
 
 
 
 

 

 
 
 

 
 

 
 
 

 

Implementation of a novel analytical framework 
for large-scale genetic data  

 
Extending the genetic architecture of type 2 diabetes 

 beyond common variants 
 

Sílvia Bonàs Guarch 
 
 
 
 
 
 

 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement- NoComercial – 
SenseObraDerivada  3.0. Espanya de Creative Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento - NoComercial – SinObraDerivada  
3.0.  España de Creative Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0. Spain License.  
 



	   1  



	  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   1 

Facultat de Biologia, Universitat de Barcelona 

Implementation of a novel analytical 

framework for large-scale genetic data 

Extending the genetic architecture of type 2 diabetes 

beyond common variants 

Barcelona Supercomputing Center-Centro Nacional de Supercomputación 

Programa de Biomedicina EEES H0101 

Memòria presentada per Sílvia Bonàs i Guarch per optar al grau de doctora per la 

Universitat de Barcelona 

 

Doctoranda 
Sílvia Bonàs i Guarch 

 
 

 
 

Directors         Tutor   
Josep M. Mercader i David Torrents     Modesto Orozco 
 
 



	  2 

	  



	  

	   3 

 

 

 

We're like crystal 

We break easy 

I'm a poor man 

If you leave me 

I'm applauded 

Then forgotten 

It was summer 

Now it's autumn 

 

Crystal, New Order 
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The major landmark in modern genomic and biological research has been the first survey of the 

entire human genome. On June 2000 the staging of Bill Clinton along with Craig Venter and Francis 

Collins extolled how genome science would impact our lives by revolutionizing diagnosis, prevention 

and treatment for a vast number of human diseases (Collins 2010). Since that, we underwent a 

breathtaking progress in genome science with the unique conjunction of the development of new 

technologies such as Next Generation Sequencing (NGS) or genotyping arrays (Collins 2010; Hofker 

et al. 2014) and extensive data sharing initiatives catalysing new discoveries (Kaye et al. 2009; 

Collins 2010; Hood and Rowen 2013). To underscore the magnitude of this summit, the first 

sequence from the Human Genome Project (HGP) took 13 years and several collaborative efforts 

from a lace of international public research institutions entailing a 3 billion budget (U.S. Department 

of Energy & Human Genome Project program). Less than a decade later, NGS technologies have 

been implemented for clinical diagnosis, we entered in the $1,000 genome era, and the last Illumina 

sequencer, HiSeq X Ten is capable of producing up to 16 human genomes (1.8 terabases of data) in 

three days (Hayden 2014). 

The success of NGS led to an astonishing rate of growth of sequence data (Koboldt et al. 2013), 

which is doubling every seven months (Stephens et al. 2015).  A downstream consequence has 

been the rapid accumulation of the number of sequenced genomes of many vertebrates, 

invertebrates, fungi, plants and microorganisms enabling tackling evolution and genome function 

through the rationale of comparative genomics (Collins 2010). In addition, the build-up of sequence 

data of thousands of human subjects contributed to catalogue the genetic differences between 

individuals, or also called as genetic variation (Hofker et al. 2014). There are different types of 

genetic variation but the most abundant are Single Nucleotide Polymorphisms (SNPs) (Stranger et 

al. 2011), substitutions of single nucleotides. While the HGP reported around 1.4 M of SNPs (Lander 

et al. 2001) more than 84 M of SNPs have been described in the new phase 3 release of the 1000 

Genomes Project (1000G-Phase3) (Sudmant et al. 2015; The 1000 Genomes Project Consortium et 

al. 2015). A final example to illustrate the large efforts invested in more accurate descriptions of 

genetic variation is the last work published from the Exome Aggregation Consortium (ExAC). This 

study involved the aggregation and analysis of exomic regions through sequencing data of 60,706 

individuals (Lek et al. 2016). The disposal of this kind of data showed a widespread mutational 

recurrence in human genomes, it allowed detecting genes subjected to strong selection depending 

on the class of mutation and it is expected to facilitate the clinical interpretation of disease-causing 

variants (Lek et al. 2016). Thus, the accumulation of individual genetic data has empowered 

researchers to unravel those specific genetic variants associated with disease liability. We also 

moved from biologically guided candidate single gene-studies involving a few hundreds of individuals 

towards hypothesis-free genome-wide analysis, performing extensive and massive genomic 

interrogation of thousands of individuals (Relling and Evans 2015; Wang et al. 2015). Piecing these 

advances all together, we have expanded our understanding of disease pathophysiology. Therefore, 
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integrating the genetic understanding of the health-status alongside with clinical explorations 

constitutes the idea beneath personalized medicine. This genomic paradigm shift for clinical 

medicine provides a new source of therapeutic breakthroughs and diagnosis (Hood and Rowen 

2013). As an example of this, targeted therapeutics have been resourceful for the treatment of lung 

cancer: sequence information revealed that tumours carrying specific mutations in the epidermal 

growth factor receptor (EGFR) were vulnerable to kinase inhibitors, resulting in higher response rates 

compared to traditional platinum-based chemotherapy (Levy et al. 2012; Swanton and Govindan 

2016). Moreover, genetic tests are able to predict which breast cancer patients will benefit from 

chemotherapy (Innocenti et al. 2011; Gyorffy et al. 2015). Finally, notable successes have been 

achieved in pharmacogenomics, in which warfarin dose can be adjusted on the basis of genetic 

polymorphisms placed in CYP2C8 and VKORC1C genes (Collins 2010; Hood and Rowen 2013; 

Relling and Evans 2015). In line with this, there are large efforts under way to prioritize targeted 

therapeutics and to optimize drug selection and dosing, such as the Genomics England 100,000 

Genomes Project and the US National of Health (NIH) Pharmacogenomics Research Network 

(Relling and Evans 2015; Wilson and Nicholls 2015). 

However, clear successes in clinical decision-making through genomic knowledge are anecdotal due 

to a poor understanding of human genetic diseases (Hofker et al. 2014; Relling and Evans 2015). 

For instance, Genome Wide Association Studies (GWAS) is undoubtedly one of the most 

important methodological advances emerging from the availability of complete human genome 

sequences and affordable DNA chips (Visscher et al. 2012; Hofker et al. 2014; Paul et al. 2014). 

GWAS have been extremely resourceful in identifying genetic variants associated with multiple 

diseases, but the translation of these results to clinics is sparse (Manolio et al. 2009; Collins 2010; 

Hofker et al. 2014). Some of the limitations lie on (1) the still small proportion of disease causing 

genetic factors identified for most complex diseases and (2) a lack of functional characterization and 

interpretation of disease associated variants, which hampers the identification of the underlying 

molecular mechanism (Manolio et al. 2009; Hofker et al. 2014).  

The genomic revolution has brought new decisive players for the future trend in biomedical research 

and clinical genetics. The ‘genomical’ challenge is one of the most demanding Big Data sciences in 

all four big computer science domains (data acquisition, storage, distribution and computation). In 

order to meet this rapid progress of genomic research, the build-up of whole-genome sequences and 

the emergence of large population biobanks (Stephens et al. 2015) urges a parallel development of 

computational frameworks. Moreover, a real social concern about data privacy can discourage the 

participation in genetic studies, which requires a major discussion about the ethical consequences of 

the return of information to participants seeking for genetic diagnosis (Hood and Rowen 2013; 

Koboldt et al. 2013). From this brief overview, the agenda of human genomics has clearly many 

issues to address. In this thesis I translated some of them into the following general goal: setting a 
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cost-effective genetic research environment through the implementation of novel analytical 

and computational methods in order to better understand the genetics of Type 2 Diabetes 

(T2D). This work is a small glimpse of the frenzied activity in human genomics research and it aims 

to modestly contribute along with countless research efforts on this broad deployment of P4 medicine 

(Predictive, Preventive, Personalized, Participatory). In the next sections of this dissertation, I want to 

spell out this primary focus by providing several concepts that I learned during these years, which 

prompted this research to successfully achieve the goals of this thesis. 
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1 Disease burden shift: chronic diseases and Type 2 diabetes as the 
new threats 
Life expectancy is continuously increasing as depicted on the latest estimations by the World Health 

Organization (WHO). Global average life expectancy hit 71.5 years in 2015 according to WHO, and 

is expected to reach 75 by 2045-2050 (European Environment Agency (EEA) 2015). The economic 

growth and improvement of social conditions that our society underwent have given access to basic 

health care and education but they have also favoured unhealthy lifestyles. The final outcome of 

these developments is an epidemiological transition in which non-infectious diseases (non-

communicable diseases, NCD) out-weights the disease burden from infectious diseases (European 

Environment Agency (EEA) 2015). Later reports from WHO attributed 38 M of mortality to NCD (68% 

of worldwide mortality) in 2012. More than 40% of this mortality in 2012 corresponded to premature 

deaths under age 70 years, occurring mostly in low/middle income countries, but 28% of them also 

occur in high-income countries (WHO 2014). Of note, only four main NCDs (cardiovascular diseases, 

cancers, respiratory diseases and diabetes mellitus) are direct responsible for 82% of the whole 

NCD deaths.  

Large inefficient treatment and prevention strategies are predominant for chronic diseases, such as 

diabetes mellitus (DM). Setting-up a healthcare infrastructure efficient enough to lower this financial 

burden must be the primary target of our efforts. Thereafter, human genomics has a key role in 

articulating personalized disease prevention strategies, in the development of new therapeutics and 

in the improvement of drug efficacy in patients (Collins 2010; Hofker et al. 2014). 

2 Historical overview of genetics: where do we come from 
Human genetic diseases can be distinguished according to different criteria. In order to explain 

disease burden, I made a distinction according the mode of transmission as communicable 

(infectious) or non-communicable. In this example, the criterion chosen is the occurrence of 

“infection”, the action of a pathogenic microorganism for the disease transmission. An extension of 

the mode of disease transmission was the observation of the inheritance of some diseases and 

traits to the offspring. A key question in biology has been whether phenotypes or physiological traits 

can be transmitted across generations, and if the underlying causes are biological or environmental 

(Liu 2007). In this section I briefly traced the history of the genetic field, in which there was a parallel 

progress of population genetics articulated through several mathematical and statistical works, and 

molecular biology. Both developments have been critical to empower the study of the inheritance of 

disease traits.  

2.1 From Hippocrates until the foundations of population genetics 

Genetics is the science focused on the study of genes, genetic variations between individuals and 

inheritance (National Institutes of Health (US) 2007), concept that draws its ideas from the Ancient 
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Greece (Cobb 2006; Liu 2007). However, the history of classical genetics begins with Gregor 

Johann Mendel (1822-1884), who statistically studied inheritance for the first time. In 1866, this 

Austrian Augustinian monk published his study on pea plants in which he detailed how certain 

phenotypes or traits are transmitted to the offspring following certain rules (Cobb 2006), the 

“Mendelian laws of inheritance”. Mendel outlined a mathematical framework explaining how a trait is 

passed from parents to their progeny through a genotype (the offspring receives a genetic unit from 

each parent), and how this genetic material is able to create new variations (Liu 2007). However, 

Mendel’s work was brushed aside until the 20th century. Contemporarily, Charles Darwin (1809-

1882) was unable to adequately incorporate inheritance in his theory of evolution by natural 

selection (Darwin 1859; Darwin 1868; Charlesworth and Charlesworth 2009). In order to justify 

heritable variability, which is indispensable for selection, he articulated his own theory of 

“pangenesis” (also proposed by Hippocrates): all kinds of variation occurring during lifetime are 

transmitted by means of gemmules. He suggested that all parts of the body throw off gemmules at 

different developmental stages and if any part underwent any kind of modification, it would be 

transmitted to the offspring (Darwin 1868). This hypothesis provides an explanation for the 

inheritance of acquired characters (Cobb 2006; Liu 2007; Charlesworth and Charlesworth 2009; Liu 

and Li 2012).  

The birth of genetics is tied to the publication of the independent works on plant hybridization from 

Hugo de Vries (1848-1935), Carl Correns (1864-1933) and Erik Tschermak (1871-1962), that 

corroborated and rediscovered Mendel’s work (Haynes 1998). De Vries asserted as Mendel that 

inheritance is driven by discrete particles and he also suggested that exact hereditary units named 

“pangenes” (or genes) were behind equivalent characteristics from similar species (De Vries 1889; 

Lenay 2000). De Vries also introduced the term “mutation” when suggesting how new species are 

the result of preexisting ones and the sudden appearance of inheritable variations, or mutations (De 

Vries 1901-1903; Lenay 2000). It was not until 1905 when Bateson (1861-1926), chief popularizer of 

Mendel’s ideas, coined the word “genetics” in order to describe the study of heredity and the new 

phenomena of genetic variation (Haynes 1998). However, Mendel’s theory was not easily embraced 

by the scientific community. The dominant view of inheritance was “biometry”, originated with Karl 

Pearson (1857-1936), based on the statistic analysis of continuously varying traits and gradual 

evolution from Darwinism (Rice 2014). On the other side, Mendelians such as Bateson argued that 

single strong mutations were beneath major adaptive changes, and thus, they were primarily 

interested in the inheritance of discrete traits and the identification of driver strong allelic effects 

(Stranger et al. 2011; Rice 2014). Thereafter, there was a large controversy between Mendelians and 

Biometricians that confronted Mendelian particulate inheritance in contrast to quantitative genetics 

used on continuously varying traits.  

Population genetics was conceived as a need to reconcile Mendel with Darwin. This emerging field 

has been crucial to understand genetic variation within-species and gene mapping for human 
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diseases (Wakeley 2005; Crow 2010). Ronald Fisher (1890-1962) mathematically showed that 

continuous variation might arise from the combined action of multiple independent genes with small 

contributions, resulting in an approximate normal distribution for this given continuous trait (Fisher 

1918; Fisher 1930). J.B.S. Haldane (1892-1964) articulated a mathematical framework for the origin 

and fall of genetic variation driving evolution (Haldane 1932). Finally, Sewall Wright (1889-1988) 

emphasized the role of genetic drift (i.e. random fluctuation of genetic diversity) in evolution as an 

evolutionary force altering the composition of genetic characters in a population through random 

sampling (Crow 2010). Fisher, Haldane and Wright provided the mathematical groundwork of the 

“modern synthesis” of Darwin’s natural selection for evolution and Mendel’s law of inheritance 

(Bowler 2003; Crow 2010; Charlesworth and Charlesworth 2016). This is the foundational moment of 

population genetics (Stranger et al. 2011), which is defined as the discipline focused on describing 

how evolutionary forces modify the genetic composition in a population (Charlesworth and 

Charlesworth 2016).  

This theoretical core was extended with previous and further discoveries. For instance, in the second 

half of the 20th century, Motoo Kimura (1924-1994) along with James Crow (1916-2012) brought 

back the debate between Wright and Fisher about the role of genetic drift. The authors stated that 

genetic variability is mainly driven by neutral mutations and genetic drift (Kimura and Crow 1964). 

These successive works reduced the evolutionary process to manageable parameters such as 

mutation, drift, selection and recombination, which can be empirically estimated.   

Another remarkable principle of population genetics was the Hardy-Weinberg Equilibrium (HWE), 

independently conceived by G.H. Hardy (1877-1947) and W. Weinberg (1862-1937) in 1908 (Hardy 

1908; Weinberg 1908). This principle answered one of the most challenging opponents of the 

evolution by natural selection proposed by Darwin, the “blending inheritance”. According to this 

hypothesis, random mating would cancel out genetic variation, homogenizing trait variation, 

overriding natural selection as an evolutionary driving force. The Hardy-Weinberg principle shows 

how genetic variation is not lost in a population under Mendelian inheritance. The first take-home 

message was that frequencies of genetic variants are stable over time in the absence of evolutionary 

forces. Second, for each genetic unit, the distribution of genotypes in the next generation for diploid 

organisms can be predicted by a simple equation based on the frequencies of possible gametes in 

the population (Hardy 1908; Weinberg 1908; Wigginton et al. 2005).  

Another constitutional principle that determined our ability to track the underlying causes of inherited 

diseases was genetic linkage. Genetic linkage is the physical association of inherited genetic 

units (Stranger et al. 2011), which contradicted Mendel’s law of independent segregation of different 

trait characteristics (Lobo and Shaw 2008). By studying inheritance of two traits (colour and shape) in 

sweet peas plants, Bateson and Reginald Punnett (1875-1967) realized that the ratios from the 

phenotypic combinations of the crossings deviated from Mendel’s law (increased occurrence of 
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purple-long and red-round peas). They deduced that a physical coupling mechanism connected the 

genetic characters from these two traits (Bateson et al. 1905). Later, using fruit fly as an organism 

model, T. H. Morgan (1866-1945) discovered that a white-eyed mutant phenotype was tied to males 

(Morgan 1910). He reasoned that this alteration should be placed in the sex chromosome and he 

argued that if a trait is physically coupled to a specific chromosome, this should be true for others. In 

1911, Morgan suggested for traits segregating together that their respective genetic characters 

should reside close in the same pair of homologous chromosomes (Morgan 1911). Morgan also 

suggested that during meiosis, homologous chromosomes exchanges some parts, what we know as 

genetic recombination (Griffiths et al. 2000a; Lobo and Shaw 2008). This knowledge was crucial for 

presenting genes as physical entities that underwent genetic recombination and can be specifically 

placed on chromosomes. This work and other studies of linkage opened the way to gene mapping, 

which allowed unravelling the basis of inherited diseases (Lobo and Shaw 2008).  

2.2 The DNA era in molecular biology 

To summarize, there was a vivid progress on conceptualizing inheritance and evolution but it still 

remained obscure how these genetic characters were molecularly transmitted. Morphological 

structures or “chromosomes” were identified by observing cell division (Flemming 1965), which 

served Morgan to show how specific genes are physically attached. However, how this information 

was organized and of what actually consists, was a mystery.  Thus, the parallel deployment of 

molecular biology to this theoretical progress was indispensable. Actually, the second half of the 20th 

century is known as the DNA era. Friedrich Miescher (1844-1895) identified the “nuclein” substance 

from white-cell nucleus in 1869, now known as DNA (DeoxyriboNucleic Acid) (Dahm 2010). Shortly 

afterwards, DNA material was identified as the molecule behind the inheritance (Hershey and Chase 

1952; Griffiths et al. 2000b). With the progress of X-ray crystallography, a great focus of study was 

placed on unveiling the tridimensional structure of complex biological molecules. Maurice Wilkins 

(1916-2004) and Rosalind Franklin (1920-1958) contributed with X-ray studies to the research of 

DNA molecules, and the latter one produced the first picture of DNA fibres (Griffiths et al. 2000c). In 

1950, Erwin Chargaff (1905-2002) reported equal base ratios in any DNA sample which suggested to 

Watson that bases on each DNA strand were paired (Chargaff et al. 1950; Griffiths et al. 2000c). In 

conjunction with the unauthorized glimpses of Franklin’s images showing the double-stranded helical 

structure, James Watson and Francis Crick were on the verge of reporting the model of DNA: the 

double helix. The double helix model was published in 1953, and it has been underscored as one of 

the most significant discoveries of the 20th century (Watson and Crick 1953; Griffiths et al. 2000c). 

Soon afterwards, Francis Crick conceived the central dogma of molecular biology, the principle to 

understand the relationship between DNA and proteins (Crick 1970).  

Once the structure and function of DNA were discovered, research was redirected to decipher the 

DNA sequence. Fred Sanger (1918-2013), who had technically enabled reading the sequence of 
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protein chains in 1950, succeeded in discovering the DNA sequence of a bacteriophage ϕX174 in 

1977 (Sanger et al. 1977; Hutchison 2007). However, scaling DNA sequencing from the 5,386 bases 

of the ϕX174 phage to the ~3 billion base pairs (bp) of the human genome was a huge technical 

challenge, which required assembling a large-scale international project, the HGP. The culmination 

of this project is a milestone in molecular biology and medicine: the HGP accelerated the 

development of high-throughput sequencing technologies, building-up an astonishing number of 

sequenced genomes, and catalysing the study of genetic variation and the inheritance of diseases 

and traits.  

3 Genetic variants and their contribution to human genetic diseases 
In this section I want to describe the different types of genetic variation and the structural properties, 

such as linkage disequilibrium, that have been crucial to track inheritance of traits and diseases.  

3.1 Genetic variation: remnants of our history 

Genetic information is stored in each of our cells as molecules of DNA, a 3 billion-long sequence of 

nucleotides (A, T, C and G, that stands for Adenine, Thymine, Cytosine and Guanine). As diploid 

organisms, we have two copies of this molecule that we inherited from our respective parents, which 

differ between them. Each specific physical position in the genome is called a locus (pl. loci), which 

can encompass a large region such as a gene or be narrowed to a particular base pair position.  

Alternate forms of each locus are referred as an allele. However, the term is loosely used to name 

the alternate forms of a specific base pair position. For instance, for a locusJ, the “G” is the most fixed 

DNA base in the population, but some individuals have the alternative “T” DNA base. Each “G” and 

“T” forms are alleles. For a given position, the two alleles inherited from each parent are called a 

genotype. Genotypes can be homozygous when an individual inherits identical alleles from each 

parent or heterozygous, when each parent transmitted different alleles for a given locus.  

Genetic variation corresponds to the naturally occurring differences among individuals in a 

population, which are gathered in our genotypes. Of note, the latest estimations from the 1000G-

Phase3 release highlighted that a typical genome differs from the human reference sequence in 4.1 

M to 5 M sites (The 1000 Genomes Project Consortium et al. 2015).  

By estimating the proportion of variant sites at a population level we can track remnants of human 

evolution. The average proportion of variant sites is not homogenous across populations: populations 

with African ancestry retained the highest number of variant sites compared to other populations, 

which is in concordance with the out-of-Africa human origin model (Stranger et al. 2011; The 1000 

Genomes Project Consortium et al. 2015). This hypothesis suggests that modern humans that were 

originated in Africa replaced non-African populations and it has been widely accepted since it was 

proposed in the late 1980s (Cann et al. 1987; Stringer and Andrews 1988; Wilson and Cann 1992). 

Additionally, the lower proportion of genetic variation in humans compared to other apes has been 
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shaped by the out-of-Africa migration of our ancestors. During their expansion over the globe, our 

ancestors encountered new environments leading to novel adaptions or founder effects that were 

followed by population bottlenecks (Jorde and Wooding 2004; Lachance and Tishkoff 2013). In these 

last 10,000 years, our environments and quality of life underwent drastic changes that have been 

translated into an asymmetry between our genomes and our current environments. An example of 

that is the “thrifty genotype” hypothesis, which was proposed to explain, for example, the high 

prevalence of T2D: alleles associated with fat deposits and the increase of the risk for T2D, were 

advantageous for early hunter-gatherers. However, in our social framework these genetic variants 

favoured what has become a threat to the subsistence of our health infrastructures (Lachance and 

Tishkoff 2013; Segurel et al. 2013). This hypothesis is not free of controversy, and last studies 

pointed to opposite scenarios. However, our incomplete understanding of the whole set of genetic 

factors modifying T2D susceptibility, as it occurs for the majority of common diseases, makes denser 

studies of the evolution of T2D susceptibility still a challenge (Segurel et al. 2013).  

3.2 Types of genetic variation 

Genetic variation takes many forms ranging from the narrowest to the largest scale in: (a) Single 

Nucleotide Variants (SNVs), (b) Insertions and deletions (INDELs), (d) Tandem Repeats, (e) variable 

number of copies of a segment of DNA sequence (Copy Number Variants, CNVs), (f) inversions and 

translocations (Copy Neutral Variants) of these segments and other large structural events that can 

even lead to chromosomal aneuploidies (Ku et al. 2010; Baker 2012; Zhao et al. 2013) (Figure 1).  

However, there is still a lack of consensus in the classification of genetic variations and the criteria 

available are neutral, without referring to the association with a phenotype or a disease. One useful 

criterion is the size of DNA sequence that these variants encompass. We coin the term “structural 

variation” (SV) for genetic variants involving segments covering more than 100 bp (the number is 

arbitrary, earlier definitions used a 1 kilobase pair (kb) cut-off because of the ability to detect of 

smaller variants) (Baker 2012). Within the “structural variant” category, we have alterations that are 

quantitative such as copy number variants while copy neutral variants are positional (translocations) 

and orientational (inversions). CNVs have been limited to segments of DNA ranging smaller than 5 

Mb (megabase pair) whereas large structural variants responds to alterations involving more that 5 

Mb of DNA sequence (Ku et al. 2010; Zhao et al. 2013) as is represented in Figure 1.  
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The frequency of these genetic variants within the population is an alternative way to categorize 

genetic variation. “Polymorphism” is an umbrella term for all kind of genetic variation accounting for 

population frequencies above 1%, which now also includes Copy Number Polymorphisms (CNP) a 

part from Single Nucleotide Polymorphisms or SNPs. 

For each polymorphism, we can distinguish between the “major” (highest frequency in the studied 

population) and the “minor” allele (variant form in the population) on the basis of the frequency in 

general populations. Therefore, polymorphisms are traditionally classified as common when the 

frequency of the minor or rare allele (Minor Allele Frequency, MAF) remains above 5% (Ku et al. 

2010). Huge efforts for cataloguing genetic variation through sequencing studies such as the 1000G 

Project (The 1000 Genomes Project Consortium et al. 2010; The 1000 Genomes Project Consortium 

et al. 2012; The 1000 Genomes Project Consortium et al. 2015) or the UK10K Consortium (UK10K 

Consortium et al. 2015) have enlarged the landscape of genetic polymorphisms. There is plenty of 

attention whether low-frequency (1% ≤ MAF < 5%) and rare variants (0.1% ≤ MAF < 1%) contribute 

Figure 1. Diversity of genetic variation. Based on the size of DNA sequence of the variant, we can distinguish 
between Single Nucleotide Variants, short insertions and deletions (INDELs) and tandem repeats, which entail 
segments shorter than 1kb. On the other hand, we have structural variants, categorized as Copy Number/Neutral 
variants sizing less than 5Mb and large chromosomal rearrangements displayed on a “circos” representation of 
structural variants (where the circle corresponds to chromosomes and the inner lines, to structural variants). 
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to disease susceptibility and phenotype variation (Huang et al. 2015; The 1000 Genomes Project 

Consortium et al. 2015). Nevertheless, these allele frequency boundaries are standards to facilitate 

the interpretation and the study of genetic variation and disease and trait outcomes. The 

accumulation of genetic individual data like in the last call set from the whole exome-sequence data 

of 60,706 individuals of the ExAC consortium (Lek et al. 2016) has enlarged the landscape of genetic 

variation towards more rare genetic variants. The availability of personal genomes would ultimately 

convey to the characterization of more private and individual genetic variants (Lupski et al. 2011). 

Therefore, with the advent of personal genomes these artificial boundaries can fall, which will favour 

a continuum conceptualization of genetic variation in terms of allele frequency.  

In summary, we can conceive genetic variation according to different criteria but in any case, these 

boundaries are agnostic of the molecular mechanisms that the genetic variants might mediate. These 

classifications are only based on patterns of DNA sequence changes (Ku et al. 2010).  

3.3 Linkage disequilibrium: breaking down the correlation patterns of human genetic 
variation  

As mentioned above, the most abundant type of the 0.1% of sites that are variable in a typical human 

genome is by far composed by SNPs, which have become the suitable markers to explore the 

relationship between our genotype and inherited diseases. However, this large collection of millions 

of SNPs is not providing unique and independent information. In fact, population genetic forces have 

brought structure to our genomes, which is reflected in the occurrence of linkage disequilibrium 

(LD) a non-random association of alleles from different loci (Slatkin 2008). This correlation 

structure varies across the genome and populations (Frazer et al. 2009), and also depends on the 

physical exchange of DNA during meiosis, also called as recombination. Recombination events in 

the genome are confined in hotspots, which determine the boundaries between blocks of linked 

alleles from different loci (Daly et al. 2001; Wall and Pritchard 2003). Closer markers are less likely to 

suffer from a recombination event, thus alleles at different loci but spatially close will be transmitted 

together from parents to offspring (Crawford and Nickerson 2005; Frazer et al. 2009; Ku et al. 2010).  

To exemplify this correlation, two SNPs are in LD if by observing a specific allele A for the first SNP, 

there is more chances to observe a specific allele B for the second SNP. Thus, these two alleles are 

entangled by the LD correlation. This correlation can be mathematically estimated or quantified by D, 

the coefficient of linkage disequilibrium, described by the frequency of gametes carrying 

simultaneously the pair of alleles A and B at two loci (pAB) and the frequencies of these alleles (pA 

and pB) (Slatkin 2008).  

𝐷!" = 𝑝!" − 𝑝! ∗ 𝑝! 

However, this descriptive statistic was inconvenient to compare LD across different pairs of alleles 

because the possible values of D strictly depend on the allele frequencies. The normalisation of D 
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was D’, a ratio based on the maximum possible absolute D value (Dmax) according to the observed 

allele frequencies (Lewontin 1964).  

𝐷! =
𝐷

𝐷!"#
 

Another useful measure of LD is the r2, which is similar to D’, a correlation coefficient ranging from 0 

to 1 expressed as (Slatkin 2008): 

𝑟! =
𝐷!

𝑝! ∗ 1 − 𝑝!   ∗ 𝑝! ∗ (1 − 𝑝!  )
 

The study of LD extended the definition of “haplotype” to refer to the combination of correlated alleles 

from different markers at the same chromosome, which are inherited together. Therefore, this 

knowledge allowed determining regions with almost no evidence of recombination, accounting for a 

set of markers in high LD, that were called “haplotype blocks”. In addition, it was noted that these 

blocks were separated by hotspots of recombination (Crawford and Nickerson 2005; Hofker et al. 

2014). The discovery of haplotype blocks posed the following hypothesis: in order to assess genome-

wide which genetic variants are associated with a certain disease, testing a single variant per block 

was informative enough (Slatkin 2008) as illustrated in Figure 2.  

The International HapMap Project (International HapMap 2003), following the HGP, was a 

pioneer huge collective effort fuelled by the opportunity to describe the human genome in terms of 

haplotype blocks,  focused on describing common genetic variation and informing about which SNPs 

remain linked during chromosomal recombination and inherited together across all the genome. The 

Phase I an II of the project catalogued ~3 M markers in 269 individuals from four populations 

(Yoruba, Japanese, Han Chinese and Utah residents with European ancestry). In the Phase III, 1.5 

M genetic variants were genotyped in a larger set of samples including seven additional populations 

(Slatkin 2008). The HapMap project provided an extremely useful report that guided the genetic 

studies of inherited diseases: the majority of variants within the HapMap project (MAF ≥ 5%) were 

adequately captured by half a million of SNPs (Frazer et al. 2009; Hofker et al. 2014). Therefore, 

studying the genetics of T2D susceptibility was not tied to genotyping millions of variants. In fact, 

researchers were able to capture those signals correlated with a disease phenotype just handling 

half a million of proxy SNPs or tagSNPs, which economically enabled the GWAS approach.  
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Figure 2. The structure of the genome in haplotype blocks. At the right, a single genomic region for two individuals 
has been illustrated as haplotype blocks (boxes), which are determined by measures of LD. Each letter corresponds 
to an allele from an SNP (A, G, T or C) or from an insertion/deletion (I/D). Blue lines highlighted those tagSNPs 
required to be genotyped and the red line, underscores a disease causal variant within a populated haplotype block. 
The left part of the figure shows the frequency of the haplotypes depending on the colour.  

