Hz, =CHCH2), 5.74 (dd, 1H, 

J = 17.4, 10.8 Hz, =CH), 5.72-5.66 (m, 1H, CH=CH), 5.37 (dd, 1H, J = 17.4, 0.5 Hz, =CHH), 

5.27 (dd, 1H, J = 10.8, 0.5 Hz, =CHH), 4.65 (d, 1H, J = 8.4 Hz, OCH), 3.71 (d, 1H, J = 12.0 

Hz, CHHOH), 3.56 (d, 1H, J = 12.0 Hz, CHHOH), 2.12-2.06 (m, 2H, =CHCH2), 1.29-1.23 

(m, 16H, C8H16), 0.87 (t, 3H, J = 6.5 Hz, CH3); 13C NMR (101 MHz, CDCl3): δ 160.3, 140.0, 

135.9, 121.7, 117.2, 86.6, 66.6, 64.6, 32.4, 32.0, 29.7, 29.7, 29.6, 29.5, 29.3, 28.9, 22.8, 14.2; 

IR (ATR, cm-1): 3277, 2922, 2853, 1736, 1350, 976; HRMS (ESI+) calculated for 

C18H32NO3 [M+H]+ = 310.2377, found = 310.2384. 

 
Isomerization of (±)-7 

A solution of Dess-Martin periodinane (DMP) (1.930 g, 4.414 mmol, 1.1 eq) in dry CH2Cl2 

(10 mL) was dropwise added to a stirred solution of (±)-7 (1.240 g, 4.007 mmol, 1 eq) in dry 

CH2Cl2 (10 mL) at r.t. The course of the reaction was followed by TLC. After 30 min, the 

reaction was quenched by adding sat. NaHCO3 aqueous solution (10 mL) and solid Na2S2O3 

(0.30 g). The mixture was extracted with CH2Cl2 (5 x 10 mL) and the combined organic 

layers were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure 

to give 1.180 g of crude ketone (±)-11 [Rf (hexanes/AcOEt 3:2) = 0.58]. A mixture of NaBH4 

(0.443 g, 11.710 mmol, 3 eq) and CeCl3:7H2O (2.90 g, 7.807 mmol, 2 eq) was added to a 

solution of the crude ketone (1.180 g) in THF (20 mL) and EtOH (60 mL) at 0 ºC. After 6 h, 

the reaction was quenched by addition of a sat. solution of NH4Cl (40 mL) and water (60 

mL). The mixture was extracted with CH2Cl2 (5 x 20 mL) and the combined organic layers 
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were dried (MgSO4), filtered, and concentrated under reduced pressure. The 1H NMR of the 

residue showed a roughly 1:1 mixture of isomers (±)-7 and its racemic diastereomer (0.781 g, 

2.44 mmol, 63% two-steps yield). 

 

Typical procedure for the preparation of the (R)-MPA esters 8. 

A solution of (R)-methoxyphenylacetic acid [(R)-MPA, 0.135 g, 0.81 mmol, 1.4 eq] and 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, 0.167 g, 0.87 mmol) in CH2Cl2 (10 mL) 

was stirred at 0 ºC for 30 min. Then, a solution of (±)-7 (0.180 g, 0.58 mmol) and a catalytic 

amount of 4-dimethylaminopyridine (DMAP, 0.010 g) in CH2Cl2 (10 mL) was added and the 

solution was stirred for 2 h at r.t. The reaction was quenched by addition of 2M HCl (10 mL) 

and the organic phase was washed with more 2M HCl (10 mL), sat. NaHCO3 (10 mL) and 

brine (10 mL). The combined organic portions were dried over anhydrous MgSO4, filtered, 

and concentrated under reduced pressure. The crude product was purified by column 

chromatography in silica gel (4:1 hexanes/ EtOAc) to afford 0.117 g (0.27 mmol, 46%) of 

(2S,3R)-8 and 0.120 g (0.28 mmol, 47%) of (2R,3S)-8.  

