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We're like crystal
We break easy
I'm a poor man
If you leave me

I'm applauded
Then forgotten
It was summer

Now it's autumn

Crystal, New Order
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Preface: Genome revolution is shaping
biomedical research and clinical medicine
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The major landmark in modern genomic and biological research has been the first survey of the
entire human genome. On June 2000 the staging of Bill Clinton along with Craig Venter and Francis
Collins extolled how genome science would impact our lives by revolutionizing diagnosis, prevention
and treatment for a vast number of human diseases (Collins 2010). Since that, we underwent a
breathtaking progress in genome science with the unique conjunction of the development of new
technologies such as Next Generation Sequencing (NGS) or genotyping arrays (Collins 2010; Hofker
et al. 2014) and extensive data sharing initiatives catalysing new discoveries (Kaye et al. 2009;
Collins 2010; Hood and Rowen 2013). To underscore the magnitude of this summit, the first
sequence from the Human Genome Project (HGP) took 13 years and several collaborative efforts
from a lace of international public research institutions entailing a 3 billion budget (U.S. Department
of Energy & Human Genome Project program). Less than a decade later, NGS technologies have
been implemented for clinical diagnosis, we entered in the $1,000 genome era, and the last lllumina
sequencer, HiSeq X Ten is capable of producing up to 16 human genomes (1.8 terabases of data) in
three days (Hayden 2014).

The success of NGS led to an astonishing rate of growth of sequence data (Koboldt et al. 2013),
which is doubling every seven months (Stephens et al. 2015). A downstream consequence has
been the rapid accumulation of the number of sequenced genomes of many vertebrates,
invertebrates, fungi, plants and microorganisms enabling tackling evolution and genome function
through the rationale of comparative genomics (Collins 2010). In addition, the build-up of sequence
data of thousands of human subjects contributed to catalogue the genetic differences between
individuals, or also called as genetic variation (Hofker et al. 2014). There are different types of
genetic variation but the most abundant are Single Nucleotide Polymorphisms (SNPs) (Stranger et
al. 2011), substitutions of single nucleotides. While the HGP reported around 1.4 M of SNPs (Lander
et al. 2001) more than 84 M of SNPs have been described in the new phase 3 release of the 1000
Genomes Project (1000G-Phase3) (Sudmant et al. 2015; The 1000 Genomes Project Consortium et
al. 2015). A final example to illustrate the large efforts invested in more accurate descriptions of
genetic variation is the last work published from the Exome Aggregation Consortium (ExAC). This
study involved the aggregation and analysis of exomic regions through sequencing data of 60,706
individuals (Lek et al. 2016). The disposal of this kind of data showed a widespread mutational
recurrence in human genomes, it allowed detecting genes subjected to strong selection depending
on the class of mutation and it is expected to facilitate the clinical interpretation of disease-causing
variants (Lek et al. 2016). Thus, the accumulation of individual genetic data has empowered
researchers to unravel those specific genetic variants associated with disease liability. We also
moved from biologically guided candidate single gene-studies involving a few hundreds of individuals
towards hypothesis-free genome-wide analysis, performing extensive and massive genomic
interrogation of thousands of individuals (Relling and Evans 2015; Wang et al. 2015). Piecing these

advances all together, we have expanded our understanding of disease pathophysiology. Therefore,
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integrating the genetic understanding of the health-status alongside with clinical explorations
constitutes the idea beneath personalized medicine. This genomic paradigm shift for clinical
medicine provides a new source of therapeutic breakthroughs and diagnosis (Hood and Rowen
2013). As an example of this, targeted therapeutics have been resourceful for the treatment of lung
cancer: sequence information revealed that tumours carrying specific mutations in the epidermal
growth factor receptor (EGFR) were vulnerable to kinase inhibitors, resulting in higher response rates
compared to traditional platinum-based chemotherapy (Levy et al. 2012; Swanton and Govindan
2016). Moreover, genetic tests are able to predict which breast cancer patients will benefit from
chemotherapy (Innocenti et al. 2011; Gyorffy et al. 2015). Finally, notable successes have been
achieved in pharmacogenomics, in which warfarin dose can be adjusted on the basis of genetic
polymorphisms placed in CYP2C8 and VKORC1C genes (Collins 2010; Hood and Rowen 2013;
Relling and Evans 2015). In line with this, there are large efforts under way to prioritize targeted
therapeutics and to optimize drug selection and dosing, such as the Genomics England 100,000
Genomes Project and the US National of Health (NIH) Pharmacogenomics Research Network
(Relling and Evans 2015; Wilson and Nicholls 2015).

However, clear successes in clinical decision-making through genomic knowledge are anecdotal due
to a poor understanding of human genetic diseases (Hofker et al. 2014; Relling and Evans 2015).
For instance, Genome Wide Association Studies (GWAS) is undoubtedly one of the most
important methodological advances emerging from the availability of complete human genome
sequences and affordable DNA chips (Visscher et al. 2012; Hofker et al. 2014; Paul et al. 2014).
GWAS have been extremely resourceful in identifying genetic variants associated with multiple
diseases, but the translation of these results to clinics is sparse (Manolio et al. 2009; Collins 2010;
Hofker et al. 2014). Some of the limitations lie on (1) the still small proportion of disease causing
genetic factors identified for most complex diseases and (2) a lack of functional characterization and
interpretation of disease associated variants, which hampers the identification of the underlying

molecular mechanism (Manolio et al. 2009; Hofker et al. 2014).

The genomic revolution has brought new decisive players for the future trend in biomedical research
and clinical genetics. The ‘genomical’ challenge is one of the most demanding Big Data sciences in
all four big computer science domains (data acquisition, storage, distribution and computation). In
order to meet this rapid progress of genomic research, the build-up of whole-genome sequences and
the emergence of large population biobanks (Stephens et al. 2015) urges a parallel development of
computational frameworks. Moreover, a real social concern about data privacy can discourage the
participation in genetic studies, which requires a major discussion about the ethical consequences of
the return of information to participants seeking for genetic diagnosis (Hood and Rowen 2013;
Koboldt et al. 2013). From this brief overview, the agenda of human genomics has clearly many

issues to address. In this thesis | translated some of them into the following general goal: setting a
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cost-effective genetic research environment through the implementation of novel analytical
and computational methods in order to better understand the genetics of Type 2 Diabetes
(T2D). This work is a small glimpse of the frenzied activity in human genomics research and it aims
to modestly contribute along with countless research efforts on this broad deployment of P4 medicine
(Predictive, Preventive, Personalized, Participatory). In the next sections of this dissertation, | want to
spell out this primary focus by providing several concepts that | learned during these years, which

prompted this research to successfully achieve the goals of this thesis.
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1 Disease burden shift: chronic diseases and Type 2 diabetes as the
new threats

Life expectancy is continuously increasing as depicted on the latest estimations by the World Health
Organization (WHO). Global average life expectancy hit 71.5 years in 2015 according to WHO, and
is expected to reach 75 by 2045-2050 (European Environment Agency (EEA) 2015). The economic
growth and improvement of social conditions that our society underwent have given access to basic
health care and education but they have also favoured unhealthy lifestyles. The final outcome of
these developments is an epidemiological transition in which non-infectious diseases (non-
communicable diseases, NCD) out-weights the disease burden from infectious diseases (European
Environment Agency (EEA) 2015). Later reports from WHO attributed 38 M of mortality to NCD (68%
of worldwide mortality) in 2012. More than 40% of this mortality in 2012 corresponded to premature
deaths under age 70 years, occurring mostly in low/middle income countries, but 28% of them also
occur in high-income countries (WHO 2014). Of note, only four main NCDs (cardiovascular diseases,
cancers, respiratory diseases and diabetes mellitus) are direct responsible for 82% of the whole
NCD deaths.

Large inefficient treatment and prevention strategies are predominant for chronic diseases, such as
diabetes mellitus (DM). Setting-up a healthcare infrastructure efficient enough to lower this financial
burden must be the primary target of our efforts. Thereafter, human genomics has a key role in
articulating personalized disease prevention strategies, in the development of new therapeutics and

in the improvement of drug efficacy in patients (Collins 2010; Hofker et al. 2014).

2 Historical overview of genetics: where do we come from

Human genetic diseases can be distinguished according to different criteria. In order to explain
disease burden, | made a distinction according the mode of transmission as communicable
(infectious) or non-communicable. In this example, the criterion chosen is the occurrence of
“infection”, the action of a pathogenic microorganism for the disease transmission. An extension of
the mode of disease transmission was the observation of the inheritance of some diseases and
traits to the offspring. A key question in biology has been whether phenotypes or physiological traits
can be transmitted across generations, and if the underlying causes are biological or environmental
(Liu 2007). In this section | briefly traced the history of the genetic field, in which there was a parallel
progress of population genetics articulated through several mathematical and statistical works, and
molecular biology. Both developments have been critical to empower the study of the inheritance of

disease ftraits.

2.1 From Hippocrates until the foundations of population genetics

Genetics is the science focused on the study of genes, genetic variations between individuals and

inheritance (National Institutes of Health (US) 2007), concept that draws its ideas from the Ancient
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Greece (Cobb 2006; Liu 2007). However, the history of classical genetics begins with Gregor
Johann Mendel (1822-1884), who statistically studied inheritance for the first time. In 1866, this
Austrian Augustinian monk published his study on pea plants in which he detailed how certain
phenotypes or traits are transmitted to the offspring following certain rules (Cobb 2006), the
“Mendelian laws of inheritance”. Mendel outlined a mathematical framework explaining how a trait is
passed from parents to their progeny through a genotype (the offspring receives a genetic unit from
each parent), and how this genetic material is able to create new variations (Liu 2007). However,
Mendel's work was brushed aside until the 20" century. Contemporarily, Charles Darwin (1809-
1882) was unable to adequately incorporate inheritance in his theory of evolution by natural
selection (Darwin 1859; Darwin 1868; Charlesworth and Charlesworth 2009). In order to justify
heritable variability, which is indispensable for selection, he articulated his own theory of
“pangenesis” (also proposed by Hippocrates): all kinds of variation occurring during lifetime are
transmitted by means of gemmules. He suggested that all parts of the body throw off gemmules at
different developmental stages and if any part underwent any kind of modification, it would be
transmitted to the offspring (Darwin 1868). This hypothesis provides an explanation for the
inheritance of acquired characters (Cobb 2006; Liu 2007; Charlesworth and Charlesworth 2009; Liu
and Li 2012).

The birth of genetics is tied to the publication of the independent works on plant hybridization from
Hugo de Vries (1848-1935), Carl Correns (1864-1933) and Erik Tschermak (1871-1962), that
corroborated and rediscovered Mendel’s work (Haynes 1998). De Vries asserted as Mendel that
inheritance is driven by discrete particles and he also suggested that exact hereditary units named
“pangenes” (or genes) were behind equivalent characteristics from similar species (De Vries 1889;
Lenay 2000). De Vries also introduced the term “mutation” when suggesting how new species are
the result of preexisting ones and the sudden appearance of inheritable variations, or mutations (De
Vries 1901-1903; Lenay 2000). It was not until 1905 when Bateson (1861-1926), chief popularizer of
Mendel’s ideas, coined the word “genetics” in order to describe the study of heredity and the new
phenomena of genetic variation (Haynes 1998). However, Mendel’s theory was not easily embraced
by the scientific community. The dominant view of inheritance was “biometry”, originated with Karl
Pearson (1857-1936), based on the statistic analysis of continuously varying traits and gradual
evolution from Darwinism (Rice 2014). On the other side, Mendelians such as Bateson argued that
single strong mutations were beneath major adaptive changes, and thus, they were primarily
interested in the inheritance of discrete traits and the identification of driver strong allelic effects
(Stranger et al. 2011; Rice 2014). Thereafter, there was a large controversy between Mendelians and
Biometricians that confronted Mendelian particulate inheritance in contrast to quantitative genetics

used on continuously varying traits.

Population genetics was conceived as a need to reconcile Mendel with Darwin. This emerging field

has been crucial to understand genetic variation within-species and gene mapping for human
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diseases (Wakeley 2005; Crow 2010). Ronald Fisher (1890-1962) mathematically showed that
continuous variation might arise from the combined action of multiple independent genes with small
contributions, resulting in an approximate normal distribution for this given continuous trait (Fisher
1918; Fisher 1930). J.B.S. Haldane (1892-1964) articulated a mathematical framework for the origin
and fall of genetic variation driving evolution (Haldane 1932). Finally, Sewall Wright (1889-1988)
emphasized the role of genetic drift (i.e. random fluctuation of genetic diversity) in evolution as an
evolutionary force altering the composition of genetic characters in a population through random
sampling (Crow 2010). Fisher, Haldane and Wright provided the mathematical groundwork of the
“modern synthesis” of Darwin’s natural selection for evolution and Mendel's law of inheritance
(Bowler 2003; Crow 2010; Charlesworth and Charlesworth 2016). This is the foundational moment of
population genetics (Stranger et al. 2011), which is defined as the discipline focused on describing
how evolutionary forces modify the genetic composition in a population (Charlesworth and
Charlesworth 2016).

This theoretical core was extended with previous and further discoveries. For instance, in the second
half of the 20" century, Motoo Kimura (1924-1994) along with James Crow (1916-2012) brought
back the debate between Wright and Fisher about the role of genetic drift. The authors stated that
genetic variability is mainly driven by neutral mutations and genetic drift (Kimura and Crow 1964).
These successive works reduced the evolutionary process to manageable parameters such as

mutation, drift, selection and recombination, which can be empirically estimated.