	   	  

4 Characterization of human inherited diseases: heritability and 
genetic architecture  
Human genetic diseases are highly heterogeneous but some historical classifiers were established to 

provide a theoretical basis to study them. This next section was written with the aim to 

comprehensibly describe how we have characterized the genetic basis of human inherited diseases, 

which has determined our methodologies to understand them  

4.1 Heritability: quantifying the genetic contribution to trait transmission 

A crucial observation that synthesizes the concept of inheritance was that for most human traits, 

relatives tend to be more alike compared to random individuals from the population. This 

resemblance among relatives fostered the study of inheritance of traits and diseases, which allowed 

us to assemble a new concept named as “heritability” (Visscher et al. 2008). Resemblance can arise 

from common environmental and inherited factors, and heritability addresses the partitioning of this 

resemblance into nature and nurture.  Heritability allows us to compare the importance of genetics 

against environment in explaining the trait variation enclosed in a population. Heritability measures 

how much variability of a specific trait is controlled by genetic differences (Visscher et al. 2008; 

Tenesa and Haley 2013).  Technically, heritability is formulated as a ratio of variances: the proportion 
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of the total variance of a particular measurement (a phenotype) in a population, which is attributable 

to genetic variation (Visscher et al. 2008; Wray and Visscher 2008). 

Traditionally, heritability was estimated by means of a (i) within-family design, looking at the 

correlation of full or half siblings, by a (ii) pedigree design such as the regression of offspring on 

parental phenotypes or the observed differences in the correlation of monozygotic (MZ) and dizygotic 

(DZ) twin pairs, and by a (iii) population design based on the genetic similarity between distant 

relatives (Vinkhuyzen et al. 2013).  Moreover, heritability may also be estimated by means of 

adoption studies, including MZ twins reared apart and non-biological relatives reared together (Sham 

and Cherny 2011; Tenesa and Haley 2013). Of note, the emergence of genome-wide SNP data has 

been crucial to overcome the confounding of genes and environment that led to biased estimations of 

heritability. Using a population of unrelated people, for which only the proportion of genetic variance 

explained by SNPs is captured, may avoid inflated estimations of heritability due to environmental 

factors shared between related individuals, among other factors (Vinkhuyzen et al. 2013; Zaitlen et 

al. 2014). 

Heritability has been extremely crucial to provide meaningful and appropriate comparisons of traits 

and it is an informative indicator of the efficiency of gene-mapping or the prediction of genetic risk in 

human disease studies (Visscher et al. 2008). The highest the heritability, the easier it should be to 

identify genetic risk factors for the disease. 

4.2 Genetic architecture of human diseases: disentangling genotype-phenotype 
relationships 

The study of human genetics has unlocked the underlying genetic basis of a vast number of Human 

Genetic diseases and its activity has been extremely intensified during this last decade. All the 

research efforts devoted to link genetic variants and genes with specific disease phenotypes 

benefited from the creation of public databases such as The Online Mendelian Inheritance in Man 

(OMIM) (Amberger et al. 2009; Amberger et al. 2015). OMIM accounts for 23,603 entries (accessed 

July 20th, 2016) and the NHGRI-EBI Catalog of published genome-wide association studies reported 

23,058 unique SNP-trait associations across 2,502 studies (accessed July 20th, 2016) (Welter et al. 

2014). 

The relationship between genotype and phenotype has always been hard to decipher, but some 

basic models that helped to conceive the genetic structure beneath human genetic diseases are 

represented in Figure 3. These simple schemes summarize part of what we designate as “genetic 

architecture”, that depends on the number, frequencies and effect sizes of disease causal variants 

(Flannick et al. 2016). Shifts in the parameters beneath the genetic architecture led to the traditional 

classification of human genetic diseases: monogenic and complex (polygenic) diseases.  
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Figure 3. Genetic models behind human genetic diseases. From top to bottom, left to right, traits and diseases can be 
shaped as (a) Monogenic traits caused by single-gene defects, (b) Polygenic traits requiring the involvement of 
multiple gene defects, (c) Pleiotropy in which a single gene or genetic variant yield to different phenotypic 
manifestations and (c) a model based on polygenic and pleiotropic effects.	   

4.2.1 Mendelian o monogenic diseases 

Most of our knowledge about human genetic diseases answered the genetics behind monogenic 

diseases such as Huntington disease (Gusella et al. 1983; MacDonald et al. 1993) or Cystic Fibrosis 

(Riordan et al. 1989a; Rommens et al. 1989; Janssens and van Duijn 2008). These disorders are 

characterized by rare mutations interfering with the specific function of a single gene (Janssens 

and van Duijn 2008). They are also called “Mendelian” diseases because they segregate according 

to Mendelian laws following several models of inheritance: autosomal dominant, recessive, co-

dominant, sex-linked (Health 2010). Thus, one deleterious variant or defect is sufficient to cause 

pathogenic phenotypes, observed by a remarkably higher risk of disease in carriers of these 

mutations compared to non-carriers (Janssens and van Duijn 2008). The genetic architecture of 

monogenic diseases has been conceived to involve genetic variants with huge effect sizes and a 

negligible intervention of the environment, although variable penetrance can occur. Moreover, highly 
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penetrant1 variants tend to lower allele frequencies, and thus, monogenic disorders are attributed to 

rare individual mutations or for instance, mutations enclosed in a familiar lineage (see Figure 4) 

(Cooper et al. 2013; Flannick et al. 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The study of single-gene disorders had an unquestioned value in the enrichment of our 

understanding of gene function, regulation mechanisms, human phenotypes and body physiology 

and vice versa. These advances allowed the discovery of novel therapeutic and diagnostic strategies 

and improving the patient care for rare and complex diseases commonly occurring in the population 

(common form of a disease) (Chong et al. 2015; Flannick et al. 2016). For instance, mutations in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Penetrance corresponds to the percentage of individuals carrying a particular mutation or genotype that 
also develops a certain disorder or exhibits a certain phenotype.  	  
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Figure 4. Genetic architecture of human genetic diseases. The number, the allele frequency and the effect size of the 
disease-causal variants determine the genetic architecture. At the top, a coloured gradient representing a large 
population ancestry until a single familiar structure is shown (obtained from Lupski, J.R. et al., 2011).  At the bottom, 
using four axes (effect size, allele frequency, involvement of environmental factors and occurrence in single families or 
populations) complex and monogenic diseases have been placed in a continuum phenotype in a landscape delimited 
by historical criteria for classifying human genetic diseases. 
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genes altering renal salt reabsorption underlay monogenic disorders such as Bartter and Gitelman’s 

syndromes (increased blood pressure) or the Liddle syndrome (decreased blood pressure).  The 

understanding of Bartter’s syndrome, a life threatening disorder characterized by hypotension, for 

which mutations in the KCNJ1 gene have been attributed, allowed proposing ROMK, the product of 

KCNJ1, as a novel target for hypertension and heart failure (Garcia and Kaczorowski 2014).  

Traditionally, linkage mapping combined with Sanger sequencing has been applied to identify the 

genetic defects beneath a large fraction of monogenic disorders (discussed afterwards) (Chong et al. 

2015; Flannick et al. 2016). NGS techniques allowed turning a blind eye to prior biology and 

accelerating the identification of genes underlying monogenic phenotypes. Thus, the pace of disease 

gene discovery has increased from ~166 to 236 between the time periods of 2005-2009 and 2010-

2014 (Chong et al. 2015) that resulted in 2,937 genes reported for 4,163 monogenic phenotypes. 

However, for ~50% of all known monogenic disorders, the underlying causal genes are still unknown. 

In connection with disease burden, aggregating clinically identified monogenic phenotypes and all 

congenital anomalies sums up to 8 M births worldwide that present a “serious” genetic condition, 

which represents $5 M healthcare expenditure per child during their lifetime in United States (Chong 

et al. 2015).  

4.2.2 Complex diseases 

Complex polygenic diseases result from an intricate interplay between genetic, environmental and 

lifestyle factors and represent a vast public health impact (Buchanan et al. 2006). In contrast with 

monogenic diseases, there is no action of a distinctive Mendelian inheritance pattern. However, 

complex diseases have a tendency to cluster in families, which is in agreement with their significant 

multifactorial genetic component that has been arduous to identify until the last decade (Manolio et 

al. 2009; Flannick et al. 2016). As shown in Figure 3, we need to move away from single gene-

disorder associations, a kind of ‘genetic deterministic’ rationale and we need to rely on a new 

concept, ‘genetic predisposition’: a single variant showing a modest or weak effect size is not able by 

itself to directly cause a complex disease phenotype (Buchanan et al. 2006).  

The genetic architecture of complex diseases is shaped by the action of numerous low penetrant 

variants from multiple loci, which synergistically modulate disease susceptibility, in conjunction with 

an environmental component (Manolio et al. 2009). During this last decade, the most accepted model 

for the genetics of complex diseases has been steeped in the common disease-common variant 

(CDCV) hypothesis built on the basis of the infinitesimal rationale proposed by Fisher: multiple 

genetic variants commonly occurring in the population (MAF ≥ 1-5%) have individual modest effects 

on disease susceptibility. However, in a cooperative manner, they grant substantial risk of 

manifesting the complex disease phenotype (Reich and Lander 2001; Manolio et al. 2009; Lowe and 

Reddy 2015) (see Figure 4).  
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Nevertheless, the small fraction of estimated heritability, ranging from 5 to 20%, explained for the 

majority of common diseases (Agarwala et al. 2013) brought researchers to reconsider this model. 

Alternative hypotheses, such as the infinitesimal model, stressed the involvement of a larger number 

of common variations contributing with small increments to the risk of disease (Manolio et al. 

2009; Gibson 2011). Some authors also supported that rare variants showing large effect-sizes 

(Pritchard 2001) are a key source to increase the fraction of explained heritability, specially 

considering the underestimated abundance of rare and private variants arising from the analysis of 

whole-genome sequences (Lupski et al. 2011). In line with that, novel trends have conceived 

complex diseases as a collection of multiple, even hundreds of rare monogenic sub-phenotypes 

driven by rare variants. In this context, GWAS results would only reflect synthetic associations in 

which rare variants happen to segregate with common GWAS signals (Dickson et al. 2010). 

Moreover, the term “clan genomics” has been used to argue that common diseases can be driven 

by a unique combination of rare alleles of recent origin clustered in a family lineage (Lupski et al. 

2011).  Furthermore, epistatic gene-gene and gene-environment interactions were also suggested 

to explain a fraction of the aetiology of complex diseases (Schork 1997; Manolio et al. 2009; Gibson 

2011).  

Additionally, in order to get deeper insights into disease aetiology, reducing phenotypic heterogeneity 

is fundamental such as in approaches based on using intermediate phenotypes, quantitative 

measures of a disease characteristic (Buchanan et al. 2006; Wang et al. 2012a). Additionally, for 

apparent monogenic diseases such as sickle cell anaemia, the heterogeneity of mutations and the 

action of genetic variation in unlinked modifier genes, are able to modify disease penetrance, which 

explains the clinical heterogeneity of some monogenic disorders (Cooper et al. 2013). These 

examples are pushing us to redefine the boundaries between monogenic and complex diseases. 

Applying techniques for the study of single-gene disorders may facilitate the study of genes behind 

intermediate phenotypes related with complex traits. But also, the methodology behind the study of 

the genetic architecture of complex diseases can help us to comprehend the multigenic nature from 

monogenic disorders (Cooper et al. 2013; Tallapragada et al. 2015; Flannick et al. 2016).   

To put this story together, the growing accumulation of sequencing data has enlarged the spectrum 

of genetic variation, and thus, some authors have suggested that each individual genome should be 

conceived as a unique spectrum of mutational burden. Within this continuum, each individual 

pathogenic ecology would encompass inherited and de novo variants: inherited common variants 

segregating in the population, inherited rare variants of recent origin in a familiar lineage, 

combinations of novel emerging rare variants from each parent and de novo mutations. This novel 

trend suggests that historical categories of human diseases can be placed along a single disease 

continuum. Understanding health status as a continuum breaks down all the practical boundaries of 

human diseases established due to an incomplete understanding of the mutational load. Therefore, 

each traditional category only reflects a different phenotypic manifestation arising from the whole 
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individual genetic burden in conjunction with environmental influences (Lupski et al. 2011). This new 

debate arising from an incomplete understanding of the role of the different ranges of the whole 

spectrum of genetic variants (from rare, to low-frequency until common variants and from weak to 

highly-penetrant effect sizes) showed that we are still lagging behind the profound comprehension of 

the genetic architecture of complex diseases.  

5 Evolution and perspectives of genomic approaches for studying the 
genetics underlying complex diseases 
The emergence of high-throughput sequencing platforms has technically and economically enabled 

the massive detection of genetic variation, spurring the genetic research of the basis underlying 

common complex diseases. In this section, I want to briefly provide an historic perspective of the 

evolution of genetic mapping to facilitate fully comprehension of the success and limitations of large-

scale genetic studies. After that, I will proceed to detail the current state art of large-scale genetic 

analysis for complex diseases. Finally, I will argue the several challenges that are hampering our 

understanding of the genetics underlying complex diseases and the ultimate translation on clinical-

decision making.  

5.1 Genetic mapping before the completion of the Human Genome Project (HGP) 

The HGP constituted a major landmark that revolutionized biomedical and genetic research. But, 

what was known before that? Geneticists realized that some traits are inherited according to 

mathematical Mendel’s ratios as consequence of single gene defects, but the vast majority of trait 

variation resulted from the interplay between several genes and non-genetic factors (Altshuler et al. 

2008; Stranger et al. 2011). Afterwards, the discovery of genetic linkage (Bateson et al. 1905; 

Morgan 1910; Morgan 1911) fostered the origin of genetic mapping: observing how DNA variation 

segregates with trait variation without relying on any prior biological guidance enables localizing 

which genes underlie certain phenotypes (Altshuler et al. 2008; Stranger et al. 2011). The first 

reports of genetic mapping were linkage analysis formulated by Sturtevant for fruit flies in 1913: 

crossing parents varying at a Mendelian trait enabled the identification of genetic markers that were 

segregating with that trait. Later in the 1970s, the emergence of DNA methodologies such as cloning 

or Sanger sequencing enabled with genetic linkage maps (positional cloning) zooming in the specific 

causing genes for Mendelian or Monogenic traits (Altshuler et al. 2008). However, until the end of the 

20th century, genome-wide linkage analysis in humans had technical impairments such as small 

family sizes, the impossibility of intervention in parent’ crosses and the limited number of genetic 

markers to trace across individuals (Altshuler et al. 2008). DNA polymorphisms in the form of 

Restriction fragment length polymorphisms (RFLPs) were described by Jeffreys in 1979 in beta-

globin gene cluster (Jeffreys 1979) and he revealed that they commonly occur in the genome. 

Botstein and colleagues realized in 1980s that this kind of genetic inter-individual variation, was a 

potential source of marker loci (Botstein et al. 1980); they outlined the seed of human genetic linkage 
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maps which are the basis for mapping inherited diseases (Botstein et al. 1980; Hofker et al. 2014). 

These findings were crucial for the identification of the HTT gene for Huntington’s disease in 1983 

(Gusella et al. 1983) or the CFTR gene in cystic fibrosis (Kerem et al. 1989; Riordan et al. 1989b; 

Rommens et al. 1989). Therefore, a large fraction of Mendelian diseases were mapped by linkage 

analysis followed by positional cloning at the mid-1990s (Hofker et al. 2014). Geneticists were 

tempted to recycle all the lessons from Mendelian disease genes to study complex diseases. 

However, hatching links between genotype and complex phenotypes was slow and arduous because 

these disorders do not obey Mendelian inheritance patterns and account for substantial 

environmental contributions. Linkage analysis or candidate-gene association studies brought sparse 

successful results (Manolio et al. 2009). Linkage analysis takes advantage of those shared DNA 

segments inherited from common ancestors in order to identify genetic variants strongly segregating 

with a phenotype and thus, largely contributing to the molecular pathology (Billings and Florez 2010; 

Torres et al. 2013). This approach is convenient for Mendelian diseases: (1) disease-causing 

variants are rare and the disease allele segregates within the same chromosomal region within each 

family and (2) Mendelian diseases are defined by highly penetrant variants which results in co-

segregation with disease status (Hirschhorn and Daly 2005; Billings and Florez 2010). Genome-wide 

linkage analysis succeeded in mapping genes underlying rare monogenic forms for DM such as the 

maturity-onset diabetes of the young (MODY) (Fajans et al. 2001; Vaxillaire and Froguel 2006) or for 

the identification of the Major Histocompatibility Complex (MHC) locus for type 1 diabetes (T1D) 

(Castano and Eisenbarth 1990; Tienari et al. 1992). However, in accordance with the CDCV 

hypothesis, complex diseases are based on allelic variants characterized by a high frequency in the 

population (MAF ≥ 5% of the population) (Manolio et al. 2009) and susceptibility to disease spread 

across a large number of genetic variants (Manolio et al. 2009; Billings and Florez 2010). One of the 

few successes achieved through linkage analysis in complex diseases is the identification of 

evidences of linkage from the TCF7L2 locus for T2D (Grant et al. 2006). Later, this evidence was 

validated through association studies (Groves et al. 2006). Genetic association methods were an 

alternative approach to disentangle the genetics beneath complex diseases. These first association 

studies were only able to interrogate specific candidate genes, and therefore, this approach was 

guided and limited by prior biological knowledge. The main criticisms to this approach were the 

limited knowledge to provide plausible functional genes and variants to test or the dubious novelty of 

the results generated. Moreover, a main downside was the lack of replicability across association 

studies resulting in false positives because of population structure, heterogeneity of the phenotype or 

low prior odds of association. Additionally, there is also a publication bias towards positive results in 

which some authors overlooked failed replications that might inflated the estimates of replicability 

(Tabor et al. 2002; Marigorta and Navarro 2013). Nonetheless, this approach was able to identify 

PPARG and KCNJ11 as novel candidate genes for T2D, which harbour missense variants 

associated with T2D (Altshuler et al. 2000; Gloyn et al. 2003).  
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In summary, before the HGP, disease causing genes and mutations strongly segregating across 

families were identified for a vast number of monogenic diseases. For complex diseases, linkage 

analyses and candidate gene approaches achieved a humble success.  

5.2 The GWAS era 

The HGP encouraged several big projects seeking for the understanding of the human genetics, 

which rapidly led to the connection with human health (Hood and Rowen 2013; Hofker et al. 2014). 

The International HapMap Project fostered the progress of array technologies, which resulted in 

affordable DNA arrays allowing for the first time systematic and genome-wide interrogation of the 

role of common genetic variation in susceptibility to human diseases (Hofker et al. 2014; Price et al. 

2015).  Genome-Wide Association Studies (GWAS) represents one of the most relevant 

methodological advances in human genetic research and is a direct outcome from the completion of 

the human genome sequence and the parallel technological development of genotyping arrays 

(Hofker et al. 2014; Price et al. 2015). Through the interrogation of hundreds of thousands of SNPs, 

GWAS look for statistically significant differences in allele frequencies in large cohorts of thousands 

of cases and controls at each polymorphic site, providing associations between genetic variants and 

disease susceptibility (Manolio et al. 2009; Price et al. 2015). As a brief example, if one specific allele 

from one SNP is far more represented in cases than in controls, this variant will show statistical 

association with that disease, and this specific allele will be considered a risk allele (see Figure 5, 

left) (Hofker et al. 2014). The genes that are located nearby this associated variant can provide novel 

hypothesis on the pathophysiology of the studied disease. GWAS is a hypothesis-free approach 

agnostic to any prior biological guidance (Manolio et al. 2009; Visscher et al. 2012). GWAS is 

grounded in the LD principle whereby a real association from a disease-causing variant is achieved 

through genotyped variants in LD with the first one (see Figure 5, right). 

The degree of the association signal will be determined on the strength of the LD between the causal 

and the tested or tagSNP, which partially depends on the allele frequencies between them: a disease 

causal variant exhibiting a rare allele will be poorly correlated (low LD) with a common variant tested, 

and the resulting p-value from the association will be statistically negligible. Thus, GWAS were 

conceived to capture association signals from causal variants that should be common in the 

population because this approach was steered by the CDCV hypothesis (Manolio et al. 2009; 

Visscher et al. 2012; Hofker et al. 2014).  In the next section I am going to detail some practical 

issues from a statistical point of view that should be addressed in this kind of analysis.  
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5.2.1 Statistics of GWAS 

5.2.1.1 Data quality control 

In order to produce replicable and robust GWAS results, the quality of the genotyped data should be 

checked before any further test to ensure the quality of the genotypes at the variant level as well as 

at the sample level (Anderson et al. 2010; Zeng et al. 2015).  

At the variant level, variants accounting for high missing call rates (proportion of individuals without 

called genotypes for a given SNP) should be removed. Testing statistical differences of the missing 

rates between cases and controls is also extremely useful to avoid false positive associations. Also, 

very low frequency alleles are a usual source of genotyping errors, which can incur spurious 

associations. Thus, SNPs with MAF < 1-2% are usually removed (Anderson et al. 2010; Zeng et al. 

2015). Within association analyses, SNPs extremely deviating from HWE should be excluded. 

However, departure of HWE can occur by a genuine genetic association and thus, solely checking 

HWE in controls (e.g. p-value < 1x10-6) is recommended (Zeng et al. 2015). A loose threshold may 

be incorporated in order to evaluate the whole cohort  (e.g. p-value < 1x10-20) for specific purposes 

Figure 5. The GWAS approach. At the left, the workflow represents a case-control study in which some healthy 
controls and patients have been genotyped. To show an example of the allele frequencies comparison between cases 
and controls, a fraction of the genotypes for a given T/C SNP are represented, underscoring the large representation of 
the C allele in cases compared to controls. At the right, the underlying rationale of GWAS is based on LD haplotype 
blocks. Disease-causing variants are captured through a proxy tagSNP in sufficient LD to statistically transmit this 
association.  



	  

	  42 

such as association studies across multiple phenotypes, in which specific filters for a control 

subgroup cannot be performed.  

At the sample level, missing rates are considered by removing those individuals with a high 

proportion of variants not successfully called (e.g. missing rate > 1-5%). Adjusting for covariates such 

as sex is of the outmost importance to robustly test for SNP association. Therefore, the given 

ascertainment of sex information from the genotyped samples should be revised. Chromosome X 

data allows estimating the sex outcome, which can be compared with the reported sex values (Zeng 

et al. 2015). Discrepancies between the estimation and the already reported information are 

indicators for sample swap.  Case-control studies are built upon assumptions such as independence 

among samples. However, apparently independent subjects can entail hidden relationships, which is 

a common bias in the association tests. Pairwise identify-by-state (IBS) values allow estimating the 

PIHAT indicator (Zeng et al. 2015), and those individuals exhibiting values above certain threshold 

(e.g. PIHAT > 0.125-0.185) (de Bakker et al. 2008; Anderson et al. 2010) are removed.  

A major source of spurious associations results from population differences between the case and 

control groups emerging besides the disease status. All the genotypic differences arising from 

comparing cases and controls from different population origin corresponds to population structure. 

Allele frequency differences are the result of including distinctive founder populations that are 

disparately represented in cases and controls. Therefore, carefully evaluating the population origin of 

cases and controls is of the outmost importance, which should end with the removal of individuals of 

divergent ancestry (Anderson et al. 2010). In addition, most usual association tests adequately 

integrates population substructure information in order to correct for population differences (Zeng et 

al. 2015). Common techniques for identifying, and subsequently removing subjects showing notable 

differences in ancestry, are principal component analysis (PCA), based on the genetic correlation 

among individuals. Alternatively, multidimensional scaling (MDS) identifies meaningful dimensions on 

the basis of genetic distance as IBS (Anderson et al. 2010; Zeng et al. 2015). Furthermore, the 

inclusion of genotypes from HapMap populations allows clustering study samples. Afterwards, those 

outliers showing > 3-4 standard deviation from the mean of 2-4 main component vectors are 

removed (Anderson et al. 2010).  

5.2.1.2 Association tests 

Single-variant comparison of allele/genotype frequencies between cases and controls are the core of 

GWAS. Each variant is tested with the null hypothesis of no association assuming a genetic model 

for the disease risk (Balding 2006).  

GWAS for complex diseases recurrently employs the additive genetic model to test for association, 

which is considered to capture the largest fraction of trait variance for complex diseases (Balding 

2006). Thus, every additional copy of the minor allele linearly increases (or decreases) the risk of the 

disease. However, alternative models such as the recessive or dominant genetic model should not 
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be completely discarded when modelling how genetic variation contributes to susceptibility to disease 

(Zeng et al. 2015). The additive genetic model can be tested using the Cochran-Armitage trend test, 

which corresponds to the score test in a logistic regression (Zeng et al. 2015). The statistics of the 

Cochran-Armitage trend test are conceived to test a null hypothesis of a zero slope after linearly 

fitting the estimates of the three genotypic risks (Balding 2006). However, case-control studies are 

better addressed using a logistic regression. Thus, pij disease risk for an i individual and a j genetic 

variant is formulated as: 

𝑙𝑜𝑔𝑖𝑡 𝑝!" = log 𝑝!" 1 − 𝑝!" = 𝛽! + 𝛽!𝐺!" 

ß0 = ß1 = 0 corresponds to the null hypothesis of lack of dependence. Under null hypothesis, logistic 

regression according any different asymptotically equivalent tests like likelihood ratio, score or Wald 

test have a chi-squared distribution with one degree of freedom (d.f.) (Zeng et al. 2015). In addition, 

logistic regression allows accommodating covariates such sex, age and importantly, adjusting for 

population structure by adding principal or multidimensional scaling components (Balding 2006; de 

Bakker et al. 2008). Moreover, the exponential function of the regression coefficient ß1 in a logistic 

regression corresponds to the odds ratio (OR) (Szumilas 2010). An OR describes the odds that a 

certain outcome will occur (i.e. developing a disease phenotype) given a particular exposure (i.e. a 

genotype). Therefore, the OR shows if the increased dosage of a particular allele confers risk for a 

certain disease, and it also allows comparing the magnitude of different risk alleles (Szumilas 2010): 

𝑂𝑅 = 1  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒  𝑑𝑜𝑒𝑠  𝑛𝑜𝑡  𝑎𝑓𝑓𝑒𝑐𝑡  𝑜𝑑𝑑𝑠  𝑜𝑓  𝑑𝑖𝑠𝑒𝑎𝑠𝑒 

𝑂𝑅 > 1  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑤𝑖𝑡ℎ  ℎ𝑖𝑔ℎ𝑒𝑟  𝑜𝑑𝑑𝑠  𝑜𝑓  𝑑𝑖𝑠𝑒𝑎𝑠𝑒 

𝑂𝑅 < 1  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑤𝑖𝑡ℎ  𝑙𝑜𝑤𝑒𝑟  𝑜𝑑𝑑𝑠  𝑜𝑓  𝑑𝑖𝑠𝑒𝑎𝑠𝑒 

Moreover, for quantitative phenotypes, linear regression, variance analysis or t-tests are available 

choices. For longitudinal studies, the method to rely on is survival analysis, by models such as Cox 

proportional hazards regression (Zeng et al. 2015). Moreover, more sophisticated Bayesian methods 

have been developed although they are more computationally intensive. In addition, when the 

genotypes were not experimentally called (either by sequencing or genotyping) but predicted (see 

following sections), genotype uncertainty should be taken into account (Balding 2006; de Bakker et 

al. 2008). Predicted genotypes are represented as probabilities for each of the three genotypes. The 

subsequent uncertainty of the allele dosages can be incorporated by logistic and linear regression 

models, which will be reflected in the standard error of the beta coefficient (de Bakker et al. 2008). 

5.2.1.3 Minimizing spurious associations 

The GWAS approach suffers from a dramatic multiple comparison issue, which results in the inflation 

of Type I error if no specific action is taken. For a single SNP, the traditional significance level is α = 

0.05. Thus, if a genotyping array should at least have 500K independent genetic variants, 25K false 
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positive associations would be expected using α = 0.05 as a threshold. To handle this, one 

adjustment is the Bonferroni correction, which sets significance level by dividing α by the number of 

tests performed. GWAS were thought to only encompass 1 M independent tests, which implied that 

GWAS significance was fixed to 5x10-8 but some authors argued that this significance threshold was 

conservative (Balding 2006). However, due to the large fraction of rare and low-frequency variants 

addressed by whole-genome sequencing (WGS), some studies discussed that more stringent 

thresholds should be applied, but this is a current unsolved question (3x10-8 for MAF ≥ 1%, 2x10-8 for 

MAF ≥ 0.5% and 1x10-8 for MAF ≥ 0.1% at LD r2 < 0.8 in European populations) (Fadista et al. 

2016). Another approach to correct for multiple testing is False Discovery Rate (FDR), which controls 

the expected proportion of false positive associations (Zeng et al. 2015). FDR allows the researcher 

to tolerate a certain proportion of discoveries (rejected null hypothesis) that are false. 

To minimize the occurrence of spurious associations, statistically significant SNPs must be also 

replicated in independent cohorts. This replication samples should be equivalent to the discovery 

cohort and the association analysis have to be applied identically as in the original study to ensure 

consistency (Price et al. 2015; Zeng et al. 2015). There are different criteria for interpreting positive 

replications (Studies et al. 2007), such as looking for the same direction in the effect sizes.  

Nevertheless, non-replication can result from hidden population structure in both original and 

replication study or just a consequence of insufficient power due to a small sample size of the 

replication dataset (Zeng et al. 2015).  

Another important quality control measure is genomic control, which is summarized by the lambda 

λ statistic and measures the extent of the false positive rate. The λ factor is calculated from the 

median of the chi-squared test for the observed values divided by the expected median of the chi-

squared distribution, which for one degree of freedom test is ~0.456 (de Bakker et al. 2008; Hinrichs 

et al. 2009). A λ > 1 is an evidence of a systematic bias or the action of population stratification. 