(2S,3R)-8: colourless oil; Rf (hexanes/AcOEt 3:2) = 0.82; [α]D
25 = +6.7 (c = 1.0, CHCl3); 1H 

NMR (400 MHz, CDCl3): δ 7.42-7.30 (m, 5H, ArH), 5.91 (dt, 1H, J = 14.7, 6.8 Hz, 

=CHCH2), 5.72 (bs, 1H, NH), 5.62 (dd, 1H, J = 17.3, 10.7 Hz, =CH), 5.36-5.23 (m, 2H, 

OCHCH=), 5.06 (d, 1H, J = 17.2 Hz, =CHH), 5.06 (d, 1H, J = 10.7 Hz, =CHH), 4.73 (s, 1H, 

CHPh), 3.96 (d, 1H, J = 8.8 Hz, OCHH), 3.75 (d, 1H, J = 8.8 Hz, OCHH), 3.38 (s, 3H, 

OCH3), 2.07-1.98 (m, 2H, =CHCH2), 1.38-1.19 (m, 16H, C8H16), 0.87 (t, 3H, J = 6.9 Hz, 

CH3); 13C NMR (101 MHz, CDCl3): δ 169.4, 158.4, 141.3, 136.2, 135.5, 129.1, 128.9, 127.3, 

121.3, 116.9, 82.5, 77.8, 72.0, 63.9, 57.5, 32.5, 32.0, 29.7, 29.7, 29.5, 29.5, 29.3, 28.7, 22.8, 

14.2; IR (ATR, cm-1): 2923, 2853, 1748, 1169, 1108, 752; HRMS (ESI+) calculated for 

C27H40NO5 [M+H]+ = 458.2901, found = 458.2913. 
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(2R,3S)-8: colourless oil; Rf (hexanes/AcOEt 3:2) = 0.69; [α]D
25 = –71.0 (c = 1.0, CHCl3); 1H 

NMR (400 MHz, CDCl3): δ 7.42-7.32 (m, 5H, ArH), 5.90 (bs, 1H, NH), 5.83 (dd, 1H, J = 

17.2, 10.7 Hz, =CH), 5.59 (dt, 1H, J = 14.5, 6.8 Hz, =CHCH2), 5.33-5.26 (m, 3H, OCHCH=, 

=CH2), 5.22-5.13 (m, 1H, CH=CH), 4.76 (s, 1H, OCHPh), 4.23 (d, 1H, J = 8.8 Hz, OCHH), 

4.00 (d, 1H, J = 8.8 Hz, OCHH), 3.39 (s, 3H, OCH3), 1.94-1.87 (m, 2H, =CHCH2), 1.34-1.14 

(m, 16H, C8H16), 0.88 (t, 3H, J = 6.9 Hz, CH3); 13C NMR (101 MHz, CDCl3): δ 169.6, 158.4, 

140.6, 136.0, 135.9, 129.1, 128.8, 127.3, 120.8, 117.3, 82.6, 77.4, 71.8, 63.9, 57.5, 32.4, 32.1, 

29.8, 29.7, 29.5, 29.5, 29.2, 28.7, 22.8, 14.3; IR (ATR, cm-1): 2923, 2858, 1748, 1169, 1108, 

752; HRMS (ESI+) calculated for C27H40NO5 [M+H]+ = 458.2901, found = 458.2908. 

(2S,3S)-8: colourless oil; Rf (hexanes/AcOEt 3:2) = 0.40; [α]D
25 = +6.5 (c = 1.0, CHCl3); 1H 

NMR (400 MHz, CDCl3): δ 7.50-7.31 (m, 5H, ArH), 5.81 (dd, 1H, J = 17.2, 10.7 Hz, 

CH2=CH), 5.78 (bs, 1H, NH), 5.39-5.30 (m, 3H, =CH2, CHOCO), 5.24 (dt, 1H, J = 15.6, 6.7 

Hz, =CHCH2), 5.09 (dd, 1H, J = 15.5, 6.0 Hz, CHCH=), 4.84 (s, 1H, CHOMe), 4.27 (d, 1H, J 

= 8.8 Hz, OCHH), 4.07 (d, 1H, J = 8.8 Hz, OCHH), 3.41 (s, 3H, OCH3), 1.80 (q, 2H, J = 6.0 