Another remarkable principle of population genetics was the Hardy-Weinberg Equilibrium (HWE),
independently conceived by G.H. Hardy (1877-1947) and W. Weinberg (1862-1937) in 1908 (Hardy
1908; Weinberg 1908). This principle answered one of the most challenging opponents of the
evolution by natural selection proposed by Darwin, the “blending inheritance”. According to this
hypothesis, random mating would cancel out genetic variation, homogenizing trait variation,
overriding natural selection as an evolutionary driving force. The Hardy-Weinberg principle shows
how genetic variation is not lost in a population under Mendelian inheritance. The first take-home
message was that frequencies of genetic variants are stable over time in the absence of evolutionary
forces. Second, for each genetic unit, the distribution of genotypes in the next generation for diploid
organisms can be predicted by a simple equation based on the frequencies of possible gametes in
the population (Hardy 1908; Weinberg 1908; Wigginton et al. 2005).

Another constitutional principle that determined our ability to track the underlying causes of inherited
diseases was genetic linkage. Genetic linkage is the physical association of inherited genetic
units (Stranger et al. 2011), which contradicted Mendel’s law of independent segregation of different
trait characteristics (Lobo and Shaw 2008). By studying inheritance of two traits (colour and shape) in
sweet peas plants, Bateson and Reginald Punnett (1875-1967) realized that the ratios from the

phenotypic combinations of the crossings deviated from Mendel's law (increased occurrence of
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purple-long and red-round peas). They deduced that a physical coupling mechanism connected the
genetic characters from these two traits (Bateson et al. 1905). Later, using fruit fly as an organism
model, T. H. Morgan (1866-1945) discovered that a white-eyed mutant phenotype was tied to males
(Morgan 1910). He reasoned that this alteration should be placed in the sex chromosome and he
argued that if a trait is physically coupled to a specific chromosome, this should be true for others. In
1911, Morgan suggested for traits segregating together that their respective genetic characters
should reside close in the same pair of homologous chromosomes (Morgan 1911). Morgan also
suggested that during meiosis, homologous chromosomes exchanges some parts, what we know as
genetic recombination (Griffiths et al. 2000a; Lobo and Shaw 2008). This knowledge was crucial for
presenting genes as physical entities that underwent genetic recombination and can be specifically
placed on chromosomes. This work and other studies of linkage opened the way to gene mapping,

which allowed unravelling the basis of inherited diseases (Lobo and Shaw 2008).

2.2 The DNA era in molecular biology

To summarize, there was a vivid progress on conceptualizing inheritance and evolution but it still
remained obscure how these genetic characters were molecularly transmitted. Morphological
structures or “chromosomes” were identified by observing cell division (Flemming 1965), which
served Morgan to show how specific genes are physically attached. However, how this information
was organized and of what actually consists, was a mystery. Thus, the parallel deployment of
molecular biology to this theoretical progress was indispensable. Actually, the second half of the 20"
century is known as the DNA era. Friedrich Miescher (1844-1895) identified the “nuclein” substance
from white-cell nucleus in 1869, now known as DNA (DeoxyriboNucleic Acid) (Dahm 2010). Shortly
afterwards, DNA material was identified as the molecule behind the inheritance (Hershey and Chase
1952; Griffiths et al. 2000b). With the progress of X-ray crystallography, a great focus of study was
placed on unveiling the tridimensional structure of complex biological molecules. Maurice Wilkins
(1916-2004) and Rosalind Franklin (1920-1958) contributed with X-ray studies to the research of
DNA molecules, and the latter one produced the first picture of DNA fibres (Griffiths et al. 2000c). In
1950, Erwin Chargaff (1905-2002) reported equal base ratios in any DNA sample which suggested to
Watson that bases on each DNA strand were paired (Chargaff et al. 1950; Griffiths et al. 2000c). In
conjunction with the unauthorized glimpses of Franklin's images showing the double-stranded helical
structure, James Watson and Francis Crick were on the verge of reporting the model of DNA: the
double helix. The double helix model was published in 1953, and it has been underscored as one of
the most significant discoveries of the 20™ century (Watson and Crick 1953; Griffiths et al. 2000c).
Soon afterwards, Francis Crick conceived the central dogma of molecular biology, the principle to

understand the relationship between DNA and proteins (Crick 1970).

Once the structure and function of DNA were discovered, research was redirected to decipher the

DNA sequence. Fred Sanger (1918-2013), who had technically enabled reading the sequence of
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protein chains in 1950, succeeded in discovering the DNA sequence of a bacteriophage $X174 in
1977 (Sanger et al. 1977; Hutchison 2007). However, scaling DNA sequencing from the 5,386 bases
of the $X174 phage to the ~3 billion base pairs (bp) of the human genome was a huge technical
challenge, which required assembling a large-scale international project, the HGP. The culmination
of this project is a milestone in molecular biology and medicine: the HGP accelerated the
development of high-throughput sequencing technologies, building-up an astonishing number of
sequenced genomes, and catalysing the study of genetic variation and the inheritance of diseases

and traits.

3 Genetic variants and their contribution to human genetic diseases

In this section | want to describe the different types of genetic variation and the structural properties,

such as linkage disequilibrium, that have been crucial to track inheritance of traits and diseases.

3.1 Genetic variation: remnants of our history

Genetic information is stored in each of our cells as molecules of DNA, a 3 billion-long sequence of
nucleotides (A, T, C and G, that stands for Adenine, Thymine, Cytosine and Guanine). As diploid
organisms, we have two copies of this molecule that we inherited from our respective parents, which
differ between them. Each specific physical position in the genome is called a locus (pl. loci), which
can encompass a large region such as a gene or be narrowed to a particular base pair position.
Alternate forms of each locus are referred as an allele. However, the term is loosely used to name
the alternate forms of a specific base pair position. For instance, for a locus,, the “G” is the most fixed
DNA base in the population, but some individuals have the alternative “T” DNA base. Each “G” and
“T” forms are alleles. For a given position, the two alleles inherited from each parent are called a
genotype. Genotypes can be homozygous when an individual inherits identical alleles from each

parent or heterozygous, when each parent transmitted different alleles for a given locus.

Genetic variation corresponds to the naturally occurring differences among individuals in a
population, which are gathered in our genotypes. Of note, the latest estimations from the 1000G-
Phase3 release highlighted that a typical genome differs from the human reference sequence in 4.1
M to 5 M sites (The 1000 Genomes Project Consortium et al. 2015).

By estimating the proportion of variant sites at a population level we can track remnants of human
evolution. The average proportion of variant sites is not homogenous across populations: populations
with African ancestry retained the highest number of variant sites compared to other populations,
which is in concordance with the out-of-Africa human origin model (Stranger et al. 2011; The 1000
Genomes Project Consortium et al. 2015). This hypothesis suggests that modern humans that were
originated in Africa replaced non-African populations and it has been widely accepted since it was
proposed in the late 1980s (Cann et al. 1987; Stringer and Andrews 1988; Wilson and Cann 1992).

Additionally, the lower proportion of genetic variation in humans compared to other apes has been
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shaped by the out-of-Africa migration of our ancestors. During their expansion over the globe, our
ancestors encountered new environments leading to novel adaptions or founder effects that were
followed by population bottlenecks (Jorde and Wooding 2004; Lachance and Tishkoff 2013). In these
last 10,000 years, our environments and quality of life underwent drastic changes that have been
translated into an asymmetry between our genomes and our current environments. An example of
that is the “thrifty genotype” hypothesis, which was proposed to explain, for example, the high
prevalence of T2D: alleles associated with fat deposits and the increase of the risk for T2D, were
advantageous for early hunter-gatherers. However, in our social framework these genetic variants
favoured what has become a threat to the subsistence of our health infrastructures (Lachance and
Tishkoff 2013; Segurel et al. 2013). This hypothesis is not free of controversy, and last studies
pointed to opposite scenarios. However, our incomplete understanding of the whole set of genetic
factors modifying T2D susceptibility, as it occurs for the majority of common diseases, makes denser

studies of the evolution of T2D susceptibility still a challenge (Segurel et al. 2013).

3.2 Types of genetic variation

Genetic variation takes many forms ranging from the narrowest to the largest scale in: (a) Single
Nucleotide Variants (SNVs), (b) Insertions and deletions (INDELs), (d) Tandem Repeats, (e) variable
number of copies of a segment of DNA sequence (Copy Number Variants, CNVs), (f) inversions and
translocations (Copy Neutral Variants) of these segments and other large structural events that can

even lead to chromosomal aneuploidies (Ku et al. 2010; Baker 2012; Zhao et al. 2013) (Figure 1).

However, there is still a lack of consensus in the classification of genetic variations and the criteria
available are neutral, without referring to the association with a phenotype or a disease. One useful
criterion is the size of DNA sequence that these variants encompass. We coin the term “structural
variation” (SV) for genetic variants involving segments covering more than 100 bp (the number is
arbitrary, earlier definitions used a 1 kilobase pair (kb) cut-off because of the ability to detect of
smaller variants) (Baker 2012). Within the “structural variant” category, we have alterations that are
quantitative such as copy number variants while copy neutral variants are positional (translocations)
and orientational (inversions). CNVs have been limited to segments of DNA ranging smaller than 5
Mb (megabase pair) whereas large structural variants responds to alterations involving more that 5

Mb of DNA sequence (Ku et al. 2010; Zhao et al. 2013) as is represented in Figure 1.
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Figure 1. Diversity of genetic variation. Based on the size of DNA sequence of the variant, we can distinguish
between Single Nucleotide Variants, short insertions and deletions (INDELs) and tandem repeats, which entail
segments shorter than 1kb. On the other hand, we have structural variants, categorized as Copy Number/Neutral
variants sizing less than 5Mb and large chromosomal rearrangements displayed on a “circos” representation of
structural variants (where the circle corresponds to chromosomes and the inner lines, to structural variants).

The frequency of these genetic variants within the population is an alternative way to categorize
genetic variation. “Polymorphism” is an umbrella term for all kind of genetic variation accounting for
population frequencies above 1%, which now also includes Copy Number Polymorphisms (CNP) a

part from Single Nucleotide Polymorphisms or SNPs.

For each polymorphism, we can distinguish between the “major” (highest frequency in the studied
population) and the “minor” allele (variant form in the population) on the basis of the frequency in
general populations. Therefore, polymorphisms are traditionally classified as common when the
frequency of the minor or rare allele (Minor Allele Frequency, MAF) remains above 5% (Ku et al.
2010). Huge efforts for cataloguing genetic variation through sequencing studies such as the 1000G
Project (The 1000 Genomes Project Consortium et al. 2010; The 1000 Genomes Project Consortium
et al. 2012; The 1000 Genomes Project Consortium et al. 2015) or the UK10K Consortium (UK10K
Consortium et al. 2015) have enlarged the landscape of genetic polymorphisms. There is plenty of

attention whether low-frequency (1% < MAF < 5%) and rare variants (0.1% < MAF < 1%) contribute
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to disease susceptibility and phenotype variation (Huang et al. 2015; The 1000 Genomes Project
Consortium et al. 2015). Nevertheless, these allele frequency boundaries are standards to facilitate
the interpretation and the study of genetic variation and disease and trait outcomes. The
accumulation of genetic individual data like in the last call set from the whole exome-sequence data
of 60,706 individuals of the ExXAC consortium (Lek et al. 2016) has enlarged the landscape of genetic
variation towards more rare genetic variants. The availability of personal genomes would ultimately
convey to the characterization of more private and individual genetic variants (Lupski et al. 2011).
Therefore, with the advent of personal genomes these artificial boundaries can fall, which will favour

a continuum conceptualization of genetic variation in terms of allele frequency.

In summary, we can conceive genetic variation according to different criteria but in any case, these
boundaries are agnostic of the molecular mechanisms that the genetic variants might mediate. These

classifications are only based on patterns of DNA sequence changes (Ku et al. 2010).

3.3 Linkage disequilibrium: breaking down the correlation patterns of human genetic
variation

As mentioned above, the most abundant type of the 0.1% of sites that are variable in a typical human
genome is by far composed by SNPs, which have become the suitable markers to explore the
relationship between our genotype and inherited diseases. However, this large collection of millions
of SNPs is not providing unique and independent information. In fact, population genetic forces have
brought structure to our genomes, which is reflected in the occurrence of linkage disequilibrium
(LD) a non-random association of alleles from different loci (Slatkin 2008). This correlation
structure varies across the genome and populations (Frazer et al. 2009), and also depends on the
physical exchange of DNA during meiosis, also called as recombination. Recombination events in
the genome are confined in hotspots, which determine the boundaries between blocks of linked
alleles from different /oci (Daly et al. 2001; Wall and Pritchard 2003). Closer markers are less likely to
suffer from a recombination event, thus alleles at different /oci but spatially close will be transmitted

together from parents to offspring (Crawford and Nickerson 2005; Frazer et al. 2009; Ku et al. 2010).

To exemplify this correlation, two SNPs are in LD if by observing a specific allele A for the first SNP,
there is more chances to observe a specific allele B for the second SNP. Thus, these two alleles are
entangled by the LD correlation. This correlation can be mathematically estimated or quantified by D,

the coefficient of linkage disequilibrium, described by the frequency of gametes carrying
simultaneously the pair of alleles A and B at two /oci (pag) and the frequencies of these alleles (pa
and pg) (Slatkin 2008).

Dyp = Pap — Pa * PB

However, this descriptive statistic was inconvenient to compare LD across different pairs of alleles

because the possible values of D strictly depend on the allele frequencies. The normalisation of D
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was D’, a ratio based on the maximum possible absolute D value (Dpmax) according to the observed

allele frequencies (Lewontin 1964).

D

D' =

Dmax
Another useful measure of LD is the r#, which is similar to D’, a correlation coefficient ranging from 0
to 1 expressed as (Slatkin 2008):
2 _ D?
pa* (1 —pa) xpg* (1 —pp)

r

The study of LD extended the definition of “haplotype” to refer to the combination of correlated alleles
from different markers at the same chromosome, which are inherited together. Therefore, this
knowledge allowed determining regions with almost no evidence of recombination, accounting for a
set of markers in high LD, that were called “haplotype blocks”. In addition, it was noted that these
blocks were separated by hotspots of recombination (Crawford and Nickerson 2005; Hofker et al.
2014). The discovery of haplotype blocks posed the following hypothesis: in order to assess genome-
wide which genetic variants are associated with a certain disease, testing a single variant per block

was informative enough (Slatkin 2008) as illustrated in Figure 2.

