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Ivermectin to reduce malaria 
transmission I. Pharmacokinetic 
and pharmacodynamic considerations 
regarding efficacy and safety
Carlos Chaccour1,2,3* , Felix Hammann4 and N. Regina Rabinovich1,5

Abstract 

Ivermectin is an endectocide that has been used broadly in single dose community campaigns for the control of 
onchocerciasis and lymphatic filariasis for more than 30 years. There is now interest in the potential use of ivermectin 
regimens to reduce malaria transmission, envisaged as community-wide campaigns tailored to transmission patterns 
and as complement of the local vector control programme. The development of new ivermectin regimens or other 
novel endectocides will require integrated development of the drug in the context of traditional entomological tools 
and endpoints. This document examines the main pharmacokinetic and pharmacodynamic parameters of the medi-
cine and their potential influence on its vector control efficacy and safety at population level. This information could 
be valuable for trial design and clinical development into regulatory and policy pathways.
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Background
Vector control has been a fundamental pillar for the 
remarkable achievements in malaria control 2000–2015 
[1]. Residual transmission [2, 3] and insecticide resist-
ance [4] are some of the challenges faced for sustaining 
the gains of vector control. Innovation is required to 
reach the ambitious goals proposed by the Global Tech-
nical Strategy for Malaria 2016–2030 [5].

Ivermectin is a mixture of two semi-synthetic analogs 
of the fermentation products of Sterptomyces avermitilis. 
It belongs to the macrocyclic lactone complex; its chemi-
cal structure has been reviewed elsewhere [6]. Ivermectin 
is an anti-parasitic medicine approved for the treatment 
and control of human onchocerciasis, lymphatic fila-
riasis (LF), strongyloidiasis [7] and scabies [8]. It is also 
an endectocide, a drug capable of killing arthropods 
that feed on a treated individual, including Anopheles 

mosquitoes. This property makes mass drug administra-
tion (MDA) with ivermectin a potential tool to reduce 
malaria transmission [9, 10]. Such an intervention has 
the potential to reach malaria vectors that feed on the 
temporal and spatial gaps left by core vector control 
interventions (long-lasting insecticidal nets (LLINs) and 
indoor residual spraying (IRS).

This paper reviews the pharmacokinetic and pharma-
codynamic properties of ivermectin that can affect the 
efficacy and safety of MDA campaigns for malaria trans-
mission reduction.

Essential pharmacology
Mechanism of action
Ivermectin blocks synaptic transmission in invertebrates 
by binding to glutamate-gated chlorine channels in nerve 
and muscle, leading to hyperpolarization, paralysis and 
death of the invertebrate, including mosquitoes. These 
channels are part of the Cys-loop family of ligand-gated 
ion channels and ivermectin has consequently been 
shown to have additional effects on other members, for 
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instance the gamma-aminobutyric acid (GABA), hista-
mine, and pH-sensitive chloride channels [7, 11].

In mammals, ivermectin acts as an allosteric agonist of 
 GABAA receptor, another member of the Cys-loop family 
of ligand-gated ion channels. These receptors are located 
on neurons in many central nervous system regions (incl. 
the cerebral cortex, the limbic system, and thalamus) and 
increase chloride conductance, resulting in hyperpolari-
zation and less formation of action potentials [12]. In ver-
tebrates, GABA is a major inhibitory transmitter. The net 
effect of  GABAA receptor stimulation is central nervous 
depression, which defines the syndrome of ivermectin 
toxicity in vertebrates.

The glutamate‑gated chlorine channel in Anopheles 
gambiae
The glutamate-gated chlorine channel (GluCl) from 
Anopheles gambiae has recently been characterized [11]. 
These channels are predominantly expressed in some of 
the organs involved in motor and sensory systems, which 
explains the paralytic and other effects of the drug on 
mosquitoes, even at sub-lethal concentrations.

In An. gambiae, the gene for the GluCl can be expressed 
in four isoforms, but only one is insensitive to ivermectin. 
Little is known about the expression of these channels in 
wild mosquito populations. Mosquito resistance to iver-
mectin has not been reported, but theoretically selective 
over-expression of the ivermectin-insensitive isoform 
could develop as a resistance mechanism. However, the 
reduced fertility seen in mosquitoes taking sub-lethal 
doses of the drug [13, 14] could help delay this possibility.

Pharmacokinetics
The following discussion refers to pharmacokinetics of 
ivermectin in humans. Veterinary references are explic-
itly mentioned as such.

Absorption
Ivermectin is readily absorbed after oral administration. 
The absorption half-life ranges from 0.5 to 2.5 h [15, 16]. 
There are appreciable differences in systemic bioavailabil-
ity (F) depending on mode of administration and disease 
state; ethanol based liquid formulations have up to twice 
the availability of solid formulations (AUC ratio 1.08–
2.29) [15]. Infestations with worms such as Strongyloides 
can lead to paralytic ileus and severely impaired absorp-
tion of ivermectin. This has led to several patients requir-
ing treatment with parenteral veterinary formulations 
[17, 18]. Time since last meal does not seem to influence 
ivermectin’s bioavailability, although this is still subject to 
debate [19, 20].

