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Abstract The purpose of this study was to evaluate the
long term effect of abrasivity of toothpastes normally used
over the corrosion behavior and ion release of the different
dental casting alloys. Three dental casting alloys (Ni—Cr,
Co—Cr and commercially pure Ti) were studied. Four spec-
imens of each material were immersed, brushed without
paste or brushed with one of four toothpastes of different
Relative Dentine Abrasivity (RDA 50, 52, 80, and 114). An
electric toothbrush with a load of 250 g was used for
420 min. Corrosion behavior was determined by means a
potenciostat with high sensitivity and the ion release deter-
mined by Inductively Coupled Plasma-Mass Spectrometry.
Two-way ANOVA and non-parametric tests were used to
detect significant differences. Titanium specimens exhibited
the best corrosion behavior after and before the tooth-
brushed, being the worst of the three alloys the Cr—Ni.
Titanium oxide produced spontaneously on the Ti surface is
the main cause of the high corrosion resistance of the
material. However, the eutectoid of the CrNi with chemical
composition between different phases produces pitting on
the phases boundaries with an important decrease of the
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corrosion resistance. Besides, the CrNi produces high values
of the Ni and Cr release. Slight increment in roughness were
observed after toothbrushing and depended on the material
but not on the toothpaste used. The increase of the microh-
ardness” (residual stresses) provokes a decrease of the
corrosion resistance and an increase of the ion release.

1 Introduction

Corrosion may be described as the deterioration of mate-
rials by aggressive action of the environment (atmosphere
and oral fluids). This term is used for metals, and the
mechanism of corrosion is mainly electrochemical. Corro-
sion is said to be continuous in the mouth, because these
ions are removed with the abrasion of foods, liquids and
toothbrushes [1-3].

Corrosion of dental alloys may result in biological,
functional and aesthetic effects. Besides, in corrosion
processes metal ions are released and may come into
contact with cells and tissues in the immediate environ-
ment, or be distributed throughout the body, mainly to the
intestine canal. If these ions are not biocompatible, then the
organism may be injured (toxicity and risk of sensitization)
if they are absorbed in sufficient quantity [4-7].

In vitro electrochemical techniques have been proven to
be sufficiently sensitive to measure even a low corrosion
rate; moreover, they are quick and convenient and are now
used by many researchers [1, 5, 6], although the clinical
relevance of these techniques is heavily debated.

The aim of this study is to evaluate, in vitro, the effect
of toothbrushing on ion release and corrosion resistance of
different dental alloys using rotation oscillating tooth-
brushing and different toothpastes in artificial saliva.
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2 Material and methods

The materials and treatments realized were the same of the
Part I of this work.

The schematic electrical set-up used to measure the
electrochemical parameters is shown in Fig. 1. The corro-
sion cell used is a glass cell with the working electrodes
and a saturated Ag/AgCl electrode used as a reference
(VidraFoc Spain). The distance from the reference elec-
trode to samples was 25 mm. The ratio of anode surface to
the cathode surface was equal to one. Dental alloys were
kept immersed in the electrolyte for all the measurements
taken. The electrolyte is artificial saliva at a temperature of
37°C and pH 6.7 with the composition given in the
Table 1. The electrolyte is changed for each experiment.
The corrosion tests were realized before and after of the
abrasive treatment, described in Part I.

The current versus time in the galvanic coupling studied
was controlled by a Hewlett Packard potentiostat (USA).
The variation of the potentials in an open short circuit was
controlled by a Digital Multimeter & Scanner Resistance
(Volatalab Radiometer, France). Using this type of
assembly it is possible to measure at the same time the
current and the common potential (short potential) versus
time of the galvanic coupling studied. More or less similar

POTENTIOSTAT

1: Sample
2: Standard electrode
3: Electrode

Fig. 1 Schematic electrical set-up used to measure the electrochem-
ical parameters

Table 1 Chemical composition

of the artificial saliva foppound ((;‘;g‘nf?)smo"
K,HPO, 0.20
KCl 1.20
KSCN 0.33
Na,HPO, 0.26
NaCl 0.70
NaHCO; 1.50
Urea 1.50
Lactic acid Until pH = 6.7
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assemblies were used by other authors in measurements
of Evans diagrams of galvanic couplings [6, 8-11].
The overall system was controlled using PC-compatible
computer. The preparations of the samples and the corro-
sion test carried out followed the ASTM standards G8 and
G15 [12].