The International HapMap Project (International HapMap 2003), following the HGP, was a
pioneer huge collective effort fuelled by the opportunity to describe the human genome in terms of
haplotype blocks, focused on describing common genetic variation and informing about which SNPs
remain linked during chromosomal recombination and inherited together across all the genome. The
Phase | an Il of the project catalogued ~3 M markers in 269 individuals from four populations
(Yoruba, Japanese, Han Chinese and Utah residents with European ancestry). In the Phase lll, 1.5
M genetic variants were genotyped in a larger set of samples including seven additional populations
(Slatkin 2008). The HapMap project provided an extremely useful report that guided the genetic
studies of inherited diseases: the majority of variants within the HapMap project (MAF = 5%) were
adequately captured by half a million of SNPs (Frazer et al. 2009; Hofker et al. 2014). Therefore,
studying the genetics of T2D susceptibility was not tied to genotyping millions of variants. In fact,
researchers were able to capture those signals correlated with a disease phenotype just handling

half a million of proxy SNPs or tagSNPs, which economically enabled the GWAS approach.
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Figure 2. The structure of the genome in haplotype blocks. At the right, a single genomic region for two individuals
has been illustrated as haplotype blocks (boxes), which are determined by measures of LD. Each letter corresponds
to an allele from an SNP (A, G, T or C) or from an insertion/deletion (I/D). Blue lines highlighted those tagSNPs
required to be genotyped and the red line, underscores a disease causal variant within a populated haplotype block.
The left part of the figure shows the frequency of the haplotypes depending on the colour.

4 Characterization of human inherited diseases: heritability and
genetic architecture

Human genetic diseases are highly heterogeneous but some historical classifiers were established to
provide a theoretical basis to study them. This next section was written with the aim to
comprehensibly describe how we have characterized the genetic basis of human inherited diseases,

which has determined our methodologies to understand them

4.1 Heritability: quantifying the genetic contribution to trait transmission

A crucial observation that synthesizes the concept of inheritance was that for most human ftraits,
relatives tend to be more alike compared to random individuals from the population. This
resemblance among relatives fostered the study of inheritance of traits and diseases, which allowed
us to assemble a new concept named as “heritability” (Visscher et al. 2008). Resemblance can arise
from common environmental and inherited factors, and heritability addresses the partitioning of this
resemblance into nature and nurture. Heritability allows us to compare the importance of genetics
against environment in explaining the trait variation enclosed in a population. Heritability measures
how much variability of a specific trait is controlled by genetic differences (Visscher et al. 2008;

Tenesa and Haley 2013). Technically, heritability is formulated as a ratio of variances: the proportion
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of the total variance of a particular measurement (a phenotype) in a population, which is attributable

to genetic variation (Visscher et al. 2008; Wray and Visscher 2008).

Traditionally, heritability was estimated by means of a (i) within-family design, looking at the
correlation of full or half siblings, by a (ii) pedigree design such as the regression of offspring on
parental phenotypes or the observed differences in the correlation of monozygotic (MZ) and dizygotic
(DZ) twin pairs, and by a (iii) population design based on the genetic similarity between distant
relatives (Vinkhuyzen et al. 2013). Moreover, heritability may also be estimated by means of
adoption studies, including MZ twins reared apart and non-biological relatives reared together (Sham
and Cherny 2011; Tenesa and Haley 2013). Of note, the emergence of genome-wide SNP data has
been crucial to overcome the confounding of genes and environment that led to biased estimations of
heritability. Using a population of unrelated people, for which only the proportion of genetic variance
explained by SNPs is captured, may avoid inflated estimations of heritability due to environmental
factors shared between related individuals, among other factors (Vinkhuyzen et al. 2013; Zaitlen et
al. 2014).

Heritability has been extremely crucial to provide meaningful and appropriate comparisons of traits
and it is an informative indicator of the efficiency of gene-mapping or the prediction of genetic risk in
human disease studies (Visscher et al. 2008). The highest the heritability, the easier it should be to

identify genetic risk factors for the disease.

4.2 Genetic architecture of human diseases: disentangling genotype-phenotype
relationships

The study of human genetics has unlocked the underlying genetic basis of a vast number of Human
Genetic diseases and its activity has been extremely intensified during this last decade. All the
research efforts devoted to link genetic variants and genes with specific disease phenotypes
benefited from the creation of public databases such as The Online Mendelian Inheritance in Man
(OMIM) (Amberger et al. 2009; Amberger et al. 2015). OMIM accounts for 23,603 entries (accessed
July 20th, 2016) and the NHGRI-EBI Catalog of published genome-wide association studies reported
23,058 unique SNP-trait associations across 2,502 studies (accessed July 20th, 2016) (Welter et al.
2014).

The relationship between genotype and phenotype has always been hard to decipher, but some
basic models that helped to conceive the genetic structure beneath human genetic diseases are
represented in Figure 3. These simple schemes summarize part of what we designate as “genetic
architecture”, that depends on the number, frequencies and effect sizes of disease causal variants
(Flannick et al. 2016). Shifts in the parameters beneath the genetic architecture led to the traditional

classification of human genetic diseases: monogenic and complex (polygenic) diseases.
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Figure 3. Genetic models behind human genetic diseases. From top to bottom, left to right, traits and diseases can be
shaped as (a) Monogenic traits caused by single-gene defects, (b) Polygenic traits requiring the involvement of
multiple gene defects, (c) Pleiotropy in which a single gene or genetic variant yield to different phenotypic
manifestations and (c) a model based on polygenic and pleiotropic effects.

4.2.1 Mendelian o monogenic diseases

Most of our knowledge about human genetic diseases answered the genetics behind monogenic
diseases such as Huntington disease (Gusella et al. 1983; MacDonald et al. 1993) or Cystic Fibrosis
(Riordan et al. 1989a; Rommens et al. 1989; Janssens and van Duijn 2008). These disorders are
characterized by rare mutations interfering with the specific function of a single gene (Janssens
and van Duijn 2008). They are also called “Mendelian” diseases because they segregate according
to Mendelian laws following several models of inheritance: autosomal dominant, recessive, co-
dominant, sex-linked (Health 2010). Thus, one deleterious variant or defect is sufficient to cause
pathogenic phenotypes, observed by a remarkably higher risk of disease in carriers of these
mutations compared to non-carriers (Janssens and van Duijn 2008). The genetic architecture of
monogenic diseases has been conceived to involve genetic variants with huge effect sizes and a

negligible intervention of the environment, although variable penetrance can occur. Moreover, highly
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penetrant1 variants tend to lower allele frequencies, and thus, monogenic disorders are attributed to
rare individual mutations or for instance, mutations enclosed in a familiar lineage (see Figure 4)

(Cooper et al. 2013; Flannick et al. 2016).
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Figure 4. Genetic architecture of human genetic diseases. The number, the allele frequency and the effect size of the
disease-causal variants determine the genetic architecture. At the top, a coloured gradient representing a large
population ancestry until a single familiar structure is shown (obtained from Lupski, J.R. et al., 2011). At the bottom,
using four axes (effect size, allele frequency, involvement of environmental factors and occurrence in single families or
populations) complex and monogenic diseases have been placed in a continuum phenotype in a landscape delimited
by historical criteria for classifying human genetic diseases.

The study of single-gene disorders had an unquestioned value in the enrichment of our
understanding of gene function, regulation mechanisms, human phenotypes and body physiology
and vice versa. These advances allowed the discovery of novel therapeutic and diagnostic strategies

and improving the patient care for rare and complex diseases commonly occurring in the population

(common form of a disease) (Chong et al. 2015; Flannick et al. 2016). For instance, mutations in

! Penetrance corresponds to the percentage of individuals carrying a particular mutation or genotype that
also develops a certain disorder or exhibits a certain phenotype.
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genes altering renal salt reabsorption underlay monogenic disorders such as Bartter and Gitelman’s
syndromes (increased blood pressure) or the Liddle syndrome (decreased blood pressure). The
understanding of Bartter’s syndrome, a life threatening disorder characterized by hypotension, for
which mutations in the KCNJ7 gene have been attributed, allowed proposing ROMK, the product of

KCNJ1, as a novel target for hypertension and heart failure (Garcia and Kaczorowski 2014).

Traditionally, linkage mapping combined with Sanger sequencing has been applied to identify the
genetic defects beneath a large fraction of monogenic disorders (discussed afterwards) (Chong et al.
2015; Flannick et al. 2016). NGS techniques allowed turning a blind eye to prior biology and
accelerating the identification of genes underlying monogenic phenotypes. Thus, the pace of disease
gene discovery has increased from ~166 to 236 between the time periods of 2005-2009 and 2010-
2014 (Chong et al. 2015) that resulted in 2,937 genes reported for 4,163 monogenic phenotypes.
However, for ~50% of all known monogenic disorders, the underlying causal genes are still unknown.
In connection with disease burden, aggregating clinically identified monogenic phenotypes and all
congenital anomalies sums up to 8 M births worldwide that present a “serious” genetic condition,
which represents $5 M healthcare expenditure per child during their lifetime in United States (Chong
et al. 2015).

4.2.2 Complex diseases

Complex polygenic diseases result from an intricate interplay between genetic, environmental and
lifestyle factors and represent a vast public health impact (Buchanan et al. 2006). In contrast with
monogenic diseases, there is no action of a distinctive Mendelian inheritance pattern. However,
complex diseases have a tendency to cluster in families, which is in agreement with their significant
multifactorial genetic component that has been arduous to identify until the last decade (Manolio et
al. 2009; Flannick et al. 2016). As shown in Figure 3, we need to move away from single gene-
disorder associations, a kind of ‘genetic deterministic’ rationale and we need to rely on a new
concept, ‘genetic predisposition’: a single variant showing a modest or weak effect size is not able by

itself to directly cause a complex disease phenotype (Buchanan et al. 2006).

The genetic architecture of complex diseases is shaped by the action of numerous low penetrant
variants from multiple loci, which synergistically modulate disease susceptibility, in conjunction with
an environmental component (Manolio et al. 2009). During this last decade, the most accepted model
for the genetics of complex diseases has been steeped in the common disease-common variant
(CDCV) hypothesis built on the basis of the infinitesimal rationale proposed by Fisher: multiple
genetic variants commonly occurring in the population (MAF = 1-5%) have individual modest effects
on disease susceptibility. However, in a cooperative manner, they grant substantial risk of
manifesting the complex disease phenotype (Reich and Lander 2001; Manolio et al. 2009; Lowe and
Reddy 2015) (see Figure 4).
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Nevertheless, the small fraction of estimated heritability, ranging from 5 to 20%, explained for the
majority of common diseases (Agarwala et al. 2013) brought researchers to reconsider this model.
Alternative hypotheses, such as the infinitesimal model, stressed the involvement of a larger number
of common variations contributing with small increments to the risk of disease (Manolio et al.
2009; Gibson 2011). Some authors also supported that rare variants showing large effect-sizes
(Pritchard 2001) are a key source to increase the fraction of explained heritability, specially
considering the underestimated abundance of rare and private variants arising from the analysis of
whole-genome sequences (Lupski et al. 2011). In line with that, novel trends have conceived
complex diseases as a collection of multiple, even hundreds of rare monogenic sub-phenotypes
driven by rare variants. In this context, GWAS results would only reflect synthetic associations in
which rare variants happen to segregate with common GWAS signals (Dickson et al. 2010).
Moreover, the term “clan genomics” has been used to argue that common diseases can be driven
by a unique combination of rare alleles of recent origin clustered in a family lineage (Lupski et al.
2011). Furthermore, epistatic gene-gene and gene-environment interactions were also suggested
to explain a fraction of the aetiology of complex diseases (Schork 1997; Manolio et al. 2009; Gibson
2011).

Additionally, in order to get deeper insights into disease aetiology, reducing phenotypic heterogeneity
is fundamental such as in approaches based on using intermediate phenotypes, quantitative
measures of a disease characteristic (Buchanan et al. 2006; Wang et al. 2012a). Additionally, for
apparent monogenic diseases such as sickle cell anaemia, the heterogeneity of mutations and the
action of genetic variation in unlinked modifier genes, are able to modify disease penetrance, which
explains the clinical heterogeneity of some monogenic disorders (Cooper et al. 2013). These
examples are pushing us to redefine the boundaries between monogenic and complex diseases.
Applying techniques for the study of single-gene disorders may facilitate the study of genes behind
intermediate phenotypes related with complex traits. But also, the methodology behind the study of
the genetic architecture of complex diseases can help us to comprehend the multigenic nature from

monogenic disorders (Cooper et al. 2013; Tallapragada et al. 2015; Flannick et al. 2016).

To put this story together, the growing accumulation of sequencing data has enlarged the spectrum
of genetic variation, and thus, some authors have suggested that each individual genome should be
conceived as a unique spectrum of mutational burden. Within this continuum, each individual
pathogenic ecology would encompass inherited and de novo variants: inherited common variants
segregating in the population, inherited rare variants of recent origin in a familiar lineage,
combinations of novel emerging rare variants from each parent and de novo mutations. This novel
trend suggests that historical categories of human diseases can be placed along a single disease
continuum. Understanding health status as a continuum breaks down all the practical boundaries of
human diseases established due to an incomplete understanding of the mutational load. Therefore,

each traditional category only reflects a different phenotypic manifestation arising from the whole
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individual genetic burden in conjunction with environmental influences (Lupski et al. 2011). This new
debate arising from an incomplete understanding of the role of the different ranges of the whole
spectrum of genetic variants (from rare, to low-frequency until common variants and from weak to
highly-penetrant effect sizes) showed that we are still lagging behind the profound comprehension of

the genetic architecture of complex diseases.