Ivermectin is subject to presystemic metabolism and 
efflux in the gut. Intestinal cytochrome  P450 3A4 (CYP 

3A4) can degrade ivermectin [21], and the active efflux 
pump P-glycoprotein (P-gp, MDR1, ABCB1), located 
luminally on intestinal enterocytes, transports absorbed 
ivermectin from the enterocyte back into the lumen [22]. 
Drugs or xenobiotics can induce or inhibit the activity of 
these mechanisms [23], as can pharmacogenetics differ-
ences, most notably in P-gp expression [24, 25].

As a lipophilic and comparatively heavy compound, 
ivermectin is thought to be subject to enterohepatic cir-
culation (EHC) [16]. This is further supported by iver-
mectin being a substrate for important biliary efflux 
pumps (P-gp, and Breast cancer resistance protein 
(BCRP, ABCG2) [26]. Presence of EHC can increase the 
total exposure of a compound in that it can be absorbed 
multiple times, with high peak after initial administra-
tion and subsequent peaks after the compound has been 
excreted into bile and then reabsorbed again in the small 
intestine. At low doses, the peak concentration (Cmax) is 
proportional to the dose, but this proportionality is lost 
with doses equal or higher than 150 mcg/kg [27]. After a 
single oral dose of 150 mcg/kg, the peak is around 40 ng/
ml [7, 15, 28]. The reported time needed to reach Cmax 
(Tmax) varies but is generally accepted to be approxi-
mately 4 h [28].

Figure  1 represents the PK curve observed by Elkass-
abi [28] in Sudanese patients. The relationship between 
plasma concentration and the mortality of mosquitoes 
feeding on treated individuals is reviewed in the efficacy 
section below.

Distribution
Ivermectin is highly lipophilic, shows a great degree of 
protein binding (>90%), and distributes widely in the 
body with a volume of distribution  (Vd) of 3.1–3.5  l/kg. 
Owing to its lipophilicity, ivermectin partitions to adi-
pose tissue, which increases  Vd and leads to accumula-
tion with prolonged elimination, as drug distributes back 
to plasma from fatty tissue [16, 29]. This can explain the 
different pharmacokinetic pattern seen in women and 
volunteers with higher body mass index. Protein binding 
becomes important in populations with high prevalence 
of malnutrition: there, lower plasma protein levels (espe-
cially hypoalbuminemia) will result in higher free con-
centrations of ivermectin and, subsequently, more drug 
effect and toxicity.

Distribution to the brain is hindered by the blood–
brain-barrier. Specifically, this is mediated by ivermec-
tin’s size, which is not conducive to passive diffusion, and 
the presence of efflux pumps, for which ivermectin is a 
substrate. The primary efflux pump is the P-gp (of which 
ivermectin is also an inhibitor), although BCRP can also 
transport ivermectin [22, 26]. The blood–brain-barrier 
therefore restricts ivermectin’s access to its toxicity target 
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in mammals, the central nervous  GABAA-receptor and 
forms the basis for ivermectin’s good tolerability. P-gp 
expression at birth is quite low and reaches adult levels 
only after 6 months. This plays a large role in the suscep-
tibility to central nervous effects from opioids [30] and 
possibly also for other P-gp substrates such as ivermec-
tin. No controlled trials of ivermectin pharmacokinetics 
and safety have been performed in neonates and infants. 
In rats, however, ivermectin significantly increased post-
natal mortality, presumably through exposure from 
maternal milk [31].

Metabolism and elimination
The plasma half-life is approximately 18 h [7]. Ivermectin 
is metabolized by the CYP3A4 in gut and liver [32]. The 
hepatic cytochrome  P450 system at birth has 30–50% of 
the activity of adults [33, 34]. By consequence, failure to 
adjust to weight but also for decreased hepatic clearance 
could theoretically lead to higher than expected ivermec-
tin exposure and toxicity in neonates and infants. Less 
than 1% of ivermectin is excreted unchanged in the urine 
(i.e. renal insufficiency will have little impact on phar-
macokinetics), with most of the drug being eliminated 
through bile and faeces.

Ivermectin’s metabolites are present at very low con-
centration, which makes isolation and structural char-
acterization challenging. Authors have resorted to first 

identify metabolites in  vitro by means of liver micro-
somes before attempting an in vivo characterization [27, 
35]. The correlation of both systems is good in several 
species tested. Following this methodology, three polar 
metabolites: 24-hydroxymethyl-H2B1a, 24-hydroxym-
ethyl-H2B1a-Monosaccharide and 24-hydroxymethyl-
H2B1b account for up to 50% of all metabolites in liver 
tissue of cattle, rat and sheep in the first 14  days after 
dosing [27, 35]. In swine, more than two-thirds of liver 
residues are composed of 3″-O-desmethyl-H2B1a and 
3″-O-desmethyl-  H2B1b [27, 35].