Hz, =CHCH2), 1.33-1.07 (m, 16H, C8H16), 0.88 (t, 3H, J = 6.8 Hz, CH3) 13C NMR (101 

MHz, CDCl3): δ 169.6, 158.9, 138.3, 136.0, 135.5, 129.0, 128.8, 127.5, 120.7, 117.4, 82.3, 

77.1, 64.0, 57.4, 32.3, 32.0, 29.8, 29.7, 29.5, 29.5, 29.1, 28.7, 22.8, 14.3; IR (ATR, cm-1): 

2923, 2853, 1748, 1169, 1108, 752; HRMS (ESI+) calculated for C27H40NO5 [M+H]+ = 

458.2901, found = 458.2895. 

(2R,3R)-8: colourless oil; Rf (hexanes/AcOEt 3:2) = 0.62; [α]D
25 = –98.7 (c = 1.0, CHCl3); 1H 

NMR (400 MHz, CDCl3): δ 7.49-7.32 (m, 5H, ArH), 5.82 (dt, 1H, J = 15.2, 6.8 Hz, 

=CHCH2), 5.62 (dd, 1H, J = 17.2, 10.7 Hz, CH2=CH), 5.42 (bs, 1H, NH), 5.29 (dd, 1H, J = 

15.3, 7.2 Hz, CHCH=), 5.25-5.11 (m, 3H, =CH2, CHOCO), 4.78 (s, 1H, CHOMe), 3.93 (d, 

1H, J = 8.8 Hz, CHHO), 3.86 (d, 1H, J = 8.8 Hz, CHHO), 3.39 (s, 3H, OCH3), 2.01 (q, 2H, J 

= 7.1 Hz, =CHCH2), 1.35-1.17 (m, 16H, C8H16), 0.87 (t, 3H, J = 6.8 Hz, CH3); 13C NMR 
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(101 MHz, CDCl3): δ 169.6, 158.4, 139.6, 136.2, 135.5, 129.3, 129.0, 127.3, 121.3, 117.0, 

82.4, 77.8, 71.7, 63.7, 57.4, 32.5, 32.0, 29.7, 29.7, 29.5, 29.4, 29.2, 28.8, 22.8, 14.2; IR (ATR, 

cm-1): 2923, 2853, 1748, 1169, 1108, 752; HRMS (ESI+) calculated for C27H40NO5 [M+H]+ 

= 458.2901, found = 458.2891. 

 
Typical procedure for hydrolysis of the (R)-MPA esters 8 to amino diols 9. 

A solution of ester (2S,3R)-8 (0.170 g, 0.372 mmol) in a 1:1 EtOH/2M aq. NaOH mixture (6 

mL) was heated to reflux. The progress of the reaction was followed by TLC (hexanes/AcOEt 

3:2). After 20 h, the EtOH was evaporated under vacuum and the aqueous residue was 

extracted with CH2Cl2 (4 x 10 mL). The combined organic portions were dried over 

anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude product was 

purified by column chromatography in silica gel (9:1 CH2Cl2/MeOH) to afford 0.099 g (0.35 

mmol, 94%) of (2S,3R)-9.  

(2S,3R)-9: colourless oil; [α]D
25 = +14.4 (c = 1.0, CHCl3); 1H NMR (400 MHz, CDCl3): δ 

5.97 (dd, 1H, J = 17.7, 10.7 Hz, CH=CH2), 5.74 (dt, 1H, J = 15.4, 6.7 Hz, =CHCH2), 5.45 

(dd, 1H, J = 15.4, 7.6 Hz, CHCH=), 5.33-5.24 (m, 2H, =CH2), 3.96 (d, 1H, J = 7.6 Hz, 

CHOH), 3.71 (d, 1H, J = 11.0 Hz, OCHH), 3.43 (d, 1H, J = 10.9 Hz, OCHH), 2.21 (bs, 4H, 

NH2, 2xOH), 2.04 (q, 2H, J = 7.2 Hz, =CHCH2), 1.44-1.14 (m, 16H, C8H16), 0.87 (t, 3H, J = 

6.8 Hz, CH3); 13C NMR (101 MHz, CDCl3): δ 140.0, 136.0, 127.7, 115.8, 77.0, 66.7, 60.7, 

32.5, 32.1, 29.8, 29.6, 29.5, 29.4, 29.4, 29.3, 22.8, 14.3; HRMS (ESI+) calculated C17H34NO2 

[M+H]+ = 284.2584, found = 284.2581. 