5 Evolution and perspectives of genomic approaches for studying the
genetics underlying complex diseases

The emergence of high-throughput sequencing platforms has technically and economically enabled
the massive detection of genetic variation, spurring the genetic research of the basis underlying
common complex diseases. In this section, | want to briefly provide an historic perspective of the
evolution of genetic mapping to facilitate fully comprehension of the success and limitations of large-
scale genetic studies. After that, | will proceed to detail the current state art of large-scale genetic
analysis for complex diseases. Finally, | will argue the several challenges that are hampering our
understanding of the genetics underlying complex diseases and the ultimate translation on clinical-

decision making.

5.1 Genetic mapping before the completion of the Human Genome Project (HGP)

The HGP constituted a major landmark that revolutionized biomedical and genetic research. But,
what was known before that? Geneticists realized that some traits are inherited according to
mathematical Mendel’s ratios as consequence of single gene defects, but the vast majority of trait
variation resulted from the interplay between several genes and non-genetic factors (Altshuler et al.
2008; Stranger et al. 2011). Afterwards, the discovery of genetic linkage (Bateson et al. 1905;
Morgan 1910; Morgan 1911) fostered the origin of genetic mapping: observing how DNA variation
segregates with trait variation without relying on any prior biological guidance enables localizing
which genes underlie certain phenotypes (Altshuler et al. 2008; Stranger et al. 2011). The first
reports of genetic mapping were linkage analysis formulated by Sturtevant for fruit flies in 1913:
crossing parents varying at a Mendelian trait enabled the identification of genetic markers that were
segregating with that trait. Later in the 1970s, the emergence of DNA methodologies such as cloning
or Sanger sequencing enabled with genetic linkage maps (positional cloning) zooming in the specific
causing genes for Mendelian or Monogenic traits (Altshuler et al. 2008). However, until the end of the
20" century, genome-wide linkage analysis in humans had technical impairments such as small
family sizes, the impossibility of intervention in parent’ crosses and the limited number of genetic
markers to trace across individuals (Altshuler et al. 2008). DNA polymorphisms in the form of
Restriction fragment length polymorphisms (RFLPs) were described by Jeffreys in 1979 in beta-
globin gene cluster (Jeffreys 1979) and he revealed that they commonly occur in the genome.
Botstein and colleagues realized in 1980s that this kind of genetic inter-individual variation, was a

potential source of marker /oci (Botstein et al. 1980); they outlined the seed of human genetic linkage
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maps which are the basis for mapping inherited diseases (Botstein et al. 1980; Hofker et al. 2014).
These findings were crucial for the identification of the HTT gene for Huntington’s disease in 1983
(Gusella et al. 1983) or the CFTR gene in cystic fibrosis (Kerem et al. 1989; Riordan et al. 1989b;
Rommens et al. 1989). Therefore, a large fraction of Mendelian diseases were mapped by linkage
analysis followed by positional cloning at the mid-1990s (Hofker et al. 2014). Geneticists were
tempted to recycle all the lessons from Mendelian disease genes to study complex diseases.
However, hatching links between genotype and complex phenotypes was slow and arduous because
these disorders do not obey Mendelian inheritance patterns and account for substantial
environmental contributions. Linkage analysis or candidate-gene association studies brought sparse
successful results (Manolio et al. 2009). Linkage analysis takes advantage of those shared DNA
segments inherited from common ancestors in order to identify genetic variants strongly segregating
with a phenotype and thus, largely contributing to the molecular pathology (Billings and Florez 2010;
Torres et al. 2013). This approach is convenient for Mendelian diseases: (1) disease-causing
variants are rare and the disease allele segregates within the same chromosomal region within each
family and (2) Mendelian diseases are defined by highly penetrant variants which results in co-
segregation with disease status (Hirschhorn and Daly 2005; Billings and Florez 2010). Genome-wide
linkage analysis succeeded in mapping genes underlying rare monogenic forms for DM such as the
maturity-onset diabetes of the young (MODY) (Fajans et al. 2001; Vaxillaire and Froguel 2006) or for
the identification of the Major Histocompatibility Complex (MHC) locus for type 1 diabetes (T1D)
(Castano and Eisenbarth 1990; Tienari et al. 1992). However, in accordance with the CDCV
hypothesis, complex diseases are based on allelic variants characterized by a high frequency in the
population (MAF = 5% of the population) (Manolio et al. 2009) and susceptibility to disease spread
across a large number of genetic variants (Manolio et al. 2009; Billings and Florez 2010). One of the
few successes achieved through linkage analysis in complex diseases is the identification of
evidences of linkage from the TCF7L2 locus for T2D (Grant et al. 2006). Later, this evidence was
validated through association studies (Groves et al. 2006). Genetic association methods were an
alternative approach to disentangle the genetics beneath complex diseases. These first association
studies were only able to interrogate specific candidate genes, and therefore, this approach was
guided and limited by prior biological knowledge. The main criticisms to this approach were the
limited knowledge to provide plausible functional genes and variants to test or the dubious novelty of
the results generated. Moreover, a main downside was the lack of replicability across association
studies resulting in false positives because of population structure, heterogeneity of the phenotype or
low prior odds of association. Additionally, there is also a publication bias towards positive results in
which some authors overlooked failed replications that might inflated the estimates of replicability
(Tabor et al. 2002; Marigorta and Navarro 2013). Nonetheless, this approach was able to identify
PPARG and KCNJ11 as novel candidate genes for T2D, which harbour missense variants
associated with T2D (Altshuler et al. 2000; Gloyn et al. 2003).
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In summary, before the HGP, disease causing genes and mutations strongly segregating across
families were identified for a vast number of monogenic diseases. For complex diseases, linkage

analyses and candidate gene approaches achieved a humble success.

5.2 The GWAS era

The HGP encouraged several big projects seeking for the understanding of the human genetics,
which rapidly led to the connection with human health (Hood and Rowen 2013; Hofker et al. 2014).
The International HapMap Project fostered the progress of array technologies, which resulted in
affordable DNA arrays allowing for the first time systematic and genome-wide interrogation of the
role of common genetic variation in susceptibility to human diseases (Hofker et al. 2014; Price et al.
2015). Genome-Wide Association Studies (GWAS) represents one of the most relevant
methodological advances in human genetic research and is a direct outcome from the completion of
the human genome sequence and the parallel technological development of genotyping arrays
(Hofker et al. 2014; Price et al. 2015). Through the interrogation of hundreds of thousands of SNPs,
GWAS look for statistically significant differences in allele frequencies in large cohorts of thousands
of cases and controls at each polymorphic site, providing associations between genetic variants and
disease susceptibility (Manolio et al. 2009; Price et al. 2015). As a brief example, if one specific allele
from one SNP is far more represented in cases than in controls, this variant will show statistical
association with that disease, and this specific allele will be considered a risk allele (see Figure 5,
left) (Hofker et al. 2014). The genes that are located nearby this associated variant can provide novel
hypothesis on the pathophysiology of the studied disease. GWAS is a hypothesis-free approach
agnostic to any prior biological guidance (Manolio et al. 2009; Visscher et al. 2012). GWAS is
grounded in the LD principle whereby a real association from a disease-causing variant is achieved

through genotyped variants in LD with the first one (see Figure 5, right).

The degree of the association signal will be determined on the strength of the LD between the causal
and the tested or tagSNP, which partially depends on the allele frequencies between them: a disease
causal variant exhibiting a rare allele will be poorly correlated (low LD) with a common variant tested,
and the resulting p-value from the association will be statistically negligible. Thus, GWAS were
conceived to capture association signals from causal variants that should be common in the
population because this approach was steered by the CDCV hypothesis (Manolio et al. 2009;
Visscher et al. 2012; Hofker et al. 2014). In the next section | am going to detail some practical

issues from a statistical point of view that should be addressed in this kind of analysis.
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Figure 5. The GWAS approach. At the left, the workflow represents a case-control study in which some healthy
controls and patients have been genotyped. To show an example of the allele frequencies comparison between cases
and controls, a fraction of the genotypes for a given T/C SNP are represented, underscoring the large representation of
the C allele in cases compared to controls. At the right, the underlying rationale of GWAS is based on LD haplotype
blocks. Disease-causing variants are captured through a proxy tagSNP in sufficient LD to statistically transmit this
association.

5.2.1 Statistics of GWAS

5.2.1.1 Data quality control

In order to produce replicable and robust GWAS results, the quality of the genotyped data should be
checked before any further test to ensure the quality of the genotypes at the variant level as well as

at the sample level (Anderson et al. 2010; Zeng et al. 2015).

At the variant level, variants accounting for high missing call rates (proportion of individuals without
called genotypes for a given SNP) should be removed. Testing statistical differences of the missing
rates between cases and controls is also extremely useful to avoid false positive associations. Also,
very low frequency alleles are a usual source of genotyping errors, which can incur spurious
associations. Thus, SNPs with MAF < 1-2% are usually removed (Anderson et al. 2010; Zeng et al.
2015). Within association analyses, SNPs extremely deviating from HWE should be excluded.
However, departure of HWE can occur by a genuine genetic association and thus, solely checking
HWE in controls (e.g. p-value < 1x10®) is recommended (Zeng et al. 2015). A loose threshold may

—20)

be incorporated in order to evaluate the whole cohort (e.g. p-value < 1x10™") for specific purposes
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such as association studies across multiple phenotypes, in which specific filters for a control

subgroup cannot be performed.

At the sample level, missing rates are considered by removing those individuals with a high
proportion of variants not successfully called (e.g. missing rate > 1-5%). Adjusting for covariates such
as sex is of the outmost importance to robustly test for SNP association. Therefore, the given
ascertainment of sex information from the genotyped samples should be revised. Chromosome X
data allows estimating the sex outcome, which can be compared with the reported sex values (Zeng
et al. 2015). Discrepancies between the estimation and the already reported information are
indicators for sample swap. Case-control studies are built upon assumptions such as independence
among samples. However, apparently independent subjects can entail hidden relationships, which is
a common bias in the association tests. Pairwise identify-by-state (IBS) values allow estimating the
PIHAT indicator (Zeng et al. 2015), and those individuals exhibiting values above certain threshold
(e.g. PIHAT > 0.125-0.185) (de Bakker et al. 2008; Anderson et al. 2010) are removed.

A major source of spurious associations results from population differences between the case and
control groups emerging besides the disease status. All the genotypic differences arising from
comparing cases and controls from different population origin corresponds to population structure.
Allele frequency differences are the result of including distinctive founder populations that are
disparately represented in cases and controls. Therefore, carefully evaluating the population origin of
cases and controls is of the outmost importance, which should end with the removal of individuals of
divergent ancestry (Anderson et al. 2010). In addition, most usual association tests adequately
integrates population substructure information in order to correct for population differences (Zeng et
al. 2015). Common techniques for identifying, and subsequently removing subjects showing notable
differences in ancestry, are principal component analysis (PCA), based on the genetic correlation
among individuals. Alternatively, multidimensional scaling (MDS) identifies meaningful dimensions on
the basis of genetic distance as IBS (Anderson et al. 2010; Zeng et al. 2015). Furthermore, the
inclusion of genotypes from HapMap populations allows clustering study samples. Afterwards, those
outliers showing > 3-4 standard deviation from the mean of 2-4 main component vectors are

removed (Anderson et al. 2010).

5.2.1.2 Association tests

Single-variant comparison of allele/genotype frequencies between cases and controls are the core of
GWAS. Each variant is tested with the null hypothesis of no association assuming a genetic model
for the disease risk (Balding 2006).

GWAS for complex diseases recurrently employs the additive genetic model to test for association,
which is considered to capture the largest fraction of trait variance for complex diseases (Balding
2006). Thus, every additional copy of the minor allele linearly increases (or decreases) the risk of the

disease. However, alternative models such as the recessive or dominant genetic model should not

42



be completely discarded when modelling how genetic variation contributes to susceptibility to disease
(Zeng et al. 2015). The additive genetic model can be tested using the Cochran-Armitage trend test,
which corresponds to the score test in a logistic regression (Zeng et al. 2015). The statistics of the
Cochran-Armitage trend test are conceived to test a null hypothesis of a zero slope after linearly
fitting the estimates of the three genotypic risks (Balding 2006). However, case-control studies are
better addressed using a logistic regression. Thus, p; disease risk for an i individual and a j genetic

variant is formulated as:
logit(p;;) = log (Pij(l - pij)) = Bo + p1G;j

Ro = B4 = 0 corresponds to the null hypothesis of lack of dependence. Under null hypothesis, logistic
regression according any different asymptotically equivalent tests like likelihood ratio, score or Wald
test have a chi-squared distribution with one degree of freedom (d.f.) (Zeng et al. 2015). In addition,
logistic regression allows accommodating covariates such sex, age and importantly, adjusting for
population structure by adding principal or multidimensional scaling components (Balding 2006; de
Bakker et al. 2008). Moreover, the exponential function of the regression coefficient 3¢ in a logistic
regression corresponds to the odds ratio (OR) (Szumilas 2010). An OR describes the odds that a
certain outcome will occur (i.e. developing a disease phenotype) given a particular exposure (i.e. a
genotype). Therefore, the OR shows if the increased dosage of a particular allele confers risk for a

certain disease, and it also allows comparing the magnitude of different risk alleles (Szumilas 2010):
OR = 1 Exposure does not af fect odds of disease
OR > 1 Exposure associated with higher odds of disease
OR < 1 Exposure associated with lower odds of disease

Moreover, for quantitative phenotypes, linear regression, variance analysis or t-tests are available
choices. For longitudinal studies, the method to rely on is survival analysis, by models such as Cox
proportional hazards regression (Zeng et al. 2015). Moreover, more sophisticated Bayesian methods
have been developed although they are more computationally intensive. In addition, when the
genotypes were not experimentally called (either by sequencing or genotyping) but predicted (see
following sections), genotype uncertainty should be taken into account (Balding 2006; de Bakker et
al. 2008). Predicted genotypes are represented as probabilities for each of the three genotypes. The
subsequent uncertainty of the allele dosages can be incorporated by logistic and linear regression

models, which will be reflected in the standard error of the beta coefficient (de Bakker et al. 2008).