In humans, studies with radio-labelled ivermectin 
show that peak plasma concentration of metabolites is 
about twice that of the parent drug and occurs later, at 
7 h (vs four for parent drug) [36]. Plasma metabolites are 
less polar than the parent drug and could be fatty acid 
ester conjugates of the monosaccharides or aglycone of 
the parent drug [36]. The major metabolites excreted 
are 3″-O-desmethyl-H2B1a and 3″-O-desmethyl-H2B1a-
Monosaccharide in urine and faeces respectively [36]. 
The plasma half-life of metabolites is about 72 h, fourfold 
that of the parent drug. If these metabolites have mos-
quitocidal activity, this could explain recent findings of a 
“post-ivermectin” effect in which mosquitoes feeding on 
treated volunteers long after the parent drug is no more 
identifiable in plasma still show an increased mortality 
[37, 38].
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Fig. 1 The PK curve of ivermectin. Plasma concentration of ivermectin in 10 Sudanese patients infected with onchocerciasis after a single oral 150 
mcg/kg dose (Data from Elkassabi [28])
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Ivermectin is metabolized by CYP3A4 [32] but in vitro 
studies suggest it does not significantly inhibit its metab-
olizing activity or that of CYP2D6, CYP2C9, CYP1A2, 
and CYP2E1, all involved in its metabolism to a lower 
extent [7]. There is, however, a theoretical possibility of 
interaction with CYP3A4 inhibitors (such as protease 
inhibitors) or inducers such as rifampicin.

Ivermectin is both a substrate and a potent inducer 
of the P-gp. P-gp plays a role in the transportation of 
ivermectin to the intestinal lumen and in preventing 
its crossing of the blood-brain barrier [39]. P-gp inhibi-
tors (such as antifungal azoles) can increase ivermectin 
plasma levels in animals [40, 41]. Post-marketing reports 
of increased International Normalized Ratio (INR) have 
been rarely reported when ivermectin was co-adminis-
tered with warfarin [7].

The drug–drug interactions of ivermectin with arte-
misinin-based combination therapy (ACT) have not 
been well explored. Co-administration with artemether–
lumefantrine was well tolerated in a small study in Bur-
kina Faso [42], data on its safety in combination with 
dihydroartemisinin-piperaquine will be available from 
141 participants in the IVERMAL trial [43] and further 
evidence on its safety in combination with dihydroarte-
misinin-piperaquine and primaquine will be available 
from the IMSEA trial [37].

Assessing the efficacy of ivermectin to kill 
mosquitoes
Efficacy is defined as the killing effect of ingestion of 
ivermectin by mosquitoes via blood (either through a 
direct-skin blood meal or through in  vitro/membrane 
feeding methods). The evidence supporting this lethal 
effect has been reviewed extensively [9, 10, 44] and will 
not be re-visited here (see Additional file 1 for all stud-
ies). However, studies to assess the efficacy of ivermectin 
in reducing the survival of mosquitoes are not standard-
ized. A typical approach is to allow a sample of vectors to 
feed on blood containing the drug or on a treated subject. 
Resulting mortality is assessed at intervals and reported 
in different formats.

The concept of lethal concentration 50  (LC50)
The  LC50 is a commonly seen metric of ivermectin kill-
ing effect on mosquitoes [45, 46]; it is the concentration 
of ivermectin in the imbibed solution or blood meal 
that kills 50% of the mosquitoes during a defined period 
of observation. It is a measure of efficacy similar to the 
minimum inhibitory concentration used in bacteriology 
and it should not be misconstrued that the goal is to kill 
only 50% of the feeding mosquitoes. The  LC50 will vary 
according to the time point chosen for the mortality 
assessment. At a given drug concentration and mosquito 

species, the 3-day  LC50 will be higher than the 9-day 
 LC50, i.e. less drug is needed to kill 50% of the mosqui-
toes in 9 days, due to the addition of naturally occurring 
deaths. An alternative approach would be to determine 
the time to median mortality at any given concentration, 
but this has not been commonly used.

The feeding method used to determine the  LC50 could 
also influence the measurement outcome. Ivermectin is 
highly lipophilic, it is found in higher concentrations in 
dermal and adipose tissue than venous plasma [29]. It is 
hypothesized that the resulting concentration gradient 
between the adipose tissue and the capillary blood may 
increase the drug concentration in the capillaries when 
compared to venous blood. This may be relevant as mos-
quitoes imbibe blood from subdermal capillaries and thus 
may ingest higher concentrations of ivermectin than would 
be predicted from the drug concentration in venous sam-
ples, i.e. mosquitoes feeding directly on the skin of a vol-
unteer may have higher mortality than mosquitoes feeding 
on the blood of the same volunteer in a membrane-feeding 
device. Evidence is being generated with aim to clarify 
confounding of mortality measures by route of administra-
tion to mosquitoes, and perhaps other factors.

Pharmacokinetic considerations regarding efficacy
The efficacy of ivermectin to reduce transmission is 
expected to be a function mainly of its lethality to the 
vector population. Additional benefit will be obtained 
from a change in the age structure of the mosquito pop-
ulation: in areas of ivermectin MDA, there is increasing 
mortality of older biting females, this skews the mosquito 
population towards younger (less infectious) ages and 
reduces transmission beyond the initially seen lethality 
for up to 3  weeks [10, 47]. Additionally, older mosqui-
toes seem to be more susceptible to ivermectin that their 
younger counterparts [48].

Along these lines, the sublethal effects of the drug on 
mosquito fertility and flying capacity [13, 14, 45] will 
contribute to the overall effect (see “Other effects of iver-
mectin” below). Both lethality and sublethal effects will 
be closely related to drug concentration in reached in the 
blood of treated individuals and to the time this blood 
concentration is sustained.

All the concepts defined here refer to the mortality of 
mosquitoes feeding on a single treated person.

