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We present a refinement of the Coarse Grained PAC&Ace-field for Discrete
Molecular Dynamics (DMD) simulations of proteins agueous conditions. As the
original version, the refined method provides goepresentation of the structure and
dynamics of folded proteins, but provides much dvetepresentations of a variety of
unfolded proteins, including some very large, ingdole to analyze by atomistic
simulation methods. The PACSAB/DMD method also odpices accurately aggregation
properties, providing good pictures of the strugklensembles of proteins showing a
folded core and an intrinsically disordered regibime combination of accuracy and speed
makes the method presented here a good alterratitiee exploration of unstructured

protein systems.
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INTRODUCTION

The quality of biomolecular simulation is limiteg ttwvo main factors: the accuracy in the
representation of molecular interactions and thadipof the sampling. Current atomistic
force fields implemented in molecular dynamics (Milyorithms allow the collection of
reasonable samplings in the multi-microsecond redonsystems containing in the order
of 10-10° atom$, which has made possible the representation ofesdast
conformational movements in small/medium protemmd aven theb initio folding of a
few small protein&®. Unfortunately, the times when MD simulations vii# applicable

to the study of large systems (abové€ abms) for long (above millisecond) periods of
time are still far, which hampers our ability tadgy complex phenomena, such as protein
aggregation, association and dissociation or camditional sampling of large disordered

proteins.

The coarse-graining (CG) approach provides a sirsjpigegy to improve sampling, at
the expense of a certain loss of accutagie main idea behind all CG methods is to
reduce the complexity of the system by groupingnatinto beads, whose interactions
are presented by a simple energy functional, wtyigltally include solvent in an implicit
way>®. The use of CG methods largely accelerate calongtue to the combination of
the reduction in the number of particles, the nelghé fast movements and the reduced
cost of energy evaluations. The advantages are evadent in systems where the volume
fraction of water is very high, like unfolded prote, because the removal of solvent
molecules not only reduces the degrees of freetbabtglso the viscosity, facilitating the
representation of large conformational chaingele dark side of CG methods is that the
energy functional and the sampling strategy reqaireareful parametrization using
structural experimental data, which means that \atgn protein CG methods are
overspecialized to reproduce the structure of fblgeoteins, those for which more
information exist. This specialization generatesaasferability problem, as a method
very efficient to represent a well-folded protemmder diluted aqueous conditions might
be unable to reproduce unfolded proteins.



We present here a recalibration of our discreteemdér dynamics DMD/PACSAB
force-field for simulations of proteins in aqueosslutiorf®. The refined method
maintains the good ability of the original PACSA®Bde-field to describe folded proteins,
but show much improved representations of unfoldexteins and is able to produce
reversible protein-protein bindit) reproducing correctlgimerizationand association-

dissociation processes.
METHODS

The basic DMD formalism assumes that macromolecaitesa set of particles
moving at constant velocity (i.e. in the absencéoodes) in a space limited by square
wells defined by discontinuous potentials. Withimstassumption particles move in a
fully predictable way until a collision happens:

FL(t+t) =T () +9, (Ot (),

where r; and v, stand for positions and velocities aiyds the minimum amongst the

collision timest;; between each pair of particleand;:
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wherer;; is themodulusof r, =r, -1, , v is themodulusof v, =v, -v;, b, =7V, , and

d is the distance corresponding to the wall of tnease well.

When two particles collide in an elastic way, theésea transfer of linear

momentum into the direction of the vectpr
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where the prime indices denote the velocities dlftercollision.

In order to calculate the change in velocities upoltision the velocity of each

particle is projected in the direction of the vectp and conservation rules are applied:

myv, +myv; =myv;'+m,v,’ (4)
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whereAV stands for the depth of the square well defirthmginter-atomic potential.