5.2.1.3 Minimizing spurious associations

The GWAS approach suffers from a dramatic multiple comparison issue, which results in the inflation
of Type | error if no specific action is taken. For a single SNP, the traditional significance level is a =

0.05. Thus, if a genotyping array should at least have 500K independent genetic variants, 25K false
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positive associations would be expected using a = 0.05 as a threshold. To handle this, one
adjustment is the Bonferroni correction, which sets significance level by dividing a by the number of
tests performed. GWAS were thought to only encompass 1 M independent tests, which implied that
GWAS significance was fixed to 5x10® but some authors argued that this significance threshold was
conservative (Balding 2006). However, due to the large fraction of rare and low-frequency variants
addressed by whole-genome sequencing (WGS), some studies discussed that more stringent
thresholds should be applied, but this is a current unsolved question (3x10'8 for MAF = 1%, 2x10°® for
MAF = 0.5% and 1x10® for MAF = 0.1% at LD r2 < 0.8 in European populations) (Fadista et al.
2016). Another approach to correct for multiple testing is False Discovery Rate (FDR), which controls
the expected proportion of false positive associations (Zeng et al. 2015). FDR allows the researcher

to tolerate a certain proportion of discoveries (rejected null hypothesis) that are false.

To minimize the occurrence of spurious associations, statistically significant SNPs must be also
replicated in independent cohorts. This replication samples should be equivalent to the discovery
cohort and the association analysis have to be applied identically as in the original study to ensure
consistency (Price et al. 2015; Zeng et al. 2015). There are different criteria for interpreting positive
replications (Studies et al. 2007), such as looking for the same direction in the effect sizes.
Nevertheless, non-replication can result from hidden population structure in both original and
replication study or just a consequence of insufficient power due to a small sample size of the

replication dataset (Zeng et al. 2015).

Another important quality control measure is genomic control, which is summarized by the lambda
A statistic and measures the extent of the false positive rate. The A factor is calculated from the
median of the chi-squared test for the observed values divided by the expected median of the chi-
squared distribution, which for one degree of freedom test is ~0.456 (de Bakker et al. 2008; Hinrichs
et al. 2009). A A > 1 is an evidence of a systematic bias or the action of population stratification.
Thus, the chi-squared statistics of the genetic markers should be corrected through dividing them by
the lambda estimator (Hinrichs et al. 2009). In addition, the Quantile-Quantile (Q-Q) plot
representation is a useful tool to identify deviations of the observed distribution from the expected
null (see Figure 6, left). This representation compares in a scatter plot the —log of the observed and
the expected p-values. However, genuine association signals will deviate from the expected null
distribution but they should only represent a small fraction of the observed p-values. Thus, removing
known associations of the Q-Q-plot is recommendable to observe if the null distribution can be
recovered (de Bakker et al. 2008; Zeng et al. 2015). Of note, this genomic control measure A is
inflated with the increase in the sample size in the presence of polygenic inheritance, even without
the action of a confounding bias (Yang et al. 2011). During the development of a previous meta-
analysis for schizophrenia, the LD score regression method was developed to discern inflated test
statistics from confounding bias and polygenic inheritance (links per marker X2 summary statistics

and linkage disequilibrium). Thus, if inflation were driven by polygenic inheritance, the X-statistics
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would be linearly proportional to the LD Score: higher LD Scores have higher probabilities of
capturing by LD a risk-conferring variant, which tend to also have elevated test statistics

(Schizophrenia Working Group of the Psychiatric Genomics 2014; Bulik-Sullivan et al. 2015).

Finally, the p-values of a GWAS are commonly represented by a Manhattan plot that is based on
scattering the p-values in the —logso scale (y-axis) and the physical position of each SNP across
every single chromosome (x-axis). The —logqo scale facilitates highlighting smaller p-values, which

have the higher potential of being associated with a disease (see Figure 6, right)
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Figure 6. Q-Q and Manhattan plots of a GWAS analysis. Q-Q plots shows the expected —logio p-values under the
null hypothesis (x-axis) respect to the observed —logq, p-values (y-axis). The A is the measure of genomic inflation
and is calculated by the observed median X2 test statistic divided by the expected median X2 test statistic under the
null hypothesis. In the manhattan plots, the chromosomal position is represented in the x-axis and in the y- axis, the
statistical significance (-log;q p-value) of the association test. The red line shows genome-wide significance level (p-
value < 5x10'8).

5.2.1.4 Meta-analysis

Single GWAS are sometimes underpowered to capture weak effect sizes attributed to common
variation, or association with low-frequency or rare variants, which requires increasing as much as
possible the sample size. The large number of independent studies carried on simultaneously for a
same disease brings the opportunity to combine these datasets via meta-analysis (de Bakker et al.
2008; Zeng et al. 2015). There are different methods for GWAS meta-analysis but the simplest
approach is a p-value meta-analysis. P-values can be combined with the Fisher's method (Begum

et al. 2012; Evangelou and loannidis 2013):

k
X2 =-2 ) log (1)
i=1

where a X? follows a chi-squared distribution, p; corresponds to the p-value of the ith study and k to

the number of studies. The downsides of this approach are that the overall estimates of the effect
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sizes cannot be computed, between-dataset heterogeneity is not appropriately addressed and there
is a lack of consensus for optimal weighting. Alternatively, a closely related approach to the Fisher
method is z-scores (de Bakker et al. 2008; Willer et al. 2010; Begum et al. 2012; Evangelou and
loannidis 2013):

X Zywy

This approach takes into account the direction of effects and shows a rather straightforward selection

Z

p.
;wherew; = /N; and Z; = ¢~ 1(1 —?l)

of weights through the sample size values.

The second main approach is based on combining effect-sizes estimates such as via fixed effects
meta-analysis, which is commonly used. The most accepted method is the inverse variance
weighting of the effect size estimates (R coefficients) by the standard errors (Willer et al. 2010;
Begum et al. 2012; Evangelou and loannidis 2013):

(B X Biwi 1 1

; (B) = ; (SE) = ; Wi

Z = T —_— = —
(SE) Xiw; 2w SE;?

This approach is characterized by considering equivalent effect-sizes and standard errors across
cohorts, which in a scenario where a substantial amount of heterogeneity between cohorts is
present, the results can be biased. In those cases, instead of fixed effects, random effects meta-
analysis can be used to combine effect sizes. The random model does not assume the same mean
effect across studies and it is able to estimate the degree of heterogeneity, which is incorporated into

the weight of each study.

Finally, in order to generate robust results, heterogeneity should be minimized. Many metrics have
been developed to test heterogeneity but the most widely applied statistic is I? statistic, which
measures heterogeneity as the proportion of the total variation between studies not attributable to the
sample error. Depending on the /° values (0-100%), different categories have been established: 0-
25% represents ignorable heterogeneity, 25%-50% answers for low heterogeneity, 50-75%
corresponds to moderate heterogeneity and 75-100% means high heterogeneity (Evangelou and
loannidis 2013; Zeng et al. 2015).

5.2.2 Progress in the understanding of complex diseases through GWAS

The first successful GWAS addressed the genetics of age-related macular degeneration (AMD) using
~100K SNPs through 96 cases and 50 healthy controls (Klein et al. 2005). Nowadays, this is much
more than a straitened sample size and a poor genomic coverage. However, Klein, R.J. and
colleagues were able to identify an intronic common variant strongly associated (p-value = 4.1x10'8)
and showing a 7.4-folds increase in disease risk for homozygous individuals for the risk allele (Klein

et al. 2005). However, what we know as the GWAS era began with the publication of the Wellcome
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Trust Case Control Consortium (WTCCC) study in 2007 in Nature. This major study evaluated the
association of ~500K SNPs to seven diseases across 17,000 individuals (14,000 cases and 3,000
shared controls) and identified 24 statistically associated loci from which 12 corresponded to
previously known regions (Wellcome Trust Case Control 2007; Visscher et al. 2012; Hofker et al.
2014). The field has undergone an explosive progress, which is clearly illustrated with 2,510 studies
and 24,065 SNP-trait associations documented to date (http://www.ebi.ac.uk/gwas/home) (Welter et
al. 2014).

Despite a large number of identified associations, GWAS signals are characterized by relatively small
contributions to disease susceptibility, implying odds ratio of 1.1 and in very concrete occasions,
above 1.3 (Hofker et al. 2014; Price et al. 2015). This observation is in line with a common disease
whose genetic architecture is articulated across a large number of variants contributing with small
effects-sizes. Sample size, allele frequency and effect sizes strongly determine the final statistical
power to detect a novel association (Visscher et al. 2012; Price et al. 2015). In rare occasions, a
single small GWAS can succeed in unravelling a large fraction of heritability. This scenario would
only be successful in complex traits for which most of the associated genetic factors show large
effect sizes such as in AMD (Price et al. 2015). Nonetheless, in order to identify common variation of
weaker effects, strong initiatives based on the collaboration and data sharing between several
groups studying the same specific disease have been critical (Price et al. 2015). The GWAS
community integrated this premise and it has been characterized by the creation of several

international consortia for several complex diseases.

5.3 Genotype Imputation: a new lease of life for GWAS

Collaborative approaches based on pooling samples and combining summary statistics results from
several studies such as meta-analysis were fostered by genotype imputation techniques. Genotype
imputation was introduced in 2007 (Wellcome Trust Case Control 2007; Marchini and Howie 2010)
allowing that markers not directly genotyped for the study individuals can be replaced by genotype
predictions. Therefore, genotype imputation allows increasing the number of variants to test for

association beyond the initial limited fraction of markers genotyped (Marchini and Howie 2010).

This statistical process begins with a target cohort of samples genotyped at a limited subset of
polymorphic sites and a reference panel of individuals typed at a dense set of SNPs or directly
sequenced (see Figure 7). Variants at the target typed array have been also interrogated in the
reference panel, which allows conceptually accommodating the genotyping backbone of the target
individuals within the reference haplotypes. Then, stretches of haplotypes shared between the target
and the reference panel are estimated. Finally, by the larger allelic correlation structure in the
reference panel, the genotypes for all those missing markers in the target array can be predicted
(Huang et al. 2015; Price et al. 2015) (see Figure 7).
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Figure 7. Genotype imputation technique. A study sample set has been typed at a few SNPs while a reference
catalogue of haplotypes has been typed or sequenced providing high dense SNP information. By integrating the
genotyping backbone of the target samples (top left) with the reference panel (left figure, at the middle), stretches
of haplotypes shared between both datasets are estimated. Finally, untyped variants will be predicted by
selecting those dense haplotypes blocks from the reference panel closely matching each target individual
haplotype. To illustrate the benefits of imputation, we made use of the locuszoom representation for the CCNDZ
loci, showing at the Beagle-axis the —logy, of the association p-value derived from the the logistic regression. The
colours highlight the R-squared with the index SNP (in purple). Two locuszooms are represented, showing the
poor coverage from the genotyped data and the impossibility of replicating a true T2D association in the CCNDZ2
gene. In contrast, performing genotype imputation with the UK10K reference panel increased the coverage and
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5.3.1 Advances in Genotype Imputation calculations

In order to find compatible haplotypes for the markers genotyped in the target individuals, the
haplotypes for the latter ones should be estimated from the genotypes. This “phasing” process
takes the genotypes of a set of genetic variants (i.e. the genetic makeup, the genetic composition for
each polymorphic site considering the two possible alleles) and estimates the haplotypes (i.e.
ordered sequence of alleles from multiple polymorphic sites that are inherited together). Besides
being the core engine of imputation methodologies, phasing is also relevant for the study of genetic

diversity (International HapMap et al. 2007) or the identification of selection (Sabeti et al. 2007).

A revolutionary change in genotype imputation has been the introduction of “pre-phasing” prior to
imputation (Howie et al. 2009). Initially, genotype imputation was performed directly on genotypes:
these methods identified those typed variants in the target samples and also present in the reference
panel, phased them and looked for almost perfect matches between the resulting target haplotypes
and the haplotypes in the reference panel (Scheet and Stephens 2006; Marchini et al. 2007).
According to this rationale, if there was a match between some haplotypes from the reference panel
and the haplotypes built on the basis of the backbone genotypes typed in the target samples, the
reference haplotypes had also to match the genotype content of the unknown fraction of genetic
variants that had to be estimated. This approach was computationally demanding and was replaced
by the pre-phasing step followed by genotype imputation, which is now widely embraced by the
whole community. However, despite the reduced computational complexity derived of only imputing
alleles, there is a slight decrease in accuracy using this approach (Browning and Browning 2016).

Thus, it has been critical generating robust methods for phasing, which have led to a rapid progress.

Since the beginning, most of the existing methods have exploited Hidden Markov Models (HMMs) to
iteratively estimate an individual haplotype driven by a set of SNP genotypes on the basis of
haplotypes of other individuals. The most accurate method, until some recent publications in
this 2016, has been the SHAPEIT2 algorithm (Delaneau et al. 2013) that integrated features from
the previous SHAPEIT1 method (Delaneau et al. 2012) and the IMPUTEZ2 phasing (Howie et al.
2009) approach. SHAPEIT2 also allowed multithreading (Open Multi-processing, OpenMP,
parallelism framework) for a more efficient use of the computational resources and was able to

exploit long stretches of haplotypes shared by samples or long-range phasing (LRP).

However, with the advent of biobanks and huge datasets, sample sizes have increased above
10,000 individuals, which can dramatically impact the computational time in HMM-based
phasing methods such as SHAPEIT2. Other methods have been applied on large datasets
(~60,000 individuals) like HAPI-UR (Wiliams et al. 2012) but the accuracy was reduced in
comparison with SHAPEIT2. Recent solutions addressed this challenge such as SHAPEIT3
(O'Connell et al. 2016) and EAGLE (Loh et al. 2016), that in both cases have been applied in the UK

Biobank data. SHAPEIT3 recognized the HMM limitations and provided some improvements with
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respect to SHAPEIT2 such as benefiting from the increased local similarity between groups of
haplotypes due to a recent shared ancestry (O'Connell et al. 2016). EAGLE collected the ideas
behind LRP that integrated with conventional HMM-based methods, which retained the accuracy of

HMM-based approaches but with a notable increase in computational efficiency (Loh et al. 2016).