The mortality of mosquitoes caused by ivermectin has a 
dose–response gradient and is limited by the theoretical 
 LC100
The higher the concentration, the higher the mortality 
of mosquitoes feeding on those individuals at that time 
will be [42], this finding has been supported by model-
ling [49]. This increase in lethality will be limited by the 
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theoretical  LC100 (the concentration killing 100% of bit-
ing mosquitoes, this is a theoretical concentration diffi-
cult to reach in nature). Any blood concentration above 
this threshold will not contribute to additional mortality 
(one cannot kill more than 100% of the biting mosqui-
toes). Figure 2 illustrates this concept.

Ivermectin’s impact on mosquito mortality is directly related 
to the time there is a lethal concentration in the blood
The longer the drug remains in the blood, the more mos-
quitoes it will kill or disable. Any increase in duration of 

mosquitocidal concentrations is expected to contribute 
to additional mortality. Modelling shows that the time 
the drug remains in blood above mosquito-killing levels 
is the parameter that drives impact on transmission [50].

The lethal effect is heterogenic
The lethality observed in any mosquito population feed-
ing on a treated individual after a single oral dose will not 
be uniform. It will vary according to the plasma levels at 
the time of biting in close relationship with the PK of the 
drug. Figure  3 illustrates this concept. The total effect 
will be the sum of the proportions dying at different time 
points.

The lethal effect could be a function of the area under the 
curve
The blood concentration and the time the drug remains 
in the blood can be represented by the area under the 
curve (AUC). Because the blood concentration above the 
theoretical  LC100 cannot add to lethality, the efficacy can 
be expected to be a function of the AUC that is below the 
 LC100. The AUC below  LC100 will vary according to the 
magnitude of the single dose given, the number of doses, 
the administration route, the absorption and distribution 
rates of the drug as well as its metabolism and elimina-
tion. Secondary release from adipose tissue after accu-
mulation could also play a role.

Conceptually, the ideal ivermectin dose would maximize the 
time drug level is near the LC100 without wasting drug going 
beyond the level at which most mosquitoes are killed
Given the heterogeneity of mosquito lethality in time, in the 
(theoretical) presence of a constant biting rate, a “peaked” 

Blood 
concentra�on

LC100

Time

A B C D

Fig. 2 The effect of increasing concentrations of ivermectin on its 
efficacy. Columns A, B and C are expected to have increasing efficacy. 
The area above the  LC100 in column D will not contribute to further 
mosquito mortality. In the absence of a long elimination tail, the 
efficacy of the dose of column C and that of column D will be equal. 
Columns are used for illustration.  LC100: lethal concentration 100

Fig. 3 Heterogeneity of mosquito mortality according to the ivermectin plasma concentration at the time of biting.  LC50 and  LC25 according to 
Kobylinski et al. [46]. The  LC95 and  LC75 shown have not been determined and are shown for illustration purposes. LC lethal concentration
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curve with a Cmax close to the LC100, but with a narrow 
base, can have the same efficacy of a wider curve, even if the 
Cmax is lower. Figure 4a illustrates this concept. Ivermectin 
MDA could be however tailored to make the Cmax coincide 
with the peak biting activity of the local vectors [11].

Following this rationale and considering the point illus-
trated in Fig.  2, a large dose yielding a “peaked” curve 
with Cmax high above the  LC100 could be less efficacious 
than a dosing scheme yielding the same area under the 
curve without surpassing the  LC100. This is because the 
AUC above the  LC100 will not directly contribute to the 
efficacy. This is illustrated in Fig. 4b.

Time above lethality target
Modelling can help generate a robust hypothesis on the 
mosquito lethality target at a population level. This will 

be a function of the individual dose per body weight. The 
time above lethality target is related to the area under 
the curve but takes into consideration the susceptibility 
of the local mosquitoes. It can be expressed in time as a 
“mosquitocidal window”. Figure 5 illustrates how the sus-
ceptibility of the local vector can influence this variable.

Dose–response curves
The slope of the curve will represent the logarithmic 
increase in the AUC below  LC100 needed to kill a higher 
proportion of mosquitoes. Although recent data suggests 
the relationship between plasma concentration and mos-
quito mortality is linear at the individual level [42], at the 
population level the relationship AUC-efficacy is unlikely 
to be so. Figure 6 illustrates this concept.

Options to increase the efficacy of ivermectin
Higher doses per body weight, multiple dose regimens, 
or slow-release formulations are all theoretical ways to 
increase the AUC and hence the efficacy. The duration of 
sublethal concentrations can play an important role in gen-
eral efficacy as vectors imbibing sublethal concentrations 
can have a higher mortality rate due to impaired motility 
or temporary paralysis (knock-down). Epidemiological and 
PK modelling can be used to plan the doses and regimens 
to be tested in field trials, but care must be taken to reflect 
the potential importance of this additional effects.

Higher doses (increasing the Cmax)
Using higher doses per body weight will result in larger 
AUC driven by a higher Cmax (Fig.  7). This will result 
in longer time above lethal concentrations because 
the slope of elimination will remain the same. This is 
the most straight-forward method because it could be 
implemented using the current oral formulation at a sin-
gle encounter. The main challenges with this approach 
include the safety of a higher Cmax that could increase 
toxicity while and partial drug waste due to a portion of 
the AUC above the theoretical  LC100. Acceptability in 
areas where previous lower ivermectin doses have been 
used must be part of integrated community engagement, 
also needed for the understanding of direct and indirect 
benefits that can be expected from this approach.