The transferred momentum can be easily determioeal; f
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Note that the two particles overcome the potestgphAV as long as
AV <&(vj v ) )
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Otherwise, if the particles remain in the well Bqeduces to:
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which taking the negative solution of the root le&at
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The DMD implementation used in this work runs ia thothermal ensemble, and
the system is coupled to an external thermal bsithguan Andersen thermostatNote

that under the DMD paradigm no forces should beutated, neither the equations of



motion should be integrated. If an efficient algfum for predicting collisions is used, the
method can be extremely efficient allowing simuatof trajectories for very long time
period$?2. DMD has been shown very powerful to study protéiexibilityt>14
conformational transitiort ab initio folding?, aggregatiotf''”-'8and protein-protein
docking®.

The resolution level and the energy functional useDMD simulations should
balance accuracy with simplicity as complex potdatilead to many steps and
accordingly to the increase in the number of paaeobllisions, makingd(Eq. 1) small
and the entire DMD calculation inefficient. Our PB&B° approach uses a full
description of the backbone, but compresses thedidin atoms into beads following
MARTINI modeF? for proteins. The associated force-field consaft$bonded” and
“non-bonded” terms. Chemical bonds and bond aragiedixed with narrow square well
potentials whose width corresponds to 5% of theytlerof the bond/pseudobond
distancé®. We also use pseudobonds to fix the dihedral aofytee peptide bonds, in
order to enforce its planar geometry. The inteoadti between non-bonded particles
comprise hydrogen bonding between atoms in the eugridups of the backbotteand a
discretized version of the interaction between toarse-grained sidechain beads,
constructed assuming pairwise additivity of thenagtic van der Waals and implicit
solvation term$ The atomistic implicit solvation term was defingith the EEF1 energy

functional of Lazaridis and Karpltis'322

The original parametrization of PACSABwas mostly directed towards
representing folded proteins and shows slightly seoperformance for disordered
proteins, mimicking the situation found for curdgnavailable atomistic force-fields
which tend to collapse unfolded proteihsiue probably to an improper balance of solute-
water interactions which leads to an unbalancessoeiation/dissociation rafég324 In
order to correct these problems we implement hedea description of non-bonded
interactions bydividing them in “short-range” and “long-range”. Both nombed

functionals have the same form, but different pasi@ns, and are combined by:

V=XVsh0rt-rangé'(1'X)V|ong-range (10)

The switching function between two beads takeddira:
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where d(i,j) is the distance between the two plagian the experimental reference
structure (when available), or d(i,j)=|i-j|3 A {ibeing the residue indexes) for unfolded
proteins. After some initial tests the constaptandn were adjusted to 10 and 2 A

respectively.

The “short-range” potential was parametrized usimge representative proteins
(fasciculin (PDB id 1FAS), yeast copper transpor(B®B id 1FVQ), and alcohol-
binding protein LUSH (PDB id 100Il), while the “lofrgnge” potential was
independently calibrated to reproduce the monormeidratio in an 8.5 mM solution of
villin (PDB id 1VII). The parameters for the intedption between the short-range and
the long-range parametrizations were adjusted Biomulations of the disordered protein
ACTR. We have fittegh in Eg. 11 by searching the maximum value for whiehradius
of gyration of ACTR stays close to the experimepttlmate from SAXS measurements
(higher values op give more strength to the short-range parameipizateinforcing the
stability of folded proteins but collapsing theustiural ensembles of IDPs). To show the
importance of using the dual parametrization fershmulation of unfolded proteins, we
have plotted in Suppl. Figure S1 the radius of tignaof ACTR when using the short-
range parametrization and the dual one. Once wEfithe composite non-bonded term
was tested without further correction in a variety folded, unfolded, diluted and
concentrated systems. In all cases we have runeatiomal DMD simulations at
T=300K.