Thus, the chi-squared statistics of the genetic markers should be corrected through dividing them by 

the lambda estimator (Hinrichs et al. 2009). In addition, the Quantile-Quantile (Q-Q) plot 

representation is a useful tool to identify deviations of the observed distribution from the expected 

null (see Figure 6, left). This representation compares in a scatter plot the –log of the observed and 

the expected p-values. However, genuine association signals will deviate from the expected null 

distribution but they should only represent a small fraction of the observed p-values. Thus, removing 

known associations of the Q-Q-plot is recommendable to observe if the null distribution can be 

recovered (de Bakker et al. 2008; Zeng et al. 2015). Of note, this genomic control measure λ is 

inflated with the increase in the sample size in the presence of polygenic inheritance, even without 

the action of a confounding bias (Yang et al. 2011). During the development of a previous meta-

analysis for schizophrenia, the LD score regression method was developed to discern inflated test 

statistics from confounding bias and polygenic inheritance (links per marker X2 summary statistics 

and linkage disequilibrium). Thus, if inflation were driven by polygenic inheritance, the X2-statistics 
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would be linearly proportional to the LD Score: higher LD Scores have higher probabilities of 

capturing by LD a risk-conferring variant, which tend to also have elevated test statistics 

(Schizophrenia Working Group of the Psychiatric Genomics 2014; Bulik-Sullivan et al. 2015).  

Finally, the p-values of a GWAS are commonly represented by a Manhattan plot that is based on 

scattering the p-values in the –log10 scale (y-axis) and the physical position of each SNP across 

every single chromosome (x-axis). The –log10 scale facilitates highlighting smaller p-values, which 

have the higher potential of being associated with a disease (see Figure 6, right)  

	  

 

5.2.1.4 Meta-analysis 

Single GWAS are sometimes underpowered to capture weak effect sizes attributed to common 

variation, or association with low-frequency or rare variants, which requires increasing as much as 

possible the sample size. The large number of independent studies carried on simultaneously for a 

same disease brings the opportunity to combine these datasets via meta-analysis (de Bakker et al. 

2008; Zeng et al. 2015). There are different methods for GWAS meta-analysis but the simplest 

approach is a p-value meta-analysis. P-values can be combined with the Fisher’s method (Begum 

et al. 2012; Evangelou and Ioannidis 2013): 

𝑋! = −2 log  (𝑝!)
!

!!!

 

where a X2 follows a chi-squared distribution, pi corresponds to the p-value of the ith study and k to 

the number of studies. The downsides of this approach are that the overall estimates of the effect 

Figure 6. Q-Q and Manhattan plots of a GWAS analysis. Q-Q plots shows the expected –log10 p-values under the 
null hypothesis (x-axis) respect to the observed –log10 p-values (y-axis). The 𝜆 is the measure of genomic inflation 
and is calculated by the observed median 𝒳! test statistic divided by the expected median 𝒳! test statistic under the 
null hypothesis. In the manhattan plots, the chromosomal position is represented in the x-axis and in the y- axis, the 
statistical significance (-log10 p-value) of the association test. The red line shows genome-wide significance level (p-
value ≤ 5x10-8). 
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sizes cannot be computed, between-dataset heterogeneity is not appropriately addressed and there 

is a lack of consensus for optimal weighting. Alternatively, a closely related approach to the Fisher 

method is z-scores (de Bakker et al. 2008; Willer et al. 2010; Begum et al. 2012; Evangelou and 

Ioannidis 2013): 

𝑍 =
𝑍!𝑤!!

𝑤!!!
;𝑤ℎ𝑒𝑟𝑒  𝑤! = 𝑁!     𝑎𝑛𝑑  𝑍! = 𝜙!!(1 −

𝑃!
2
) 

This approach takes into account the direction of effects and shows a rather straightforward selection 

of weights through the sample size values.  

The second main approach is based on combining effect-sizes estimates such as via fixed effects 

meta-analysis, which is commonly used. The most accepted method is the inverse variance 

weighting of the effect size estimates (ß coefficients) by the standard errors (Willer et al. 2010; 

Begum et al. 2012; Evangelou and Ioannidis 2013): 

𝑍 =
𝛽
𝑆𝐸

;    𝛽 =   
𝛽!𝑤!!

𝑤!!
     ;    𝑆𝐸 =   

1
𝑤!!
;   𝑤! =

1
𝑆𝐸!!

 

This approach is characterized by considering equivalent effect-sizes and standard errors across 

cohorts, which in a scenario where a substantial amount of heterogeneity between cohorts is 

present, the results can be biased. In those cases, instead of fixed effects, random effects meta-

analysis can be used to combine effect sizes. The random model does not assume the same mean 

effect across studies and it is able to estimate the degree of heterogeneity, which is incorporated into 

the weight of each study. 

Finally, in order to generate robust results, heterogeneity should be minimized. Many metrics have 

been developed to test heterogeneity but the most widely applied statistic is I2 statistic, which 

measures heterogeneity as the proportion of the total variation between studies not attributable to the 

sample error. Depending on the I2 values (0-100%), different categories have been established: 0-

25% represents ignorable heterogeneity, 25%-50% answers for low heterogeneity, 50-75% 

corresponds to moderate heterogeneity and 75-100% means high heterogeneity (Evangelou and 

Ioannidis 2013; Zeng et al. 2015).  

5.2.2 Progress in the understanding of complex diseases through GWAS 

The first successful GWAS addressed the genetics of age-related macular degeneration (AMD) using 

~100K SNPs through 96 cases and 50 healthy controls (Klein et al. 2005). Nowadays, this is much 

more than a straitened sample size and a poor genomic coverage. However, Klein, R.J. and 

colleagues were able to identify an intronic common variant strongly associated (p-value = 4.1x10-8) 

and showing a 7.4-folds increase in disease risk for homozygous individuals for the risk allele (Klein 

et al. 2005). However, what we know as the GWAS era began with the publication of the Wellcome 
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Trust Case Control Consortium (WTCCC) study in 2007 in Nature. This major study evaluated the 

association of  ~500K SNPs to seven diseases across 17,000 individuals (14,000 cases and 3,000 

shared controls) and identified 24 statistically associated loci from which 12 corresponded to 

previously known regions (Wellcome Trust Case Control 2007; Visscher et al. 2012; Hofker et al. 

2014). The field has undergone an explosive progress, which is clearly illustrated with 2,510 studies 

and 24,065 SNP-trait associations documented to date (http://www.ebi.ac.uk/gwas/home) (Welter et 

al. 2014).  

Despite a large number of identified associations, GWAS signals are characterized by relatively small 

contributions to disease susceptibility, implying odds ratio of 1.1 and in very concrete occasions, 

above 1.3 (Hofker et al. 2014; Price et al. 2015).  This observation is in line with a common disease 

whose genetic architecture is articulated across a large number of variants contributing with small 

effects-sizes. Sample size, allele frequency and effect sizes strongly determine the final statistical 

power to detect a novel association (Visscher et al. 2012; Price et al. 2015). In rare occasions, a 

single small GWAS can succeed in unravelling a large fraction of heritability. This scenario would 

only be successful in complex traits for which most of the associated genetic factors show large 

effect sizes such as in AMD (Price et al. 2015). Nonetheless, in order to identify common variation of 

weaker effects, strong initiatives based on the collaboration and data sharing between several 

groups studying the same specific disease have been critical (Price et al. 2015). The GWAS 

community integrated this premise and it has been characterized by the creation of several 

international consortia for several complex diseases.  

5.3 Genotype Imputation: a new lease of life for GWAS 

Collaborative approaches based on pooling samples and combining summary statistics results from 

several studies such as meta-analysis were fostered by genotype imputation techniques. Genotype 

imputation was introduced in 2007 (Wellcome Trust Case Control 2007; Marchini and Howie 2010) 

allowing that markers not directly genotyped for the study individuals can be replaced by genotype 

predictions. Therefore, genotype imputation allows increasing the number of variants to test for 

association beyond the initial limited fraction of markers genotyped (Marchini and Howie 2010).  

This statistical process begins with a target cohort of samples genotyped at a limited subset of 

polymorphic sites and a reference panel of individuals typed at a dense set of SNPs or directly 

sequenced (see Figure 7). Variants at the target typed array have been also interrogated in the 

reference panel, which allows conceptually accommodating the genotyping backbone of the target 

individuals within the reference haplotypes. Then, stretches of haplotypes shared between the target 

and the reference panel are estimated. Finally, by the larger allelic correlation structure in the 

reference panel, the genotypes for all those missing markers in the target array can be predicted 

(Huang et al. 2015; Price et al. 2015) (see Figure 7).  
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Figure 7. Genotype imputation technique.  A study sample set has been typed at a few SNPs while a reference 
catalogue of haplotypes has been typed or sequenced providing high dense SNP information. By integrating the 
genotyping backbone of the target samples (top left) with the reference panel (left figure, at the middle), stretches 
of haplotypes shared between both datasets are estimated. Finally, untyped variants will be predicted by 
selecting those dense haplotypes blocks from the reference panel closely matching each target individual 
haplotype. To illustrate the benefits of imputation, we made use of the locuszoom representation for the CCND2 
loci, showing at the Beagle-axis the –log10 of the association p-value derived from the the logistic regression. The 
colours highlight the R-squared with the index SNP (in purple). Two locuszooms are represented, showing the 
poor coverage from the genotyped data and the impossibility of replicating a true T2D association in the CCND2 
gene. In contrast, performing genotype imputation with the UK10K reference panel increased the coverage and 
captured this true intronic low-frequency association for T2D in the CCND2 gene.  
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5.3.1 Advances in Genotype Imputation calculations 

In order to find compatible haplotypes for the markers genotyped in the target individuals, the 

haplotypes for the latter ones should be estimated from the genotypes. This “phasing” process 

takes the genotypes of a set of genetic variants (i.e. the genetic makeup, the genetic composition for 

each polymorphic site considering the two possible alleles) and estimates the haplotypes (i.e. 

ordered sequence of alleles from multiple polymorphic sites that are inherited together). Besides 

being the core engine of imputation methodologies, phasing is also relevant for the study of genetic 

diversity (International HapMap et al. 2007) or the identification of selection (Sabeti et al. 2007).  

A revolutionary change in genotype imputation has been the introduction of “pre-phasing” prior to 

imputation (Howie et al. 2009). Initially, genotype imputation was performed directly on genotypes: 

these methods identified those typed variants in the target samples and also present in the reference 

panel, phased them and looked for almost perfect matches between the resulting target haplotypes 

and the haplotypes in the reference panel (Scheet and Stephens 2006; Marchini et al. 2007). 

According to this rationale, if there was a match between some haplotypes from the reference panel 

and the haplotypes built on the basis of the backbone genotypes typed in the target samples, the 

reference haplotypes had also to match the genotype content of the unknown fraction of genetic 

variants that had to be estimated. This approach was computationally demanding and was replaced 

by the pre-phasing step followed by genotype imputation, which is now widely embraced by the 

whole community. However, despite the reduced computational complexity derived of only imputing 

alleles, there is a slight decrease in accuracy using this approach (Browning and Browning 2016). 

Thus, it has been critical generating robust methods for phasing, which have led to a rapid progress.  

Since the beginning, most of the existing methods have exploited Hidden Markov Models (HMMs) to 

iteratively estimate an individual haplotype driven by a set of SNP genotypes on the basis of 

haplotypes of other individuals. The most accurate method, until some recent publications in 

this 2016, has been the SHAPEIT2 algorithm (Delaneau et al. 2013) that integrated features from 

the previous SHAPEIT1 method (Delaneau et al. 2012) and the IMPUTE2 phasing (Howie et al. 

2009) approach. SHAPEIT2 also allowed multithreading (Open Multi-processing, OpenMP, 

parallelism framework) for a more efficient use of the computational resources and was able to 

exploit long stretches of haplotypes shared by samples or long-range phasing (LRP).  

However, with the advent of biobanks and huge datasets, sample sizes have increased above 

10,000 individuals, which can dramatically impact the computational time in HMM-based 

phasing methods such as SHAPEIT2. Other methods have been applied on large datasets 

(~60,000 individuals) like HAPI-UR (Williams et al. 2012) but the accuracy was reduced in 

comparison with SHAPEIT2. Recent solutions addressed this challenge such as SHAPEIT3 

(O'Connell et al. 2016)  and EAGLE (Loh et al. 2016), that in both cases have been applied in the UK 

Biobank data. SHAPEIT3 recognized the HMM limitations and provided some improvements with 
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respect to SHAPEIT2 such as benefiting from the increased local similarity between groups of 

haplotypes due to a recent shared ancestry (O'Connell et al. 2016). EAGLE collected the ideas 

behind LRP that integrated with conventional HMM-based methods, which retained the accuracy of 

HMM-based approaches but with a notable increase in computational efficiency (Loh et al. 2016).  

Regarding the imputation process, there are several methods available but in any case, they have 

benefited from parallel computing that can enhance the execution by using multithreading or by just 

simply imputing different genomic regions independently in a cluster infrastructure. Most widely 

accepted methods are based on HMM such as IMPUTE2 and the recent updates from the minimac3 

and the Beagle 4.1. A recent work presenting the novel and improved minimac3 showed that for 

huge reference panels involving dozens of thousands of individuals, minimac3 was twice as fast as 

Beagle 4.1 and 30 times faster than IMPUTE2 and the memory usage was reduced by 72% and 

97%, respectively (Das et al. 2016). Regarding the imputation quality, all methods have similar 

performances, but minimac3 slightly outperformed Beagle 4.1 and IMPUTE2 at the range of 0.0004% 

≤ MAF ≤ 0.5% (Browning and Browning 2016; Das et al. 2016). 

5.3.2 Application of genotype imputation  

The application of genotype imputation triggered three main benefits (1) facilitating meta-analysis, 

(2) increasing the statistical power for GWAS discovery and (3) improving fine-mapping, which are 

illustrated with the locuszooms before and after genotype imputation in Figure 7. First of all, when 

performing meta-analysis, genotype imputation allows homogenizing the SNP coverage across 

different cohorts, as some variants might have been typed in one cohort but not in the other.  

Moreover, genotype imputation is able to substantially increase the number of available variants for 

association testing, specially using sequence-based reference panels, which will increase the pace 

rate of GWAS discovery. In the example shown in Figure 7, the CCND2 locus, which is known to be 

associated with T2D through a low-frequency variant, can only be identified by means of genotype 

imputation. Finally, this increase in the number of genetic variants for association testing is also 

translated in a much higher genomic resolution. Thus, for those reported loci encompassing multiple 

potential causal variants, genotype imputation facilitates pinpointing the most plausible disease-

causing variant or the underlying biological mechanism (Marchini and Howie 2010; Price et al. 2015; 

Browning and Browning 2016).  

Nonetheless, genotype imputation is a statistical prediction, which always goes hand in hand with a 

certain error rate. The accuracy associated to the prediction of common variants is very high. 

However, there is a rapid decline of the imputation accuracy in the vicinity of the rare a low allele 

frequency range (Huang et al. 2015; Price et al. 2015). The accuracy of the genotype prediction is 

tied to several parameters such as the coverage and the quality of the genotyped array of the target 

samples. In addition, the quality of the phased genotypes into haplotypes, how limited is the 
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representation in the reference panel of haplotypes carrying rare alleles or differences in LD patterns 

are other parameters influencing the quality of the imputation (Pistis et al. 2015).  

Inadequacy of reference panels is one of the major limitations for accurately impute genotypes, such 

as small sample sizes like in HapMap that results in notable errors even for common variants (de 

Bakker et al. 2008) . In addition, imputation accuracy has been suggested to improve by selecting a 

reference panel closely matching the ancestry of the study population (de Bakker et al. 2008; Huang 

and Tseng 2014). Nevertheless, in studies with no clear reference match, most experts 

recommended using a cosmopolitan reference panel (Huang and Tseng 2014). Howie, B. and 

colleagues demonstrated that larger and diverse reference collections facilitate identifying shared 

stretches of haplotypes (Howie et al. 2011).   

The first published genome-wide imputation analysis relied on the HapMap2 and (afterwards the 

HapMap3) reference panel, which included 60 CEU individuals typed at 2.1 M markers (International 

HapMap et al. 2007). The advent of large-scale sequencing and the success of genotype imputation 

encouraged the creation of several WGS projects to boost variant coverage and imputation quality 

across the whole spectrum of allele frequency. The first large-scale sequencing project was the 1000 

Genomes Project (1000G), which was conceived to study and to identify human genetic variants 

showing frequencies of at least 1% in the population but also to provide accurate haplotype 

information on any type of DNA polymorphism across multiple populations (The 1000 Genomes 

Project Consortium et al. 2010; Birney and Soranzo 2015).  This project ran from 2008 until 2015, 

divided in 4 stages, a pilot phase and three phases in the main project (although the second phase of 

the main project was devoted to the technological development). While the pilot phase only identified 

14.8 M variants in 179 individuals from four populations, the phase1 of the main project provided 

37.9 M variants in 1,092 individuals in 14 populations and in the final Phase 3, 84.4 M variants were 

catalogued by sequencing 2,504 individuals from 26 populations 

(http://www.1000genomes.org/data). In line with the progress in terms of sample size and population 

diversity, ancestry-matching reference panels have been created, samples sizes from reference data 

are increasing from a few to tens of thousands of individuals and a major focus is also placed in 

reaching high sequencing depth (Browning and Browning 2016) (see Table 1).  An illustrative 

example is the UK10K project, which sought for a precise characterization of rare and low-frequency 

variants in the UK population. This data has been used to study the contribution of variants with 

lower allele frequencies to multiple biomedical relevant and disease conditions but it also has 

become one of the most relevant resources for genotype imputation (UK10K Consortium et al. 2015). 

The UK10K consortium assembled whole-genome sequences of ~4,000 British volunteers, 

exhaustively surveying genetic variation down to 0.1% MAF in the British population. Another 

example focused on enhancing the characterization of rare variants is the Genome of the 

Netherlands (GoNL) Project (Genome of the Netherlands 2014). GoNL sequenced 769 Dutch 

individuals of 250 families at ~13x depth, resulting in 20.5 M SNPs and 1.2 M INDELs, and 
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extensively capturing structural variation and de novo mutations (Genome of the Netherlands 2014). 

In-house reference panels composed by sequencing a subset of samples from the target cohort of 

study has been proved to be a valid approach to create genetically similar data to the study samples 

(Huang and Tseng 2014). Finally, these independent efforts encouraged the creation of a unified 

reference panel across populations, the Haplotype Reference Consortium (HRC, 

http://www.haplotype-reference-consortium.org/home). The HRC is the largest panel for imputation 

and encompasses other sequencing projects such as the 1000G-Phase3, GoNL, UK10K, SardiNIA 

among others, and additional ~30,000 samples of European ancestry. In the following sections some 

of these projects will be revised to explain some of the challenges and limitations of genotype 

imputation. 

Table 1. Overview of publicly available reference panels. For each cohort, the number of individuals, the sequencing 
depth and the ancestry of the population are described.	  	  

Cohort N Samples Depth Ancestry Accessibility 

HapMap3 1,084 Genotyped Multi-Ethnic No restrictions 

UK10K 3,781 6.5x UK-European EGA 

GoNL 748 12x Dutch-European EGA 

1000G-Phase3 2,504 4x/Exome Multi-Ethnic No restrictions 

Singapore Sequencing 

Malay Project (SSMP) 
100 30x South-East Asian No restrictions 

GoT2D 2,974 4x/Exome Europeans EGA 

Haplotype-Reference 

Consortium (HRC) 
38,821 Diverse Europeans HRC imputation sever 

 

5.4 Stress tests for the GWAS statistical rationale  

5.4.1 Empowering the interrogation of low-frequency and rare variants 

Most of the past genotype imputation based GWAS discoveries were articulated on the basis of the 

HapMap reference scaffold (Huang et al. 2015) focusing on common variation, whereby the role of 
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non-SNV polymorphisms or low-frequency and rare variation was ignored. The successive projects 

developed with the advent of NGS technologies that I detailed previously illustrate the big opportunity 

for enlarging the landscape of human genetic variation (Hood and Rowen 2013; Price et al. 2015). 

For instance, the recent Phase 3 release from the 1000G expanded the initial thousand individuals to 

2,504 sequenced individuals from 26 geographic locations, yielding in ~88 M variants (84.7 M SNPs, 

3.6 M INDELs and 60K SV) (The 1000 Genomes Project Consortium et al. 2015). This improvement 

served to demonstrate that haplotypes identified by GWAS were enriched with common SVs by 

more than three folds, urging exploring a larger spectrum of genetic variation on disease 

susceptibility (Sudmant et al. 2015). One of the main limitations of genotype imputation for GWAS 

approaches was ascertaining low-frequency and rare variants and different strategies were 

suggested to break these constraints (Huang et al. 2015; Kim et al. 2015; Price et al. 2015). One 

strategy is based on increasing the sample size of the reference panel by combining as many 

sequencing data as possible, even from diverse populations, such as the extensions that the 1000G 

underwent or the rationale beneath HRC (Kim et al. 2015; Price et al. 2015). 

Alternative strategies are based on genetic studies on isolates, in which rare variants can rise high 

frequencies because of founder effects or genetic drift (Zavattari et al. 2000). For instance, a 

dramatic increase in T2D prevalence in the small and isolated Greenlandic population fostered an 

association mapping study of four T2D-related traits. A novel common and missense variant (OR = 

10.3, p-value = 1.6x10-24) showed strong association with T2D by terminating a long isoform of 

TBC1D4 causing very specific phenotypes (Moltke et al. 2014). This example is a proof of concept of 

the opportunity brought by GWAS outside traditional large homogenous populations. 

However, isolated populations only offer a gain in statistical power for a limited number of rare 

variants that drift to higher allele frequencies. In order to study the full spectrum of rare variation, 

large-scale studies of several thousands of individuals in several populations are necessary. This 

vast sample sizes can only be reached by collaborative efforts among several centres which yielded 

to the creation of biobanks (Price et al. 2015). Large population biobanks integrate genome-wide 

genetic information with large amounts of phenotypic information, lifestyle, diet and other 

environmental exposures (Price et al. 2015). An example of that is the UK Biobank, a large and 

prospective study comprising 500K individuals. The UK Biobank still keeps on the collection of 

genotypic and phenotypic information, involving questionnaires, physical measures and sample 

assays for a longitudinal follow-up for different health-related outcomes (Price et al. 2015; Sudlow et 

al. 2015). Additionally, analysing such a huge British sample size from the UK Biobank through a 

population specific reference panel such as the UK10K Consortium is expected to provide very 

accurate results. Actually, the UK10K project has demonstrated to be an effective solution when 

ascertaining rare and low frequency imputed variants in UK but also Italian populations 

(Huang et al. 2015; UK10K Consortium et al. 2015).  
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Finally, sequencing data itself constitutes a unique opportunity to disentangle the role of low-

frequency and rare variation in complex diseases. WGS of large cohorts as in a GWAS approach is 

prohibitively expensive. Alternative approaches consist in targeted gene sequencing, whole-exome 

sequencing (WES) of the 1-2% of the genome coding for proteins, low-depth WGS, rare-variant 

genotyping arrays or extreme phenotype sampling, which is based on sampling at the extreme of the 

trait distribution (Lee et al. 2014; Pistis et al. 2015). In addition, association analysis of low-frequency 

and rare variants are still underpowered and novel methods have been developed. These methods 

are based on aggregating the association signal from multiple variants into biologically relevant 

units such as genes, rather than testing single-variant effects (Lee et al. 2014). There are different 

methods but they can be broader categorized as burden or variance-component test (Pistis et al. 

2015). A burden approach is based on aggregating carriers of rare variants within a gene and 

comparing their phenotype or disease susceptibility with the fraction of non-carriers. This approach is 

limited by the consideration that rare alleles contribute in the same direction. The second wave of 

rare-variant association tests considered a distribution of the genetic effects, such as SKAT tests, 

which is able to modulate prioritization and weighting strategies (Lee et al. 2014; Pistis et al. 2015). 

Meta-analysis has also been accommodated for rare-variant association studies on the basis of 

score summary statistics per individual variant and a matrix summarizing LD correlation patterns 

between markers. This strategy has been implemented in rareMETAL or skatMETA packages (Lee 

et al. 2014; Pistis et al. 2015). 

5.4.2 Genetic inequalities: the X-chromosome exclusion 

When breaking down the large number of SNP-trait associations reported in the NHGRI GWAS 

catalogue, there is an obvious underrepresentation of the X-chromosome. Actually, only a third part 

(33%, 242 out of 743) of the GWAS publications included the X-chromosome in their analysis as 

denoted for the period ranging from 2010 to 2011 (Wise et al. 2013; Konig et al. 2014; Kukurba et al. 

2016). In addition, although X-chromosome comprises 5% of the human genome content (Wise et al. 

2013; Tukiainen et al. 2014), encompasses 1,500 genes and is comparable in size with the 

chromosome 7 (Tukiainen et al. 2014), the NHGRI GWAS catalog (Welter et al. 2014) only reported 

55 SNP-trait associations (p-value ≤ 5x10-8) while chromosome 7 accounts for ~280. Gathering up all 

these observations the question of why X-chromosome data remains underutilized has risen. A 

consensus suggestion is that the need of specific analytical methods for processing and interpreting 

X-chromosome variation impaired the analysis	   of the X-chromosome in GWAS publications. 

Furthermore, the feeling that the myriad of autosomal associations was sufficient to achieve a high-

profile publication has also been reported behind this phenomenon (Wise et al. 2013; Kukurba et al. 

2016). In addition, large-scale functional genomics have also excluded the X-chromosome from their 

analysis (Kukurba et al. 2016).  
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What make X-chromosome special in such a manner that discourages researchers to include it in 

their analysis? There is an asymmetry of the genetic dose between females and males (females 

have two copies of the X-chromosome while males, one). However, allele dosages are balanced 

through an inactivation process of the X-chromosome at the early stage of development in females. 

Therefore, X-inactivation varies throughout the body and tissues but of note, 15% of the loci 

completely escape this X-inactivation and for another 10%, this process is variable. Therefore, we 

have a high heterogeneity that challenges analytical methods. Furthermore, less proportion of data 

compared to autosomes under-power X-chromosome GWAS to detect variants with modest effect-

sizes (Tukiainen et al. 2014; Kukurba et al. 2016). Therefore, these particularities	  should be included 

in the imputation process or the association analyses but the majority of the software required for any 

of these steps such as SHAPEIT2, IMPUTE2 or SNPTEST have developed specific workflows to 

cope with that.  

5.4.3 Poor disease understanding keeps clinical translation out of the picture 

The deployment of the four P healthcare (Predictive, Preventive, Personalized and Participatory) 

results from the convergence of systems medicine, big data and patient involvement. Human 

genomics can contribute to the first three Ps through successive steps beginning with the 

identification of the genetic association until unravelling the underlying disease causal mechanism. 

The correct ascertainment of disease-causal variants would empower risk prediction models to better 

illustrate disease susceptibility and to provide personalized and more effective disease prevention 

strategies. For instance, sodium-glucose transporter 2 (SGLT2) inhibitors have been consolidated as 

a novel class of oral anti-diabetic agents (Nauck 2014) that yield to reduced hyperglycaemia and in 

some cases, to lower cardiovascular events (Zinman et al. 2015). Indeed, these agents reproduce 

the physiology of familiar renal glucosuria, which is caused by a loss-of-function mutation in SLC5A2, 

the gene coding for SGLT2 (Santer et al. 2003).  Moreover, drug efficacy is tied in some cases to 

some rare and common genetic variants and the translation of GWAS signals to molecular 

mechanisms is crucial to identify novel “druggable” components and pathogenic key pathways 

(Hofker et al. 2014; Paul et al. 2014). 

Despite the undeniable success of GWAS in the identification of novel associations with disease 

susceptibility, the impact of these findings into the clinical practice is still minimal (Hofker et al. 2014). 

There are two main arguments behind this arduous translation. First, despite the build-up of novel 

GWAS associations, a large fraction of the estimated heritability still remains unexplained for 

the majority of complex diseases. Therefore, common SNPs are not the unique genetic answer 

behind complex diseases, which gave way to the involvement of rare variation with stronger effects, 

epistatic mechanisms and unknown interactions between gene and environment (Manolio et al. 

2009; Hofker et al. 2014; Price et al. 2015). In line with that, extensive genotyping, improved 

genotype imputation methods and sequencing data is crucial to capture all those variants falling 
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outside linkage correlation patterns tied to tag SNPs (Hofker et al. 2014; Paul et al. 2014; Price et al. 

2015). In second place, the functional interpretation of disease-associated variants is limited, 

which results in a poor understanding of the molecular mechanisms triggering most complex 

diseases. A key step is the identification of real genetic disease causal variants, which can be difficult 

due to a masking effect of LD correlations. A GWAS discovery focuses our attention on a broad 

region with a huge number of correlated SNPs. In order to unveil which is the true disease-causing 

variant the recurrent and standard practice is fine-mapping. Fine-mapping relies on performing a 

dense interrogation of complete associated loci. Fine-mapping approaches benefit from using a wide 

range of ethnicities to span the number of LD patterns, narrowing the number of candidate SNPs 

(Paul et al. 2014; Price et al. 2015). In parallel, extensive efforts have been dedicated to elucidate the 

downstream effect of associated signals. However, the main focus has been directed towards 

protein coding altering variants but this approach has not been extremely resourceful, as the core of 

the underlying biology from most GWAS signals (above 90%) corresponds to perturbations in gene 

regulation (Ward and Kellis 2012d; Hofker et al. 2014; Paul et al. 2014; Price et al. 2015). Our still 

limited understanding of gene regulation impairs the direct interpretation of the functional effects 

driven by the association signals. Moving up the complexity ladder, gene regulation is highly 

tissue/cell-specific, tied to the developmental stage and to external stimulus or environmental factors 

(Paul et al. 2014; Price et al. 2015). In addition, trait-associated signals perturbing gene regulatory 

elements may affect the transcriptional output from a distal gene, that would be difficult to pick up 

(Paul et al. 2014). The need of a systematic interpretation of noncoding disease associated signals 

has led to the emergence of large-scale projects providing reference genome functional annotation 

maps. The observation of enrichment of regulatory biochemical signatures in GWAS loci can guide 

hypothesis of the undergoing regulatory disease mechanism. The Encyclopedia of DNA Elements 

Project Consortium (ENCODE) (Encode Project Consortium 2012) has released functional maps of 

chromatin states, transcriptor factor binding sites and gene expression for several and mostly derived 

cell lines. The NIH Roadmap Epigenomics Mapping Consortium (Roadmap) (Bernstein et al. 2010) 

or the BLUEPRINT Consortium (Adams et al. 2012) have focused on the construction of epigenome 

maps mainly based on primary tissues (Ward and Kellis 2012d; Paul et al. 2014). These public 

functional maps in conjunction with the development of computational resources empowered 

researchers to prioritize non-coding variants (Ward and Kellis 2012d; Flannick and Florez 2016). 