(2R,3S)-9: [α]D
25 = –15.1 (c = 1.0, CHCl3); HRMS (ESI+) calculated C17H34NO2 [M+H]+ = 

284.2584, found = 284.2584. 

(2R,3R)-9: mp 63-5 ºC; [α]D
25 = –7.0 (c = 1.1, CHCl3); 1H NMR (400 MHz, CDCl3): δ 5.82 

(dd, 1H, J = 17.7, 10.8 Hz, CH2=CH), 5.73 (dt, 1H, J = 15.2, 7.1 Hz, =CHCH2), 5.41 (dd, 1H, 

J = 15.4, 6.6 Hz, CHCH=), 5.31-5.25 (m, 2H, =CH2), 4.10 (d, 1H, J = 6.3 Hz, CHOH), 3.65 



20	
	

(d, 1H, J = 11.0 Hz, OCHH), 3.48 (d, 1H, J = 11.0 Hz, OCHH), 2.03 (q, 2H, J = 7.1 Hz, 

=CHCH2), 1.38-1.20 (m, 16H, C8H16), 0.88 (t, 3H, J = 6.9 Hz, CH3); 13C NMR (101 MHz, 

CDCl3): δ 138.6, 134.7, 127.5, 116.0, 75.6, 67.3, 61.3, 32.4, 32.1, 29.6, 29.5, 29.3, 29.3, 29.2, 

29.1, 22.7, 14.1; HRMS (ESI+) calculated C17H34NO2 [M+H]+ = 284.2584, found = 

284.2581. 

For (2S,3S)-9: [α]D
25 = +7.6 (c = 1.0, CHCl3); HRMS (ESI+) calculated C17H34NO2 [M+H]+ 

= 284.2584, found = 284.2583. 

 

(3’S,4’R,E)-N-(4-hydroxy-3-(hydroxymethyl)hexadeca-1,5-dien-3-yl)octanamide (11) 

A solution of octanoic acid (7.2 mg, 0.05 mmol) and EDC (10 mg, 0.05 mmol) in anhydrous 

CH2Cl2 (1 mL) was stirred for 30 min. To this mixture, a solution of the starting alcohol 

(2S,3R)-9 (10 mg, 0.035 mmol) and DMAP (5 mg, 0.04 mmol) in CH2Cl2 (1 mL) was added 

dropwise. After stirring 15h at rt, the mixture was diluted with CH2Cl2 (5 mL) and washed 

successively with HCl 1N, water, NaHCO3 and water (3 mL each). The organic layer was 

dried over MgSO4, filtered and concentrated under reduced pressure. The resulting crude was 

purified by flash chromatography (Hexanes-EtOAc 8:2), to yield amide 10 (10.7 mg, 75%). 

1H NMR (400 MHz, CDCl3) δ 6.04 (br s, 1H, NH), 5.93 (dd, J = 17.3, 10.7 Hz, 1H, =CH), 

5.79 – 5.66 (m, 1H, =CHC10H21), 5.38 (ddd, J = 7.6, 7.0, 1.7 Hz, 1H, =CHCHOH), 5.24 (dd, J 

= 82.8, 14.0 Hz, 2H, =CH2), 4.45 (br s, 1H, CH2OH), 4.07 (d, J = 7.4 Hz, 1H, CHOH), 3.74 

(s, 1H, CHOH), 3.60 (ddd, J = 15.4, 12.0, 4.3 Hz, 2H, CH2OH), 2.31 – 2.24 (m, 2H, 

CH2C(O)), 2.04 (dd, J = 14.5, 7.0 Hz, 2H, =CHCH2), 1.65 (dt, J = 14.9, 7.6 Hz, 2H, CH2 

CH2C(O)), 1.45 – 1.17 (br m, 24H, C12H24), 0.88 (td, J = 6.8, 2.6 Hz, 6H, CH3). 13C NMR 