Analysis of the trajectories was performed usitgndard analysis tools in
FlexSer#> and MDWEB®. Atomistic trajectories for some proteins wererastied from
the MODEL databagé The similarity betweerDMD/PACSAB and atomistic MD
deformation spaces is computed by using Hess metriche essential spaces defined by

the eigenvectors needed to represent 90% of vaffanc
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whereX andY index the two methods to be comparedndj index the eigenvectors
(ranked on the basis of their contribution to sl variance), andh is the number of
eigenvectors in the “important space” (that reqliite explain 90% of variance in our
work). We have corrected the absolute similaritgieix for limited simulation time
artifacts by including self-similarity terms, togwide a global estimate of the similarity
as described elsewhéte

m m
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where the self similarity products/{ « v") are obtained by comparing first and second

halves of the trajectories.

RESULTS

PACSAB reproduceswell the structure and dynamics of folded proteins. We
have collected DMD/PACSAB simulations for 21 foldpdoteins: six used in the
benchmark of the PRIMO coarse-grained model (18BG1, 1FKS, 1BTA, 1CYE,
1D3Z), six used in the benchmark of the OPEP cegramed model (1AFP, 1B75,
1E0G, 1FCL, 1QHK, 2B86), and fifteen proteins oé tMICROMODEL databagé
(116F, 1FAS, 1CSP, 1FVQ, 1PHT, 1CQY, 10PC, 1KTH,I1100I, 1BFG, 1CHN,
1PDO, 1LIT, 1BJ7). The average RMSDs found betwberexperimental structure and
the conformations sampled along 500 ns (note thattd lack of collision with solvent
molecules in our implicit solvent DMD simulationsimulation times are expected to
represent much longer periods of “real tif are around 0.04 A/residue (see figure 1),
values which are very similar to those obtaine®dnns simulations by PRIM®and
OPEPY, parametrized to reproduce exclusively folded girst, and not far away from
those obtained using atomistic force-fiéff€ The analysis of RMSD profiles with time
illustrates the stability of the trajectories withicevidences of unfolding (see Suppl.
Figure S2), suggesting that the similarity betw®MD trajectories and experimental

structures is not a simple equilibration artifathe RMSD of each protein of the



benchmark is reported in the Supplementary Tabl¢tl8lRMSD has been calculated
from the position of the £atoms). Finally, essential dynamics (ED) analysig the
collected trajectories show that the type of movensampled here is very close to those
obtained by using atomistic simulations in the MIMRODEL dataseéf. In summary,
despite its extreme simplicity the dual PACSAB tfeld seems able to reproduce well

the structure and dynamic properties of foldedginst

].S T T T T
g L _
a2
o | _
’a 10
= L i
£ 5 —
E L i
Z 1 |

0 2 4 6 8
b RMSD (A)

].S T T T T
a
o | _
"EL L0
b L i
2 5 —
E L i
~ —r— ]

0 0.04 0.08 0.12 0.16
RMSD/N e b ;zgfrcsidue)
8 T T T T T

Number of proteins
e
|
I

’:_‘I_ =

0.2 0.4 0.6 0.8 1

Figure 1. Results for the benchmark of folded proteins ueddst the results of the force
field. (a) RMSD after a simulation of 500 ns. (DdaRMSD per residue (middle) after a
simulation of 500 ns. (c) Distribution df (see main text) for the 15 proteins of
MICROMODEL included in the benchmark.
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Figure 2. Percentage, averaged over all the trajectoriesheimolecules that remain
monomers in the simulations of: (a) villin at a centration of 8.5 mM, (b) villin at a
concentration of 16 mM, (c) 40 at a concentration of 3QM, (d) AB40 at a

concentration of 0.3 mM.

PACSAB reproduces well dimerization processes. our simulations reproduce
well the experimental ratté of monomer/dimer in both 8.5 and 16 mM aqueoustiwi
of villin (see figure 2). To model the solution tvithe minimal computational cost he
have placed two molecules in random relative pmsstinside a cubic box with periodic
boundary conditions, the size of the box being toatesponding to the concentration to
be analyzeli We show in Figure 2 the percentage of monomeesaged over the 8
trajectories that we have simulated for each camagon. Very interestingly, the DMD
simulations show a good statistics of associatieaggtiation events, due to the nature of
the sampling technique and the lack of solvent més, which allows us to reach the