Multi‑dose regimens
A multiple-dose regimen would result in a series of peak 
concentrations that could have cumulative effect depend-
ing on the frequency of the doses (Fig.  8). The effect of 
every dose would also be limited by the theoretical  LC100 
plateau. The main limitations of this approach are com-
pliance and the logistics of multiple rounds of MDA. 
Additionally, the valleys caused by the intermittent dos-
ing may result in “vulnerable windows” because levels 

Blood 
concentra�on

LC100

Time

BA

Blood 
concentra�on

LC100

Time

A B

a

b

Fig. 4 AUC of different dosing schemes and their potential relation-
ship with efficacy. a The area of both columns is the same (A = B), 
hence, in the presence of constant biting rate, the total number of 
mosquitoes killed by A and B might me similar, even if B does not 
reach the same Cmax. b If the theoretical  LC100 is surpassed (light 
blue area), the drug consumed to reach such plasma levels is partly 
wasted because it does not contribute to efficacy and may in turn 
increase the possibility of side effects. Columns are used only for 
illustration. LC100 lethal concentration 100
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might be in the insufficient dose range, decreasing effi-
cacy. Preliminary data from a recent cluster-randomized 
trial showed a 20% reduction in clinical incidence of 
malaria in children under five by active case detection in 
areas where a 200 mcg/kg dose was given to all eligible 
population every 3 weeks for six doses [51].

Slow‑release formulations
A long-lasting, slow-release formulation [52, 53] would 
have effect on the Cmax depending on the release rate, 
which, if controlled, could theoretically improve the 
efficacy/safety ratio (Fig.  9). The main issue with this 
approach is investment in R&D and the need to reassess 
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the efficacy of the new formulation on the treatment of 
neglected tropical diseases.

Other options
One alternative to increase the AUC is to prolong the 
half-life of the drug (alter the elimination slope), which 
could theoretically be achieved with CYP3A4 and/or 
P-gp inhibitors. Doing so, however, may unreasonably 
increase the risk of toxicities and drug interactions, espe-
cially with antiretrovirals. The addition of a rather spe-
cific CYP3A4 inhibitor with no P-gp inhibition, such as 

voriconazole [54], would be an interesting approach as 
this would increase bioavailability of ivermectin while not 
impairing P-gp’s vital function at the blood–brain barrier.

Other effects of ivermectin
In addition to the direct killing effect of ivermectin, there 
several sub-lethal effects that can increase the net impact 
of the drug on malaria transmission:

Effect on vector fertility
Several studies report diminished fertility of Anoph-
eles mosquitoes after an ivermectin-loaded blood meal 
containing sub-lethal concentrations [13, 14]. Reduced 
hatching of the laid eggs has also been observed. Of note, 
this effect may delay but not completely avoid the appear-
ance of ivermectin-resistant mosquitoes.

Effects on vector behaviour
Knock down, lesser flight performance and reduced ten-
dency to bite have all been reported after taking sublethal 
ivermectin concentrations in a blood meal [45, 55]. These 
effects measured in the laboratory might contribute to 
greater mosquito mortality in the field.

Effects on the parasite
In the mosquito, ivermectin might inhibit plasmodium 
sporogony [46, 56] and could have an effect on liver schi-
zonts as seen in  vitro [57, 58] and confirmed in mouse 
model [57], these findings require further evaluation.

Key knowledge gaps regarding efficacy
Methods

  • Lack of standardized protocols for the assessment of 
ivermectin’s efficacy.

  • Lack of correlation between the mortality observed 
in mosquitoes taking ivermectin through membrane 
vs those taking it via skin-feeding. Validating mem-
brane feeds as a reliable, predictive assay compared 
to direct skin-feeding would facilitate evaluation of 
different approaches.

Lc50
The main gap is dearth of data on The  LC50 deter-
mined via human direct skin-feeding. Results should 
be obtained for different species and strains in differ-
ent sites, especially for known outdoor-biting species or 
main vectors of areas targeted for elimination.

Time above lethality
Determine the blood concentration that should be 
achieved with an ivermectin-based tool and how long 
should it be sustained in order to have a measurable 
impact on transmission.
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per-body weight in a single encounter increases the AUC by increas-
ing the Cmax. AUC area under the curve
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Other effects
Assess whether ivermectin, by having a mechanism of 
action different from all public health insecticides avail-
able today, could help reduce the risk of insecticide 
resistance that is not CYP-mediated. Also the influence 
of ivermectin´s effects on mosquito fertility in poten-
tially delaying the appearance of ivermectin-resistant 
mosquitoes.

PK considerations regarding safety
Ivermectin has been licensed for human use for almost 
30  years, and its safety has been assessed in over 70 
trials. More than 2.7 billion 150–200 mcg/kg single 

doses have been distributed by the Mectizan Donation 
programme [59]. Since community use of ivermectin 
implies that drug will be given to at risk and infected 
individuals, all for indirect benefit of lowering malaria 
disease rates, the safety profile and the risk–benefit 
assessment will be critical. For use as a vector control 
measure, it is the combination of the blood levels and 
the duration of these levels that will need to have an 
acceptable safety profile. Both parameters are directly 
related to drug dosage and regimen required to reach 
impact. Regarding safety, the adverse effect rate is also 
expected to be a function of the cumulative dose. Host 
factors such as illnesses and co-administered drugs 
must also be taken into account.