(101 MHz, CDCl3) δ 174.9 (C), 136.56 (CH), 136.3 (CH), 126.6 (CH), 116.17 (CH2), 74.7 

(CH), 66.9 (CH2), 66.0 (CH2), 37.3 (CH2), 32.5 (CH2), 32.0 (CH2), 31.8 (CH2), 29.8 (CH2), 

29.8 (CH2), 29.6 (CH2), 29.5 (CH2), 29.4 (CH2), 29.3 (CH2), 29.2 (CH2), 29.1 (CH2), 26.09 
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(CH2), 22.8 (CH2), 22.7 (CH2), 14.3 (CH3), 14.2 (CH3). HRMS (ESI+) calculated C25H47NO3 

[M+H]+ = 410,3634, found 410,3595.  

 

Biology 

Cell culture  

Human A549 lung adenocarcinoma cells were obtained from the American Type Culture 

Collection (ATCC) and grown in Ham’s F-12 medium supplemented with 10% fetal bovine 

serum (FBS), 1% Penicillin and Streptavidin and 2mM Glutamine at 37 ⁰C in 5% CO2/95% 

air.  

Cell viability of amide 11 

Cells were seeded in complete medium at 10.000 cells per well in 96-well plates. Twenty-four 

hours after seeding, media were replaced with fresh medium and compounds were added to 

give final concentrations of 0.02–400 µM. After 24 h, the number of viable cells was 

quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. 

Vehicle (0.25 % methanol) was used in controls. The viability for amide 11 (expressed as 

IC50) ranged between 33 to 58 µM. 

 

Lipid analysis 

A549 cells were seeded in 1 mL of medium with 10% FBS-penicillin, streptavidin, glutamine 

in a 6-well plates (250.000 cells/well). Twenty-four hours later, media were replaced with 

fresh medium containing the compounds at the specified concentrations. After 24 h, the 

medium was removed and cells were washed in PBS, collected by brief trypsinization, 

transferred to Eppendorf vials and resuspended in 0.1 mL of PBS. An aliquot (0.01 mL) was 
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taken for cell counting. The remaining suspension was transferred to glass vials and 0.75 mL 

of chloroform/methanol (2:1) containing the internal standards (C17-sphinganine, N-

dodecanoylsphingosine, N-dodecanoylglucosylsphingosine and N-

dodecanoylsphingosylphosphorylcholine, 0.2 nmol each), were added. Samples were heated 

at 48 ºC overnight and 0.075 mL of 1 M KOH in methanol was added, followed by 2 h 

incubation at 37 ºC. Finally, the mixtures were neutralized with 0.075 mL of 1 M acetic acid, 

dried under nitrogen and the residue was dissolved in 0.150 mL of methanol. The liquid 

chromatography–mass spectrometer consisted of a Waters Aquity UPLC system connected to 

a Waters LCT Premier orthogonal accelerated time of flight mass spectrometer (Waters, 

Millford, MA), operated in positive or negative electrospray ionisation mode. Full scan 

spectra from 50 to 1500 Da were acquired and individual spectra were summed to produce 

data points each 0.2 s. Mass accuracy and reproducibility were maintained by using an 

independent reference spray via the LockSpray interference. The analytical column was a 100 

mm x 2.1 mm id, 1.7 µm C8 Acquity UPLC BEH (Waters). The two mobile phases were 

phase A: MeOH/H2O/HCOOH (74:25:1 v/v/v); phase B: MeOH/HCOOH (99/1 v/v), both 

also contained 5 mM ammonium formate. A gradient was programmed—0.0 min, 80% B; 3 

min, 90% B; 6 min, 90% B; 15 min, 99% B;18 min, 99% B; 20 min, 80% B. The flow rate 

was 0.3 mL·min-1. The column was held at 30 ºC. Quantification was carried out using the 

extracted ion chromatogram of each compound, using 50 mDa windows. The linear dynamic 

range was determined by injecting standard mixtures. Positive identification of compounds 

was based on the accurate mass measurement with an error <5 ppm and its LC retention time, 

compared to that of standards (±2%) 
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