The specimens were subjected to the following mea-
suring cycle:

e Immersion in the de-aerated electrolyte for 250 min
with recording of the open potential of each electrode.

e By means of a potentiostat the potential at intervals of
50 mV until 1.6 V was increased. Recordings of the
variation of the galvanic current density, potential, etc.
were obtained and the Tafel slopes were determined
from the Evan$ diagrams. In order to determine these
diagrams, it is very important to record the polarization
curves in a pseudostationary manner. In this study, the
250 min of immersion of specimens was regarded
sufficient.

The microstructure of the different dental materials was
observed before corrosion processes by optical microscopy
(MEF 4.0lympus, Japan). The corroded surfaces were
observed by scanning electron microscopy (JEOL 6400,
Japan) in order to observe the pitting zones and by means
of X-ray. dispersive energy microanalysis (Lynk, USA) to
determine the chemical composition of the places more
prone to corrosion.

Ten millilitres of solution was extracted before the tooth
brushed in order to analyse the metallic ions released. The
container was perfectly protected in order that no impurity
interfered with the results. The quantification of the ions
released was carried out by ICP-MS measurement
(Inductively Coupled Plasma-Mass Spectrometry) (IZASA.
Spain).

3 Results and discussion

Five specimens of each alloy were tested by electrochem-
ical methods. Each specimen was polarized five times and
polished before the tests, then the mean values were cal-
culated: the critical current density (i.,), the passive current
density (ip,), the corrosion potential (E.) and the critical
pitting potential (Ep), as can be observe in Table 2 for
each system (material-paste with different RDA). The light
increase of microhardness produces a decrease of the
corrosion resistance due to the increase of the surface
residual stress by the abrasion process [13, 14]. The dif-
ferent polarization tests for each sample do not showed
changes in the results for the different magnitudes.

The material with higher current density at a given
potential, is the more prone to corrode. Cp Titanium had
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the most passive (0.85 uA/cmz) and Nickel-Chromium
alloy had the most active (1.9 uA/cm?) critical current
density values. The value for the CoCr was 1.11 pA/cm?. If
passive current density is low, the alloy is said to passivate
more easily. The passive current density values were
0.68 uA/cm2 for the Titanium, 0.80 uA/cm2 for CoCr and
1.00 pA/em? for Ni—Cr alloy was the most active alloy,
with a pitting potential value of +90 mV. This potential is
+443 mV for CoCr and +555 mV for cp Ti [1, 15].

Titanium is one of the most corrosion-resistant materials
used for biomedical applications. The oxide that forms on
titanium provides the corrosion resistance under static
conditions, and it has often been reported that titanium is
not susceptible to pitting and/or crevice corrosion phe-
nomena [16].

In all the cases, the current density increases and the
corrosion potential decrease significatively when the
abrasivity of the toothpaste is bigger (Table 2). This
abrasivity increases the surface microhardness due to the

internal stresses produced in the surface of the titanium
brushed that favor the corrosion processes [17].

In the other hand, chromium is added to the nickel-based
alloys to improve the alloy’s ability to form a protective
oxide film on the surface. It has been suggested that chro-
mium content from 16% to 27% will provide an optimum
corrosion resistance for the nickel-based alloys, while the
addition of molybdenum will also further enhances the cor-
rosion resistance [17-19]. Alloys with lower chromium
content may not be able to develop oxide films adequate for
corrosion resistance. The microstructure of the nickel-
chromium alloy before corrosion test is shown in the Fig. 2.
This reveals its dendritic structure and an eutectic phase,
which is susceptible to preferential corrosion [20]. It can be
observed in the Scanning Electron Microscopy that an etched
surface is showing corrosion of the preferential phase of the
eutectic and thus a disruption of the oxide film (Fig. 2). This
alloy presents localized corrosion phenomena. The phases
formed by the minor alloying elements have been shown to

Table 2 Corrosion parameters analysed for the different metals and alloys with different toothpastes