Therapeutic index
Drugs developed for elimination endeavours and MDA 
administration must have a high therapeutic index [60].
The therapeutic index is a measure of the range of doses 
that elicit a therapeutic response without unacceptable 
adverse effects [61]. Using ivermectin for vector control, 
this relationship will be between the mosquito mortality 
(as a proxy for efficacy) and the AUC (as a proxy for dose 
per body weight and number of doses). Figure  10 illus-
trates this concept.

As an example, Guzzo et al. administered 1.404–2.000 
mcg/kg in a single dose to 16 healthy volunteers in the 
US (>tenfold the usual 150-200 mcg/kg single dose for 
onchocerciasis) and did not report a greater adverse 
effect rate than in controls [62]. These findings suggest 
the therapeutic index of ivermectin for onchocerciasis 
control is at least higher than 10. For malaria control the 
therapeutic index will be lower as the dose needed will be 
higher. The findings of Guzzo et al. provide a good safety 
reference at 3.200 mcg/kg in a week (see Table  1). The 
Centers for Disease Control and Prevention recommends 
doses of up to 1.400 mcg/kg within a month for the treat-
ment of severe crusted scabies [63].

The efficacy/safety ratio
A particular AUC will elicit a specific efficacy/adverse 
effects ratio. This ratio is expected to increase exponen-
tially with the AUC; in theory, once the  LC100 has been 
reached, this ratio can only increase at the expense of the 
time above lethality. Using the therapeutic index concept 
described above, after a certain cumulative dose, toxicity 
will start to increase and the efficacy/adverse effects ratio 
will be reduced (Fig.  11). Increasing the dose per body 
weight given in a single encounter is a possible strategy 
to increase the efficacy. This strategy, however, must be 
carefully evaluated since the AUC above the  LC100 will 
minimally contribute to efficacy and may in turn increase 
the risk of toxicity.
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single dose
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Fig. 8 Increasing efficacy by means of multiple dosing. Using a series 
of multiple doses can increase the AUC while avoiding reaching 
plasma concentrations where the efficacy/safety ratio is lower
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Fig. 9 Increasing efficacy with a slow-release formulation. A long 
lasting formulation would increase AUC by prolonging time above 
lethality, without significant increase in the Cmax and theoretically 
improving the efficacy/safety ratio. AUC area under the curve
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Safety profile of ivermectin in community campaigns–
implications for malaria
Since the creation of the Mectizan Donation Programme 
in 1988, more than 2.7 billion doses of ivermectin have 
been distributed for the control of onchocerciasis and 
lymphatic filariasis in Africa, Latin America, and Asia 
[59]. Exclusion criteria are: children under 15  kg, preg-
nant women, nursing mothers in the 1st week after deliv-
ery, the severely ill and those with known hypersensitivity 
to the drug [64]. Coverage target is normally between 65 
and 80% of the whole population [65].

Safety of ivermectin in onchocerciasis MDA campaigns
In onchocerciasis-infected patients, adverse events 
(AE) to ivermectin are usually mild, transient, associ-
ated with intensity of microfilarial infection and pri-
marily characterized as mild Mazzoti-type reactions to 
dying microfilaria [66]. These effects wane in subsequent 
administrations [67]. No significant association has been 
found between ivermectin plasma levels and AE recorded 
[68]. A recent Cochrane review of ivermectin for river 
blindness shows that side effects are rarely reported [69]. 
Outside Loa loa endemic areas (see below), the drug is 
remarkably safe.

Loa‑associated encephalopathy
Loa loa is a parasitic infection that is broadly present 
in geographies overlapping the onchocerciasis/LF pro-
grammes. While causing limited direct disease, adminis-
tration of ivermectin to individuals infested with Loa loa 
can result in encephalopathy in 0.01–0.11% of the treated 
population [70], if the Loa loa burden is high (>30.000 
parasites/ml), the odds ratio can be above 1000 [70]. 
The syndrome includes confusion, lethargy and coma. 

The pathophysiology behind this syndrome is not clear, 
but rapid killing of Loa microfilariae or even defects in 
transmembrane efflux pumps may play a role [70, 71]. 
At a population level, high levels of microfilaraemia are 
seen in 1% of the population in areas with an overall Loa 
loa prevalence greater than 20%. This threshold was used 
by the Mectizan Expert Committee and the Technical 
Consultative Committee to define the preventive strate-
gies recommended for ivermectin distribution in Oncho-
cerca and Loa co-endemic areas [72]. Nonetheless, the 
risk of this severe adverse event excludes parts of Loa-
endemic central Africa from ivermectin MDA campaigns 
for the elimination of onchocerciasis; this includes areas 
of Angola, Cameroon, Central African Republic, Chad, 
Congo, Democratic Republic of the Congo, Equatorial 
Guinea, Ethiopia, Gabon, Nigeria and South Sudan [73].

Several tools and strategies are emerging in response to 
the limitations caused by Loa which creates a near term 
window of opportunity for malaria: New diagnostic tools 
(loascope) allow for quantitative population screening in 
real time [74] and novel biomarkers could also predict 
burden at individual level [75]. This test and (not) treat 
strategy may offer a programmatic approach to address-
ing the Loa barrier to ivermectin treatment. This strategy 
could reduce the Loa burden at population level, lower-
ing the risk of parasite-burden-related adverse reactions. 
Finally, single-administration of drug combos [76] can 
offer a rapid pathway to LF elimination, this treatment 
also reduces Loa loa burden and thus risks from ivermec-
tin for any indication (including malaria).