stationary state much faster than in explicit selvatomistic molecular dynamics



simulationg®. As an additional test set we consider the disexi&340 peptidé®, which

is known to form in certain conditions amyloid fibrlinked to Alzheimer's disease. We
simulated first a 3uM aqueous solution of thep40 peptide, finding in the stationary
regime around 30% of monomer, a value compatiblle that inferred from ESI-IM-MS
experiment®. The size of the cubic box corresponding to tliacentration for two
molecules is 48 nm. We start the simulations framletely extended conformations.
A reversible binding process happening in one ef tiajectories is shown in Suppl.
Figure S3. Due to the lower concentration that gdower collision frequency, for this
peptide we have run 32 simulations in order to leaki@her statistics of associations and
dissociations. The increase of the concentratior0.® mM leads to the practical
disappearance of the monomer. In summary, eveur ifavce-field has not been created
to simulate specifically aggregation of peptidepumteins, it has a reasonable ability to

distinguish between monomeric and dimeric states.

PACSAB reproduces well a variety of intrinsically disordered proteins:
Despite its simplicity DMD/PACSAB simulations prackigood ensembles of a variety
of unfolded proteins, which have been found chajileg to reproduce by atomistic MD
simulationg?23 One of this examples ACTR, a 47 residue long intrinsically disordered
protein (IDP) which considering SAXS data should@tidan extended (radii of gyration,
Ry, around 24 A% conformation in aqueous solution, but presentsy \@mpact
structures when studied with standard atomistic $tBulations, unless a refitting of the
residue-water potentials is m&#eDMD/PACSAB simulations provide a fully extended
conformation (B=21(1) A), close to the SAXS estimates (the satiah of ACTR with
the original version of PACSAB gives ag Bround 16(1) A). No significant population
of persistent secondary structure elements is foumdjood agreement with NMR
measurementd Very interestingly, the ensemble collected fronD®BID/PACSAB
simulations starting from the NCBD-bound stateh&f ACTR protein (PDB id 1KBH),
and that obtained from 8 independent trajectotesisg from an extended conformation
are nearly identical (see Figure 3), confirming gxeellent sampling capabilities of
DMD/PACSAB simulations.
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Figure 3. Simulations of ACTR. (a) Radius of gyration inthlé trajectories (black lines,
simulations starting from an extended coil confaiorg red lines, simulations starting
from its conformation when bound to NCBD) (b) Diilstrition of radius of gyration in the
simulations starting from an extended coil confaiora(c) Distribution of radius of

gyration in the simulations starting from its camf@tion when bound to NCBD.

The larger (140 residues) amyloidogenic proteisynuclein is another example
of IDP largely studied due to its role in Parkinsodiseas&. This protein presents a
stable structure when embedded in a lipid envirarin{EDB id 1XQ8), but when
solvated in physiological conditions the proteinisex as a mixture of extended
conformationd’. SAXS experiments suggested an averagarBund 35 A8 and NMR
experiments supported a more compact structure Rgtaround 27 A%, while more
recent paramagnetic relaxation enhancement (PREsumements of NMR spectra
coupled with atomistic MD simulations favored a @i, distribution centered at around
32 A%, very extended (5-20s) atomistic unbiased MD simulations by Shaw’s gféu

using a variety of force-fields provided in all easunrealistically compact structureg (R