Regarding the imputation process, there are several methods available but in any case, they have
benefited from parallel computing that can enhance the execution by using multithreading or by just
simply imputing different genomic regions independently in a cluster infrastructure. Most widely
accepted methods are based on HMM such as IMPUTEZ2 and the recent updates from the minimac3
and the Beagle 4.1. A recent work presenting the novel and improved minimac3 showed that for
huge reference panels involving dozens of thousands of individuals, minimac3 was twice as fast as
Beagle 4.1 and 30 times faster than IMPUTE2 and the memory usage was reduced by 72% and
97%, respectively (Das et al. 2016). Regarding the imputation quality, all methods have similar
performances, but minimac3 slightly outperformed Beagle 4.1 and IMPUTE?2 at the range of 0.0004%
< MAF < 0.5% (Browning and Browning 2016; Das et al. 2016).

5.3.2 Application of genotype imputation

The application of genotype imputation triggered three main benefits (1) facilitating meta-analysis,
(2) increasing the statistical power for GWAS discovery and (3) improving fine-mapping, which are
illustrated with the locuszooms before and after genotype imputation in Figure 7. First of all, when
performing meta-analysis, genotype imputation allows homogenizing the SNP coverage across
different cohorts, as some variants might have been typed in one cohort but not in the other.
Moreover, genotype imputation is able to substantially increase the number of available variants for
association testing, specially using sequence-based reference panels, which will increase the pace
rate of GWAS discovery. In the example shown in Figure 7, the CCND2 locus, which is known to be
associated with T2D through a low-frequency variant, can only be identified by means of genotype
imputation. Finally, this increase in the number of genetic variants for association testing is also
translated in a much higher genomic resolution. Thus, for those reported /oci encompassing multiple
potential causal variants, genotype imputation facilitates pinpointing the most plausible disease-
causing variant or the underlying biological mechanism (Marchini and Howie 2010; Price et al. 2015;

Browning and Browning 2016).

Nonetheless, genotype imputation is a statistical prediction, which always goes hand in hand with a
certain error rate. The accuracy associated to the prediction of common variants is very high.
However, there is a rapid decline of the imputation accuracy in the vicinity of the rare a low allele
frequency range (Huang et al. 2015; Price et al. 2015). The accuracy of the genotype prediction is
tied to several parameters such as the coverage and the quality of the genotyped array of the target

samples. In addition, the quality of the phased genotypes into haplotypes, how limited is the
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representation in the reference panel of haplotypes carrying rare alleles or differences in LD patterns

are other parameters influencing the quality of the imputation (Pistis et al. 2015).

Inadequacy of reference panels is one of the major limitations for accurately impute genotypes, such
as small sample sizes like in HapMap that results in notable errors even for common variants (de
Bakker et al. 2008) . In addition, imputation accuracy has been suggested to improve by selecting a
reference panel closely matching the ancestry of the study population (de Bakker et al. 2008; Huang
and Tseng 2014). Nevertheless, in studies with no clear reference match, most experts
recommended using a cosmopolitan reference panel (Huang and Tseng 2014). Howie, B. and
colleagues demonstrated that larger and diverse reference collections facilitate identifying shared

stretches of haplotypes (Howie et al. 2011).

The first published genome-wide imputation analysis relied on the HapMap2 and (afterwards the
HapMap3) reference panel, which included 60 CEU individuals typed at 2.1 M markers (International
HapMap et al. 2007). The advent of large-scale sequencing and the success of genotype imputation
encouraged the creation of several WGS projects to boost variant coverage and imputation quality
across the whole spectrum of allele frequency. The first large-scale sequencing project was the 7000
Genomes Project (1000G), which was conceived to study and to identify human genetic variants
showing frequencies of at least 1% in the population but also to provide accurate haplotype
information on any type of DNA polymorphism across multiple populations (The 1000 Genomes
Project Consortium et al. 2010; Birney and Soranzo 2015). This project ran from 2008 until 2015,
divided in 4 stages, a pilot phase and three phases in the main project (although the second phase of
the main project was devoted to the technological development). While the pilot phase only identified
14.8 M variants in 179 individuals from four populations, the phase1 of the main project provided
37.9 M variants in 1,092 individuals in 14 populations and in the final Phase 3, 84.4 M variants were
catalogued by sequencing 2,504 individuals from 26 populations
(http://www.1000genomes.org/data). In line with the progress in terms of sample size and population
diversity, ancestry-matching reference panels have been created, samples sizes from reference data
are increasing from a few to tens of thousands of individuals and a major focus is also placed in
reaching high sequencing depth (Browning and Browning 2016) (see Table 1). An illustrative
example is the UK10K project, which sought for a precise characterization of rare and low-frequency
variants in the UK population. This data has been used to study the contribution of variants with
lower allele frequencies to multiple biomedical relevant and disease conditions but it also has
become one of the most relevant resources for genotype imputation (UK10K Consortium et al. 2015).
The UK10K consortium assembled whole-genome sequences of ~4,000 British volunteers,
exhaustively surveying genetic variation down to 0.1% MAF in the British population. Another
example focused on enhancing the characterization of rare variants is the Genome of the
Netherlands (GoNL) Project (Genome of the Netherlands 2014). GoNL sequenced 769 Dutch
individuals of 250 families at ~13x depth, resulting in 20.5 M SNPs and 1.2 M INDELs, and
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extensively capturing structural variation and de novo mutations (Genome of the Netherlands 2014).
In-house reference panels composed by sequencing a subset of samples from the target cohort of
study has been proved to be a valid approach to create genetically similar data to the study samples
(Huang and Tseng 2014). Finally, these independent efforts encouraged the creation of a unified
reference panel across populations, the Haplotype Reference Consortium (HRC,
http://www.haplotype-reference-consortium.org/home). The HRC is the largest panel for imputation
and encompasses other sequencing projects such as the 1000G-Phase3, GoNL, UK10K, SardiNIA
among others, and additional ~30,000 samples of European ancestry. In the following sections some
of these projects will be revised to explain some of the challenges and limitations of genotype

imputation.

Table 1. Overview of publicly available reference panels. For each cohort, the number of individuals, the sequencing
depth and the ancestry of the population are described.

Cohort N Samples Depth Ancestry Accessibility

HapMap3 1,084 Genotyped Multi-Ethnic No restrictions
UK10K 3,781 6.5x UK-European EGA
GoNL 748 12x Dutch-European EGA

1000G-Phase3 2,504 4x/Exome Multi-Ethnic No restrictions

Singapore Sequencing

100 30x South-East Asian No restrictions
Malay Project (SSMP)
GoT2D 2,974 4x/Exome Europeans EGA
Haplotype-Reference . i .
38,821 Diverse Europeans HRC imputation sever

Consortium (HRC)

5.4 Stress tests for the GWAS statistical rationale
5.4.1 Empowering the interrogation of low-frequency and rare variants

Most of the past genotype imputation based GWAS discoveries were articulated on the basis of the

HapMap reference scaffold (Huang et al. 2015) focusing on common variation, whereby the role of
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non-SNV polymorphisms or low-frequency and rare variation was ignored. The successive projects
developed with the advent of NGS technologies that | detailed previously illustrate the big opportunity
for enlarging the landscape of human genetic variation (Hood and Rowen 2013; Price et al. 2015).
For instance, the recent Phase 3 release from the 1000G expanded the initial thousand individuals to
2,504 sequenced individuals from 26 geographic locations, yielding in ~88 M variants (84.7 M SNPs,
3.6 M INDELs and 60K SV) (The 1000 Genomes Project Consortium et al. 2015). This improvement
served to demonstrate that haplotypes identified by GWAS were enriched with common SVs by
more than three folds, urging exploring a larger spectrum of genetic variation on disease
susceptibility (Sudmant et al. 2015). One of the main limitations of genotype imputation for GWAS
approaches was ascertaining low-frequency and rare variants and different strategies were
suggested to break these constraints (Huang et al. 2015; Kim et al. 2015; Price et al. 2015). One
strategy is based on increasing the sample size of the reference panel by combining as many
sequencing data as possible, even from diverse populations, such as the extensions that the 1000G
underwent or the rationale beneath HRC (Kim et al. 2015; Price et al. 2015).

Alternative strategies are based on genetic studies on isolates, in which rare variants can rise high
frequencies because of founder effects or genetic drift (Zavattari et al. 2000). For instance, a
dramatic increase in T2D prevalence in the small and isolated Greenlandic population fostered an
association mapping study of four T2D-related traits. A novel common and missense variant (OR =
10.3, p-value = 1.6x10'24) showed strong association with T2D by terminating a long isoform of
TBC1D4 causing very specific phenotypes (Moltke et al. 2014). This example is a proof of concept of
the opportunity brought by GWAS outside traditional large homogenous populations.

However, isolated populations only offer a gain in statistical power for a limited number of rare
variants that drift to higher allele frequencies. In order to study the full spectrum of rare variation,
large-scale studies of several thousands of individuals in several populations are necessary. This
vast sample sizes can only be reached by collaborative efforts among several centres which yielded
to the creation of biobanks (Price et al. 2015). Large population biobanks integrate genome-wide
genetic information with large amounts of phenotypic information, lifestyle, diet and other
environmental exposures (Price et al. 2015). An example of that is the UK Biobank, a large and
prospective study comprising 500K individuals. The UK Biobank still keeps on the collection of
genotypic and phenotypic information, involving questionnaires, physical measures and sample
assays for a longitudinal follow-up for different health-related outcomes (Price et al. 2015; Sudlow et
al. 2015). Additionally, analysing such a huge British sample size from the UK Biobank through a
population specific reference panel such as the UK10K Consortium is expected to provide very
accurate results. Actually, the UK10K project has demonstrated to be an effective solution when
ascertaining rare and low frequency imputed variants in UK but also Italian populations
(Huang et al. 2015; UK10K Consortium et al. 2015).

53



Finally, sequencing data itself constitutes a unique opportunity to disentangle the role of low-
frequency and rare variation in complex diseases. WGS of large cohorts as in a GWAS approach is
prohibitively expensive. Alternative approaches consist in targeted gene sequencing, whole-exome
sequencing (WES) of the 1-2% of the genome coding for proteins, low-depth WGS, rare-variant
genotyping arrays or extreme phenotype sampling, which is based on sampling at the extreme of the
trait distribution (Lee et al. 2014; Pistis et al. 2015). In addition, association analysis of low-frequency
and rare variants are still underpowered and novel methods have been developed. These methods
are based on aggregating the association signal from multiple variants into biologically relevant
units such as genes, rather than testing single-variant effects (Lee et al. 2014). There are different
methods but they can be broader categorized as burden or variance-component test (Pistis et al.
2015). A burden approach is based on aggregating carriers of rare variants within a gene and
comparing their phenotype or disease susceptibility with the fraction of non-carriers. This approach is
limited by the consideration that rare alleles contribute in the same direction. The second wave of
rare-variant association tests considered a distribution of the genetic effects, such as SKAT tests,
which is able to modulate prioritization and weighting strategies (Lee et al. 2014; Pistis et al. 2015).
Meta-analysis has also been accommodated for rare-variant association studies on the basis of
score summary statistics per individual variant and a matrix summarizing LD correlation patterns
between markers. This strategy has been implemented in rareMETAL or skatMETA packages (Lee
et al. 2014; Pistis et al. 2015).

5.4.2 Genetic inequalities: the X-chromosome exclusion

When breaking down the large number of SNP-trait associations reported in the NHGRI GWAS
catalogue, there is an obvious underrepresentation of the X-chromosome. Actually, only a third part
(33%, 242 out of 743) of the GWAS publications included the X-chromosome in their analysis as
denoted for the period ranging from 2010 to 2011 (Wise et al. 2013; Konig et al. 2014; Kukurba et al.
2016). In addition, although X-chromosome comprises 5% of the human genome content (Wise et al.
2013; Tukiainen et al. 2014), encompasses 1,500 genes and is comparable in size with the
chromosome 7 (Tukiainen et al. 2014), the NHGRI GWAS catalog (Welter et al. 2014) only reported
55 SNP-trait associations (p-value < 5x10®) while chromosome 7 accounts for ~280. Gathering up all
these observations the question of why X-chromosome data remains underutilized has risen. A
consensus suggestion is that the need of specific analytical methods for processing and interpreting
X-chromosome variation impaired the analysis of the X-chromosome in GWAS publications.
Furthermore, the feeling that the myriad of autosomal associations was sufficient to achieve a high-
profile publication has also been reported behind this phenomenon (Wise et al. 2013; Kukurba et al.
2016). In addition, large-scale functional genomics have also excluded the X-chromosome from their
analysis (Kukurba et al. 2016).
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What make X-chromosome special in such a manner that discourages researchers to include it in
their analysis? There is an asymmetry of the genetic dose between females and males (females
have two copies of the X-chromosome while males, one). However, allele dosages are balanced
through an inactivation process of the X-chromosome at the early stage of development in females.
Therefore, X-inactivation varies throughout the body and tissues but of note, 15% of the loci
completely escape this X-inactivation and for another 10%, this process is variable. Therefore, we
have a high heterogeneity that challenges analytical methods. Furthermore, less proportion of data
compared to autosomes under-power X-chromosome GWAS to detect variants with modest effect-
sizes (Tukiainen et al. 2014; Kukurba et al. 2016). Therefore, these particularities should be included
in the imputation process or the association analyses but the majority of the software required for any
of these steps such as SHAPEIT2, IMPUTE2 or SNPTEST have developed specific workflows to
cope with that.