Safety of ivermectin at doses higher or more frequent 
than approved for NTDs
A single ivermectin dose of 150–200 mcg/kg results in a 
too short-lasting mosquito-killing effect to be applicable 
for malaria impact. Therefore, for this indication, higher 
doses and/or multi-dose regimens than those currently 
used for onchocerciasis will be needed. A range of dos-
ages are already recommended for different indications. 
The FDA-approved ivermectin dose for strongyloidia-
sis MDA is 150 mcg/kg (every 12 months), although the 
possibility of quarterly use in individual patients is also 
included in the label [7]. The French authorities recom-
mend up to 400 mcg/kg for the control of lymphatic fila-
riasis in selected areas [77]. For severe crusted scabies, up 
to seven 200 mcg/kg doses within a month in combina-
tion with topical treatment and keratolytics are recom-
mended in the US [63] and Australia [78]. The possibility 
of using more than 3 doses for the treatment of moderate 
to severe crusted scabies cases is included in the Austral-
ian label [8].

Very few studies, at varying doses and frequencies, 
have evaluated the safety of ivermectin regimens at doses 
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above 400 mcg/kg for control of NTDs (Table  1). Phar-
macokinetic modelling suggests that a regime consisting 
of a daily dose of 600 mcg/kg for 3 days has the potential 
to sustain ivermectin concentrations lethal to Anopheles 
mosquitoes for at least 1  week [43]. This is the basis of 
the recently finished IVERMAL trial in Kenya [43].

The skewing of the age structure of the mosquito popu-
lation for around 3 weeks after a single round of MDA for 
onchocerciasis (150 mcg/kg) could also support reduc-
tion in transmission of malaria. This has been used as the 
basis for the RIMDAMAL trial [79] which consisted on 
six rounds of ivermectin MDA 3 weeks apart each. Pre-
liminary data from this cluster-randomized trial shows 
no significant adverse events with this those [51].

Safety of ivermectin during pregnancy and lactation
Pre-clinical studies in pregnant mice, rats and rabbits 
show teratogenicity at doses toxic to the mother (400 
mcg/kg, 5.000 mcg/kg and 3.000 mcg/kg during preg-
nancy days 6–18 respectively) [7, 80]. Ivermectin can 

produce delayed development and increase pup mortality 
in rats at maternal doses of 1600 mcg/kg [80]. It is esti-
mated that in Onchocerca-endemic areas, up to 50% of 
pregnant women in the first trimester are systematically 
inadvertently treated with ivermectin during MDA cam-
paigns [81].

Five studies have specifically evaluated the effects of 
inadvertent ivermectin treatment during pregnancy (four 
case–control studies and one clinical trial). The results 
are presented in Table  2. The studies encompass a total 
of 839 women treated during pregnancy, including 442 
women treated in the first trimester. No difference with 
controls is reported regarding pregnancy outcome, new-
born health status or early child development. There is 
however no systematic database of inadvertent exposure 
during pregnancy to date. Based on these results, the 
proscription of ivermectin treatment during pregnancy 
was lifted for areas where women are at high risk of blind-
ness. The decision to include pregnant women, however, 
is left at the discretion of the program directors [82].

Low ivermectin levels are found in human breast milk 
after a single oral dose of 150–250 mcg/kg in healthy 
women with a peak at 1  h post-ingestion of 18.5  ng/ml 
[80, 83]. It remains detectable in human milk at very low 
levels (<1 ng/ml) for up to 14 days after a single dose [80]. 
Only nursing mothers in the 1st week after delivery are 
systematically excluded during MDA campaigns [64, 82].

A systematic review of the evidence regarding safety in 
pregnancy is needed. This is important because at pop-
ulation level the effectiveness of any ivermectin-based 
strategy will be determined by the population coverage 
achieved [84]. If the safety of the expected higher or more 
frequent doses needed for malaria is not established 
in pregnancy, excluding women in reproductive age is 

op�mal cumula�ve 
dose

ef
fic

ac
y 

: s
af

et
y 

ra
tio

cumula�ve dose

Fig. 11 The efficacy/safety ratio. The relationship between the effi-
cacy: adverse effect ratio and the cumulative dose

Table 2 Five studies assessing the safety of ivermectin during pregnancy compared with community based controls

a  Clinical trial

Reference Country Number of  
pregnant 
women

Number 
inadvertently 
treated

In the first 
trimester

Pregnancy 
outcome

Child mortality Child develop‑
ment

Pacque et al. [81] Liberia 939 200 171 (85%) No difference 
with controls

No difference 
with controls

No difference with 
controls (follow-
up 2 years)

Doumbo et al. 
[102]

Mali 461 82 Not stated Data not readily assessable

Chippaux et al. 
[103]

Cameroon 511 110 (93) 85% No difference 
with controls

No difference 
with controls

No difference with 
controls (follow-
up 1 year)

Gyapong et al. 
[104]

Ghana 343 50 (50) 100% No difference 
with controls

No difference 
with controls

No difference with 
controls (follow-
up not stated)

Ndyomugyenyi 
et al. [105]

Uganda 834 397a All in 2nd tri-
mester

No difference 
with controls

No difference 
with controls

Not included
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likely to reduce the efficacy of the intervention to reduce 
malaria transmission.