However, choosing the suitable cellular system for the annotation of GWAS loci is not trivial. Primary 

tissues are more direct and real tissue representatives while cultured cell lines retain main 

characteristics of primary tissues. However, in cultured cell lines, chromatin structure and DNA 

methylation perturbations or even chromosomal rearrangements are frequent, which can mislead 

functional interpretation of GWAS discoveries (Paul et al. 2014; Price et al. 2015). Of the outmost 

importance is selecting the most informative annotation mark. Authors recommended using open 

chromatin marks which are general hallmarks for most regulatory elements but they lack specificity; 
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ChIP-seq (chromatin immunoprecipitation sequencing) of histone modifications informing about 

active promoters and enhancers but imprecise broader peaks impairs clear elucidation of candidate 

functional variants (Paul et al. 2014). A common approach to unravel the role of genetic variation on 

gene expression is expression quantitative trait locus (eQTL) analysis. eQTL analysis 

addresses the association between genetic variants and variation in the expression levels of mRNA 

(Figure 8) (Morley et al. 2004; Grundberg et al. 2012; Westra et al. 2013) and they have been highly 

used to prioritize functional regulatory variants (Ward and Kellis 2012d; Paul et al. 2014). 

	  

	  

	  

	  

Figure 8. Example of a typical eQTL. At the top of the figure, a candidate eQTL for differentiated levels of expression 
of the gene i. At the bottom, a representation of how the different genotypes of this candidate SNP are associated with 
different distributions of expression values for the gene i. This example illustrates that the T allele is associated with 
higher expression levels of the gene i (Adapted from (Nica and Dermitzakis 2013)).  

The Genotype-Tissue Expression (GTEx) project was conceived to provide a data resource to enable 

research to study the relationship between genetic variation and gene expression in multiple human 

tissues (GTEx Consortium 2013). The pilot phase resulted in the analysis of RNA sequencing 1,641 

samples across 43 tissues from 175 individuals that represents the most comprehensive project of 

gene expression across diverse human tissues (Hofker et al. 2014).  

Therefore, multiple tools are available to guide the researcher in the functional interpretation of 

genetic variation. Later, regulatory functional candidate variants should be experimental assayed to 

prove molecular function and causality through several experimental assays comprising luciferase 

reporter assays, gel-shift, or allele-specific chromatin assays (Paul et al. 2014). These strategies for 

the functional translation of non-coding GWAS associations are urgently required to push forward 

disease understanding and translation to clinics.  
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6 Computational sciences and their involvement in genomic research  
The advent of NGS technologies stacked more and more sequenced genomes resulting in Terabytes 

and Petabytes of data requiring for efficient and accurate software solutions. Therefore, this huge 

amount of data cannot be solely analysed by individual workstations, which stressed the need of 

incorporating parallelization techniques and High-Performance Computing (HPC) into genetic 

research HPC infrastructures, large-scale storage and a large and dynamic ecosystem of analytical 

tools. Typical analysis such as genotype imputation and GWAS encompasses sequential executions 

involving multiple software tools, which are referred as a “workflow” (Spjuth et al. 2015). 

HPC environments consist of clusters, grids or clouds with batch systems for scheduling jobs. 

Recently, a major focus is placed on cloud computing that relies on shared resources delivered on-

demand through Internet. Cloud computing commonly benefits from virtualization, which enables 

building computing environments independent of physical infrastructure answering the actual 

computational needs of the users (Schadt et al. 2010; Spjuth et al. 2015). This scenario opened the 

possibility to package entire analysis in virtual machine images (VMI), or taking profit of the 

parallelism of distributed environments. Thus, GWAS approaches are being translated to parallel 

computing, especially with the increase in the number of variants to test resulting from genotype 

imputation or WGS (Spjuth et al. 2015).  

First of all, one major outcome from the integration of computational science in biological research 

was just engineering or redesigning bioinformatics applications to accommodate parallel computing 

(Ocana and de Oliveira 2015).  Parallel computing is a strategy that enables running multiple 

executions or instructions simultaneously. Therefore, a program split in independent parts can use a 

single computer with multiple processors or a network of interconnected computers to run each part 

in parallel. Examples of interfaces that foster parallel computing are: OpenMP (Open Multi-

Processing), for multi-threading on a single shared memory infrastructure and MPI (Message 

Passing Interface), a communication protocol for multi-processing applications executed in different 

computing nodes of a cluster (i.e. not shared memory) (Schadt et al. 2010; Yang et al. 2014). For 

instance, some genotype imputation algorithms are based on multi-threading, such as Beagle 

(Browning and Browning 2016) or minimac.   

Second most genetic analysis can involve large parallelism within the different analytical steps until 

eventually gathering all the output generated into single final results. This preamble facilitates 

understanding the rationale behind MapReduce approaches. MapReduce splits a problem into 

multiple sub-questions in a ‘map’ step to afterwards, performing a ‘reduce’ step in which collects and 

integrates the output of each small question into a single answer (Schadt et al. 2010). Technically, 

this programming model and implementation for the analysis of large datasets distributes the 

computational load on multiple connected computing nodes (Schonherr et al. 2012). Thus, time-

intensive imputation analyses based on huge reference panels can exploit frameworks based on 
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MapReduce techniques. For instance, the free service of the Michigan Imputation Server has been 

developed within the CloudGene technology, a free platform that is built on the usability of 

MapReduce applications through the Hadoop framework (Schonherr et al. 2012; Spjuth et al. 2015). 

CloudGene makes use of a user-friendly graphic interface in order to minimize the installation and 

maintenance of MapReduce on cluster systems, or the data management in a distributed system 

(Schonherr et al. 2012; Spjuth et al. 2015). Thus, large bioinformatics efforts have been direct to 

automatizing and assembling analysis pipelines to enhance wide adoption and reproducibility.  

7 Data-sharing: pushing forward the pace of GWAS discovery and the 
molecular understanding of complex diseases 
The HGP popularized the strengths of data-sharing initiatives by making available data through user-

friendly databases such as GenBank or the UCSC Genome Browser. This shift of the community to 

free the access of data arose from the concept of ‘democratization of data’; giving access to third 

party researchers, outside from big consortia, is critical to exploit, with additional expertise, public 

available data in order to improve the understanding of disease biology (Hood and Rowen 2013). 

Several initiatives to encourage data sharing emerged, such as the creation of centralized 

repositories for GWAS data, such as the database of Genotypes and Phenotypes (dbGaP) (Tryka et 

al. 2014) and the European Genome-phenome Archive (EGA) (Lappalainen et al. 2015). The 

underlying goal is maximizing the scientific outcomes resulting from public funded resources through 

the application of novel analytical methodologies. In addition, sharing GWAS data allows assembling 

more powerful case-control studies, by increasing the sample size for exploring modest and weak 

SNP-trait associations or to achieve sufficient power to test rare variants for association (Johnson et 

al. 2013). The potential of this approach has been underscored by the advent of genotype imputation 

techniques, allowing homogenization of genomic coverage. Furthermore, with the availability of novel 

sequence-based reference panels such as the 1000G or the UK10K project, genomic resolution can 

be increased by orders of magnitude. Thus, genetic variation that was ignored in the initial study can 

be ascertained, yielding to new GWAS discoveries without requiring substantial expenditures. 

Actually, the effect of this GWAS sharing initiatives on enhancing novel research has been evaluated 

through the several publications resulting from secondary uses of dbGaP data. PubMed reported 924 

publications driven by secondary use of dbGaP data and 25% of these studies were published in 

journals with an impact factor greater than 10 (Paltoo et al. 2014). Therefore, secondary research 

involving dbGaP can yield to significant achievements in a wide range of fields, such as unknown 

associations between the Human Leukocyte Antigen (HLA) locus and Parkinson’s disease (Hamza et 

al. 2010). Furthermore, the combination of several dbGaP GWAS datasets allowed one of the largest 

alcohol dependence GWAS leading to novel associated loci (Gelernter et al. 2014).  

Going back to the limitations of complex diseases, in order to reach a more comprehensive overview 

of their genetic architecture, increasingly larger cohorts must be interrogated. In addition, in order to 
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achieve a mechanistic insight from the candidate associations and genes resulting from these 

studies, a huge amount of resources and a variety of approaches should be undertaken. Besides 

secondary research studies, approaches such as integrated portals have been conceptualized in 

order to link genetic experts with experimentalists, and physicians (Flannick and Florez 2016). These 

portals will respond to all these needs and they should aggregate, harmonize and analyse as much 

genomic data sets and phenotypic information as possible. The value of this approach is that it would 

empower genetic association studies by linking data contributors with a variety of researchers in a 

comprehensive way for this broad community.  Therefore, robust and efficient pre-computed analysis 

will provide extensive genetic information to pursuit a specific hypothesis from a non-necessarily 

genetic expert user. However, on-demand on-line analysis will always be required. Therefore, these 

settings should reserve some space to extend their original workflows in order to span the number of 

possible biological questions to ask, which constitutes a computational conceptual challenge 

(Flannick and Florez 2016). The Type 2 Diabetes Knowledge Portal (T2D Portal) corresponds to one 

of these portals, comprising the efforts of more than 100 investigators seeking for a rapid and 

intuitive access to genetic analysis of hundreds of thousands of samples (The American Diabetes 

Association 2015) . 

To summarize, collaborative and data-sharing approaches are mandatory to commit with our desire 

to push forward our understanding of the pathophysiology of complex diseases such as Type 2 

Diabetes. 

8. Type 2 Diabetes: a paradigm of the genetic research in complex 
diseases 
Diabetes Mellitus (DM) is a complex chronic metabolic disease characterized by high levels of 

blood sugar (hyperglycaemia) driven by a depletion of insulin secretion or defective insulin function 

(Tallapragada et al. 2015). The increasing incidence of DM is disturbing: 415 M of affected 

population worldwide in 2015. This prevalence has been spurred by the rapid rise in obesity and life-

style changes such as the reduced physical activity. Additionally, current estimations stated that DM 

will be the 7th leading cause of death by 2030 and diabetic patients will rise up to 642 M of individuals 

in 2040 (International Diabetes Federation 2015). Particularly worrisome are 193 M of population 

that remain undiagnosed, which place them at higher risk of developing DM related complications. 

DM is accompanied by a high rate of morbidity and mortality due to the chronic elevated glucose 

blood levels on the vasculature, which can result in a progressive loss of vision, renal failure, 

peripheral and autonomic neuropathy and macrovascular complications (i.e. stroke) (Forbes and 

Cooper 2013). The long-term support required for these patients has risen the public expenditure 5% 

to 20% (International Diabetes Federation 2015).   
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8.1 Type 2 diabetes pathophysiology 

90% of the DM cases are suffering from T2D, which are diagnosed on the basis of glucose blood 

levels after fasting (Fasting plasma glucose test, FPG) or 2h after a glucose challenge (2hGlu, Oral 

glucose tolerance test, OGTT), or on haemoglobin A1c (HbA1c) that provides a 3-month average 

estimation of blood glucose (International Expert 2009; Mohlke and Boehnke 2015). The hallmark 

feature of T2D pathophysiology is an hyperglycaemia driven by a progressive insulin resistance in 

liver, muscle and adipose tissue and a depletion of the pancreatic β-cell function resulting in 

hampered insulin secretion (Cornell 2015). Several authors have reported strong evidences for a 

genetic component for T2D risk, the depletion in insulin secretion and insulin action (Poulsen et al. 

1999; Poulsen et al. 2005) and this reduced insulin sensitivity has been shown to co-occur with 

obesity, adverse lipid concentrations, hypertension and an exacerbated inflammatory state (National 

Cholesterol Education Program Expert Panel on Detection and Treatment of High Blood Cholesterol 

in 2002). From a systemic point of view, these molecular defects in the T2D pathophysiology involve 

at least seven organs and tissues (pancreas, liver, skeletal muscle, adipose tissue, brain, 

gastrointestinal tract and kidney) (Defronzo 2009), which are represented in Figure 9.  

Loss of β-cell function has been genetically associated with the impairment of the pancreatic 

development, insulin secretion and storage (Grant et al. 2009). The decrease of the β-cell function 

in pancreas has been demonstrated to be age-related (Chang and Halter 2003), which is consistent 

with the co-evolution of T2D prevalence along with aging (Centers for Disease Control and 

Prevention (CDC) 2014). Insulin resistance promotes biosynthesis and release of insulin that can 

lead to an “exhaustion” of the β-cell in the process of adaptation to the large insulin demands (Kahn 

2001). Moreover, major T2D risks factors such as obesity and physical inactivity (Hu 2011) are 

associated with insulin resistance and can consequently led to β-cell failure in the long-term 

(Defronzo 2009; Hu 2011). Excess of rapidly absorbable carbohydrates from diet increases insulin 

and blood glucose levels (Hu 2011) while fat deposits in liver and muscle fosters insulin resistance in 

these tissues (Defronzo 2009).  Furthermore, glucotoxicity (chronic exposure to high glucose levels) 

hampers β-cell function and insulin secretion (Poitout and Robertson 2002) while lipotoxicity 

(elevated concentrations of plasma free fatty acids -FFA-) impairs insulin secretion and results in the 

depletion of β-cells (Carpentier et al. 2000; Kashyap et al. 2003). 

T2D patients show an overproduction of glucose in liver, which has become resistant to the 

repressive effects of insulin (Defronzo 2009). Elevated levels of glucagon (produced in pancreatic α-

cells) also increases the hepatic glucose production (Defronzo 2009). The main mechanism for the 

uptake of exogenous glucose is the insulin-stimulated transport of glucose into skeletal muscle 

(Huang and Czech 2007). T2D patients exhibit a decrease in the glucose transport favouring 

hyperglycaemia because an insensitivity to the effects of insulin (Cusi et al. 2000).  
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In the adipose tissue, insulin resistance in adipocytes leads to increased circulating FFAs, which 

fosters gluconeogenesis, hepatic and muscle insulin resistance and impairs insulin secretion (Bays et 

al. 2004). In addition, defective adipose tissue results in an excess of inflammatory and atherogenic 

cytokines, which can stimulate insulin resistance, and is unable to adequately secrete insulin-

sensitizing adipocytokines (Bays et al. 2004). 

T2D cases also exhibit insulin resistance in the brain, inhibiting the effect of insulin in satiety, 

increasing the food intake (Pagotto 2009).  

In the gastrointestinal tract, T2D patients were reported to exhibit a lowered release of glucagon-

like peptide (GLP-1) and reduced sensitivity to glucose-dependent insulinotropic polypeptide (GIP), 

which reduces insulin secretion, increases glucagon secretion and consequently, enlarges the liver 

glucose release (Nauck et al. 2004).  

Finally, the increased capacity of the kidney to reabsorb glucose in patients with T2D worsens the 

hyperglycaemia by increasing glucose circulatory levels (DeFronzo et al. 2013). Also, it has been 

suggested that for T2D patients, renal gluconeogenesis is exacerbated (Meyer et al. 1998).  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

 

Figure 9. The pathophysiology of T2D across multiple tissues. Adapted from (Defronzo 2009) 
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The pace of disease progression as well as the pattern of long-term complications is heterogeneous 

across patients, which implies more individual tailoring in order to meet the particular risk factors 

encountered in each case (Tallapragada et al. 2015). Additionally, several studies directed to 

understand the progress in the T2D pathophysiology indicated that T2D is more like a jigsaw of 

several metabolic disorders determined by distinctive intermediate traits (body mass index, waist-hip-

ratio, hypertension…) (1998; Zoungas et al. 2009; Ismail-Beigi et al. 2010). However, most of the 

pharmacological treatments are directed to lower the hyperglycaemia, ignoring the risk to all the 

several complications related to T2D and there is no single therapy able to target all the effects and 

organs involved in the T2D pathogenesis (Srinivasan and Florez 2015).  

8.2 Other forms of Diabetes Mellitus 

The other major form of DM is Type 1 diabetes (T1D) that represents 5-10% of DM cases (Atkinson 

et al. 2014) and it is driven by autoimmune destruction of ß-cells manifested through the detection of 

autoantibodies for pancreatic ß-cells (Naylor et al. 2011; Onengut-Gumuscu et al. 2015). The 

pathophysiology of T1D is much more known, more accurate diagnosis and prognosis are available 

and the treatment is insulin administration. Besides these two polygenic conditions, there are also 

rare monogenic forms of DM characterized by highly penetrant genetic defects in single genes, which 

lead to pancreatic ß-cell dysfunction and hyperglycaemia (Naylor et al. 2011; Tallapragada et al. 

2015). Monogenic forms of T2D account for 2-5% of diabetes cases and a large number of patients 

are incorrectly diagnosed for T1D or T2D, which can result in unnecessary use of insulin or the 

inefficient ascertainment of at-risk family members (Naylor et al. 2011). This results in ineffective 

treatments and makes impossible the identification of at-risk relatives (Naylor et al. 2011; 

Tallapragada et al. 2015). The maturity-onset diabetes of the young (MODY) is characterized by 

non-ketotic diabetes with an early onset set between 6 months and 35 years of age (Naylor et al. 

2011; Flannick et al. 2016). MODY does not imply the intervention of autoimmune antibodies or 

insulin resistance; hyperglycaemia is due to a decrease in ß-cell mass. Nevertheless, 14 MODY 

subtypes are described and their responsible genes identified, which represent 80-90% of the 

diagnosed cases. Another rare DM forms are Neonatal Diabetes Mellitus (NDM), which manifest 

during the first few weeks of the newborn (diagnosed before 6 months). Increased blood sugar levels 

in these patients can be either transient or permanent NDM (TNDM and PNDM) as well as syndromic 

cases of NDM. NDM is characterized by low birth weight and ß-cell dysfunction (Naylor et al. 2011; 

Tallapragada et al. 2015; Flannick et al. 2016). TNDM recedes at 18 weeks of age but these patients 

are in high risk of developing diabetes as adults while PNDM can involve either isolated 

hyperglycaemia or other extra-pancreatic defects, requiring life-long treatment (Tallapragada et al. 

2015). Finally, other rare forms include mitochondrial diabetes mellitus, multiorgan syndromes such 

as Wolcott-Rallison and Wolfram syndromes. Some of these monogenic forms have been 

successfully addressed due to the strong correlation between genetics and disease manifestation, 

which led to better diagnosis and effective treatments. As previously said, for 90% of DM cases that 
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corresponds to T2D, treatments are inadequate and unable to cope with late-stage complications 

(Flannick et al. 2016).  

8.3 The progress in the understanding of the genetic architecture of type 2 diabetes 

On the cutting-edge of the study of the genetics of complex multifactorial polygenic diseases, type 2 

diabetes (T2D), the most prevalent form of DM, always have had an outstanding place (Billings and 

Florez 2010). In contrast to monogenic forms of diabetes mellitus showing clear inheritance patterns, 

T2D results from the interplay between different genetic factors and environmental factors. The 

estimated heritability of T2D ranges from 30-70% depending on diagnostic criteria but also on age 

(Poulsen et al. 1999; Almgren et al. 2011; Willemsen et al. 2015). Therefore, genetics is a key 

player in the T2D pathophysiology with a more critical role in the first stages of development of the 

disease according to twin and family studies (Poulsen et al. 1999; Almgren et al. 2011).  The genetic 

architecture of T2D has been thought to follow the CDCV model, and therefore, mostly based on the 

contribution of common variants showing modest and small effect sizes. Although more than 100 

robust T2D associated variants have been linked to disease susceptibility (Fuchsberger et al. 2016), 

less than 10% of the T2D heritability can been explained by the known associated variants 

(Manolio et al. 2009; Billings and Florez 2010; Hofker et al. 2014).  

Next, I will review the successive findings in the genetics of T2D that this last decade has witnessed 

which are represented in Figure 10. 

8.3.1 Common Variants 

Genome-Wide Association Studies have been the gold standard for the identification of the majority 

of known genetic factors contributing to T2D risk (mostly falling at the range of common variants), 

and have demonstrated the polygenic nature of T2D (Tallapragada et al. 2015). This success 

explained the poor performance of familiar linkage analysis and candidate gene studies (Bonnefond 

and Froguel 2015) performed previously. The pre-GWAS era led to the identification of PPARG 

(Altshuler et al. 2000) and KCNJ11-ABCC8 (Gloyn et al. 2003) by candidate gene studies and 

TCF7L2 through linkage analysis (Grant et al. 2006).  After that, there was a succession of several 

waves of GWAS. At the beginning, studies of a few thousand individuals resulted in dozen novel loci 

(Scott et al. 2007; Sladek et al. 2007; Steinthorsdottir et al. 2007; Wellcome Trust Case Control 2007; 

Zeggini et al. 2007). These evidences validated the GWAS approach and suggested that common 

variants would not show large effect sizes. Therefore, in order to identify common variants of 

weaker effects, data-sharing and collaborative initiatives were translated into large meta-analysis. 

The Diabetes Genetics Replication and Meta-analysis (DIAGRAM) consortium answered this 

demand and it was able to assemble 10,000 individuals, including 4,500 T2D cases (Zeggini et al. 

2008). This kind of initiatives has been constant in the following years.  
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This success encouraged performing GWAS and meta-analysis across several populations, and 

there was also a new wave of GWAS based on T2D-related metabolic quantitative traits in non-

diabetic individuals. This approach led to the identification of novel T2D loci in Europeans such as 

MTRN1B (Bouatia-Naji et al. 2009; Lyssenko et al. 2009) or PROX1, ADCY5, DGKB (Dupuis et al. 

2010) that were primarily associated with fasting glucose (FG).  However, the reduced overlap 

between genes associated with T2D and those influencing normal glycaemic traits suggested that 

the knowledge of the physiology of metabolic traits would not be translated in T2D risk. A recent 

study has reported how the combination of known FG SNPs can predict the incidence of impaired 

fasting glycaemia over a 9-year follow-up while they were able to predict T2D incidence (Vaxillaire et 

al. 2014). Moreover, most of the T2D loci reported were mainly involved in the ß-cell function, with a 

smaller contribution from insulin resistance-related genes.  

A new round of GWAS meta-analysis using a custom genotyping array called Metabochip, built on 

the basis of a backbone of nominally associated variants with 23 cardio-metabolic traits and 

associated diseases as well as to fine-map well established disease and trait associated loci (Voight 

et al. 2012). This inexpensive array enabled researches to genotype a much larger number of 

samples to boost statistical power for loci discovery. The DIAGRAM consortium enlarged the sample 

size of previous meta-analysis by genotyping through the Metabochip ~150K individuals (with ~38K 

cases) that led to the identification of ten further loci (Morris et al. 2012).  

The first non-European-based GWAS for T2D was performed in 2008 and led to the identification of 

the KCNQ1 gene based on variants common in East Asians (MAF ~3 %) (Unoki et al. 2008; Yasuda 

et al. 2008). In 2010, a further large meta-analysis through individuals of European ancestry was 

unable to replicate those signals found in East Asian populations but they provided an independent 

signal for the same gene (Voight et al. 2010). Since 2012, many studies addressed T2D risk in many 

different ethnicities, which resulted in novel T2D loci driven by risk alleles that showed differentiated 

allele frequencies across populations. For instance, the SLC16A11-SLC16A13 locus was identified in 

both Japanese (Hara et al. 2014) and Latino populations (Sigma Type 2 Diabetes Consortium et al. 

2014c) or studies in South Asians led to the identification of TMEM163 (Tabassum et al. 2013) and 

SGCG (Saxena et al. 2013). Another example is a study in the Greenlandic population based on 

using the Metabochip array that found a novel association in the TBC1D4 gene with an OR=10.3 

under a recessive inheritance model (Moltke et al. 2014). These studies underscored the statistical 

power from studies based on diverse, founder and historically isolated populations for the 

identification of novel risk loci.  

In order to strengthen the identification of T2D loci whose risk alleles are shared across populations, 

meta-analysis across several ancestries were performed. For instance, a meta-analysis based on 

European, African-American, Hispanic-Latino and Asian studies allowed the discovery of the BCL2 

locus (Saxena et al. 2012). In addition, a trans-ethnic meta-analysis assembling more than 110K 
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individuals, including 26,500 cases, led to the identification of seven new loci (DIAbetes Genetics 

Replication And Meta-analysis (DIAGRAM) Consortium et al. 2014). These meta-analyses have 

extensively benefited from the emergence of genotype imputation methods, especially in this 

situation that required the array homogenization of cohorts from different ancestry.  

Another approach that led to the discovery of novel T2D loci was taking into account the relationship 

of T2D risk with body mass index (BMI), which was translated in evaluating T2D in lean compared 

with obese individuals, resulting in the identification of the LAMA1 gene (Perry et al. 2012). 

8.3.2 Low-frequency and Rare Variants  

The advent and the subsequent drop of NGS technologies allowed seeking for novel discoveries 

driven by low-frequency and rare variants in well-established T2D genes but also they provided 

new T2D loci. These studies were based on using WES, WGS, dense genotyping arrays based on 

coding variation, genotyping arrays with genotype imputation based on sequence-based 

reference panels and gene region-based tests (Mohlke and Boehnke 2015).  

With respect to novel T2D loci driven by low-frequency variants, the combination of WGS and 

genotype imputation led to the identification of a rare missense variant (rs78408340, MAF  ~ 0.006) 

in the PAM gene (in conjunction with an independent common signal at the same gene), an intronic 

low-frequency variant at the CCND2 gene showing a substantial protective effect-size (rs76895963, 

OR ~0.5) and a rare frameshift in the MODY (chr13:g.27396636delT, MAF ~ 0.002) PDX1 gene 

(Steinthorsdottir et al. 2014).  

Regarding the contribution of low-frequency and rare variants in well-established T2D loci, a low-

frequency missense variant in the HNF1A gene was identified through WES in Mexican and Latino 

individuals, showing a five-fold increased risk of T2D (Sigma Type 2 Diabetes Consortium et al. 

2014a). Targeted gene sequencing studies and gene-based tests aggregating the contribution of 

multiple exonic variants were a more successful approach. For instance, 36 rare variants identified 

by exome sequencing in the MTNR1B gene were tested through cell assays, which allowed 

capturing very rare loss-of-function variants showing more than five-fold increased risk of T2D (MAF 

< 0.001, OR ~ 5.67) in the MTNR1B gene (Bonnefond et al. 2012). Furthermore, 49 non-

synonymous variants were identified by PPARG sequencing but only nine rare variants that showed 

reduced activity in a novel adipocyte differentiation assay conferred a substantial increase in T2D risk 

(OR=7.22) (Majithia et al. 2014). In addition, a large targeted gene study that integrated SLC30A8 

variants identified by exome sequencing or genotyping data in 150K individuals across five ancestry 

groups resulted in 12 predicted protein-truncating rare variants with a 3-fold reduced risk of T2D 

(Flannick et al. 2014).  
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These latter studies demonstrated a broader allelic series for T2D risk through the identification of 

low-frequency and rare variants in known T2D genes.  Additionally, this hypothesis has been 

addressed in other studies. For instance, by sequencing seven MODY genes in ~4,000 individuals 

from general population, individuals diagnosed with MODY or exhibiting extreme T2D phenotypes 

were reported to show an excess of low-frequency predicted deleterious mutations (Flannick et al. 

2013). Moreover, in the latest state of the art T2D large-scale genetic study, rare-variant associations 

were aggregated across 81 genes attributed to monogenic forms of DM to perform gene-set analysis. 

A particular gene-set accounting for variants with MAF < 0.01 from 13 genes underlying MODY or 

NDM and reported in the OMIM database, showed compelling enrichment for T2D associations 

(Fuchsberger et al. 2016).  

These studies suggested that rare, low-frequency and common variants with modest and small effect 

sizes that contribute to the T2D risk coexists with also highly penetrant rare alleles for monogenic 

forms od DM. Within this full spectrum of genetic variants, common T2D and rare monogenic 

forms of DM are just two extremes in a disease continuum. On the basis of this rationale, addressing 

the risk of DM in a unified model can provide new insights for both common and rare forms of DM. In 

the context of T2D, association studies according to sub-phenotypes similar to rare monogenic DM 

disorders can improve the statistical power for the discovery of novel T2D loci (Flannick et al. 2016).  

To round off this thorough review of the progress in the understanding of the genetic architecture of 

Type 2 diabetes I would like to summarize the last results from the ultimate T2D large-scale genetic 

study. This study exploited (1a) WGS in 2,657 individuals from the GoT2D data that was also used to 

(1b) impute sequence-based variants into GWAS data from 44,414 individuals, (2) WES from 12,940 

individuals from the T2D-GENES consortium and (3) exome-array data from DIAGRAM 

(Fuchsberger et al. 2016). This study aimed to also shed light to this debate of the role of rare 

variants with large effects in T2D heritability against a model of trait variation mainly based on a vast 

number of common variants of weaker effects. Indeed, this controversial debate draws from the 

classical discussion between Mendelians and Biometricians. The authors reported that the HapMap 

coverage was able to capture all common-variant associations identified by WGS. Moreover, WGS 

and WES did not show a major involvement of low-frequency variants in T2D risk but they also 

claimed that sequencing studies were still limited in terms of sample size, limiting the statistical 

power to capture rare and low-frequency associated variants. Nonetheless, simulations along with 

empirical data suggested that the role of variants at the lower allele frequency ranges have a much-

reduced role in T2D heritability compared to common variants (Fuchsberger et al. 2016).  

In contrast to this latter study that was based in large consortia generating amounts of new, diverse 

and statistically powered data, this thesis opted for an alternative approach which consisted on the 

development and implementation of novel analytical and computational methodologies, in order to 

better exploit the available large-scale individual-level T2D GWAS data. 
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The main goal of this thesis was to achieve a more comprehensive understanding of the genetic and 

the molecular basis of Type 2 diabetes (T2D). This goal has been articulated by these hypotheses: 

Hypothesis 1: A substantial fraction of missing heritability for Type 2 diabetes is still hidden in 

publicly available GWAS data that could be discovered by applying novel analytical methodologies.  

Hypothesis 2: There is a large spectrum of unexplored genetic variation (low-frequency and rare 

variation) that contributes at some extent to the aetiology of Type 2 diabetes. 

 

These hypotheses have been translated into three main objectives: 

Objective 1: To standardize the use of genotype imputation with novel sequence-base reference 

panels for accurate ascertainment of low-frequency and rare variation through the development of 

specific protocols and guidelines. 

Objective 2: To accelerate and to automatize large-scale genetic analysis through the 

implementation of computationally efficient pipelines.  