5.4.3 Poor disease understanding keeps clinical translation out of the picture

The deployment of the four P healthcare (Predictive, Preventive, Personalized and Participatory)
results from the convergence of systems medicine, big data and patient involvement. Human
genomics can contribute to the first three Ps through successive steps beginning with the
identification of the genetic association until unravelling the underlying disease causal mechanism.
The correct ascertainment of disease-causal variants would empower risk prediction models to better
illustrate disease susceptibility and to provide personalized and more effective disease prevention
strategies. For instance, sodium-glucose transporter 2 (SGLT2) inhibitors have been consolidated as
a novel class of oral anti-diabetic agents (Nauck 2014) that yield to reduced hyperglycaemia and in
some cases, to lower cardiovascular events (Zinman et al. 2015). Indeed, these agents reproduce
the physiology of familiar renal glucosuria, which is caused by a loss-of-function mutation in SLC5A2,
the gene coding for SGLT2 (Santer et al. 2003). Moreover, drug efficacy is tied in some cases to
some rare and common genetic variants and the translation of GWAS signals to molecular
mechanisms is crucial to identify novel “druggable” components and pathogenic key pathways
(Hofker et al. 2014; Paul et al. 2014).

Despite the undeniable success of GWAS in the identification of novel associations with disease
susceptibility, the impact of these findings into the clinical practice is still minimal (Hofker et al. 2014).
There are two main arguments behind this arduous translation. First, despite the build-up of novel
GWAS associations, a large fraction of the estimated heritability still remains unexplained for
the majority of complex diseases. Therefore, common SNPs are not the unique genetic answer
behind complex diseases, which gave way to the involvement of rare variation with stronger effects,
epistatic mechanisms and unknown interactions between gene and environment (Manolio et al.
2009; Hofker et al. 2014; Price et al. 2015). In line with that, extensive genotyping, improved

genotype imputation methods and sequencing data is crucial to capture all those variants falling
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outside linkage correlation patterns tied to tag SNPs (Hofker et al. 2014; Paul et al. 2014; Price et al.
2015). In second place, the functional interpretation of disease-associated variants is limited,
which results in a poor understanding of the molecular mechanisms triggering most complex
diseases. A key step is the identification of real genetic disease causal variants, which can be difficult
due to a masking effect of LD correlations. A GWAS discovery focuses our attention on a broad
region with a huge number of correlated SNPs. In order to unveil which is the true disease-causing
variant the recurrent and standard practice is fine-mapping. Fine-mapping relies on performing a
dense interrogation of complete associated /oci. Fine-mapping approaches benefit from using a wide
range of ethnicities to span the number of LD patterns, narrowing the number of candidate SNPs
(Paul et al. 2014; Price et al. 2015). In parallel, extensive efforts have been dedicated to elucidate the
downstream effect of associated signals. However, the main focus has been directed towards
protein coding altering variants but this approach has not been extremely resourceful, as the core of
the underlying biology from most GWAS signals (above 90%) corresponds to perturbations in gene
regulation (Ward and Kellis 2012d; Hofker et al. 2014; Paul et al. 2014; Price et al. 2015). Our still
limited understanding of gene regulation impairs the direct interpretation of the functional effects
driven by the association signals. Moving up the complexity ladder, gene regulation is highly
tissue/cell-specific, tied to the developmental stage and to external stimulus or environmental factors
(Paul et al. 2014; Price et al. 2015). In addition, trait-associated signals perturbing gene regulatory
elements may affect the transcriptional output from a distal gene, that would be difficult to pick up
(Paul et al. 2014). The need of a systematic interpretation of noncoding disease associated signals
has led to the emergence of large-scale projects providing reference genome functional annotation
maps. The observation of enrichment of regulatory biochemical signatures in GWAS Joci can guide
hypothesis of the undergoing regulatory disease mechanism. The Encyclopedia of DNA Elements
Project Consortium (ENCODE) (Encode Project Consortium 2012) has released functional maps of
chromatin states, transcriptor factor binding sites and gene expression for several and mostly derived
cell lines. The NIH Roadmap Epigenomics Mapping Consortium (Roadmap) (Bernstein et al. 2010)
or the BLUEPRINT Consortium (Adams et al. 2012) have focused on the construction of epigenome
maps mainly based on primary tissues (Ward and Kellis 2012d; Paul et al. 2014). These public
functional maps in conjunction with the development of computational resources empowered
researchers to prioritize non-coding variants (Ward and Kellis 2012d; Flannick and Florez 2016).
However, choosing the suitable cellular system for the annotation of GWAS Joci is not trivial. Primary
tissues are more direct and real tissue representatives while cultured cell lines retain main
characteristics of primary tissues. However, in cultured cell lines, chromatin structure and DNA
methylation perturbations or even chromosomal rearrangements are frequent, which can mislead
functional interpretation of GWAS discoveries (Paul et al. 2014; Price et al. 2015). Of the outmost
importance is selecting the most informative annotation mark. Authors recommended using open

chromatin marks which are general hallmarks for most regulatory elements but they lack specificity;
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ChIP-seq (chromatin immunoprecipitation sequencing) of histone modifications informing about
active promoters and enhancers but imprecise broader peaks impairs clear elucidation of candidate
functional variants (Paul et al. 2014). A common approach to unravel the role of genetic variation on
gene expression is expression quantitative trait locus (eQTL) analysis. eQTL analysis
addresses the association between genetic variants and variation in the expression levels of mMRNA
(Figure 8) (Morley et al. 2004; Grundberg et al. 2012; Westra et al. 2013) and they have been highly

used to prioritize functional regulatory variants (Ward and Kellis 2012d; Paul et al. 2014).
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Figure 8. Example of a typical eQTL. At the top of the figure, a candidate eQTL for differentiated levels of expression
of the gene i. At the bottom, a representation of how the different genotypes of this candidate SNP are associated with
different distributions of expression values for the gene i. This example illustrates that the T allele is associated with
higher expression levels of the gene i (Adapted from (Nica and Dermitzakis 2013)).

The Genotype-Tissue Expression (GTEXx) project was conceived to provide a data resource to enable
research to study the relationship between genetic variation and gene expression in multiple human
tissues (GTEx Consortium 2013). The pilot phase resulted in the analysis of RNA sequencing 1,641
samples across 43 tissues from 175 individuals that represents the most comprehensive project of

gene expression across diverse human tissues (Hofker et al. 2014).

Therefore, multiple tools are available to guide the researcher in the functional interpretation of
genetic variation. Later, regulatory functional candidate variants should be experimental assayed to
prove molecular function and causality through several experimental assays comprising luciferase
reporter assays, gel-shift, or allele-specific chromatin assays (Paul et al. 2014). These strategies for
the functional translation of non-coding GWAS associations are urgently required to push forward

disease understanding and translation to clinics.
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6 Computational sciences and their involvement in genomic research

The advent of NGS technologies stacked more and more sequenced genomes resulting in Terabytes
and Petabytes of data requiring for efficient and accurate software solutions. Therefore, this huge
amount of data cannot be solely analysed by individual workstations, which stressed the need of
incorporating parallelization techniques and High-Performance Computing (HPC) into genetic
research HPC infrastructures, large-scale storage and a large and dynamic ecosystem of analytical
tools. Typical analysis such as genotype imputation and GWAS encompasses sequential executions

involving multiple software tools, which are referred as a “workflow” (Spjuth et al. 2015).

HPC environments consist of clusters, grids or clouds with batch systems for scheduling jobs.
Recently, a major focus is placed on cloud computing that relies on shared resources delivered on-
demand through Internet. Cloud computing commonly benefits from virtualization, which enables
building computing environments independent of physical infrastructure answering the actual
computational needs of the users (Schadt et al. 2010; Spjuth et al. 2015). This scenario opened the
possibility to package entire analysis in virtual machine images (VMI), or taking profit of the
parallelism of distributed environments. Thus, GWAS approaches are being translated to parallel
computing, especially with the increase in the number of variants to test resulting from genotype
imputation or WGS (Spjuth et al. 2015).

First of all, one major outcome from the integration of computational science in biological research
was just engineering or redesigning bioinformatics applications to accommodate parallel computing
(Ocana and de Oliveira 2015). Parallel computing is a strategy that enables running multiple
executions or instructions simultaneously. Therefore, a program split in independent parts can use a
single computer with multiple processors or a network of interconnected computers to run each part
in parallel. Examples of interfaces that foster parallel computing are: OpenMP (Open Multi-
Processing), for multi-threading on a single shared memory infrastructure and MPI (Message
Passing Interface), a communication protocol for multi-processing applications executed in different
computing nodes of a cluster (i.e. not shared memory) (Schadt et al. 2010; Yang et al. 2014). For
instance, some genotype imputation algorithms are based on multi-threading, such as Beagle

(Browning and Browning 2016) or minimac.

Second most genetic analysis can involve large parallelism within the different analytical steps until
eventually gathering all the output generated into single final results. This preamble facilitates
understanding the rationale behind MapReduce approaches. MapReduce splits a problem into
multiple sub-questions in a ‘map’ step to afterwards, performing a ‘reduce’ step in which collects and
integrates the output of each small question into a single answer (Schadt et al. 2010). Technically,
this programming model and implementation for the analysis of large datasets distributes the
computational load on multiple connected computing nodes (Schonherr et al. 2012). Thus, time-

intensive imputation analyses based on huge reference panels can exploit frameworks based on
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MapReduce techniques. For instance, the free service of the Michigan Imputation Server has been
developed within the CloudGene technology, a free platform that is built on the usability of
MapReduce applications through the Hadoop framework (Schonherr et al. 2012; Spjuth et al. 2015).
CloudGene makes use of a user-friendly graphic interface in order to minimize the installation and
maintenance of MapReduce on cluster systems, or the data management in a distributed system
(Schonherr et al. 2012; Spjuth et al. 2015). Thus, large bioinformatics efforts have been direct to

automatizing and assembling analysis pipelines to enhance wide adoption and reproducibility.

7 Data-sharing: pushing forward the pace of GWAS discovery and the
molecular understanding of complex diseases

The HGP popularized the strengths of data-sharing initiatives by making available data through user-
friendly databases such as GenBank or the UCSC Genome Browser. This shift of the community to
free the access of data arose from the concept of ‘democratization of data’; giving access to third
party researchers, outside from big consortia, is critical to exploit, with additional expertise, public
available data in order to improve the understanding of disease biology (Hood and Rowen 2013).
Several initiatives to encourage data sharing emerged, such as the creation of centralized
repositories for GWAS data, such as the database of Genotypes and Phenotypes (dbGaP) (Tryka et
al. 2014) and the European Genome-phenome Archive (EGA) (Lappalainen et al. 2015). The
underlying goal is maximizing the scientific outcomes resulting from public funded resources through
the application of novel analytical methodologies. In addition, sharing GWAS data allows assembling
more powerful case-control studies, by increasing the sample size for exploring modest and weak
SNP-trait associations or to achieve sufficient power to test rare variants for association (Johnson et
al. 2013). The potential of this approach has been underscored by the advent of genotype imputation
techniques, allowing homogenization of genomic coverage. Furthermore, with the availability of novel
sequence-based reference panels such as the 1000G or the UK10K project, genomic resolution can
be increased by orders of magnitude. Thus, genetic variation that was ignored in the initial study can
be ascertained, yielding to new GWAS discoveries without requiring substantial expenditures.
Actually, the effect of this GWAS sharing initiatives on enhancing novel research has been evaluated
through the several publications resulting from secondary uses of dbGaP data. PubMed reported 924
publications driven by secondary use of dbGaP data and 25% of these studies were published in
journals with an impact factor greater than 10 (Paltoo et al. 2014). Therefore, secondary research
involving dbGaP can vyield to significant achievements in a wide range of fields, such as unknown
associations between the Human Leukocyte Antigen (HLA) locus and Parkinson’s disease (Hamza et
al. 2010). Furthermore, the combination of several dbGaP GWAS datasets allowed one of the largest

alcohol dependence GWAS leading to novel associated loci (Gelernter et al. 2014).

Going back to the limitations of complex diseases, in order to reach a more comprehensive overview

of their genetic architecture, increasingly larger cohorts must be interrogated. In addition, in order to
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achieve a mechanistic insight from the candidate associations and genes resulting from these
studies, a huge amount of resources and a variety of approaches should be undertaken. Besides
secondary research studies, approaches such as integrated portals have been conceptualized in
order to link genetic experts with experimentalists, and physicians (Flannick and Florez 2016). These
portals will respond to all these needs and they should aggregate, harmonize and analyse as much
genomic data sets and phenotypic information as possible. The value of this approach is that it would
empower genetic association studies by linking data contributors with a variety of researchers in a
comprehensive way for this broad community. Therefore, robust and efficient pre-computed analysis
will provide extensive genetic information to pursuit a specific hypothesis from a non-necessarily
genetic expert user. However, on-demand on-line analysis will always be required. Therefore, these
settings should reserve some space to extend their original workflows in order to span the number of
possible biological questions to ask, which constitutes a computational conceptual challenge
(Flannick and Florez 2016). The Type 2 Diabetes Knowledge Portal (T2D Portal) corresponds to one
of these portals, comprising the efforts of more than 100 investigators seeking for a rapid and
intuitive access to genetic analysis of hundreds of thousands of samples (The American Diabetes
Association 2015) .

To summarize, collaborative and data-sharing approaches are mandatory to commit with our desire
to push forward our understanding of the pathophysiology of complex diseases such as Type 2

Diabetes.