in the range 15-18 A), and it was necessary tae@aew water model (TIP4P-D), where
the dispersion interactions of water had been asmd® to (in practice) reduce
hydrophobic interactions and obtain more reasonaslelts (B between 25 and 30 A).
Eight unbiased DMD/PACSAB simulations starting fromandom extended
conformations confirm here the complexity of thenfowmational ensemble odi-
synuclein (we have simulated non-acetylateslynuclein to compare with the previous
simulationg®49. We obtain a distribution of radii of gyrationtiiits maximum at 30(1)
A (see figure 4), but analysis of our DMD/PACSARjéctories (Suppl. Figure S4)
suggest the existence of two main states in slawlibgum: one extended fround 30
A) and another very extendedq(Raround 40 A), without any evidence of significant
population of the compact state suggested by atmmMD simulations. In the
simulations we made of this protein in a previowskwvith the original PACSAB force
field we found a much more compact structural erser(R;= 19(1) A). Analysis of the
inter-residue contacts (figure 5) reveals thatRigel0 A state is mostly extended with
few persistent inter-residue contacts. On the eoptthe B-30 A state displays a series
of transient long range contacts (between the segueange 40-60 and at the last 30
residues at the C terminal), which were alreadgaetl in PRE/NMR/MD studies by
Vendruscolo and coworkéfsand later in a more refined MD post-processingibfR
data by Salvatella’s grodp We have also computed the mean inter-residuardies as

a function of the sequence distance, finding resmtvery good agreement with the
experimental result$ (data shown in Suppl. Figure S5). Thus, it seemat t
DMD/PACSAB simulations are able to provide a readsa description of the complex
conformational landscape of the lomgsynuclein protein. Focusing in more local
structural characteristics, we have not found argiptent secondary structure along the
protein chain, in agreement with the experimentaeovations obtained from NMR

measurement%
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Figure 5. Contact maps in the two trajectories shown ingievious figure. (a) contact
maps from trajectory 4 at 3000 ns (b) contact nfap® trajectory 4 at 6000 ns. (c)
contact maps from trajectory 8 at 1000 ns (d) @actnaps from trajectory 8 at 4000 ns.
The color scale (arbitrary units), goes from blne ¢ontacts) to red (many contacts).

TheRS peptide (24 residues; sequence GAMGPSYGRSRSRSRSRSRSRSRYS) i
another challenging system, which has been expatatig characterized as a disordered
peptide with B = 12.5 A. This peptide was thoroughly studiednwéiplicit solvent
atomistic simulatiorf€, whose results were strongly dependent on theeffietd and
water model used. Like in the caseoe$ynuclein, standard water models give a radius
of gyration lower than the experimental value, while simulasiomsing the
aforementioned new water model TIP4P-D give motereded structural ensembles. For
this small peptide we were able to sample thectiformational space with a single 10
pus DMD/PACSAB trajectory, finding a small percentagfesecondary structure (3.2%
a-helix and 1.2%3-strand) due to the formation of short-lived se@mydstructure
elements along the trajectory (see figure 6), agrd R2.3(1) A, virtually identical to the

experimental estimate.
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Figure 6. Simulation of the RS peptide. (a) Evolution of thdius of gyration along the
trajectory (several snapshots along the trajectbown). (b) Probability distribution of

the radius of gyration.

We also tested our force field in two other unfolgeoteins that have been studied
with explicit solvent atomistic MD simulationdN and CspTM. The N-terminal
disordered domain of HIV-1 integraséN), a zinc-binding protein that is natively
unfolded in the absence of zinc, has an experirh@&gtaround 24 A3, while explicit
solvent atomistic MD simulations of this prot&rwith conventional water models
provided R around 12 A, the protein appearing less collapseenihe TIP4P-D water
model was used in combination with last generatiotber and CHARMM force-fields,
resulting in B around 20 A. In our 1Qis simulations starting from a random extended
conformation, we find an averagg®R20(1) A, quite close to the experimental value W
found the same good performance when applying athod to the study of unfolded

cold-shock protein fronThermotoga maritima (CspTm), with an experimental =



16(1) A*. Also for this protein, only explicit solvent sitations with the TIP4P-D water
model provide conformational ensembles where theepr displays the correct sfZe In
our DMD/PACSAB simulations starting from an exteddandom conformation, we find

an average 15 A, almost coincident with the experimental rasie.
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Figure7. Simulation of hTau40. (a) Probability distributiof the radius of gyration. (b)

Average RMS fluctuations from the trajectory.