Safety of ivermectin in infants and children
Ivermectin is licensed for the treatment of children 
weighing more than 15  kg [7, 8]. In MDA campaigns a 
height of 90 cm is used as a proxy for 15 kg. A preclini-
cal toxicology study in 24 neonatal (7–13 days old) rhe-
sus monkeys showed no adverse reaction after 2 weeks of 
daily doses of up to 100 mcg/kg [80]. An additional study 
in eight immature rhesus monkeys (13–21 months old), 
receiving doses of up to 1.200 mcg/kg for 14–16  days 
showed no treatment related findings; three animals pre-
sented increased serum transaminases which was attrib-
uted to an infectious origin. In humans, there are only 
anecdotal case reports [85, 86] and small case series [87] 
of its use off-label in infants less than 15 kg.

Similarly to pregnancy, the importance of a clear guid-
ance regarding use in children weighing less than 15 kg 
is directly related to ivermectin MDA efficacy. At popu-
lation level, coverage will be directly proportional to 
efficacy [84]. Importantly, the impact of including small 
children on the overall efficacy of ivermectin MDA for 
malaria will be related to the mosquito biting rate as well 
as risk of transmission in this particular population.

In areas of high transmission, where most of disease 
burden occurs in children under 5 years, this age group 
is expected to receive the largest proportional benefit 
of ivermectin MDA to reduce malaria transmission. In 
the context of the RIMDAMAL trial, the main outcome 
measure was malaria incidence in children under 5 years 
of age, where most of these children did not receive iver-
mectin [51]. Conducting dose-ranging studies in children 
will allow for increased population coverage of an iver-
mectin-based vector control intervention.

Safety of ivermectin in high‑risk groups
There is no renal or hepatic ivermectin dose defined [7]. 
Renal dose adjustments would not appear necessary for 
a drug for which less than 1% is excreted unchanged in 
urine. It is conceivable that active metabolites exist that 
are eliminated renally. There is little information available 
on the safety of ivermectin in patients over 65  years of 
age. A report of excess deaths (several causes) among 47 
residents of a nursing home following ivermectin MDA 
for scabies (single dose 150–200 mcg/kg) [88] raised 
heated debate [89–92]. Ivermectin was licensed in Aus-
tralia for the treatment of scabies in 2013 [93]. The elderly 
tend to have less adipose tissue and thus lower volumes 
of distribution for lipophilic drugs, such as ivermectin, 
which will result in higher plasma concentrations. They 
are also more prone to hypoalbuminaemia due to mal-
nutrition, potentially yielding higher free concentrations 

of ivermectin. Lastly, hepatic function (and with that: 
capacity for detoxification) decreases with age.

There is no evident biological basis for concern on 
potential cardio-toxicity. Dukuly et al. [94] prospectively 
followed 32 men (mean age 61 years), including 20 with 
baseline EKG abnormalities and found no significant 
changes after ivermectin treatment.

HIV-infected individuals are not excluded from treat-
ment based on their serological status [64]. Potential 
drug–drug interactions with anti retrovirals or TB drugs 
must be particularly taken into account when treating 
this special population (see drug interactions below).

Concerns about the theoretical risk of using ivermectin 
in patients with epilepsy have been resolved [82, 95].

Environmental concerns about ivermectin
There are three ways in which ivermectin can enter the 
environment: excretion from treated humans or animals, 
from disposal of pharmaceutical waste, or from emis-
sions from manufacturing sites [80]. Haley et al. showed 
ivermectin undergoes rapid degradation in light and soil 
[80, 96]. This, combined with tight binding to soil and 
sediment prevents environmental accumulation and 
minimizes its potential impact on non-target organisms 
[80, 96]. Veterinary ivermectin formulations affect the 
dung fauna and there was initial concern that it may delay 
dung degradation [97]. More recent studies have suggest 
this is not the case [98].

Key knowledge gaps regarding safety
  • The safety profile of ivermectin when used at higher 

doses, or with longer exposure treatment schemes.
  • The safety of the proposed dose/schemes in popula-

tions likely to affect coverage if excluded i.e. poten-
tially pregnant women and children under 15 kg.

  • New strategies to assess and prevent the Loa-related 
adverse effects.

  • The safety of ivermectin in combination with 
anti-malarials and other drugs commonly used in 
endemic areas such as antiretrovirals, TB drugs and 
other antihelmintics.

Conclusions
Ivermectin MDA has the potential to reduce malaria 
transmission by increasing the mortality of malaria vec-
tors biting treated individuals, particularly those only 
partially affected by LLINs and IRS due to behavioural 
or physiological resistance. A thorough understanding of 
the pharmacological properties of ivermectin is pivotal to 
design studies aiming at providing evidence for a policy 
recommendation.

Ivermectin is safe in MDA campaigns at the current 
dose approved for onchocerciasis and LF 150–200 mcg/
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kg administered not more than four times a year. If used 
for malaria control, the dose and administration scheme 
will change. The efficacy of an ivermectin-based tool 
will be directly related to coverage; hence all population 
groups should be represented in the safety data collec-
tions, including women in reproductive age, children and 
the elderly. Additional preclinical safety studies might 
be needed to include these groups in clinical trials. The 
appropriate best time to include susceptible groups 
would be after the dose, formulation and administration 
scheme have been defined.
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