Objective 3: To combine all the previous developments to re-analyse all the publicly available Type 

2 diabetes GWAS data from European ancestry through genotype imputation with novel sequence-

based reference panels and novel functional annotation maps. 
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The methods section has been split in two major sections. The first block corresponds to all the 

resources and methodologies followed to (1) computationally package a QC protocol for genotyped 

data and (2) the several approaches used to articulate some practical guidelines for genotype 

imputation with sequence-based reference panels for GWAS and meta-analysis approaches. The 

second main block contains all the resources, techniques and approaches undertaken for the re-

analysis of all publicly available T2D GWAS datasets as well as all the methods followed for the 

downstream analysis.  

1. Computational and analytical frameworks for imputation based 
GWAS 
1.1 Automatizing and packaging GWAS analytical workflows 

This work was conceived to computationally automatize a quality control (QC) protocol for 

genotyping array data. The different steps included have been extensively reported in previously 

studies (Anderson et al. 2010) and they are widely accepted by the community. Thus, common QC 

practices have been packaged in this automatized pipeline and I strongly recommend reading the 

work from (Anderson et al. 2010) for specific details of the QC. All the commands and even some 

scripts such as the one for filtering highly related individuals were obtained from that pipeline. As 

explained by the authors, most of the analysis described below rely on PLINK (v1.9 version) (Chang 

et al. 2015), that has been wrapped-up with R-scripting (also used to provide graphical reports) and 

UNIX commands for some filtering and data management tasks. This pipeline exploits SLURM 

(Simple Linux Utility for Resource Management) (Jette et al. 2002) and LSF (Load Sharing Facility) 

(Zhou et al. 1993) queueing systems for the execution of the different tasks in a cluster environment. 

I will briefly review some of the steps already detailed in the aforementioned previous work.  

a) Variant Based Filtering: to check excess of missing genotypes, deviance of HWE, 

statistical differences in missing data rates and lower allele frequencies, we used 

PLINK. These flags allow retrieving the corresponding per-maker values for each of these 

parameters.  

 

 

 

These analyses are independent executions. Then, according to the cut-offs established by the user, 

the workflow filters defective markers failing any of these parameters.  

 

-‐-‐missing	  

-‐-‐hardy	  

-‐-‐test-‐missing	  

-‐-‐freq	  
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b) Sample Based Filtering 

In order to check sex discordance and high missing data rates, the following flags from the PLINK 

software are used in sequential executions: 

 

 

For the identification of highly related individuals, an identity by state (IBS) pair-wise comparison 

matrix for all the individuals is generated. Afterwards, the degree of recent shared ancestry from 

each pair of target individuals is computed, the identity by descent (IBD) estimate that allows 

identifying highly related individuals. To lower the computational complexity of these calculations, 

only independent SNPs should be included but also because IBS calculations are LD sensitive. This 

process is achieved by doing a “pruning” of the data so that any pair of variants has an r2 value to 

a given threshold. To successfully do that, strong LD regions such as the MHC regions have been 

discarded. The fraction of independent set of variants is extracted from the study samples. 

 

This fraction of independent variants is merged with a population reference data because the 

same IBD information will facilitate clustering the study population with the different ancestries 

enclosed in the reference data (i.e. HapMap data). To merge the target and the reference datasets, 

those variants with pairs of alleles A/T or C/G should be discarded. Then, we identified a set of 

common variants in both datasets allowing merging the datasets (performed in UNIX).   

 

Because of strand discrepancies, this step can fail and it will end the execution despite prior removal 

of A/T or C/G SNPs. As a master R-script controls the whole QC process, until this previous 

execution, this part of the pipeline is run as a single job in a SLURM or LSF queueing system. The 

master R-script launches a second job in order to check the success of this step. If this step fails, 

problematic variants are flipped. If the error is persistent, these variants are removed by launching a 

third job in the computing cluster that must ensure merging both sets of data. 

-‐-‐check-‐sex	  

-‐-‐mind	  0.02	  

###	  PRUNNING	  calculation	  

plink	  –-‐noweb	  –-‐bfile	  file	  –-‐exclude	  range	  high_LD_regions.txt	  –-‐indep	  50	  5	  0.2	  
-‐-‐out	  output_list_prunned_snps	  

	  

plink	  –-‐noweb	  –-‐bfile	  file	  –-‐bmerge	  reference.bed	  reference.bim	  reference.fam	  
–-‐extract	  common_variants_no_AT_CG	  –out	  output_merged	  
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To generate the pair-wise IBS/IBD matrix, we used the parallel computing capabilities of the 

PLINK software (specially improved in the 1.9 release) that allows to split this job in several 

independent tasks. The decision to divide in more or less parts is done by the master R-script in 

terms of the sample size. For instance, the first out of four tasks in which this job has been split is 

executed by: 

 

Once this step has been achieved for each sub task, all the outputs are concatenated in a single file. 

Through a script obtained from the published QC protocol of Anderson, C.A. and colleagues 

(Anderson et al. 2010), highly related individuals are filtered. From a pair of individuals exhibiting an 

IBD proportion > 0.125 (third-degree relatives), the individual showing the lowest call rate 

(previously computed when assessing the excess of missing data rate) is discarded.  

To evaluate the population structure underlying study samples, we used multidimensional-scale 

analysis with PLINK, which has been coded to generate 7 new components (PC). The IBD matrix 

previously calculated is required in the clustering analysis. After that, an R-script discards 

individuals showing more that 4 standard deviations within the target samples according to 

the first four new components. A plot based on four PCs represents reference populations and the 

target cohort to facilitate a manual inspection from the user of this analysis.  

 

 

 

A last round of variant based filtering is performed before performing association tests using a Fisher 

test model and logistic regression, which is adjusted by the new components already calculated.  

 

plink	  –-‐noweb	  –-‐bfile	  file	  –-‐genome	  –-‐parallel	  1	  4	  -‐–out	  genome_list_chunk_1	  

#BASIC	  ASSOC	  

plink	  –-‐noweb	  –-‐bfile	  file	  –-‐assoc	  -‐–out	  basic_association_test	  

#LOGISTIC	  REGRESSION	  

plink	  –-‐noweb	  –-‐bfile	  file	  –-‐logistic	  –-‐covar	  new_PCs	  –covar-‐name	  
PC1,PC2,PC3,PC4,PC5,PC6,PC7	  –ci	  0.95	  –-‐hide-‐covar	  -‐–out	  logistic_association_test	  

plink	  –-‐noweb	  –-‐bfile	  file	  –-‐read-‐genome	  –-‐cluster	  -‐-‐mds-‐plot	  7	  
-‐–out	  novel_components_from_MDS	  
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The pipeline (1) summarizes all the statistics calculated per marker and per individual, (2) 

seeks for the different variants and subjects excluded, (3) lists top-hits variants and regions, (4) 

provides manhattan-plots and Q-Q-plots for each association test and (5) Q-Q-plots for the HWE 

p-values.  

The QC ends with a report of the whole execution summarizing the different decisions undertaken 

with respect to the exclusion of variants and samples in each step.  

This workflow encompasses a set of R-packages (gap, getopt, optparse and IRanges) that are 

installed according to the resources of the cluster infrastructure if necessary. A master R-script looks 

for the full disposal of all the required R-libraries, initializes the main execution and manages the 

different jobs of tasks executed using different levels of parallelism and also following the appropriate 

queueing system. 
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1.2 Fostering guidelines for accurate genotype imputation of common and low-frequency 
variants for GWAS and sequence-based reference panels 

1.2.1 Experimental data and pre imputation quality filtering  

The data considered for this section was obtained from the Wellcome Trust Case Control Consortium 

(WTCCC) (2007) data through the European Genotype Archive (EGA, 

https://www.ebi.ac.uk/ega/studies/EGAS00000000028) (Barrett et al. 2009c). The genotyping data 

and the subjects included in the following tests were filtered according to the guidelines provided by 

the WTCCC, whose criteria of exclusion are in line with standard quality filters for GWAS (Anderson 

et al. 2010). We used two cohorts of population controls from the WTCCC2 stage, the 1958 

British Birth cohort (~3,000 samples, 58C) and the National Blood Samples from the UK Blood 

Service Control Group (~3,000 samples, NBS). Both sets were genotyped by Affymetrix v6.0 and 

Illumina 1.2M chips. After applying the quality filtering criteria, 2,706 and 2,699 subjects from the 

Affymetrix and Illumina data, respectively, were available for the 58C samples, leaving an 

intersection of 2,509 individuals genotyped by both platforms. For the NBS samples, the final 

effective subjects were 2,674 and 2,501 for the Affymetrix and Illumina datasets, respectively, but 

only 2,163 were common in both chips. After variant quality filtering and excluding all the variants 

with minor allele frequency (MAF) below 0.01, 717,556 and 892,516 variants were remained for 58C 

Affymetrix and Illumina platforms, respectively while for the NBS samples, 714,771 and 893,369 

markers were included for Affymetrix and Illumina, respectively.  

1.2.2 Genotype imputation with IMPUTE2 

We used the two-step genotype imputation approach based on SHAPEIT2 (Delaneau et al. 2012) to 

pre-phase the study genotypes into full haplotypes in order to ameliorate the computational burden, 

and IMPUTE22 (Howie et al. 2009), which was currently reviewed as one of the best methods for 

genotype imputation (Marchini and Howie 2010). We excluded all C/G and A/T SNPs from the 

genotype imputation step to avoid strand orientation issues between the reference panel and the 

genotyped data. Phasing and Imputation were executed using the following commands: 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 For “Results” sections, Preventing the occurrence of spurious association from errors in genotyping and Exploring 
the impact of genotype imputation in meta-analysis approaches, IMPUTE2 2.2.2 instead of IMPUTE2 2.3.0 release 
and SHAPEIT1 instead of the SHAPEIT2 release, were used. 

shapeit	  -‐-‐input-‐gen	  input.gen	  input.sample	  -‐-‐input-‐map	  
genetic_map_chr_1_combined_b37.txt.gz	  -‐-‐output-‐max	  out.haps	  out.sample	  
-‐-‐thread	  16	  -‐-‐effective-‐size	  20000	  -‐-‐output-‐log	  out.log	  
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We used the GTOOL software (http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html, 

version 0.7.5) to homogenize strand annotation by merging the imputed results obtained from each 

set of genotyped data. To test for association under an additive model we used the following 

command-line and the SNPTEST tool (we did not adjust for any covariate in this comparison of 

imputed data across genotyping arrays from the same healthy individuals)  

 

All these steps and many more were implemented in the GUIDANCE software (Sanchez et al. 

2016), an application that works on top of the COMP Superscalar (COMPSs) framework (Tejedor et 

al. 2012; Lordan et al. 2014), to phase, impute genotypes and perform association testing in high-

performance computing environments (Tejedor et al. 2012).  

We used three sequence-based reference panels to perform genotype imputation: 1000G-Phase13 

(March 2012 and June 2014), the 1000G-Phase3 and the UK10K (UK10K Consortium et al. 2015) 

(https://ega-archive.org/studies/EGAS00001000713) reference panels.  

1.2.3 Fixing appropriate quality thresholds across genotyping platforms 

We evaluated genotype imputation for each reference panel considering 2,509 58C individuals that 

were genotyped by both independent genotyping platforms.  

Four scenarios were considered: (a) fraction of variants originally genotyped (GT) by both Illumina 

(IL) and Affymetrix (Affy) platforms (GT both); (b) Variants genotyped by Affy, but not present in IL 

array (Affy GT); (c) Variants genotyped by Illumina, but not present in the Affy array (IL GT); and (d) 

Variants not typed in IL nor in the Affy arrays, and therefore, imputed from IL and Affy datasets (d). 

This last scenario corresponded to the largest fraction of variants. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
 
3  For the “Results” sections, Preventing the occurrence of spurious association from errors in genotyping and 
Exploring the impact of genotype imputation in meta-analysis approaches, we used the 1000G-Phase1 release from 
March 2012.  

impute2	  -‐use_prephased_g	  -‐m	  genetic_map_chr_1_combined_b37.txt.gz	  	  
-‐h	  ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.nosing.haplotypes.gz	  	  
-‐l	  ALL.chr1.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.nosing.legend.gz	  	  
-‐known_haps_g	  output.haps	  -‐int	  244000001	  245000000	  -‐exclude_snps_g	  list_snps_AT_CG	  	  
-‐impute_excluded	  -‐Ne	  20000	  -‐o	  output_impute	  -‐o_gz	  
	  

snptest_v2.5	  -‐data	  merged_controls_cases.gen	  merged_controls_cases.sample	  	  
-‐frequentist	  1	  -‐method	  em	  -‐pheno	  bin1	  -‐hwe	  –o	  controls_cases_snptest.out	  	  
–log	  controls_cases_snptest.log	  	  
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As the individuals typed (and imputed) using Affy and IL SNPs as backbones were the same, we 

expected no statistical differences when comparing the allele and genotype frequencies in 

any of the variants. We addressed the accuracy of genotype imputation as the percentage of false 

positive (FP) associations, defined as variants showing genome-wide significant differences (p-value 

≤ 5 x 10-8) when comparing the two datasets derived from IL and Affy datasets. 

The quality of the imputed variants was also evaluated using the allelic dosage R2 coefficient 

between the genotype dosages estimated when imputing using Affy or IL as backbone. The Affy GT 

and IL GT SNPs (SNPs genotyped by one platform, but imputed on the other dataset) were also 

used to evaluate the correspondence between the allelic dosage R2 scores and the IMPUTE2-

info scores associated to the imputed genotypes. The linear model, between the allelic dosage R2 

and the IMPUTE2-info, was used to set an info score threshold of 0.7, which reached an allelic 

dosage R2 of 0.5. This cut-off was uniform across all reference panels and platforms.   

1.2.4 Combining imputed variants from each reference panel 

For the 58C-imputed results from Affymetrix and Illumina, we chose the genotypes from the 

reference panel that showed higher accuracy, estimated from the IMPUTE2-info score. For this 

final combined set of variants we also assessed the differences in accuracy and coverage.  We also 

filtered out those variants showing MAF < 0.001 and HWE p-value ≤ 1x10-8. 

1.2.5 Preventing the occurrence of spurious association from errors in genotyping 

This strategy was based on the –pgs option from IMPUTE2, which imputes genotyped variants 

even though they have already been genotyped, based on the surrounding SNPs. We then 

compared the imputed results against the real genotyped results. Several metrics were 

evaluated in order to disclose which of them was the one that had the greatest discriminator power 

(See Figure 11). The best metric was: 

diffBeta = abs (1 - beta); 

beta is the slope of the allele dosage correlation between the real and the imputed genotypes 

(termed diffBeta). Note that we expect a perfect correlation and a slope of 1 when there is complete 

agreement between the imputed and the real results. 

Using the 58C cohort, we eliminated all the SNPs with diffBeta higher than 0.10, as this showed to 

eliminate 87.1% of biased SNPs, as trained in the NBS cohort. After eliminating these SNPs, we 

phased the genotypes again, and we imputed the genotypes again. We then evaluated the coverage 

and the percentage of FP using different info score thresholds. We then look for the IMPUTE2-info 

filter allowing to at least reducing in a 90% the ratio of FP of the original pipeline (applying only a 

IMPUTE2-info cut-off of 0.7). In order to test this strategy in a dataset relying on a different array, we 
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compared a fraction of the 58C samples that were genotyped by both the Affymetrix 500K arrays and 

Illumina 1.2M arrays.  

1.2.6 Exploring the impact of genotype imputation in meta-analysis approaches 

We compared the allele frequencies of genotyped and imputed variants between the 58C and 

NBS control samples using Affy and IL as the starting genotyping platform. We compared NBS 

(Affy) vs 58C (Affy) and (b) NBS (IL) against 58C (IL) datasets (see Figure 12). The steps of 

genotype imputation and testing for association were performed for both sets as previously 

described. We then meta-analysed the association results using METAL (Willer et al. 2010) with the 

sample-size and the inverse variance fixed effect methods, separately, and we analysed the degree 

of heterogeneity using the I2 score.  
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Figure 11. Filtering inaccurately genotyped variants before genotype imputation. 
(a) Training algorithm for the identification of wrongly genotyped variants in 
genomic regions containing at least one FP association (comparison between 
NBS Affy and IL results).  In red, FP associations arising from biased genotyping 
between platforms. We used the IMPUTE2 –pgs option. The metric with best 
performance from comparing real against imputed genotypes was the diffBeta. A 
box-plot shows diffBeta values for Affy and IL SNPs from well genotyped (blue) 
and wrongly genotyped SNPs. The Receiving Operating Characteristic (ROC) 
curve shows the discriminatory power of the diffBeta. We set a threshold of 0.1 
(87% of FP discarded). (b) Validation of the diffBeta-filtering pipeline in 58C 
imputed results. We used 46 genomic regions from chromosome 1 containing at 
least one FP association (imputed or genotyped SNPs). We applied the same 
procedure based on the QC with the diffBeta metric. 
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Figure 12. Strategy to evaluate the effect of post-imputation quality filters on the 
power of GWA-meta-analysis. We obtained two independent GWAS results by 
comparing NBS (controls) against 58C (cases) samples (NBSvs58C) that have 
been genotyped by both Affy and IL array platforms. We followed the two-step 
protocol for genotype imputation: pre-phasing genotypes with SHAPEIT before 
imputing nearby variants. We tested for association NBS and 58C groups for the 
IL and Affy datasets, independently. We performed meta-analysis between both 
studies (NBSvs58C Affy and NBSvs58C IL) and I2 heterogeneity was compared 
across IMPUTE2-info filters.  
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2. Novel insights of the genetic architecture of T2D: crossing the 
boundaries of common variants 
2.1 Details of independent discovery GWAS datasets 

We collected all publicly genetic individual-level data for Type 2 diabetes (T2D) case/control 

studies from 5 independent datasets available in the dbGaP (http://www.ncbi.nlm.nih.gov/gap) 

and EGA (https://www.ebi.ac.uk/ega/home) public repositories, comprising a total of 13,201 cases 

and 59,656 controls. Each dataset was independently harmonized and quality controlled before 

performing genotype imputation and association testing.  

2.1.1 Cohort: NuGENE NORTHWESTERN 

dbGaP Study Accession: phs000237.v1.p1 

Ethnicity: European (USA) 

T2D cases after QC: 527 

Controls after QC: 601 

Type 2 diabetes case selection criteria:  

Neither group should have T1D diagnosis codes (ICD-9 250.x1 or 250.x3) 

1) Identification of patients who already have a T2D diagnosis: 

a) Include patients with Type 2 Diabetes diagnosis based on the list of codes for the 

International Statistical Classification of Diseases and Related Health Problems, the ICD9 

code (excluding those with ketoacidosis codes). 

b) Exclude patients (currently) treated only with insulin AND have never been on a type 2 

diabetes medication, and: diagnosed with T1D, or even if not diagnosed with T1D, diagnosed 

with T2D on < 2 dates in an encounter or problem list. 

2) Identification of patients who do not yet have a T2D diagnosis: Include patients with HbA1c lab 

value ≥ 6.5%, FG > 125 mg/dl or random glucose > 200 mg/dl AND prescribed one of the 

medications (or combinations thereof) sulfonylureas, meglitinides, biguanides, thiazoldinediones, 

alpha-glycosidase inhibitors, DPPIV inhibitor and injectable.  

Control selection criteria: 

a) Have had at least 2 clinic visits (face-to-face outpatient clinic encounters). 

b) Have not been assigned an ICD9 code for diabetes (type 1 or type 2) or any diabetes-related 

condition. 
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c) Have not been prescribed insulin or Pramlintide, or any medications for diabetes treatment, 

or diabetic supplies such as those for medication administration or glucose monitoring. 

d) Do not have a reported (random or fasting) blood glucose ≥ 110 mg/dl and have had at least 

1 glucose measurement. 

e) Do not have a reported HbA1c ≥ 6.0%. 

f) Do not have a reported family history of diabetes (type 1 or type 2). 

2.1.2 Cohort: FUSION 

dbGaP Study Accession: phs000100.v4.p1  

Ethnicity: European (Finland) 

T2D cases after QC: 901 

Controls after QC: 772 

Type 2 diabetes case selection criteria: 

a) 644 FUSION and 275 Finrisk 2002 T2D cases as defined by WHO 1999 criteria of FPG ≥ 7.0 

mmol/l or 2-hr plasma glucose ≥ 11.1 mmol/l, by report of diabetes medication use, or based 

on medical record review. 

b) FUSION cases with known or probable T1D among their first-degree relatives were excluded.  

c) The 644 FUSION cases each reported at least one T2D sibling.  

d) The Finrisk cases came from a Finnish population-based risk factor survey. 

Control selection criteria: 

a) 331 FUSION and 456 Finrisk 2002 normal glucose tolerance (NGT) controls as defined by 

WHO 1999 criteria of fasting glucose < 6.1 mmol/l and 2-hr glucose < 7.8 mmol/l.  

b) FUSION controls include 119 subjects from Vantaa, Finland, who were NGT at ages 65 and 

70 years, and 212 NGT spouses of FUSION subjects. The controls were approximately 

frequency matched to the cases by age, sex, and birth province. 

2.1.3 Cohort: GENEVA Genes and Environment Initiatives in Type 2 Diabetes (Nurses' Health 
Study/Health Professionals Follow-up Study) GENEVA NHS/HPFS 

dbGaP Study Accession: phs000091.v2.p1  

Ethnicity: European (USA) 

T2D cases after QC: 2614 

Controls after QC: 3061 
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Type 2 diabetes case selection criteria: 

Through 1996 follow-up, criteria for confirmed T2D included one of the following: 

a) One or more classic symptoms (excessive thirst, polyuria, weight loss, hunger, pruritus, or 

coma) plus FPG ≥ 140 mg/dl (7.8 mmol/L) and/or random plasma glucose ≥ 200 mg/dl (11.1 

mmol/L) and/or plasma glucose 2 hr after an OGTT ≥ 200 mg/dl; or 

b) At least two elevated plasma glucose levels (as described above) on different occasions in 

the absence of symptoms; or 

c) Treatment with hypoglycaemic medication (insulin or oral hypoglycaemic agent). 

In response to the current American Diabetes Association (ADA) diagnostic criteria (FPG cut point ≥ 

126 mg/dl [7.0 mmol/L]), we revised the Supplementary Diabetes Questionnaire for participants 

reporting a new diagnosis of diabetes on the 1998 or later questionnaires. This revised 

supplementary questionnaire ascertains the level of elevation in fasting plasma glucose and will 

enable us to determine which participants had fasting plasma glucose ≥ 140 mg/dl (the earlier 

diagnostic cut point) and which had a fasting plasma glucose ≥ 126 (the current diagnostic cut point). 

The criteria for confirmed T2D during the 1998–2000 follow-up cycle and later cycles remain the 

same, except for the elevated FPG criterion for which the cut point was changed from 140 mg/dl to 

126 mg/dl. The revised supplementary questionnaire enables us to classify cases in categories of 

glucose elevation and determine the proportion diagnosed in each category (e.g. FPG 126–139 

versus ≥ 140 mg/dl) allowing us to conduct sensitivity analyses with exclusion of participants that 

meet the ADA criteria and not the National Diabetes Data Group (NDDG) criteria. 

Control selection criteria: No diabetes mellitus. 

2.1.4 Cohort: Wellcome Trust Case Control Consortium (WTCCC) 

EGA Study ID: EGAS00000000005 (EGAS00000000001 + EGAS00000000002 + 

EGAS00000000009) 

Ethnicity: European (UK) 

T2D cases after QC: 1894 

Controls after QC: 2917 

T2D case selection criteria:  

The T2D cases were selected from UK Caucasian subjects who form part of the Diabetes UK Warren 

2 repository. In each case, the diagnosis of diabetes was based on either current prescribed 

treatment with sulphonylureas, biguanides, other oral agents and/or insulin or, in the case of 

individuals treated with diet alone, historical or contemporary laboratory evidence of hyperglycaemia 



	  

	  90 

(as defined by the WHO). Other forms of diabetes (for example, MODY, mitochondrial diabetes, and 

T1D) were excluded by standard clinical criteria based on personal and family history. Criteria for 

excluding autoimmune diabetes included absence of first-degree relatives with T1D, an interval of ≥1 

years between diagnosis and institution of regular insulin therapy and negative testing for antibodies 

to glutamic acid decarboxylase. Cases were limited to those who reported that all four grandparents 

had exclusively British and/or Irish origin, by both self-reported ethnicity and place of birth. All were 

diagnosed between age 25 and 75. Approximately 30% were explicitly recruited as part of multiplex 

sibships (Wiltshire et al. 2001) and ~25% were offspring in parent-offspring ‘trios’ or ‘duos’ (that is, 

families comprising only one parent complemented by additional sibs) (Frayling et al. 1999). The 

remainders were recruited as isolated cases but these cases were (compared to population-based 

cases) of relatively early onset and had a high proportion of T2D parents and/or siblings (Groves et 

al. 2006). Cases were ascertained across the UK but were centralized on the main collection centres 

(Exeter, London, Newcastle, Norwich,Oxford). Selection of the samples typed in WTCCC from the 

larger collections was based primarily on DNA availability and success in passing Diabetes and 

Inflammation Laboratory (DIL)/Wellcome Trust Sanger Institute DNA quality control. 

Control selection criteria: 

a) The 1958 Birth Cohort (also known as the National Child Development Study) includes all 

births in England, Wales and Scotland, during one week in 1958. From an original sample of 

over 17,000 births, survivors were followed up at ages 7, 11, 16, 23, 33 and 42 years 

(http://www.cls.ioe.ac.uk/studies.asp?section=000100020003). In a biomedical examination 

at 44-45 years (Strachan et al. 2007) (http://www.b58cgene.sgul.ac.uk/followup.php), 9,377 

cohort members were visited at home providing 7,692 blood samples with consent for future 

Epstein-Barr virus-transformed cell lines. DNA samples extracted from 1,500 cell lines of 

self-reported white ethnicity and representative of gender and each geographical region 

were selected for use as controls. 

b) The second set of common controls was made up of 1,500 individuals selected from a 

sample of blood donors recruited as part of the current project. WTCCC in collaboration with 

the UK Blood Services (NHSBT in England, SNBTS in Scotland and WBS in Wales) set up a 

UK national repository of de-identified samples of DNA and viable mononuclear cells from 

3,622 consenting blood donors, age range 18-69 years (ethical approval 05/Q0106/74). A 

set of 1,564 samples was selected from the 3622 samples recruited based on sex and 

geographical region (to reproduce the distribution of the samples of the 1958 Birth Cohort) 

for use as common controls in the WTCCC study. DNA was extracted as described below 

with a yield of 3054 ± 1207 µg (mean ± 1 s.d.). 
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2.1.5 Cohort: Resource for Genetic Epidemiology Research on Adult Health and Aging 
(GERA) 

dbGaP Study Accession: phs000674.v1.p1 

Ethnicity: European (USA) 

T2D cases after QC: 6995 

Controls after QC: 49845 

Inclusion criteria: 

a) Eligible for the Research Program on Genes, Environment, and Health (RPGEH) survey 

i) ≥ 18 years of age at time of survey mailing (2007). 

ii) Kaiser Permanente Northern California Region enrollee for at least 2 years prior to 

survey. 

b) Consented to contribute biospecimen to RPGEH and returned saliva sample by cut-off date 

for GERA genotyping. 

c) All available samples from minorities were included, plus Non-Hispanic Whites selected at 

random to reach 110,266 participants with extracted DNA whose samples were submitted for 

genotyping. 

d) Successfully genotyped (DQC ≥ 0.82; call rate ≥ 0.97) from extracted DNA. 

e) Consented explicitly to have data deposited in NIH-maintained database. 

Exclusion criteria: 

1) Subject requested withdrawal from study after DNA extraction and genotyping. 

2) Validity of link between biospecimen and study participant questionable because of 

genotype-phenotype discordance, e.g. gender. 

A participant was coded as a patient for T2D if he/she had at least two diagnoses within this disease 

category that had to be recorded on separate days. Diagnoses were obtained from patient 

encounters at Kaiser Permanente Northern California facilities from January 1, 1995 to March 15, 

2013. The March 2013 ICD9-CM diagnoses used for the Type 2 Diabetes category were:  

a) 250.00 Diabetes mellitus without mention of complication, type II or unspecified type, not 

stated as uncontrolled. 

b) 250.02 Diabetes mellitus without mention of complication, type II or unspecified type, 

uncontrolled. 
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c) 250.10 Diabetes with ketoacidosis, type II or unspecified type, not stated as uncontrolled. 

d) 250.12 Diabetes with ketoacidosis, type II or unspecified type, uncontrolled. 

e) 250.20 Diabetes with hyperosmolarity, type II or unspecified type, not stated as uncontrolled. 

f) 250.22 Diabetes with hyperosmolarity, type II or unspecified type, uncontrolled. 

g) 250.30 Diabetes with other coma, type II or unspecified type, not stated as uncontrolled. 

h) 250.32 Diabetes with other coma, type II or unspecified type, uncontrolled. 

i) 250.40 Diabetes with renal manifestations, type II or unspecified type, not stated as 

uncontrolled. 

j) 250.42 Diabetes with renal manifestations, type II or unspecified type, uncontrolled. 

k) 250.50 Diabetes with ophthalmic manifestations, type II or unspecified type, not stated as 

uncontrolled. 

l) 250.52 Diabetes with ophthalmic manifestations, type II or unspecified type, uncontrolled. 

m) 250.60 Diabetes with neurological manifestations, type II or unspecified type, not stated as 

uncontrolled. 

n) 250.62 Diabetes with neurological manifestations, type II or unspecified type, uncontrolled. 

o) 250.70 Diabetes with peripheral circulatory disorders, type II or unspecified type, not stated 

as uncontrolled. 

p) 250.72 Diabetes with peripheral circulatory disorders, type II or unspecified type, 

uncontrolled. 

q) 250.80 Diabetes with other specified manifestations, type II or unspecified type, not stated as 

uncontrolled. 

r) 250.82 Diabetes with other specified manifestations, type II or unspecified type, uncontrolled. 

s) 250.90 Diabetes with unspecified complication, type II or unspecified type, not stated as 

uncontrolled. 

t) 250.92 Diabetes with unspecified complication, type II or unspecified type, uncontrolled. 

The rest of subjects no coded as T2D patients were considered as controls.  

2.1.6 DIAGRAM Trans-Ethnic meta-analysis.  

We used the summary statistics for the trans-ethnic T2D GWAS meta-analysis (DIAbetes Genetics 

Replication And Meta-analysis (DIAGRAM) Consortium et al. 2014) from the DIAGRAM consortium, 

which comprises the following ancestry-specific meta-analyses: the DIAGRAM Consortium (12,171 

cases and 56,862 controls, European ancestry); the AGEN-T2D Consortium (6,952 cases and 

11,865 controls, East Asian ancestry); the SAT2D Consortium (5,561 cases and 14,458 controls, 

South Asian ancestry); and the MAT2D Consortium (1,804 cases and 779 controls, Mexican and 

Mexican American ancestry). Each individual study undertook sample and SNP QC, and the 

genomic resolution was increased up to 2.5 million autosomal SNPs thanks to genotype imputation 

using reference panels from Phase II/III HapMap. QCed SNPs with MAF>1%, (except MAF>5% in 
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the Mexican and Mexican American ancestry GWAS due to smaller sample size) were tested for 

association with T2D under an additive model adjusted for several study specific covariates. 