Finally, we have applied our model to generatecthrdormational ensemble of a
very large IDP, impossible to tackle with standexglicit solvent MD. We have chosen
the 441-residues long Tau protehir @u40), for which experimental information of its
radius of gyration is availalftt Tau is a highly disordered protein that bindsatwl
stabilizes microtubules in nerve axons. In Alzhaimdisease Tau loses its ability to bind
the microtubules and aggregates forming intracailukeurofibrillary tangle$, but its
theoretical study has been hampered by its lamgs svhich precludes atomistic MD
simulations with explicit solvent. We show in figui7 the distribution of radius of
gyration obtained from our jfs simulation, where we findgR 65(3) A, in very good

agreement with the value obtained from SAXShe mean inter-residue distances as a



function of the sequence distance are in very gagpdement with the valued found in
experiment¥ (see Suppl. Figure S5). Remarkably, despite timplgiity of our model
we find a very good agreement with experimentalnmiation about local characteristics
of the protein. The protein shows a very high mgbih its N-terminal half, while the
rest of the protein is less flexible (see RMS fliadions per residue in figure 7). This
distribution of mobility along the protein sequemngeonsistent with the estimation of the
residue mobility from observed spin relaxation s&teNMR measurements found a
propensity to forma-helical structure around residue 120 and in thr@inal. The
prediction of the secondary structure propensitgaxth residue in our simulations is a
very challenging test, since the PACSAB force fiefaks calibrated essentially with just
three parametetgthe strengths of the Van der Walls, the impl&ilvation and the
hydrogen bonding terms) to fit the associationbgstion probabilities of proteins, that
depend on the average characteristics of the psotaiher than local sequence details.
Very encouragingly, we found a region pronetbelix structure around residue 120 (see

Suppl. Figure S6), in good agreement with the NM&asurements

PACSAB reproduces well proteins with dual folded/IDP nature: To test the
performance of our force field to reproduce unfdldeegments in generally folded
proteins, we simulated pyridoxine 5'-phosphate asé&l an enzyme whose structure is
stable and known when bound to pyridoxal 5'-phospiBDB id 1G76), but when
unbound, a region of 56 residues in the middldhefdequence becomes disordered, and
does not give defined density maps (PDB id 1WV4)r &mulation, started from the
fully folded 1G76 structure, reproduces correcthe tdisorder of this region, while

keeping perfectly folded the rest of the protere(figure 8).

PR S S R ] s | | e W [
40 100 120 140 160

Residue



Figure 8. Conformational ensemble produced by our simulatbnpyridoxine 5'-
phosphate oxidase. (a) Crystal structure of théepravhen bound to its ligand (cyan,
PDB id 1G76) and of the unbound protein (orangeB RD1WV4), where the sequence
region 111-157 is missing due to disorder. Fordhiee of clarity we have removed the
N-terminal tail, which is different in the two PDfructures. (b) Several snapshots of the
conformational ensemble of the simulation of 1Giferimposed to the crystal structure
1WV4. (c) Average RMS fluctuations from the tragt The disordered region can be

identified from its high RMSF, as also several Is@nd turns do.

CONCLUSIONS

We present here a refined version of our DMD/PACSA&Brse-grained force-field to be
used to explore the structure and dynamics of batted and unfolded proteins. Our
refined DMD/PACSAB force field uses an effectivenAgsonded potential, constructed
by interpolation between two parametrizations: famghe interaction between particles
in close vicinity, and another one for distant des (typically those that belong to
different molecules or that are distant in sequenan unfolded protein). This strategy
improves the balance between association/dissociates and allows the accurate
representation of both folded and unfolded protewlile reproducing properly the
reversibility of protein binding and protein dimzation, the first step of the aggregation
process. Very interestingly, our simple implicithant model reproduces the correct
thermodynamics of the system, while kinetics igddy accelerated due to the absence of
solvent molecules. This enables us to make a fastdormational sampling of unfolded
proteins, and explore efficiently the conformatiospace of large IDPs. The good
performance of our model opens the prospect of rgéing good predictions of the
conformational ensembles of large IDPs, imposstblestudy with standard explicit

solvent simulations.
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