Alloys Microhard. (HVN) Epa (mV) ier (MA/Cm?) i, (nA/em?) Ecogrr (mV) E,, (mV)
Ti 480.5 0.024 0.85 0.68 -20 +555
Ti abraded RDA 50 499.0 0.022 1.02 0.78 -30 +550
Ti abraded RDA 52 503.2 0.020 1.15 0.82 -32 +540
Ti abraded RDA 80 5102 0.019 1.19 0.85 —-35 +536
Ti abraded RDA 114 515.6 0.016 1.21 0.90 —41 +530
CrCo 527.8 —0.121 1.11 0.80 —45 +443
CoCr abraded RDA 50 5432 —0223 1.21 0.90 —-52 +343
CoCr abraded RDA 52 545.0 —0.225 1.31 0.95 —55 +312
CoCr abraded RDA 80 550.1 ~0.235 1.43 0.99 —62 +301
CrCo abraded RDA 114 559.2 ~0.289 1.56 1.10 71 +298
NiCr 3127 ~0.130 1.90 1.00 —100 +90
NiCr abraded RDA 50 339.6 —0.144 1.99 1.20 —110 +78
NiCr abraded RDA 52 3402 —0.158 2.08 1.25 —125 +69
NiCr abraded RDA 80 351.6 —0.168 2.14 1.30 —130 +60
NiCo abraded RDA 114 370.0 —0.171 2.30 1.33 —134 +58

Fig. 2 Microstructure of NiCr
alloy
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have a significant effect on the corrosion properties of the
nickel-based alloys [20]. The corrosion results can be
observed in Fig. 3 for the NiCr alloy brushed. Ti and CrCo
present only one phase in their microstructures and conse-
quently there are not differences in the chemical composition
in the material. This fact produces an important increase in
the corrosion behavior.

The results of the ion release are shown from Fig. 4. It
should be emphasized, in the first place, that the ion release
in the titanium material does not reach 40 ppb after tooth
brushed. This low release is due to the passivating film of
titanium oxide (inert coating) that reduces the metallic ion
diffusion to the external environment [21].

In relation to the Nickel-Chromium alloy produces the
largest amount of ion release, as can be appreciated in

10 pm

Fig. 3 Corrosion localized for the NiCr alloy
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Fig. 4 Ion release for each alloy and toothpaste used
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Fig. 4. This greater ion release in the environment can be
justified because this alloy presents the least resistance to
corrosion and accordingly presents a larger amount of
products of corrosion released to the environment [22].

The Nickel-Chromium alloy microstructure is not single
phase and accordingly does not present chemical homo-
geneity in all its structure like the other alloys studied. The
Chromium—Nickel alloy presents solidification dendrites
and around these a laminar eutectic structure. This means
in effect that there are plates one beside the other with a
different chemical composition, so accordingly the struc-
ture acts as if it were an electrochemical cell [23]. The
alloy should be chemically homogenized at high temper-
ature to improve the performance against corrosion and the
ion release of the alloy, followed by a rapid cooling to
avoid metallic diffusion and to produce a chemically
homogeneous structure.

Although the quantity of Ni ions released is much below
the 300-500 pg corresponding to the critical concentration
to induce allergy [24], ‘even in the case of untreated
surfaces, this quantity might be enough to induce long-term
inflammatory responses or alter cells behavior. Sun et al.
[25] showed that even at subtoxic concentrations, metal
ions can alter osteoblast behavior. For Ni ions, a significant
decrease in Alkaline Phosphatase Activity (ALP) and DNA
synthesis has been observed. Other works have shown that
Ni ions could be responsible for inducing the secretion of
different cytokines involved in the inflammatory process.
Wataha et al. [26] observed an increase of IL1J secretion
by macrophages at Ni concentrations known to be released
by NiTi dental materials. Moreover, in another study [27],
they also demonstrated that the quantity of IL1f secreted
from monocytes due to Ni ions release (7.2 pg/ml) was
sufficient to indirectly induce ICAMI1 (Intracellular
Adhesion Molecules that are involved in the recruitment of
other inflammatory cells) secretion on endothelial cells.
Finally, Cederbrant et al. [28] showed that even a quantity
as small as 1.2 pg/ml of Ni could induce an increase in
lymphocytes proliferation and IL10 secretion in subjects
allergic to Ni. Thus, the results obtained might be of great
importance to improve the long-term biocompatibility
properties of the material and to reduce sensitization to Ni
and allergies.
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