Association summary statistics were combined via fixed-effects according to the ancestry group, and 

the results of each ancestry-specific meta-analysis were combined thanks to a fixed effects inverse-

variance weighted meta-analysis, comprising a total sample size of 26,488 cases and 83,964 

controls.  

2.1.7 Type 2 Diabetes Knowledge Portal (T2D Portal) 

The T2D Portal (http://www.type2diabetesgenetics.org/) is a central repository for obtaining summary 

statistics from large genetic association studies of T2D, including projects based on WES and 

exome arrays for low-frequency data and SNP arrays covering common variation (GWAS). 

Besides this, T2D Portal has also included the results from GWAS meta-analysis of 24 other traits.  

In our study we used the summary statistics from WES analysis and exome chip analysis. First, the 

summary statistics of 16,857 individual exome sequences were derived from the integration of 

multiple projects such as T2D-GENES, GoT2D and SIGMA. This dataset comprises individuals from 

5 ethnic groups (African-American, East Asian, South Asian, European and Hispanic) (Sigma Type 2 

Diabetes Consortium et al. 2014a; Fuchsberger et al. 2016). Additionally, we also used the summary 

statistics from exome chip analysis of 75,670 individuals from European ancestry. This dataset has 

integrated the efforts from the DIAGRAM consortium, the GoT2D project and the T2D-GENES 

project (Fuchsberger et al. 2016). This data was accessed on June 2016.  

2.2 Summary of replication datasets 

2.2.1 InterAct 

The InterAct consortium (Langenberg et al. 2014) entails a case-cohort study that aroused from the 

existing large cohort ‘EPIC’ study. The EPIC study comprises 350,000 participants from 10 European 

countries and a lot of effort was put in standardizing lifestyle and dietary information. After a follow-up 

of 8 years, T2D has been diagnosed to 12,403 and InterAct has also defined a cohort of 16,154 

controls free of diabetes at baseline. From the SNP and sample QCed data, we extracted the male 

samples corresponding to 6,763 individuals, which were re-analysed using genotype imputation with 

the UK10K reference panel. Association with T2D has been evaluated using an additive logistic 

model with SNPTEST v2.5.2 adjusted by age and body-mass index. 

2.2.2 Slim Initiative in Genomic Medicine for the Americas (SIGMA) T2D Genetics Consortium 

The SIGMA consortium GWAS dataset comprised of 8,214 individuals (3,848 T2D cases and 4,366 

controls), consisting of four independent cohorts of Mexican or individuals with Latin American 

ancestry: The Diabetes in Mexico Study (DMS), Mexico City Diabetes Study (MCDS), Multiethnic 

Cohort (MEC) and UNAM/INCMNSZ Diabetes (UIDS) cohorts (Sigma Type 2 Diabetes Consortium et 
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al. 2014c). The genotyping of the study participants using the Illumina OMNI2.5 array was described 

previously (Sigma Type 2 Diabetes Consortium et al. 2014c). These cohorts, after the SNP and 

sample QC, were imputed using the UK10K reference panel and the association with T2D was tested 

under an additive logistic model only considering male samples with SNPTEST v2.5.2 adjusted by 

age and body-mass index. 

2.2.3 Danish cohort 

The Danish replication data consisted of five sample sets: 1) Inter99, a population-based 

randomized controlled trial (CT00289237, ClinicalTrials.gov) investigating the effects of lifestyle 

intervention on cardiovascular disease (Jorgensen et al. 2003); 2) Health2006 cohort, a population-

based epidemiological study of general health, diabetes and cardiovascular disease (Thuesen et al. 

2014); 3) ADDITION-DK screening cohort, 4) Vejle Biobank diabetes case-control study; and 5) 

clinical type 2 diabetes cases ascertained at Steno Diabetes Center. 

All individuals were of Danish nationality. Written informed consent was obtained from all 

participants. The studies were approved by the local Scientific Ethics Committees and were 

performed in accordance with the principles of the Declaration of Helsinki II. 

T2D was defined according to WHO 1999 criteria. Control individuals had FPG < 6.1 mmol/L (all 

study groups) and furthermore 2 hr plasma glucose during an oral glucose tolerance test < 7.8 

mmol/l (study group 1). For the case-control analysis, we relied on three definitions of controls: a) 

Any subject with fasting plasma glucose <6.1 mmol/L; b) any subject with fasting plasma glucose < 

6.1 and older 55 years (which corresponds do average age at onset); c) any subject older than 55 

and oral glucose tolerant test below 7.8 mmol/l (study group 1). 

The Kaplan-Meier method was used to plot cumulative incidence of T2D against time of follow-

up in the Inter99 cohorts, which were followed for 11 years on average. Cox proportional hazards 

regression models were used to address the risk of incident T2D. Individuals with self-reported 

diabetes at the baseline examination and individuals present in the Danish National Diabetes 

Registry before the baseline examination were excluded from the present analyses of incident T2D. 

The analyses for the follow-up study were restricted to male individuals younger than 45 years old, 

which will reach 55 years old after 11 years of follow-up. 

2.3 De-Novo of Danish samples 

Genotyping of Danish samples was performed by KASPar SNP Genotyping System (LGC Genomics, 

Hoddeson, UK). Ten selected samples from the 1000G Project (Coriell) were genotyped together 

with the study samples to estimate mismatch between genotyping and sequencing. All genotypes (5 

heterozygous and 5 homozygous for reference allele) were concordant. Furthermore, 1,602 study 
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samples were genotyped in duplicate and no mismatches were observed. Moreover, general call rate 

was 98% and genotype distribution was in accordance with HWE. 

2.4 Quality control for genotyped data 

All genotyped datasets underwent the same 3-step QC protocol using PLINK (Purcell et al. 2007), 

including 2 stages of SNP removal and an intermediate stage of sample exclusion.  

The exclusion criteria for genetic markers consisted on a) proportion of missingness ≥ 0.05, b) HWE 

p-value ≤ 1x10-6 for controls and HWE p-value ≤ 1x10-20 for all the cohort, c) differences in proportion 

of missingness between cases and controls p-value ≤ 1x10-6 and d) MAF < 0.01. Only for the GERA 

cohort we considered a MAF of 0.001 as exclusion criteria because of the large sample size of this 

dataset.  

For sample quality control we considered the following exclusion criteria: a) gender discordance, b) 

subject relatedness (pairs with  ≥ 0.125 from which we removed the individual with the highest 

proportion of missingness), c) variant call rates ≥ 0.02 and d) population structure showing more than 

4 standard deviations within the distribution of the study population according to the first seven 

principal components. 

2.5 Genotype phasing, genotype imputation and association analysis 

To efficiently perform genome-wide imputation and association testing we have used GUIDANCE, an 

integrated framework developed in our group, which allows phasing into haplotypes, imputing 

genotypes and performing association testing in a single execution with optional user intervention 

(under review) (Sanchez et al. 2016). This application performs the currently extended GWAS 

strategy making an efficient use of computational resources without requiring specific expertise in 

parallel computing. As input, we provided quality controlled genotyping array data in any of the 

commonly used file formats (PLINK and IMPUTE2 (Howie et al. 2009; Howie et al. 2012) formats), 

phenotype with covariate information and the reference panels. We performed a two-stage 

imputation procedure, which consisted in pre-phasing the genotypes into whole chromosome 

haplotypes followed by imputation itself. The pre-phasing was performed using SHAPEIT2 (Delaneau 

et al. 2013), IMPUTE2 for genotype imputation and the SNPTEST tool 

(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html) for association testing. We 

integrated the association results from 1000G-Phase1 (June, 2014) (The 1000 Genomes Project 

Consortium et al. 2012) and UK10K (UK10K Consortium et al. 2015) reference panels by choosing, 

for each variant, the reference panel that provided the best IMPUTE2-info score. Notice that for 

1000G-based genotype imputation in chromosome X (chrX) we had to rely on the “v3.macGT1” 

release (August, 2012). Imputation for each reference panel was obtained separately, applying 

stringent quality filtering criteria (including variants with IMPUTE2-info score ≥ 0.7 MAF ≥ 0.001, 

HWE controls > 1x10-6). Association testing was performed considering an additive logistic 
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regression using SNPTEST, the 7 derived principal components, sex, age and BMI, except for 

WTCCC, where age and BMI was not available (Supplementary Material 1). For chrX, we restricted 

the analysis to non-pseudoautosomal (non-PAR) regions. We stratified the analysis by sex, which fits 

the additive logistic regression considering independent effects for males (coded as 0/1) and females 

(coded as 0; ½; 1) and baseline terms independent for males and females. Thus, we accounted for 

hemizygosity in the chrX for males, while for females we followed an autosomal model.  

For the GERA cohort, due to the large computational burden that comprises the whole genotype 

imputation process in such a large sample size, we randomly split this cohort in two homogeneous 

subsets of ~30,000 individuals each, in order to specially minimize the memory requirements.  

2.6 70KforT2D meta-analysis and inclusion of publicy available summary statistics 

We meta-analyzed the different sets from the 70KforT2D dataset with METAL (Willer et al. 2010), 

using the inverse variance fixed effects meta-analysis.  

For the meta-analysis with the DIAGRAM Trans-Ethnic study, we excluded from the whole 

70KforT2D datasets those cohorts that overlapped with the DIAGRAM data. Therefore, we meta-

analysed the GERA and NuGENE cohorts (7,522 cases and 50,446 controls) from the 70KforT2D 

analysis with the Trans-Ethnic summary statistics results. As standard errors were not provided for 

the DIAGRAM Trans-Ethnic meta-analysis, we performed a sample size based meta-analysis, which 

converts the direction of the effect and the p-value into a Z-score. In addition, we also performed an 

inverse variance fixed effects meta-analysis to estimate the final effect sizes. This approach required 

the estimation of the beta and standard errors from the summary statistics (p-value and odds ratio). 

For the meta-analysis with the T2D Portal we only included from the 70KforT2D cohort the 

NuGENE, GENEVA and GERA cohorts (8,136 cases and 53,507 controls) to avoid overlapping 

samples. Like in the previous scenario, standard errors were not provided for the T2D Portal and we 

used a sample-size based meta-analysis with METAL. However, to estimate effect sizes we also 

estimated the standard errors from the p-values odds ratios (OR), and we performed inverse-

variance fixed effects meta-analysis.  

For the replication of the chromosome Xq23 variant in the Danish cohorts, we used a meta-

analysis method that accounts for overlapping samples (MAOS) (Lin and Sullivan 2009), as 

there was sample overlap between the follow-up results and the case-control analysis. 

2.7 Pathway and enrichment analysis 

In order to provide biological hypothesis from our GWAS results, we used DEPICT (Data-driven 

Expression Prioritized Integration for Complex Traits) (Pers et al. 2015) to prioritize the likely 

causal genes at associated loci, to highlight enriched pathways based on genes in associated loci, 

and to identify tissues/cell types where genes from associated loci are highly expressed. DEPICT 



	  

	   97 

relies on publicly available gene sets (including molecular pathways) and leverages gene expression 

data from 77,840 gene expression arrays to perform gene prioritization and gene set enrichment 

based on predicted gene function and so-called reconstituted gene sets. A reconstituted gene set 

contains a membership probability for each gene and conversely each gene is functionally 

characterized by its membership probabilities across 14,461 reconstituted gene sets. As input to 

DEPICT we used all summary statistics from autosomal variants with p-value<1x10-5 in the 

70KforT2D meta-analysis. We used an updated version of DEPICT which handled 1000G-Phase1 

integrated haplotypes (The 1000 Genomes Project Consortium 2010; The 1000 Genomes Project 

Consortium et al. 2012) (June, 2014, www.broadinstitute.org/depict). DEPICT was run using 3,412 

associated SNPs with p-value<1x10-5. From these, we identified independent SNPs (PLINK clumping 

parameters: --clump-p1 5e-8 --clump-p2 1e-5 --clump-r2 0.6 --clump-kb 250). LD r2>0.5 distance cut-

off was used to define locus boundaries (note that this locus definition is different than the locus 

definition user elsewhere in the text) yielding 70 autosomal loci comprising 119 genes. DEPICT was 

run using default settings, that is using 500 permutations for bias adjustment, 50 replications for false 

discovery rate estimation, normalized expression data from 77,840 Affymetrix microarrays for gene 

set reconstitution (see reference (Pers et al. 2015) for details), 14,461 reconstituted gene sets for 

gene set enrichment analysis, and testing 209 tissue/cell types assembled from 37,427 Affymetrix 

U133 Plus 2.0 Array samples for enrichment in tissue/cell type expression. From DEPICT we 

identified 103 reconstituted gene sets that are significantly enriched (FDR<5%) for genes found 

among the 70 trait associated loci. After the gene set enrichment analysis, we omitted reconstituted 

gene sets in which genes in the original gene set were not nominally enriched (Wilcoxon rank-sum 

test). By design, genes in the original gene set are expected to be enriched in the reconstituted gene 

set; lack of enrichment therefore complicates interpretation of the reconstituted gene set because the 

label of the reconstituted gene set will be inaccurate. Using this procedure, the following 

reconstituted gene set were removed from the results (Wilcoxon rank-sum P-values in parentheses): 

MP:0004247 gene set (P=0.73), GO:0070491 gene set (P=0.14), MP:0004086 gene set 

(P=0.173264735083), MP:0005491 gene set (P=0.54), GO:0005159 gene set (P=0.04), MP:0005666 

gene set (P=0.05), ENSG00000128641 gene set (P=0.02), MP:0006344 gene set (P=0.42), 

MP:0004188 gene set (P=0.22), MP:0002189 gene set (P=0.02), MP:0000003 gene set 

(P=0.0845155407131), ENSG00000116604 gene set (P=0.13), GO:0005158 gene set (P=0.07), 

MP:0001715 gene set (P=0.014). The post-analysis filtering step left us with 89 significantly enriched 

reconstituted gene sets. The Affinity Propagation tool (Frey and Dueck 2007) was used to cluster 

related reconstituted gene sets (script to produce the network diagram can be downloaded from 

https://github.com/perslab/DEPICT). 

2.8 Definition of 99% credible sets of GWAS significant loci 

We defined the 99% credible sets of variants, which represent all the variants that have, in 

aggregate, 99% probability of containing the causal variant driving the association with T2D.  
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For each genome-wide significant region, we constructed the 99% credible of variants considering 1 

Mb downstream and upstream from the top SNP using our 70KforT2D meta-analysis based on 

imputed data (Northwestern NUgene, GERA, FUSION, GENEVA and WTCCC datasets, comprising 

12,231 cases and 57,196 controls). We computed the R2 values from all the variants within this 2 Mb 

region with respect to the top SNP and we selected variants showing an R2 > 0.1 with the leading 

SNP in each region.  

Credible sets of variants are analogous to confidence intervals as we assume that the credible set 

for each associated region contains, with 99% probability, the true causal SNP if this has been 

genotyped or imputed (Wellcome Trust Case Control et al. 2012; Morris 2014). The credible set 

construction allows to provide for each variant placed within a certain associated locus a posterior 

probability of being the causal one (Wellcome Trust Case Control et al. 2012). We estimated the 

approximate Bayes’ factor (ABF) for each variant that can be calculated as: 

𝐴𝐵𝐹 =
1− 𝑟

𝑒(!!∙  
!!
! )

 

where: 

𝑟 =
0.04

(𝑆𝐸! + 0.04) 

𝑧 =
𝛽
𝑆𝐸 

The 𝛽 and the SE (standard error) are the estimated effect size and the corresponding standard error 

resulting from testing for association under a logistic regression model. The posterior probability for 

each variant was obtained as:  

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦! =
𝐴𝐵𝐹!
𝑇  

where 𝐴𝐵𝐹! corresponds to the approximate Bayes’ factor for the marker i, and T represents the sum 

of all the ABF values from the candidate variants enclosed in the interval being evaluated. This 

calculation assumes that the prior of the 𝛽 corresponds to a Gaussian with mean 0 and variance 

0.04, which is also the same prior commonly employed by SNPTEST (Marchini et al. 2007), the 

program used for calculating single-variant associations.  

Finally, we ranked variants according to the ABF (in decreasing order) and from this ordered list we 

calculated the cumulative posterior probability. We included variants in the 99% credible set of 

each region until the cumulative posterior probability of association exceeded 0.99.  
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2.9 Conditional analysis of putative candidate regions 

For the EHMT2 region, since this region was less than 1 Mb away from the HLA region where T1D 

and T2D associations have been described, we performed a series of conditional analyses to 

exclude that this association was independent of both loci, and also to discard that this association is 

driven by possible contamination of T1D diagnosed as T2D cases. For the conditional analysis 

framework, we included the lead SNP in our study as a covariate in the logistic regression model, 

assuming that every residual signal arisen corresponds to a secondary signal independent from the 

lead SNP (Yang et al. 2012; Morris 2014). We performed the analyses, conditioning on the top 

variant identified in this study, but also on the top variants previously described for T2D and T1D 

(Hakonarson et al. 2007; Wellcome Trust Case Control 2007; Barrett et al. 2009a; Cook and Morris 

2016). For this purpose, we used the full 70KforT2D resource (Northwestern NUGene, GERA, 

FUSION, GENEVA and WTCCC cohorts imputed with 1000G-Phase1 and UK10K reference panels). 

Finally, all the results were meta-analyzed as explained in previous sections. 

2.10 Fine-mapping and functional annotation 

We used the Variant Effect Predictor (VEP) (McLaren et al. 2010) for the functional characterization 

of the variants of the 99% credible sets. The VEP application determines the effect of variants 

(SNPs, insertions, deletions, CNVs or structural variants) on genes, transcripts, protein and 

regulatory regions. We used as input the coordinates of the variants within the 99% credible sets and 

the corresponding alleles to find out the genes and RefSeq transcripts affected by the variants and 

the consequence of our variants on the protein sequence.  

We used Combined Annotation Dependent Depletion (CADD) scoring function to obtain an 

alternative metric for prioritizing functional, deleterious and disease causal variants (Kircher et al. 

2014). This framework integrates multiple annotations in one metric, the C-score. This new metric 

correlates with allelic diversity, pathogenicity of regulatory effects and highly ranks causal variants 

within individual genome sequences. 

In order to prioritize functional regulatory variants, we used the V6 release from the GTEx data 

that provides gene-level expression quantifications and eQTL results based on the annotation with 

GENCODE v19. This release included 450 genotyped donors, 8,555 RNA-seq samples across 51 

tissues and 2 cell lines, which led to the identification of eQTLs across 44 tissues (Carithers and 

Moore 2015). Moreover, RNA-seq data from human pancreatic islets from 89 deceased donors 

catalogued as eQTLs and exon use (sQTL) was also integrated with the GWAS data to prioritize 

candidate regulatory variants (Fadista et al. 2014). 



	  

	  100 

2.11 Characterization of indels 

For all GWAS significant INDELs within the 99% credible sets, we examined whether these variants 

were present or absent in the 1000G-Phase1 or UK10K reference panels. We also compared 

whether the structural variants were present or not in the 1000G-Phase3 reference panel.  

Finally considering all these previous analyses, we visually inspected the aligned BAM files of the 

most relevant INDELs from both projects to discard that they could be alignment artifacts. 

2.12 In silico functional characterization of X chromosome variant with Roadmap 
Epigenome data 

To evaluate the putative regulatory role of rs146662075 we used the WashU EpiGenome  Browser 

(http://epigenomegateway.wustl.edu/browser/ , last access on June 2016) (Zhou et al. 2011; Zhou et 

al. 2013; Zhou et al. 2015). We used public hubs of data: (1) the Reference human epigenomes from 

the Roadmap Epigenomics Consortium track hubs and (2) the Roadmap Epigenomics Integrative 

Analysis Hub. This data was released by the NIH Roadmap Epigenomics Mapping Consortium. By 

exploiting next-generation sequencing technologies, the consortium was able to map DNA 

methylation, histone modifications, chromatin accessibility and small RNA transcripts in stem cells 

and primary ex vivo tissues selected as representatives of the normal counterparts of tissues and 

organ systems predominant in human diseases. The current Release 9 contains for each epigenomic 

data type across 183 biological samples, named as unconsolidated epigenomes because of the 

redundancies resulting from the existence of multiple samples from a particular unique cell type or 

tissue. All this experimental data was processed in order to decrease redundancy as well as to 

increase data quality and uniformity, leading to 111 consolidated epigenomes (Roadmap 

Epigenomics et al. 2015). In addition, in the final integrative analyses 16 epigenomes from The 

Encyclopedia of DNA Elements (ENCODE) (Encode Project Consortium et al. 2007) project have 

been processed similarly, resulting in a total of 127 consolidated epigenomes.  

Since this variant was located in a highly conserved region, surrounded by several DNAse I 

hypersensitive sites, we searched for enhancer marks through the HaploReg web server (Ward 

and Kellis 2012a; Ward and Kellis 2016) in order to assess if the rs146662075 variant in Xq23 was 

located within an active enhancer. Alongside with H3K4Me1, there were several H3K27Ac marks 

across multiple tissues including Fetal Muscle Leg and Fetal Muscle Trunk. RNA-seq data was 

therefore used to evaluate whether gene expression of any of the closest genes (AGTR2 and 

SLC6A14 genes) from rs146662075 (fixed scale at 80 RPKM), correlated with the presence of the 

H3K27ac enhancer marks (a more strict marker for active enhancers in contrast with H3K4Me1 

marks (Creyghton et al. 2010), also highlighted by the HaploReg search (Ward and Kellis 2012a; 

Ward and Kellis 2016)) through the WashU Epigenome Browser. For visualizing the H3K27ac marks 

around rs146662075, we focused on a region of 8 Kb and we used a fixed scale at 40 –log10 Poisson 

p-value of the counts relative to the expected background count (λlocal). 
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2.13.1 Electrophoretic Mobility Shift Assay  

Nuclear extracts from mouse myoblast C2C12 cells (ATCC CRL-1772, kind gift from Antonio Zorzano, 

IRB, Barcelona) were obtained as described elsewhere. Double stranded oligonucleotides containing 

either the common or rare variants of rs146662075 were labeled using dCTP [α-32P] (Perkin Elmer). 

Oligonucleotide sequences are as follows (SNP location is underlined): probe-C-F: 5’-

gatcTTTGAACACcGAGGGGAAAAT-3’ and R:5’-gatcATTTTCCCCTCgGTGTTCAAA-3’ and probe-T- F: 

5’- gatcTTTGAACACtGAGGGGAAAAT-3’ and R: 5’-gatcATTTTCCCCTCaGTGTTCAAA -3’. Assay 

specificity was assessed by pre-incubation of nuclear extracts with 50- and 100- fold excess of unlabeled 

wild-type or mutant probes, followed by electrophoresis on a 5% non-denaturing polyacrylamide gel. 

Findings were confirmed by repeating binding assays on separate days.   

2.13.2 Luciferase assays of AGTR2 variant (rs146662075) 

A region of 969 bp surrounding rs146662075 was amplified from human genomic DNA using F: 5’- 

GCTAGCATATGGAGGTGATTTGT -3’ and R: 5’-GGCACTTCCTTCTCTGGTAGA-3’ 

oligonucleotides and cloned into pENTR/D-TOPO (Invitrogen). Allelic variant rs146662075T was 

introduced by site-directed mutagenesis using the following primers: F: 5’- 

CCTTTTTTTACTTTGAACACTGAGGGGAAAATCATGCTTGGC -3’ and R: 5’- 

GCCAAGCATGATTTTCCCCTCAGTGTTCAAAGTAAAAAAAGG-3’. Enhancer sequences were 

shuttled into pGL4.23[luc2/minP] vector (Promega) adapted for Gateway cloning (pGL4.23-GW, 2) 

using Gateway LR Clonase II Enzyme mix (Invitrogen). Correct cloning was confirmed both by 

Sanger sequencing and restriction digestion. 

C2C12 (ATCC CRL-1772) and 293T (ATCC CRL-3216) cells were transfected in quadruplicates with 

500 ng of pGL4.23-GW enhancer containing vectors and 0.2 ng of Renilla normalizer plasmid. 

Transfections were carried out in in 24-well plates using Lipofectamine 2000 and Opti –MEM 

(Thermo Fisher Scientific) following manufacturer’s instructions. Luciferase activity was measured 48 

h after transfection using Dual-Luciferase Reporter Assay System (Promega).  Firefly luciferase 

activity was normalized to Renilla luciferase activity and results were expressed as a normalized ratio 

to the empty pGL4.23[luc2/minP] vector backbone. Statistical significance was evaluated through a t-

Student’s test.  
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This thesis has sought for a cost-effective strategy to push forward the discovery of novel loci 

for complex traits by assuming that improved analytical techniques and methodologies can 

extract novel information from a huge amount of GWAS data, which already have been analysed 

and are publicly available.  

In the first main block (1), I will detail the amenities of a packaged analytical workflow for performing 

systematic Quality Control (QC) protocols for genotyped data. Afterwards, (2) I will present the 

different guidelines and recommendations for integrating imputed data in GWAS and meta-

analytic approaches that I collected after revising multiple scenarios derived from genotype 

imputation with novel sequence-based reference panels.  

In the second main block of results, I will describe how all this experience has been applied to the 

analysis of publicly available T2D GWAS data and which discoveries of the T2D aetiology have 

been attained following this strategy.  
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1. Implementation of efficient computational and analytical 
frameworks for imputation based GWAS 
 

The development of this work has allowed the doctorand to contribute to the following two 
articles: 

Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, den, Dekker 

HT, Husby A, Sevelsted A, Faura-Tellez G … Bonàs-Guarch S … Bisgaard H 2014. A genome-

wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with 

severe exacerbations. Nat Genet 46: 51-55. 

 

Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, 

Feenstra B, van Zuydam NR, Gaulton KJ, Grarup N … Bonàs-Guarch S … Freathy RM 2016. 
Genome-wide associations for birth weight and correlations with adult disease. Nature 538: 248-

252. 

 
Contribution of the PhD candidate 

• Development and execution of an efficient computational framework for quality control of 

genotyped data. 

• Implementation of accurate practices for quality filtering imputed variants through 

sequence-based reference panels for a broad deployment of genotype imputation in 

GWAS scenarios which was applied in both studies. 

• Costumed statistical and bioinformatic data analyses.  
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1.1 Automatization and packaging of GWAS analytical workflows 

In order to favour robustness and portability in GWAS and genotype imputation, automatized 

analytical workflows to perform systematic analysis are required. Most systematic biases in GWAS 

approaches come from wrong genotype calling or study design. These artefacts have the potential 

of dramatically increasing the number of false positives and negative associations (loss of statistical 

power), especially when performing genotype imputation. We packaged widely accepted practices 

for the QC of genotyped data, and we integrated them in an automatized pipeline for a quick 

and effective identification and removal of defective markers and samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. QC Protocol analysis. First, a PLINK format file containing the genotyped data should be provided.  
This workflow performs three stages of two variant-based filtering and an intermediate stage of sample-based 
filtering. Different parameters and metrics are evaluated. At the marker level: allele frequency, proportion of 
missing genotypes, statistical differences in the proportion of missing genotypes between cases and controls and 
deviance of HWE. At the sample level: assignment of gender information, proportion of missing genotypes, the 
degree of relatedness and ancestry divergence. Finally, multiple text and graphical reports are provided. 
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This protocol is based on exploiting the capabilities of the PLINK software (Purcell et al. 2007), UNIX-

environment and R-scripting, which also allows performing the graphical steps of the workflow. R 

scripting also has a master role in controlling all the executions and in performing parallelism 

computing according to the queuing systems of the cluster infrastructure (see Methods).  

This protocol consists in three main stages, and ends with multiple reports that summarize the 

different analyses performed at the marker and at the individual level (see Figure 13). As illustrated in 

Figure 13, this workflow first performs a per-marker QC focused on the following parameters: (1) 

Excess of missing genotypes per marker, (2) Significant deviation of HWE (which is evaluated for all 

the cohort, but also for controls and cases, separately), (2) Significant differences in the proportion of 

missing genotypes between cases and controls and (4) Low MAF values.  

Second, per-individual QC is performed by the identification and removal of: (1) Subjects with 

discordant sex information, (2) Individuals showing excessive missing data proportion, (3) Highly 

related individuals and (4) Subjects of divergent ancestry. Finally, a new round of per-marker QC 

encompassing the same four steps previously explained is computed.  

These practices are quite standard and widely accepted by the community (Anderson et al. 2010) 

and our main contribution is how we computationally articulated these analytical steps. From the 

computational point of view, the structure of the QC pipeline was conceived as exposed in Figure 14. 

The full control of the execution lies in a master R-script that performs task management and 

monitoring. This master R-script initializes the execution by checking the current working directory, 

the full disposal of the required R-libraries, the cluster machines and the corresponding queuing 

system in which the main execution is run and also takes into account the settings specified by the 

user. As represented in Figure 14, the master R-script launches the first block of tasks in a single job 

and periodically checks if the execution has finished. After that, the master R-script keeps on 

launching the rest of jobs in a sequential manner after each job has finished successfully. Each job 

entails different memory requirements and degrees of parallelism, which is tuned by the master R-

script according to the sample size. Once the involvement of clustering resources is not necessary, 

downstream analyses are performed that result in the creation of summary statistics reports, 

graphical representations and a final report of the whole QC execution. 

The user can execute this pipeline for any kind of genotyped data in a cluster environment by 

following this template:  

/apps/R/3.0.2/bin/Rscript	  /path/to/QC/QC_master_pip.R	  	  

-‐-‐out_dir	  /path/to/output/qc	  -‐-‐input	  /path/to/inputPLINKformatfile/input	  

-‐-‐genome	  hg18	  -‐-‐sex_check	  YES	  -‐-‐gwas	  yes	  -‐-‐pop_ref	  hapmap3	  -‐-‐hwe_coh	  1e-‐20	  
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As shown in the previous command-line, the input data (in PLINK format) is provided by the -‐-‐input 

flag. The output data generated is collected in the directory specified by the -‐-‐out_dir flag.  