8. Type 2 Diabetes: a paradigm of the genetic research in complex
diseases

Diabetes Mellitus (DM) is a complex chronic metabolic disease characterized by high levels of
blood sugar (hyperglycaemia) driven by a depletion of insulin secretion or defective insulin function
(Tallapragada et al. 2015). The increasing incidence of DM is disturbing: 415 M of affected
population worldwide in 2015. This prevalence has been spurred by the rapid rise in obesity and life-
style changes such as the reduced physical activity. Additionally, current estimations stated that DM
will be the 7™ leading cause of death by 2030 and diabetic patients will rise up to 642 M of individuals
in 2040 (International Diabetes Federation 2015). Particularly worrisome are 193 M of population
that remain undiagnosed, which place them at higher risk of developing DM related complications.
DM is accompanied by a high rate of morbidity and mortality due to the chronic elevated glucose
blood levels on the vasculature, which can result in a progressive loss of vision, renal failure,
peripheral and autonomic neuropathy and macrovascular complications (i.e. stroke) (Forbes and
Cooper 2013). The long-term support required for these patients has risen the public expenditure 5%
to 20% (International Diabetes Federation 2015).
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8.1 Type 2 diabetes pathophysiology

90% of the DM cases are suffering from T2D, which are diagnosed on the basis of glucose blood
levels after fasting (Fasting plasma glucose test, FPG) or 2h after a glucose challenge (2hGlu, Oral
glucose tolerance test, OGTT), or on haemoglobin A1c (HbA1c) that provides a 3-month average
estimation of blood glucose (International Expert 2009; Mohlke and Boehnke 2015). The hallmark
feature of T2D pathophysiology is an hyperglycaemia driven by a progressive insulin resistance in
liver, muscle and adipose tissue and a depletion of the pancreatic B-cell function resulting in
hampered insulin secretion (Cornell 2015). Several authors have reported strong evidences for a
genetic component for T2D risk, the depletion in insulin secretion and insulin action (Poulsen et al.
1999; Poulsen et al. 2005) and this reduced insulin sensitivity has been shown to co-occur with
obesity, adverse lipid concentrations, hypertension and an exacerbated inflammatory state (National
Cholesterol Education Program Expert Panel on Detection and Treatment of High Blood Cholesterol
in 2002). From a systemic point of view, these molecular defects in the T2D pathophysiology involve
at least seven organs and tissues (pancreas, liver, skeletal muscle, adipose tissue, brain,

gastrointestinal tract and kidney) (Defronzo 2009), which are represented in Figure 9.

Loss of B-cell function has been genetically associated with the impairment of the pancreatic
development, insulin secretion and storage (Grant et al. 2009). The decrease of the B-cell function
in pancreas has been demonstrated to be age-related (Chang and Halter 2003), which is consistent
with the co-evolution of T2D prevalence along with aging (Centers for Disease Control and
Prevention (CDC) 2014). Insulin resistance promotes biosynthesis and release of insulin that can
lead to an “exhaustion” of the B-cell in the process of adaptation to the large insulin demands (Kahn
2001). Moreover, major T2D risks factors such as obesity and physical inactivity (Hu 2011) are
associated with insulin resistance and can consequently led to B-cell failure in the long-term
(Defronzo 2009; Hu 2011). Excess of rapidly absorbable carbohydrates from diet increases insulin
and blood glucose levels (Hu 2011) while fat deposits in liver and muscle fosters insulin resistance in
these tissues (Defronzo 2009). Furthermore, glucotoxicity (chronic exposure to high glucose levels)
hampers B-cell function and insulin secretion (Poitout and Robertson 2002) while lipotoxicity
(elevated concentrations of plasma free fatty acids -FFA-) impairs insulin secretion and results in the

depletion of B-cells (Carpentier et al. 2000; Kashyap et al. 2003).

T2D patients show an overproduction of glucose in liver, which has become resistant to the
repressive effects of insulin (Defronzo 2009). Elevated levels of glucagon (produced in pancreatic a-
cells) also increases the hepatic glucose production (Defronzo 2009). The main mechanism for the
uptake of exogenous glucose is the insulin-stimulated transport of glucose into skeletal muscle
(Huang and Czech 2007). T2D patients exhibit a decrease in the glucose transport favouring

hyperglycaemia because an insensitivity to the effects of insulin (Cusi et al. 2000).
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In the adipose tissue, insulin resistance in adipocytes leads to increased circulating FFAs, which
fosters gluconeogenesis, hepatic and muscle insulin resistance and impairs insulin secretion (Bays et
al. 2004). In addition, defective adipose tissue results in an excess of inflammatory and atherogenic
cytokines, which can stimulate insulin resistance, and is unable to adequately secrete insulin-

sensitizing adipocytokines (Bays et al. 2004).

T2D cases also exhibit insulin resistance in the brain, inhibiting the effect of insulin in satiety,

increasing the food intake (Pagotto 2009).

In the gastrointestinal tract, T2D patients were reported to exhibit a lowered release of glucagon-
like peptide (GLP-1) and reduced sensitivity to glucose-dependent insulinotropic polypeptide (GIP),
which reduces insulin secretion, increases glucagon secretion and consequently, enlarges the liver

glucose release (Nauck et al. 2004).

Finally, the increased capacity of the kidney to reabsorb glucose in patients with T2D worsens the
hyperglycaemia by increasing glucose circulatory levels (DeFronzo et al. 2013). Also, it has been

suggested that for T2D patients, renal gluconeogenesis is exacerbated (Meyer et al. 1998).
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Figure 9. The pathophysiology of T2D across multiple tissues. Adapted from (Defronzo 2009)
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The pace of disease progression as well as the pattern of long-term complications is heterogeneous
across patients, which implies more individual tailoring in order to meet the particular risk factors
encountered in each case (Tallapragada et al. 2015). Additionally, several studies directed to
understand the progress in the T2D pathophysiology indicated that T2D is more like a jigsaw of
several metabolic disorders determined by distinctive intermediate traits (body mass index, waist-hip-
ratio, hypertension...) (1998; Zoungas et al. 2009; Ismail-Beigi et al. 2010). However, most of the
pharmacological treatments are directed to lower the hyperglycaemia, ignoring the risk to all the
several complications related to T2D and there is no single therapy able to target all the effects and

organs involved in the T2D pathogenesis (Srinivasan and Florez 2015).

8.2 Other forms of Diabetes Mellitus

The other major form of DM is Type 1 diabetes (T1D) that represents 5-10% of DM cases (Atkinson
et al. 2014) and it is driven by autoimmune destruction of 3-cells manifested through the detection of
autoantibodies for pancreatic B-cells (Naylor et al. 2011; Onengut-Gumuscu et al. 2015). The
pathophysiology of T1D is much more known, more accurate diagnosis and prognosis are available
and the treatment is insulin administration. Besides these two polygenic conditions, there are also
rare monogenic forms of DM characterized by highly penetrant genetic defects in single genes, which
lead to pancreatic B-cell dysfunction and hyperglycaemia (Naylor et al. 2011; Tallapragada et al.
2015). Monogenic forms of T2D account for 2-5% of diabetes cases and a large number of patients
are incorrectly diagnosed for T1D or T2D, which can result in unnecessary use of insulin or the
inefficient ascertainment of at-risk family members (Naylor et al. 2011). This results in ineffective
treatments and makes impossible the identification of at-risk relatives (Naylor et al. 2011;
Tallapragada et al. 2015). The maturity-onset diabetes of the young (MODY) is characterized by
non-ketotic diabetes with an early onset set between 6 months and 35 years of age (Naylor et al.
2011; Flannick et al. 2016). MODY does not imply the intervention of autoimmune antibodies or
insulin resistance; hyperglycaemia is due to a decrease in R-cell mass. Nevertheless, 14 MODY
subtypes are described and their responsible genes identified, which represent 80-90% of the
diagnosed cases. Another rare DM forms are Neonatal Diabetes Mellitus (NDM), which manifest
during the first few weeks of the newborn (diagnosed before 6 months). Increased blood sugar levels
in these patients can be either transient or permanent NDM (TNDM and PNDM) as well as syndromic
cases of NDM. NDM is characterized by low birth weight and R-cell dysfunction (Naylor et al. 2011;
Tallapragada et al. 2015; Flannick et al. 2016). TNDM recedes at 18 weeks of age but these patients
are in high risk of developing diabetes as adults while PNDM can involve either isolated
hyperglycaemia or other extra-pancreatic defects, requiring life-long treatment (Tallapragada et al.
2015). Finally, other rare forms include mitochondrial diabetes mellitus, multiorgan syndromes such
as Wolcott-Rallison and Wolfram syndromes. Some of these monogenic forms have been
successfully addressed due to the strong correlation between genetics and disease manifestation,

which led to better diagnosis and effective treatments. As previously said, for 90% of DM cases that
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corresponds to T2D, treatments are inadequate and unable to cope with late-stage complications
(Flannick et al. 2016).

8.3 The progress in the understanding of the genetic architecture of type 2 diabetes

On the cutting-edge of the study of the genetics of complex multifactorial polygenic diseases, type 2
diabetes (T2D), the most prevalent form of DM, always have had an outstanding place (Billings and
Florez 2010). In contrast to monogenic forms of diabetes mellitus showing clear inheritance patterns,
T2D results from the interplay between different genetic factors and environmental factors. The
estimated heritability of T2D ranges from 30-70% depending on diagnostic criteria but also on age
(Poulsen et al. 1999; Almgren et al. 2011; Willemsen et al. 2015). Therefore, genetics is a key
player in the T2D pathophysiology with a more critical role in the first stages of development of the
disease according to twin and family studies (Poulsen et al. 1999; Almgren et al. 2011). The genetic
architecture of T2D has been thought to follow the CDCV model, and therefore, mostly based on the
contribution of common variants showing modest and small effect sizes. Although more than 100
robust T2D associated variants have been linked to disease susceptibility (Fuchsberger et al. 2016),
less than 10% of the T2D heritability can been explained by the known associated variants
(Manolio et al. 2009; Billings and Florez 2010; Hofker et al. 2014).

Next, | will review the successive findings in the genetics of T2D that this last decade has witnessed

which are represented in Figure 10.

8.3.1 Common Variants

Genome-Wide Association Studies have been the gold standard for the identification of the majority
of known genetic factors contributing to T2D risk (mostly falling at the range of common variants),
and have demonstrated the polygenic nature of T2D (Tallapragada et al. 2015). This success
explained the poor performance of familiar linkage analysis and candidate gene studies (Bonnefond
and Froguel 2015) performed previously. The pre-GWAS era led to the identification of PPARG
(Altshuler et al. 2000) and KCNJ11-ABCC8 (Gloyn et al. 2003) by candidate gene studies and
TCF7L2 through linkage analysis (Grant et al. 2006). After that, there was a succession of several
waves of GWAS. At the beginning, studies of a few thousand individuals resulted in dozen novel loci
(Scott et al. 2007; Sladek et al. 2007; Steinthorsdottir et al. 2007; Wellcome Trust Case Control 2007;
Zeggini et al. 2007). These evidences validated the GWAS approach and suggested that common
variants would not show large effect sizes. Therefore, in order to identify common variants of
weaker effects, data-sharing and collaborative initiatives were translated into large meta-analysis.
The Diabetes Genetics Replication and Meta-analysis (DIAGRAM) consortium answered this
demand and it was able to assemble 10,000 individuals, including 4,500 T2D cases (Zeggini et al.

2008). This kind of initiatives has been constant in the following years.
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This success encouraged performing GWAS and meta-analysis across several populations, and
there was also a new wave of GWAS based on T2D-related metabolic quantitative traits in non-
diabetic individuals. This approach led to the identification of novel T2D loci in Europeans such as
MTRN1B (Bouatia-Naji et al. 2009; Lyssenko et al. 2009) or PROX1, ADCY5, DGKB (Dupuis et al.
2010) that were primarily associated with fasting glucose (FG). However, the reduced overlap
between genes associated with T2D and those influencing normal glycaemic traits suggested that
the knowledge of the physiology of metabolic traits would not be translated in T2D risk. A recent
study has reported how the combination of known FG SNPs can predict the incidence of impaired
fasting glycaemia over a 9-year follow-up while they were able to predict T2D incidence (Vaxillaire et
al. 2014). Moreover, most of the T2D loci reported were mainly involved in the 3-cell function, with a

smaller contribution from insulin resistance-related genes.

A new round of GWAS meta-analysis using a custom genotyping array called Metabochip, built on
the basis of a backbone of nominally associated variants with 23 cardio-metabolic traits and
associated diseases as well as to fine-map well established disease and trait associated /oci (Voight
et al. 2012). This inexpensive array enabled researches to genotype a much larger number of
samples to boost statistical power for loci discovery. The DIAGRAM consortium enlarged the sample
size of previous meta-analysis by genotyping through the Metabochip ~150K individuals (with ~38K

cases) that led to the identification of ten further /oci (Morris et al. 2012).

The first non-European-based GWAS for T2D was performed in 2008 and led to the identification of
the KCNQ1 gene based on variants common in East Asians (MAF ~3 %) (Unoki et al. 2008; Yasuda
et al. 2008). In 2010, a further large meta-analysis through individuals of European ancestry was
unable to replicate those signals found in East Asian populations but they provided an independent
signal for the same gene (Voight et al. 2010). Since 2012, many studies addressed T2D risk in many
different ethnicities, which resulted in novel T2D Joci driven by risk alleles that showed differentiated
allele frequencies across populations. For instance, the SLC16A11-SLC16A13 locus was identified in
both Japanese (Hara et al. 2014) and Latino populations (Sigma Type 2 Diabetes Consortium et al.
2014c) or studies in South Asians led to the identification of TMEM163 (Tabassum et al. 2013) and
SGCG (Saxena et al. 2013). Another example is a study in the Greenlandic population based on
using the Metabochip array that found a novel association in the TBC1D4 gene with an OR=10.3
under a recessive inheritance model (Moltke et al. 2014). These studies underscored the statistical
power from studies based on diverse, founder and historically isolated populations for the

identification of novel risk loci.

In order to strengthen the identification of T2D /oci whose risk alleles are shared across populations,
meta-analysis across several ancestries were performed. For instance, a meta-analysis based on
European, African-American, Hispanic-Latino and Asian studies allowed the discovery of the BCL2

locus (Saxena et al. 2012). In addition, a trans-ethnic meta-analysis assembling more than 110K
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individuals, including 26,500 cases, led to the identification of seven new loci (DIAbetes Genetics
Replication And Meta-analysis (DIAGRAM) Consortium et al. 2014). These meta-analyses have
extensively benefited from the emergence of genotype imputation methods, especially in this
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