Figure 14. Packaged workflow for a QC protocol for genotyped data. The big black external box represents the 
execution of the master R-script that initializes the main execution and generates 5 jobs of several sub-tasks 
(displayed as the inner black squares). Each job is run in a cluster environment (right) in a sequential-manner 
but each job of tasks may involve different levels of parallelism. Finally, downstream analyses are performed 
and a final report of the QCed data is generated.  
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Moreover, besides using the default settings, all the available parameters can be adjusted. For 

instance, the genome built of the original data (-‐-‐genome) shall be provided in order to get a 

correspondence with the build from the default HapMap data used for the population clustering 

analysis. Additionally, if the X-chromosome data is available, discordance in gender assignment may 

be checked (-‐-‐sex_check). If the input data corresponds to a case-control study, association tests 

and the stratification of HWE filtering across cases or controls may be performed (-‐-‐gwas). All the 

available options are detailed with the -‐-‐help information to improve usability.  

An example of a QC of 5,828 samples and 741,192 genotyped variants required 2h 51’ 14’’ to 

perform the full protocol (83 tasks in this case) within the MareNostrum III cluster (Highest parallelism 

6 cores from a node of 16 cores/node, Intel SandyBridge, 2.6 GHz with 32 Gb/memory per node). 

Below, I provided some of the graphical outputs obtained such as the Q-Q-plots for the HWE p-

values and for the association test p-values under the logistic regression and the corresponding 

Manhattan plot (Figure 15). Interestingly, the multidimensional new components generated during 

clustering analysis are collected in one of the output files and may be used to adjust the logistic 

regression model used in association testing for population structure. These basic outputs serve as a 

manual inspection to ensure that any artefact escaped from the filtering steps of the QC protocol at 

the variant level. Moreover, the clustering plots from Figure 16 are a useful representation to identify 

any batch effect from persistent differences in population structure within our study. We also used the 

multidimensional new components to identify any batch effect between cases and controls that can 

result in spurious associations and loss of statistical power in the association tests (Figure 17).  

Finally, a summary report (Figure 18) is generated and details all the filtering steps performed, the 

parameters used and the number of variants and individuals discarded after each step that facilitates 

reviewing all the analysis. This kind of computational optimizations provides robustness and 

replicability in analytical workflows and helps the researcher to specifically focus on the interpretation 

of the results.  
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Figure 15. Q-Q-plots for HWE and logistic regression p-values, and the Manhattan plot. The Q-Q-plots 
represent the expected (under the null hypothesis) and the observed –log10 p-values for HWE 
deviance in controls and the logistic regression tests in the x and y-axis, respectively. The Manhattan 
plot (bottom-right) represents each association –log10 p-value under logistic regression across the 
genome. 
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###########################################################################	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  QUALITY-‐CONTROL	  ANALYSIS	  FOR	  GWAS	  DATA	  
###########################################################################	  
Computational	  Genomics	  Group	  -‐	  Barcelona	  Supercomputing	  Center	  
Sat	  Apr	  25	  14:24:23	  2015	  
Input:	  
	   -‐SNPs	  (n):	  	  741192	   -‐Subjects	  (n):	  	  5828	  	  
	  
Cut-‐Offs	  used	  to	  filter	  the	  data:	  
	   -‐MAF	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  0.01	  
	   -‐Missingness	  per	  SNP	  =	  0.05	  
	   -‐Missingness	  per	  ind	  =	  0.02	  
	   -‐Missingnes	  Pvalue	  	  	  =	  1e-‐06	  
	   -‐HWE	  Cohort	  Pvalue	  	  	  =	  1e-‐20	  
	   -‐HWE	  Ctrls	  	  Pvalue	  	  	  =	  1e-‐06	  
	   -‐HWE	  Cases	  	  Pvalue	  	  	  =	  0	  
	  
Stage0:	  Variant	  Based	  Filtering	  
	   	   -‐Discarded	  SNPs	  by	  MAF	  (n):	  109392	  
	   	   -‐Discarded	  SNPs	  by	  Missingness	  (n):	  16741	  
	   	   -‐Discarded	  SNPs	  by	  HWE	  Cohort	  (n):	  44	  
	   	   -‐Discarded	  SNPs	  by	  HWE	  Ctrls	  	  (n):	  1696	  
	   	   -‐Discarded	  SNPs	  by	  HWE	  Cases	  	  (n):	  0	  
	   	   -‐Discarded	  SNPs	  by	  Test-‐Missingness	  (n):	  11	  
DISCARDED	  SNPs	  AFTER	  STAGE0	  (n):	  119971	  	  
	  
Stage1:	  Subject	  Based	  Filtering	  
	   	   -‐Discarded	  subjects	  by	  Gender	  (n):	  18	  
	   	   -‐Discarded	  subjects	  by	  Missingness	  (n):	  60	  
	   	   -‐Discarded	  subjects	  by	  Relatedness	  (PI_HAT	  >	  0.125)	  (n):	  0	  
	   	   -‐Discarded	  subjects	  by	  Population	  clustering	  (non-‐EU)	  (n):	  93	  
DISCARDED	  SUBJECTS	  AFTER	  STAGE1	  (n):	  153	  	  
	  
Stage2:	  Variant	  Based	  Filtering	  
	   	   -‐Discarded	  SNPs	  by	  MAF	  (n):	  2760	  
	   	   -‐Discarded	  SNPs	  by	  Missingness	  (n):	  0	  
	   	   -‐Discarded	  SNPs	  by	  HWE	  Cohort	  (n):	  0	  
	   	   -‐Discarded	  SNPs	  by	  HWE	  Ctrls	  	  (n):	  8	  
	   	   -‐Discarded	  SNPs	  by	  HWE	  Cases	  	  (n):	  0	  
	   	   -‐Discarded	  SNPs	  by	  Test-‐Missingness	  (n):	  1	  	  
	  
FINAL	  SNPs	  	  	  	  	  (n):	  618452	  	  
FINAL	  SUBJECTS	  (n):	  5675	  	  
Time-‐finished	  :	  	  Sat	  Apr	  25	  14:24:28	  2015	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ////	  QC-‐PROTOCOL	  FINALLY	  COMPLETED	  ////	  
 

 

Figure 18. Summary report of a QC analysis. The initial number of variants and markers are provided at 
the beginning as well as the settings for this analysis. Afterwards, for each stage (Stage0 Variant-Based, 
Stage1 Sample-Based and Stage 2 Variant-based filtering) and each specific filtering process, the number 
of variants or samples discarded, are detailed. Finally, the resulting coverage and sample size is 
presented. 
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1.2 Fostering guidelines for accurate genotype imputation of common and low-frequency 
variants for GWAS and sequence-based reference panels 

To evaluate genotype imputation quality across the broader spectrum of allele-frequency and diverse 

GWAS scenarios, we imputed genotypes into the 58C cohort from the WTCCC2 (Barrett et al. 

2009c), which entails ~3,000 individuals that were genotyped by both Affymetrix v6.0 (Affy) and 

Illumina 1.2M (IL) platforms. We performed genotype imputation independently using either Affy or IL 

genotypes as the backbone. The underlying rationale is that, despite using a different genotyping 

array, as we were imputing the genotypes into the same subjects, we would not expect differences in 

allele frequencies if there were no genotyping or imputation bias (Figure 19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Strategy to evaluate genotype imputation accuracy. The 58C control dataset (~2,509 shared samples) was 
genotyped by two different platforms (Affy and IL). 58C Affy and IL data were (1) variant and sample quality filtered 
according to the guidelines specified by the WTCCC study, (2) phased using SHAPEIT2 and (3) genotype imputation was 
performed with IMPUTE2. Multiple reference panels were used for imputation separately (1000G-Phase1, 1000G-Phase3 
and UK10K). Imputed results from Affy (“controls”) and IL (“cases”) were merged simulating a GWAS scenario. Accuracy 
was estimated as the number of genome-wide significant associations (FP) from testing for association the Affy-based with 
the IL-based genotypes. Power was measured as the R-squared correlation coefficient (mean imputed R2) between the 
dosages from each set of imputed results. 
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Of note, our accuracy estimators were based on false positives (FP), which correspond to variants 

showing genome-wide significance (5x10-8) when comparing the results between Affy and IL. 

Likewise, we would expect a clear correlation between the genotypes imputed from IL and those 

imputed from Affy, which has been measured with the mean imputed R2, the R-squared correlation 

coefficient calculated by comparing the dosages from each set of imputed results.  For the analysis 

of a scenario for which the same platform is used for cases and controls, we evaluated how different 

post-imputation QCs may affect the I2 heterogeneity measure in meta-analytic approaches. 

 

1.2.1 Fixing appropriate quality thresholds across genotyping platforms 

• Quality Control filtering for imputed variants	  

We first evaluated the performance of the IMPUTE2-info quality score. We addressed the 

performance of loose IMPUTE2-info cut-offs such as 0.3 and 0.5. Loose cut-offs are still used, even 

in recent publications based on genotype imputation with for instance, the unified panel of 1000G-

Phase1+UK10K (Wain et al. 2015) (IMPUTE2-info cut-off = 0.5) and the 1000G-Phase3+UK10K 

(Lane et al. 2016) (IMPUTE2-info cut-off = 0.1) generated by Huang, J. and colleagues (Huang et al. 

2015). By means of the simulated GWAS that allowed us to compare the imputed results from Affy 

and IL using 1000G-Phase1 as the reference panel, we addressed the rate and the absolute number 

of FP associations for these still widely used thresholds. We obtained 36,746 (0.31%) and 19,377 

(0.18%) genome-wide significant FP associations for a 0.3 and 0.5 IMPUTE2-info score, 

respectively.  

Thereafter, we sought for a criterion to consistently filter badly imputed variants based on the 

IMPUTE2-info score. To do that, we focused on the analysis of SNPs imputed on one platform, but 

genotyped on the other platform (i.e. genotyped by Affy and imputed from IL and vice-versa). This 

analysis showed us that there is not a one-to-one correlation between the IMPUTE2-info scores and 

the true allele dosage R2 correlation coefficients. In fact, the IMPUTE2-info measure was 

overestimating the imputed mean R2 (corresponding to the allele dosage R2 correlation between the 

imputed and the true genotyped allele dosages). We therefore identified that an IMPUTE2-info score 

cut-off of 0.7 was needed in order to achieve an allelic dosage R2 of at least 0.5, which was 

determined to discern the fraction of well-imputed variants in the original MACH paper (Li et al. 

2010). Thus, we recommend using as a general practice for genotype imputation an IMPUTE2–info 

score cut-off above 0.7. This linear relationship between the imputed mean R2 and the info score 

provided by IMPUTE2 was also observed across different reference panels and genotyping platforms 

(Figure 20). This threshold led to 7,063 (0.07%) FP with the 1000G-Phase1 reference panel, which 

implies a decrease of 76.49% and 58.79% in the percentage of FP with respect to the IMPUTE2-info 

cut-offs 0.3 and 0.5, respectively.  
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• Seeking for an increased genomic coverage across the allele frequency spectrum 

After identifying an appropriate quality filter to retain well-imputed variants (IMPUTE2-info score ≥ 

0.7), we evaluated genotype imputation accuracy across the whole allele spectrum through 

1000G-Phase1 (and lastly, the 1000G-Phase3) and UK10K reference panels.   

As shown in Table 2 and Table 3, we exposed how the UK10K reference panel led to the most 

accurate imputed results at any range of the allele spectrum. Moreover, we realized that 1000G-

Phase3 extensively improved the coverage for rare variants with respect to 1000G-Phase1 (67.82% 

increase in coverage, 6.67% decrease in the FP rate). With respect to imputed INDELs or larger 

deletions, there are no evidences of notable differences in the % of spurious associations in 

comparison with the fraction of imputed SNPs (1000G-Phase1 % FP SNP = 0.072, % FP INDELs = 

0.074; UK10K % FP SNP = 0.019, % FP INDELs = 0.013, 1000G-Phase3 % FP SNP = 0.058, % FP 

INDELS = 0.041).  

Figure 20. Correlation between IMPUTE2-info scores and allele dosage imputed R2. All the SNPs on chromosome 21 
that were either genotyped by Affy and imputed by IL or vice-versa, using 1000G-Phase1, UK10K and 1000G-Phase3 
as reference panels are represented. The plot shows that IMPUTE2-info overestimates the real allele dosage 
correlation. 
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Moreover, we generated a set of imputed variants integrating the contributions of the 1000G-Phase1 

and UK10K on the basis of maximizing the amount of well-imputed variants by choosing, for each 

variant, the reference panel that provides the best IMPUTE2-info score. This approach led to an 

increase in the coverage of the imputed results based on 1000G-Phase1 of 18.61% and with respect 

to the results from using the UK10K reference panel, of 11.84%. However, when combining UK10K 

and 1000G-Phase1, we cannot achieve the minimal occurrence of spurious associations observed 

from using UK10K reference panel alone. However, as shown in Table 2, there is a reduction in the 

ratio of total false positives associations of a 6.90% through combining 1000G-Phase1 and UK10K 

contributions in comparison with the ratio obtained from using solely the 1000G-Phase1 imputed 

results. As exposed in Table 3, we clearly saw that this improvement came from variants at the range 

of common allele frequencies but a large number of artefacts were additionally created for lower 

allele frequencies when using different reference panels for cases and controls. We performed the 

same analysis but in this case, by integrating the imputed results from 1000G-Phase3 and UK10K. 

Interestingly, the occurrence of FP associations was extensively minimized, which led to a reduction 

of 26.61% in the rate of FP between the two integrated panels. For rare and low-frequency variants, 

the decrease in the rate of FP was 36.79% and 39.45%, respectively. This new set of results 

emphasized the notable improvement of the Phase3 release with respect to the Phase1 release of 

the 1000G, which was particularly relevant at lower allele frequencies.  

As a second line of evidence, we evaluated the statistical power of genotype imputation across 

different ranges of allele frequencies, measured by the percentage of Affy and IL GT SNPs with 

imputed mean R2 above 0.5. As shown in Figure 21, the curve for the 1000G-Phase1+UK10K 

imputed results outperforms 1000G-Phase1 and UK10K, even slightly, at any range of allele 

frequency, specially benefiting from 1000G-Phase1 for highly common variants. Actually, this 

integrated dataset was comparable to the 1000G-Phase3 in terms of coverage across the whole 

spectrum of allele frequency. Thereafter, the most accurate performance was obtained by merging 

1000G-Phase3 and the UK10K reference panels, which maximizes the coverage at any range of 

allele frequency, but particularly at the low-frequency range.  

These analyses taught us that by combining the imputed results from several reference panels we 

are able to extensively gain in genomic resolution at any range of allele frequency, as well as in the 

degree of genotype imputation accuracy. Of note, the 1000G-Phase3 release brought consistency to 

our merging strategy by minimizing the occurrence of FP associations.  
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Figure 21. Genome-wide representation of power across different MAF ranges. The y-axis, represents the 
percentage of SNPs with a mean imputed R2 ≥ 0.5. The x-axis represents different MAF values. Of note, we 
did not include the chromosome 21 because the UK10K release lacked a substantial fraction of this 
chromosome at least in the initial release that we had at our disposal. The reference panels evaluated were 
1000G-Phase1 (blue), UK10K (yellow), 1000G-Phase3 (red), 1000G-Phase1-UK10K (green) and 1000G-
Phase3-UK10K (fuchsia).  

 



	  

	  124 

1.2.2 Preventing the occurrence of spurious association from errors in genotyping 

We hypothesized that wrongly genotyped (FP) variants could highly contribute to the accuracy of 

imputation. In order to find a method to correct these spurious associations, we tested whether 

the -pgs option from IMPUTE2, which imputes the already genotyped variants based on the 

surrounding SNPs, could be of use to identify these wrongly genotyped variants. The strategy is 

based on comparing the imputed results with the real genotyped results. Several metrics were 

evaluated in order to select the one with the greatest discriminator power. The best metric was 

diffBeta, defined as the absolute difference between 1 and the slope comparing the real and 

imputed genotypes (see methods, Figure 11 (A)). Note that we expect a perfect correlation and 

a slope of 1 when there is complete agreement between the imputed and the real results. Using 

the NBS genotyped data, we set a diffBeta cut-off of 0.10, which is able to filter out 87.1% of all 

false positive associations, while still retaining 78.3% of good quality SNPs (SNPs that do not 

show GW significant when comparing Affy vs IL). 

We used the 58C cohort to test how this method was able to eliminate 46 genomic regions 

imputed on chromosome 1 that showed at least one genome-wide significant SNP (i.e. a false 

positive due to a genotype imputation or a genotyping artefact). For most of these regions, the 

genome-wide significant SNP was an SNP imputed from both platforms. We eliminated all the 

SNPs with diffBeta higher than 0.10, as this was able to eliminate 87.1% of biased SNPs, as 

trained in the NBS cohort. After eliminating all the SNPs with diffBeta higher than 0.10, as 

trained in the NBS cohort, we phased and imputed the genotypes again (Figure 11 (B)). We then 

evaluated the coverage and percentage of false positives using different IMPUTE2-info 

thresholds. We observed that in order to decrease in at least a 90% the ratio of FP observed 

when not applying this –pgs pre-filtering and IMPUTE2-info of 0.7, an IMPUTE2-info filter of 

0.828 should be applied in conjunction with the –pgs via. This alternative pipeline resulted in a    

-10.28 fold-change for the ratio of FP. With respect to the number of variants retained, the 

approach based on the diffBeta with the IMPUTE2-info score 0.828 resulted in a loss of 19.91% 

in the number of variants captured in the original pipeline (no –pgs filtering and IMPUTE2-info 

score = 0.7) see Figure 22, (A).  

In order to test this strategy in another dataset with a different genotyping array, we compared a 

fraction of the 58C samples that were genotyped by both the Affymetrix 500K arrays and 

Illumina 1.2 arrays. After imputing both datasets independently, there were 18 genomic regions 

with FP associations in chromosome 1. We showed that applying blindly the previously 

mentioned filters (diffBeta < 0.10 and IMPUTE2-info cut-off 0.828) in comparison with a standard 

pipeline (without –pgs pre-processing and IMPUTE2-info cut-off 0.7) we were able to reduce the 
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number of false positive to 2 out of 149, resulting in a 97.84% reduction in the ratio of FP of the 

standard pipeline. However, the number of retained SNPs observed for the original pipeline was 

decreased in a 37.79% (Figure 22 (B)). 

 

	  

Figure 22 Evaluation of accuracy and statistical power of standard and the pre-filtering (diffBeta) based pipeline for 
genotype imputation. The x-axis corresponds to the percentage of SNPs retained with respect to the whole fraction of 
variants obtained by genotype imputation without filtering on the genotyped data and no post-imputation filter has 
been applied. On the y-axis, the percentage of FP associations is represented in the log scale. Each dot corresponds 
to an IMPUTE2-info threshold used to filter the imputed results from Affy and IL when using the standard pipeline 
(red) and the diffBeta pipeline, which previously eliminates the wrongly genotyped SNPs (blue). Dashed lines 
represent the percentage of FP when only filtering the imputed results with and IMPUTE2-info cut-off of 0.7 (red) and 
when filtering genotyped data with the diffBeta parameter previous to genotype imputation and with a post-imputation 
IMPUTE2-info of 0.828 (blue). (A) Analysis based on 46 regions on chromosome 1 with at least one FP association 
when comparing the imputed results of the 58C cohort from Affy and IL. (B) The analysis was based on the 18 
genomics regions on chromosome 1 that showed at least one FP association when comparing the imputed results of 
the 58C cohort from Affy500K and IL. 

1.2.3 Exploring the impact of genotype imputation in meta-analysis approaches 

We compared the NBS (labeled as controls) against 58C (labeled as cases) samples to obtain 

two independent GWAS results, as these datasets were genotyped by both Affy and IL 

genotyping platforms (Figure 12). We did not expect major differences between NBS and 58C, 

as they are both sets of Caucasian controls. However, we expected some real differences due to 

slight population genetic differences. We meta-analysed the results of NBSvs58C genotyped 

and imputed from Affy with the results of NBSvs58C genotyped by IL. We used the I2 score as a 

measure of heterogeneity, as suggested in the literature (Higgins and Thompson 2002; 

Evangelou and Ioannidis 2013).  
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We found that when imputed variants with low IMPUTE2-info score are included in a meta-

analysis, the mean heterogeneity is much higher than when using IMPUTE2-info score 0.7 to 

filter out inaccurate imputed SNPs (mean I2 when IMPUTE2-info score < 0.7 = 6.142; mean I2 for 

IMPUTE2-info score ≥ 0.7 = 0.155; Wilcoxon-test p-value < 2.2x10-16). In addition, the 

percentage of SNPs with high heterogeneity (I2 higher than 50) increased as the IMPUTE2-info 

cut-off decreased. For example, a relaxed filtering (IMPUTE2-info ≥ 0.3) led to 193,108 variants 

(1.5%) with I2 higher than 50, while only 7,128 variants (0.08%) had I2 higher than 50 

considering an IMPUTE2-info cut-off of 0.7  (Figure 23). These results suggest that, setting as 

missing a given variant only in those cohorts where that variant has an IMPUTE2-info score < 

0.7, is a more powerful approach than eliminating all the variants that show high heterogeneity 

without a previous filtering based on IMPUTE2-info score. This was consistent across different 

ranges of allele frequencies as reported in Figure 24.  All the results showed correspond to a 

sample-size meta-analysis but we realized the same evaluation with the inverse variance fixed 

effects meta-analysis, providing equivalent performances (Supplementary Material 1, 

Supplementary Material 2).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Proportion of high heterogeneity SNPs (I2 ≥ 50, y-axis), across different IMPUTE2-
info score cut-offs (x-axis) 
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2. Novel insights of the genetic architecture of T2D: crossing the 
boundaries of common variants 
 

 

Bonàs-Guarch S, Guindo-Martínez M, Miguel-Escalada I, Garup N, Sebastian D, Rodriguez-Fos 

E, Sánchez F, Planas-Fèlix M, Cortés-Sánchez P, Morgan CC, Moran I, González JR, 

Andersson E, Díaz C, Badia RM, Udler M, Flannick J, Jorgensen T, Linneberg A, Jorgensen ME, 

Witte DR, Christensen C, Brandslund I, Appel EV, Scott R, Luan J, Sigma Type 2 Diabetes 

Consortium, The InterAct Consortium, Pedersen O, Zorzano A, Flórez JC, Hansen T, Ferrer J, 

Mercader JM, Torrents D. Sequencing-based imputation and reanalysis of 70,000 individuals 

from publicly available datasets reveals novel loci associated with type 2 diabetes. In preparation. 

 

Contribution of the PhD candidate 

• Quality control of the genotyped data. 

• Genotype imputation with two sequence-based reference panels following the new 

quality-control guidelines for imputed data generated in the previous section. 

• Fine-mapping with the 99% credible set of variants approach the associated loci. 

• Functional annotation of coding variants. 

• Costumed statistical analysis of the novel rare X-chromosome variant. 

• Involvement in the manuscript preparation. 
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2.1 Overall analysis strategy 

As shown in Figure 25, we first obtained all T2D case-control GWAS individual-level data that was 

available through EGA and dbGaP databases. To harmonize the data of all these cohorts, we 

developed a pipeline to standardize the quality control and filtering of low-quality variants and 

samples (see Methods). After this process, we were able to gather a total of 70,127 subjects 

(70KforT2D; 12,931 cases and 57,196 controls; Supplementary Material 3). Each of the cohorts was 

then imputed to 1000G-Phase1 and UK10K reference panels. To perform the imputation and 

association analysis we developed an integrated tool that performs phasing, genotype imputation 

and association testing by exploiting the internal parallelism of the multiple tasks involved (under 

review) (Sanchez et al. 2016). 

Following this strategy (see Figure 25), a total of 15,115,281 variants with good imputation quality 

were tested for association in a total of 12,931 T2D cases and 57,196 controls (IMPUTE2-info 

score≥0.7, MAF≥0.001 and I2 heterogeneity score<0.75). Of these, 6,845,408 variants were common 

(MAF≥0.05), 3,100,848 variants were low-frequency (0.01≤MAF<0.05) and 5,169,025 variants were 

rare (0.001≤MAF<0.01). Interestingly, merging the association results from both the UK10K and the 

1000G-Phase1 reference panels substantially improved the number of high-confidence imputed 

SNVs and INDELs, compared to the association results obtained with each of the reference panels 

alone, especially in the low-frequency and rare variant spectrum. For example, a total of 5,169,025 

high-confidence imputed rare variants resulted from combining 1000G-Phase1 and UK10K results, 

while only 2,878,263 and 4,066,210 rare variants were imputed with 1000G-Phase1 and UK10K 

respectively (Figure 26A). The combination of the results from both reference panels also allowed the 

imputation of 1,357,753 high-confidence INDELs (Figure 26B). 

We used three main meta-analytic strategies to take the greatest advantage of all publicly available 

data, including summary statistics, individual-level genotype datasets, and individual queries possible 

through the T2D Portal (http://www.type2diabetesgenetics.org/). First, we meta-analyzed all summary 

statistics results from the DIAGRAM trans-ethnic meta-analysis (DIAbetes Genetics Replication And 

Meta-analysis (DIAGRAM) Consortium et al. 2014) (26,488 cases and 83,964 controls) consisting 

mostly of HapMap variants (1,918,233 variants), with the fraction of the publicly available cohorts, 

obtained through dbGaP and EGA, that had no overlap with the DIAGRAM dataset (i.e. GERA cohort 

and the NuGENE, 7,522 cases and 50,446 controls) (Figure 25, Supplementary Material 3). Second, 

the rest of the variants, which were not common (0.001≤MAF<0.05) or not tested in DIAGRAM, were 

further meta-analyzed using all the cohorts for whom individual-level data were available in dbGaP 

and EGA (12,931 cases and 57,196 controls, 13,197,048 variants; 70KforT2D resource). Finally, low-

frequency coding variants with p-value≤1x10-4 were meta-analyzed using the non-overlapping 

fraction of samples with the data from the T2D Portal through the interrogation of exome array data  
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from ~80,000 individuals and ~17,000 individuals that were whole-exome sequenced (Flannick et al. 

2014; Mahajan et al. 2015; Fuchsberger et al. 2016).  

 

Figure 26. Description of the genomic coverage from genotype imputation attained after combining multiple reference 
panels compared to only using a single reference panel. A) All variants. B) INDELs and large deletions. Each bar 
represents the genomic coverage from the final meta-analysis for the 70KforT2D cohort according to the reference 
panel used: from left to right, (1) 1000G-Phase1 release, (2) UK10K and (3) when combining the best-guessed 
variants from 1000G-Phase1 and UK10K reference panels. Each bar was stratified according to the range of allele 
frequency: rare variants (0.001 ≤ MAF < 0.01) in blue, low frequency variants (0.01 ≤ MAF < 0.05) and common 
variants (MAF ≥ 0.05) in red. Y-axis shows the absolute number of variants that passed all post-imputation quality 
filters, including IMPUTE2-info score ≥ 0.7. 

 

2.2 Pathway analysis 

As a first exploration of how our association results recapitulate the pathophysiology of T2D we 

performed gene-set enrichment analysis with DEPICT, using all the variants with p-value≤1x10-5 as 

input. DEPICT has been successfully used to identify whether genes in associated GWAS loci are 

enriched for tissue-specific expression and reconstituted gene sets (modified versions of canonical 

gene sets) (Pers et al. 2015) (see Methods). This analysis showed enrichment of genes expressed in 

pancreas (ranked 1st, p-value=7.8x10-4, FDR<0.05, Supplementary Material 4) and cellular response 

to insulin stimulus (ranked 2nd, p-value=3.9x10-8, FDR=0.05, Figure 27, Supplementary Material 5), in 

concordance with the current knowledge of the pathophysiology of T2D.  
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2.3 Identification, fine-mapping and functional characterization of novel and previously 
known loci 

Following the homogenization, the imputation with 1000G-Phase1 and UK10K reference panels, and 

the meta-analysis of all the publicly available datasets, we identified 56 genome-wide significant 

associated loci (p-value≤5x10-8). Among them, 7 loci were not previously reported as associated with 

T2D (Table 4). The remaining 49 loci were already known, and included the two recently identified 

low-frequency variants in Europeans, a CCND2 intronic variant and a missense variant in PAM 

(Steinthorsdottir et al. 2014). 

As a quality control of our dataset, we confirmed that the magnitude and direction of effect of all the 

associated variants (with p-value≤0.001) were highly consistent with those reported previously 

(Rho=0.92, p-value=1x10-248, Figure 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Comparison of effect sizes in the non-overlapping cohorts from the 70KforT2D meta-analysis 
and previously published results from DIAGRAM trans-ethnic meta-analysis. Each dot corresponds to a 
previously reported risk variant and its corresponding log-odds ratio. The analysis comprised all variants 
with p-value ≤ 1x10-3 in both datasets. 
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This study also allowed us to fine-map known and novel loci and therefore provides a more accurate 

functional annotation of the associated loci to propose candidate causal variants. To do this, we first 

constructed the 99% credible sets (i.e. the subset of variants that have, in aggregate, 99% probability 

of containing the true causal variant) (Wellcome Trust Case Control et al. 2012) of all the loci that 

contained at least one GWAS significant variant (p-value=5x10-8). 

The fine-mapping approach increased the resolution of previously and newly identified loci, with 

special improvement in the identification of structural variants. We observed that our credible sets for 

all the loci contained a total of 8,305 variants, of which 922 were INDELs. Of all these INDELs, 105 

were genome-wide significant. 672 out of the 922 INDELs in the credible sets were confirmed to be 

present in 1000G-Phase3 release. Of these 672, 188 and 90 INDELs were only present in the 

UK10K and 1000G-Phase1 reference panels, respectively, while only 394 INDELs were identified by 

both UK10K and 1000G-Phase1. This analysis emphasizes the advantage of combining the results 

from several reference panels. Overall, the INDELs represent 11.1% of the variants within our 99% 

credible sets. In fact, for 15 of all the 71 known loci that we were able to replicate (p-value≤5.3x10-4, 

to correct for multiple testing) we found that the top variant was a previously undescribed INDEL, 

suggesting that other types of variation rather than SNVs may have a substantial role in the 

susceptibility for T2D. A valuable example of the possible role of INDELs is the fine-mapping of the 

well-known associated region within the IGF2BP2 intron. Although this is a well-established and 

functionally validated locus (Diabetes Genetics Initiative of Broad Institute of et al. 2007; Dai et al. 

2015), the causal variant for this gene has not been identified yet. In this locus, 12 of the 57 variants 

within the 99% credible set were INDELs, showed a collective posterior probability of 18.4%, and all 

of them were genome-wide significant (5.6x10-16<p-value<2.4x10-15) and described here for the first 

time. Notably, a common 10 base-pair deletion that was not found in 1000G-Phase1 (rs755826890, 

OR=1.14, p-value=1.13x10-15) falls within a curated regulatory element (OREG1275562) (Portales-

Casamar et al. 2009), suggesting a potential regulatory mechanism that contributes to increase the 

susceptibility for T2D in the IGF2BP2 locus. These results therefore highlight the potential of our 

strategy to discover associated INDELs, which represent additional candidate causal variants for 

known and novel loci. 

To identify or prioritize the causal variants, effector transcripts, or tissues underlying novel and 

previously known loci, we performed a detailed annotation analysis. To this end, we analyzed all the 

credible sets using the variant effector predictor (VEP), a tool that provides functional annotation of 

coding variants (McLaren et al. 2010), and extended the functional annotation to non-coding variants 

with Combined Annotation Dependent Depletion (CADD) scores (Kircher et al. 2014). Additionally, 

we tested the effect of all variants on expression across diverse tissues by interrogating GTEx (GTEx 

Consortium 2013; Carithers and Moore 2015; Mele et al. 2015) and RNA-sequencing gene 

expression data from pancreatic islets (Fadista et al. 2014). For example, in the MACF1 region, a 
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detailed characterization of the region resulted in several causal variants that should be further 

tested. First, there were three missense variants within the 99% credible set, which could collectively 

influence protein function. Furthermore, we found a robust association between a large number of 

variants in the credible set with expression of several nearby genes, including PABPC4, OXCT2P1, 

but also MACF1.  

The analysis of pancreatic islet expression datasets (Fadista et al. 2014) showed that in multiple 

known T2D associated variants were eQTLs for nearby genes. For example, we showed that 

variants in the 15q26.1 region are associated with expression of the AP3S2-C15orf38 read-through 

transcript (rs7111, R2 with top variant=0.93, p-value=1.1x10-14). 

2.4 Identification, fine-mapping and functional characterization of novel and previously 
known loci 

Besides providing a comprehensive characterization of known T2D associated regions, we also 

identified 5 novel loci driven by common variants, which have modest effect sizes (Table 4, Figure 

29, Supplementary Material 6 and 7) that could be relevant for a better understanding of the biology 

of T2D. A comprehensive genetic and functional characterization of each of these novel loci based 

on the methodology explained above and extensive literature search is described below. 

Within the novel T2D-associated locus in chromosome 1q41 (LYPLAL1-ZC3H11B, rs2820443, 

OR=1.07 [1.04-1.09], p-value=2.56x10-8), several variants in this region have been previously 

associated with waist-to-hip ratio in women, height, visceral adipose fat in women, adiponectin levels, 

and fasting insulin (Dastani et al. 2012; Fox et al. 2012; Manning et al. 2012; Berndt et al. 2013; 

Randall et al. 2013). Among the genes captured within the credible set, LYPLAL1, which encodes for 

lysophospholypase-like 1, is downregulated in mouse models of diet induced obesity and 

upregulated during adipogenesis, which implicates LYPLAL1 as a plausible effector gene (Lei et al. 

2015). Among the potential causal variants in the same locus, rs10779358, which is in strong LD with 

the top variant (R2=0.75), is associated with expression of the pseudogene RIMKLBP2 in adipose 

tissue according to GTEx (rs10779358; beta=0.235; p-value=1.77x10-5).  

At the chromosome 10q22.1 (NEUROG3/COL13A1/RPL5P26, rs4746890, OR=1.12 [1.08-1.16], p-

value=4.41x10-9), NEUROG3 (Neurogenin3) is an essential regulator of pancreatic endocrine cell 

differentiation (Gradwohl et al. 2000; Wang et al. 2006). Mutations in this gene have thus been 

reported to cause permanent neonatal diabetes (Rubio-Cabezas et al. 2011), but a role of this gene 

in T2D has not been previously reported (del Bosque-Plata et al. 2001). 
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The lead variant at the chromosome 12q24.31 locus (rs3794205, OR=1.07 [1.04-1.10], p-

value=4.11x10-8) lies in the intron of CAMKK2, a gene suggested to be involved in cytokine induced 

beta cell-death (Beck et al. 2011). Interestingly, other variants within the credible set at this locus 

could be responsible for the molecular link; a missense variant within the P2RX7 gene, that has been 

previously associated with glucose homeostasis humans and mice (Todd et al. 2015), as well as 

other variants (rs11065504, R2 with lead variant=0.81) that are associated with the regulation of the 

P2RX4 gene in tibial artery and in whole blood according to GTEx. Further fine-mapping efforts and 

functional studies will be needed to disentangle which is the most likely effector transcript. 

The chromosome 9q34.2 locus (ABO, rs505922, OR=1.06 [1.04-1.09], p-value=4.94x10-8) comprises 

several variants that have been previously linked to other metabolic disorders. For example, a variant 

in LD with rs505922 (rs651007, R2=0.507) has been recently associated with fasting glucose 

(Wessel et al. 2015), whereas other SNPs, such as rs514659 (R2 with top=1), have been associated 

with an increased risk for cardio-metabolic disorders (The CARDIoGRAMplusC4D Consortium 2015). 

One of the variants within the credible set is the 1 base-pair frame-shift deletion underlying the blood 

group O (Yamamoto et al. 1990). In addition, several variants within the credible set of this locus are 

associated with expression of the ABO gene in esophagus and blood. 

Within the chromosome 17q21.32 locus (rs12453394, OR=1.07 [1.05-1.10], p-value=3.23x10-8) three 

missense variants are located in CALCOCO2, SNF8 and GIP. Variants in the glucose-dependent 

insulinotropic polypeptide regulatory protein (GIPR) have been previously associated with insulin 

response to oral glucose challenge (Saxena et al. 2010) and beta-cell function, which makes GIP a 

plausible candidate gene for this locus (Lyssenko et al. 2011). 

2.5 Identification of a new signal driven by a low-frequency variant 

To identify low-frequency coding variants associated with T2D, we meta-analysed all the coding 

variants with p-value≤1x10-4 in our meta-analysis, by meta-analysing the results from the non-

overlapping 70KforT2D samples (NuGENE, GENEVA and GERA) with exome array data from 

~80,000 individuals and ~17,000 individuals that were whole-exome sequenced (Flannick et al. 2014; 

Mahajan et al. 2015; Fuchsberger et al. 2016).  

This resulted in a novel genome-wide association driven by a low-frequency missense variant (Figure 

29, Supplementary Material 6 and 7) within the EHMT2 gene at chromosome 6p21.33 (rs115884658, 

OR=1.22 [1.15-1.30], p-value=2.33x10-11). EHMT2 is involved in the mediation of FOXO1 

translocation induced by insulin (Arai et al. 2015). Since this variant was less than 1 Mb from HLA-

DQA1, which was recently reported to be associated with T2D (Cook and Morris 2016),  we 

performed a series of conditional analyses to exclude that our finding was capturing previously 

reported T2D (Ng et al. 2014; Cook and Morris 2016) or T1D (Hakonarson et al. 2007; Wellcome 

Trust Case Control 2007; Barrett et al. 2009a) signals. The results show that this signal is 
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independent from the other previously reported variants (Supplementary Material 8). However, 

despite that the association at the EHMT2 locus was identified by replication with whole-exome 

sequencing datasets, other low frequency variants within the credible set of this region may also 

have the potential of being causal. Among them, rs115333512 (R2 with lead variant=0.28) is 

associated with the expression of CLIC1 in several tissues according to GTEx (multi-tissue Meta 

Analysis p-value=8.95x10-16). In addition, this same variant is also associated with expression of the 

first and second exon of CLIC1 mRNA in pancreatic islet donors (Fadista et al. 2014) (p-value(exon 

1)=1.4x10-19; p-value(exon 2)=1.93x10-13). Interestingly, CLIC1 has been reported as a direct target 

of metformin by mediating the anti-proliferative effect of this drug in human glioblastoma (Gritti et al. 

2014). The results suggest CLIC1 as a possible effector transcript, although larger sample sizes with 

high quality imputation or direct targeted sequencing will be needed in order to narrow the 

association interval at this locus. 

2.6 Identification of a novel rare variant in the X chromosome associated with 2.7-fold 
increased risk for T2D 

As for many other complex diseases, published large-scale T2D GWAS studies have generally 

excluded the analysis of the X chromosome, with the notable exception of the identification of a 

region near DUSP9 in 2010 (Voight et al. 2010). To fill this gap, we aimed to thoroughly test the X 

chromosome genotyped and imputed variants for association with T2D. To account for heterogeneity 

of effects and for the differences in imputation performance between males and females, the 

association was stratified by sex and tested separately, as well as together. We were able to 

replicate the rs5945326 variant (OR=1.15, p-value=0.049). Interestingly, we identified an INDEL in 

high LD with the previously reported variant (R2=0.62), which suggested a novel candidate variant for 

this locus.  

We identified a genome-wide significant signal in males at the Xq23 locus driven by a rare variant 

(rs146662075, MAF=0.008, OR=2.94 [2.00-4.31], p-value=3.52x10-8; Figure 30A). We tested the 

accuracy of the imputation of this variant by comparing the imputed results from the same individuals 

genotyped by two different platforms (see Methods) and noted that the imputation for this variant was 

highly accurate in men, and when using UK10K, but not in women or when using 1000G-Phase1 

(R2
[UK10K,males]=0.94; R2

 [UK10K,females]=0.66, R2
[1000G,males]=0.62, R2

[1000G,females]=0.46, Supplementary 

Material 9). Therefore, further studies will be needed in order to clarify whether this association is 

specific to men or if the risk is also increased in female carriers but not observed due to poorer 

imputation in women.  

In order to confirm this association of the rs146662075 variant, we analyzed two independent cohorts 

by performing imputation with the UK10K reference panel (SIGMA, INTERACT) and a third cohort by 

de-novo genotyping of the rs146662075 variant in several Danish sample sets to further exclude the 

possibility of any genotype imputation artifact. The initial meta-analysis, once including the replication 
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datasets, did not result in genome-wide significance (OR=1.72, p-value=1.6x10-04) (Figure 30B), and 

the results showed strong heterogeneity (heterogeneity p-value=0.002), presumably driven by the 

replication. We also genotyped the rs146662075 variant in a prospective study of 1,652 non-diabetic 

male subjects older than 45 from the Inter99 cohort who were followed-up for a median time of 11 

years, of whom 158 developed T2D, and found replication of our initial findings. In agreement with 

the initial discovery results, the carriers of the rare T risk allele were more likely to develop diabetes 

during this period, compared to the C carriers (Cox-proportional Hazards Ratio (HR)=3.17 [1.3-7.7], 

p-value=0.011, Figure 30C).  

In order to explore the discrepancy between the replication results in the three case-control studies 

as compared to the Inter99 prospective study and in an attempt to explain the observed 

heterogeneity in the meta-analysis, we compared basic characteristics of the study subjects. In fact, 

we found that INTERACT, SIGMA and the Danish cohort replication datasets contained controls who 

tended to be younger than the average age at onset of T2D recorded in cases; this was particularly 

true for the Danish cohort (age controls [95%CI]=46.9 [46.6-47.2]) and INTERACT (age controls 

[95%CI]=51.7 [51.4-52.1]) (Supplementary Material 10). For this reason, we repeated the meta-

analysis using a stricter definition of controls for both the discovery and replication datasets, including 

only controls that were older than 55 years old. While this analysis did not result in genome-wide 

significant results, we performed a more strict analysis including only controls who were older than 

55 years old, and with measured 2 hours plasma glucose during an oral glucose tolerance test 

(OGTT) below 7.8 mmol/l in the Danish cohort to further ensure the absence of pre-diabetes cases in 

our set of controls. OGTT is employed to diagnose T2D as well as impaired glucose tolerance, which 

is a strong risk factor of developing T2D (Bartoli et al. 2011). This strict definition of controls was only 

possible in the Danish study, as OGTT was not available for other datasets. In order to meta-analyse 

all the case-control studies, including the Cox-proportional hazards results, we used a meta-analysis 

method that accounts for overlapping subjects (MAOS) (Lin and Sullivan 2009), since there were 

samples who were included in both the longitudinal (follow-up) and the case-control study. The 

overall meta-analysis resulted in genome-wide significant results and no significant heterogeneity 

(OR=2.7 (1.91, 3.81), p-value=1.73x10-08, p-value het=0.51, Figure 30D). These results therefore 

indicate the existence of a genetic association with T2D in elder male subjects that is driven by a rare 

variant.  

The lead SNP rs146662075 is located near AGTR2, encoding for the angiotensin II receptor type 2. 

Several lines of evidence have implicated AGTR2 in insulin action (Kim et al. 2006; Shum et al. 2013; 

Underwood and Adler 2013). Although the exact role that AGTR2 exerts in the insulin function is still 

unclear, a previous study reported that the deletion of Agtr2 protects from diet-induced insulin 

resistance in mice (Yvan-Charvet et al. 2005). 
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To find additional support for AGTR2 as the causal gene for this association, we analysed exome 

sequences of 25,982 (26K) individuals from 5 ancestry groups (European, South Asian, African 

American, East Asian, and Hispanic) and performed both single-variant and gene-level analyses of 

T2D risk. We identified 38 low-frequency or population-specific variants (MAF<0.03) variants that 

were predicted to modify the protein sequence. Among them, we were able to perform association 

testing for eight variants that were present in more than one cohort and that contained more than 10 

allele counts. Only one variant was nominally significant (rs121917810, MAF=0.003, OR=1.7, p-

value=0.013), but was not significant after correcting for multiple testing. Burden tests did not yield 

significant results either. Despite the results were not significant, this dataset was still underpowered 

Figure 30. Discovery and replication of rs14666075 association signal. Forest plots for rs146662075 using data from 
the discovery and replication datasets. Cohort-specific odds ratios (95% CIs) are denoted by blue boxes (blue lines). 
The combined OR estimate for all the datasets is represented by a green diamond, where the diamond width 
corresponds to 95% CI bounds. The p-value for the meta-analysis (Meta P) and for the heterogeneity (Het P) of odds 
ratio is shown. A) Discovery meta-analysis. B) Discovery and replication. C) Plot showing the cumulative incidence of 
type 2 diabetes for tertiles of the genetic risk score (median follow-up 11 years). The red line represents the T carriers 
and light blue represents C carriers (n=1,652, cases=158.). D) Discovery and replication after excluding controls 
younger than 55 years old and OGTT>7.8 mmol/l in both the discovery and replication cohorts when possible. 
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to identify associations in this low allele frequency range. These results thus failed to provide 

supportive evidence of the protein-coding variants associated with T2D in this gene. 

2.7 The rs146662075 T risk allele is associated with 5-fold greater enhancer activity and 
disruption of allele specific nuclear protein binding  

We next investigated the potential functional impact of rs146662075. The variant is located in a 

highly conserved intergenic region that contains DNase I hypersensitivity sites (Fetal Muscle Leg, 

Fetal Muscle Trunk, Fetal Kidney and Fetal Lung) and H3K27ac marks for active enhancers 

(Foreskin Keratinocyte Primary Cells, Fetal Muscle Leg, Fetal Muscle Trunk, Fetal Intestine Small, 

Fetal Intestine Large and Rectal Mucosa) according to HaploRegv4.1 (Ward and Kellis 2012a; Ward 

and Kellis 2016). These evidences suggested a potential role of this region in lineage-specific 

regulatory programs. This variant is located 103 kb downstream to AGTR2, the closest gene.  

The analysis of the epigenomic data from the Roadmap project (Roadmap Epigenomics et al. 2015) 

showed that the rs146662075 variant lies in a genomic region that contains conspicuously strong 

active enhancer chromatin marks (H3K27ac) in human fetal muscle. Furthermore, the analysis of 

epigenome datasets across multiple tissues indicated that H3K27ac enrichment correlates with 

expression of AGTR2, suggesting that this enhancer may regulate the expression of AGTR2 (Figure 

31A). We thus evaluated whether the region encompassing the rs146662075 variant could act as a 

transcriptional enhancer and whether allelic variants could affect its activity. We linked DNA 

segments containing either T or C alleles to a minimal promoter and performed luciferase assays in a 

mouse myoblast cell line. Luciferase assays showed that the disease-associated T allele consistently 

exhibited 5-fold greater activity than the C allele, suggesting an activating role of the T allele, or a 

repressive role of a protein complex that specifically binds the C allele (Figure 31B). Consistent with 

these findings, electrophoretic mobility shift assays using nuclear protein extracts from mouse 

myoblast cell lines, differentiated myotubes and human muscle fetal primary tissue revealed that the 

DNA segment containing rs146662075 exhibited sequence-specific binding activity. This activity was 

disrupted by the rare T allele, thus pointing to a potential repressive function of the common C allele 

(Figure 31C). Overall, these results indicate that the rs146662075-T variant maps to a tissue-specific 

enhancer that correlates with AGTR2 gene activity, and further indicate that the variant modifies the 

function of this enhancer. These results suggest that the rs146662075 variant is a regulatory allele 

for AGTR2, a gene that is known to control insulin action. 
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Figure 31. Functional characterization of rs146662075 association signal. A) Signal plot for X chromosome 
region surrounding rs146662075. Each point represents a variant, with its p-value (on a –log10 scale, Y axis) 
derived from the meta-analysis results from association testing in males. The x-axis represents the genomic 
position (Hg19). Representation of H3K27ac and RNA-seq in a subset of cell-types for which RNA-seq and 
H3K27ac was available is also shown. The association between RNA-seq signals and H3K27ac marks suggest 
that AGTR2 is the most likely regulated gene by the enhancer that harbors rs146662075. B) The presence of the 
common allelic variant rs146662075-C reduces enhancer activity in luciferase assays performed in a mouse 
myoblast cell line. C) Electrophoretic mobility shift assay in C2C12 myoblast cell lines, C2C12 differentiated 
myotubes and human fetal myoblasts showed allele-specific binding of a ubiquitous nuclear complex. The arrows 
indicate the allele-specific binding event. Competition was carried out using 50- and 100- fold excess of the 
corresponding unlabeled probe. 
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This thesis focused on pushing forward the understanding of the genetic basis of complex diseases 

by putting a great deal of effort in accurate and efficient implementations of genotype-imputation 

based analytical workflows. This rationale was applied to T2D due to several reasons. T2D has 

become a modern threat for global health, favoured by the upsurge of obesity tied to unhealthy 

lifestyles (International Diabetes Federation 2015). Moreover, the high heritable component for T2D 

liability (Willemsen et al. 2015) underscored the value of strengthening genetic research initiatives, 

which led to a myriad of large-scale genetic studies previous to this thesis. Thus, the substantial 

amount of genetic data at our disposal through public repositories gave us the opportunity to test our 

methodological-driven approach.  

1. Challenging the genetic architecture of complex diseases 
The study of the genetics of T2D was intensified during the last decade with the emergence of 

GWAS, which became the most resourceful approach. The study sample size increased from a few 

thousands to more than ~100,000 individuals, diverse ethnicities were studied and the genomic 

coverage was extended through genotype imputation with sequence-based reference panels and by 

directly sequencing the participants. However, the collective effect of ~100 T2D known associated 

loci only explains 10-15% of T2D heritability (Flannick et al. 2016). Are these approaches 

underpowered to capture the genetic basis of T2D? 

By reviewing past genetic studies, this thesis was able to ascertain the flaws and the opportunities on 

the path to better understand the genetic architecture of T2D. The small effect-sizes (OR ~ 1.1-1.2) 

found for the majority of the risk variants suggested that a (i) much larger number of common 

susceptibility variants showing weaker effect sizes should be identified. Larger sample sizes and 

the study of diverse ethnicities may still lead to fruitful results. Additionally, the recurrent findings of 

(ii) overlapping genes between monogenic forms of DM and T2D (Sidransky 2006; Sandhu et al. 

2007; Voight et al. 2010; Rees et al. 2011; Cho et al. 2012; Tallapragada et al. 2015) stressed that 

future genetic research for common forms of DM (T2D) may also benefit from the methodology and 

the knowledge obtained for rare forms of DM. Finally, the large proportion of rare variants discovered 

in individual sequenced genomes advocated for (iii) a more relevant role of rare variants into 

disease aetiology (Lupski et al. 2011; Agarwala et al. 2013). This is one of the most controversial 

matters but what did we observe in these several waves of large-scale genetic studies? First, a few 

of all the T2D discovered loci are driven by rare and low-frequency variants (Steinthorsdottir et al. 

2014). Second, many T2D GWAS loci found in one ancestry were also replicated in other ethnicities, 

which would be unlikely if these loci were driven by a rare allele. Third, the last compelling WGS 

study suggested a minor role of low-frequency and rare variants in the T2D liability (Fuchsberger et 

al. 2016). Looking at these and many more evidences, do we have to mainly steer all our efforts 

towards the identification of many more common variants with ever-weaker effect sizes? From my 

point of view, the answer is no. We are just beginning to thoroughly explore the rare and low-
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frequency variant spectrum. WGS studies are still confined to small sample sizes, and genotype 

imputation is the only strategy statistically powered to study the contribution of the whole landscape 

of allele frequency to the T2D susceptibility. Additionally, even though low-frequency and rare 

variants are not governing the heritability of T2D, variants with large effect sizes are crucial to 

elucidate the molecular mechanisms underlying T2D and to provide novel therapeutic targets. For 

instance, the protective effect of loss-of-function variants in SLC30A8 suggests that the inhibition of 

this islet zinc transporter may lead to a therapeutic prevention strategy for T2D (Flannick et al. 2014).  

Although the genetic research efforts for the study of T2D have been intensified since 2005-2006, 

which has led to a notable pace of discovery, many challenges are still ahead. Thereafter, what sort 

of research approach did we take and why? 

2. Mining existing GWAS data  
The take-home message of this thesis is that by applying all the methodological and 

computational developments now at our disposal, we can reveal novel hints of the T2D aetiology 

still hidden in a huge amount of publicly available large-scale genetic data. Based on this 

rationale, we were committed to contributing to this on-going debate about which spectrum of 

variants is underlying the genetic architecture of T2D and other common diseases. 

Why do we argue that this work can be extremely resourceful at this point? 

First, data-sharing initiatives such as dbGaP or EGA have been completely embraced by the 

epidemiological and the genetic research community. The dbGaP repository has already 

collected 733 studies (accessed in 2016-09-06), and the data supplier institutions transcend the 

academic research field (Paltoo et al. 2014). An example proving this success is the availability of the 

Genetic Epidemiology Research on Adult Health and Aging (GERA) project. The GERA cohort 

linked genetic data to medical information for more than 78K aged individuals from an ethnically 

diverse population and represents an immense opportunity to study the genetic risk for a broad range 

of health conditions and to thoroughly explore pleiotropic effects within a single large dataset (Kvale 

et al. 2015). Free access to public datasets with huge sample sizes is fundamental to foster high-

profile research projects capable to detect disease associations with small effect sizes or at the 

bottom range of the allele frequency spectrum. The generation and gathering of this amount of 

clinical and biological samples, until the disposal of the genotyped data, is laborious and expensive. 

Thus, only big consortia involving multiple institutions can afford it. The downside of this common 

scenario is that only the members of these consortia may have access to the raw genetic and 

phenotypic data. Even between them, the exchange of data is in most of the cases minimal because 

of data sharing polices. To foster scientific advances and innovation, data democratization is 

essential. We should work on a framework able to reconcile ethical and privacy policies with a 
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wider access to phenotypic and genetic datasets. This scenario will stimulate the development of 

novel and more adequate methodological approaches. 

This need to push forward the boundaries of data-sharing is imperative and is gradually being 

articulated in several ways. I only focused on decentralising genomic analysis but large-scale 

genetic findings should also be interpreted through functional studies in order to extract a fuller 

value of this data. Large GWAS consortia partially highlight the value of this genetic data by 

performing thorough genetic analyses. But to gain the biological insights that these genetic 

associations can really provide, rigorous custom analyses or functional experiments should be 

followed. However, if the access to the genomic data sets is confined to a single consortium across 

disparate locations, the biological community is not able to make a more intelligent use of all the 

genetic data produced. In order to facilitate this translation of genetic association results to biological 

insights, the Type 2 Diabetes Knowledge Portal (T2D Portal) web-server was launched to enrich 

the connections between GWAS consortia and experimentalists and other public and private sectors 

(Flannick and Florez 2016). Therefore, ‘consumers’ of genomic data, which are usually non-expert 

users of genomic datasets, are able to interpret through a meaningful interface a variety of genetic 

analyses across hundreds of thousands of individuals from several GWAS consortia. By removing 

the barriers around GWAS consortia, genetic associations can be translated into a mechanistic 

insight.  

This approach is thereafter only focused on extending the value from the genetic association data. 

However, dbGaP or EGA acts on a deeper level, because it empowers researchers outside of big 

consortia to perform novel and versatile genetic analyses, only attainable by handling the raw 

genetic-individual level data. This novel re-analyses have the potential to significantly increase the 

number of GWAS discoveries, which also could be meaningfully evaluated through the integrative 

T2D Portal.  Thus, secondary research uses from dbGaP and the T2D Portal are two non-exclusive 

initiatives that serve to promote data-sharing. Both cases stress that in order to advance in our 

comprehension of the T2D biology and to contribute in clinical decision-making, collaboration and 

common public resources are mandatory. This thesis has focused on demonstrating how a more 

democratized use of large-scale genetic data through public repositories offers the opportunity to 

take advantage of novel and powerful analytical approaches.  

Second, when I started this thesis, the phase1 of the 1000G (which was updated multiple times) was 

the only sequence-based reference panel available for genotype imputation, besides the HapMap 

reference panel (based on genotyping data). Since then, more diverse and larger sequence-based 

reference panels have emerged such as the final Phase3 release of the 1000G (The 1000 

Genomes Project Consortium et al. 2015), the UK10K project (UK10K Consortium et al. 2015) or the 

recent Haplotype-Reference Consortium (HRC) panel, which comprises 64,976 haplotypes 

(McCarthy et al. 2016). These novel reference data is expected to truly lead to a significant shift in 
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the statistical power and accuracy of genotype imputation approaches. Obviously, imputation still 

falls short of the genomic coverage compared to the one obtained from directly sequencing the 

participants. However, conducting WGS on large sample sizes such as in GWAS is still 

prohibitive (Huang et al. 2015). As a practical example, what would be the cost of sequencing 70K 

individuals, which is the sample size analysed for T2D during this thesis? According to the NIH 

Institute Pricing (www.cidr.jhmi.edu/services/pricing.pdf), low pass (4x) WGS data (approximately 

corresponds to the specifications from the GoT2D project, ~5x mean coverage, 101-bp paired-end 

reads (Fuchsberger et al. 2016)) cost 850$. Therefore, the sequencing budget for 70K individuals will 

roughly be 59.5M of dollars. This example clearly shows the limitation of sequencing technologies in 

the context of GWAS, as the sample size required cannot be economically afforded. Thus, to study 

lower and rarer variants through GWAS approaches, genotype imputation based on WGS reference 

panels is fundamental. However, clear guidelines to select the most suitable panel or to precisely 

discard badly imputed variants are necessary if we are resolved to thoroughly explore the broad 

allele frequency spectrum. This thesis addressed this issue as we noted that the inclusion of 

inaccurate imputed genotypes leads to spurious associations and can wipe out true 

association signals.  

Third, parallel computing techniques and HPC environments are unavoidable in order to handle 

the computational burden derived from: (1) analysing gigantic GWAS cohorts such as GERA and 

(2) the application of computationally intense calculations such genotype imputation with ever-larger 

reference panels. To keep these analyses doable into thousands of samples, HPC infrastructures are 

necessary (Das et al. 2016), but most research groups cannot afford these computational 

resources or lack the expertise needed to implement them. Within large consortia, which own 

exclusive GWAS case-control data, data analyses are usually performed separately by each of the 

institutions and then, the results are shared and meta-analysed. This can lead to systematic 

heterogeneity in the GWAS results generated within each of the groups, which may ultimately result 

into a loss of statistical power. 

This thesis has been developed using the MareNostrum supercomputer, close to a large 

community of experts in computational sciences, which indeed is one of the main reasons that 

made this whole study possible. We were outsiders of the majority of T2D consortia, without access 

to most of the large cohorts generated by them. However, we have been able of gathering public 

GWAS data that reached a reasonably statistically powerful sample size. Therefore, our trump card 

was maximizing the statistical power of this data by applying computational intense calculations from 

genotype imputation. These analyses were thereafter only attainable by exploiting all the 

computational techniques and resources at our disposal. This centralised large-scale genetic study 

for T2D involving thousands of subjects would have been almost impossible without our 

computationally advantageous position in the Barcelona Supercomputing Center (BSC). 
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After delineating the cornerstones of the hypothesis that drove this thesis, in the next section, I will 

review the outcomes from the implementation of methodological and computational improvements of 

GWAS analyses. Afterwards, in section 2.2 I will focus on the novel insights that we gained for T2D. 

2.1 Implementation of efficient computational and analytical frameworks for imputation 
based GWAS 

The first main section of this thesis comprises all the computational and methodological 

implementations required to perform genotype imputation and GWAS-based pipelines in the most 

accurate and efficient manner. This work has been absolutely relevant to maximize the statistical 

power of all the publicly available GWAS data, which has been translated into novel insights for T2D. 

This work also allowed me to participate in other large-scale genetic studies for T2D and other 

complex diseases, which led to several publications (Bonnelykke et al. 2014; Horikoshi et al. 2016). 

2.1.1 Automatization and packaging of GWAS analytical workflows: computationally 
optimizing a workflow for Quality Control (QC) for genotyped data 

Quality control of genotyped data is crucial to avoid systematic biases in GWAS, which are 

amplified by genotype imputation and may lead to spurious associations and decreased statistical 

power (de Bakker et al. 2008; Anderson et al. 2010). Moreover, ever-increasing large-scale datasets 

such as the GERA cohort challenged the efficiency of this basic step and urged the integration of 

computational solutions. Inspired by these two premises, this thesis worked on computationally 

optimizing widely accepted QC practices for an effective identification and removal of problematic 

markers and samples. This packaged protocol facilitated performing, as a single execution, hundreds 

of QC analysis required for different on-going projects.  

A QC protocol is an illustrative example of a pipeline encompassing multiple steps that can require 

manual intervention at several points of the execution and can become a real computational 

headache with increased sample sizes. The packaged QC only requires the input files and the 

appropriate parameters that are adjusted using a basic flag scheme. In addition, this automatized 

workflow is able to optimize and select the precise computational resources required at each step, 

as well as adjusting the adequate level of parallel tasks at each point of the execution. We 

showed that a case-control dataset of 5,828 samples and 741,192 genetic markers followed the full 

protocol in 2h 51’ 14’’ without any need of user intervention in a cluster environment. Despite the 

great advantage of having at our disposal a quick computationally packaged QC, I want to point out 

some limitations and future improvements that are mandatory. To facilitate the analyses of huge 

sample sizes, the whole execution was split in three parts to accommodate a separate branch to 

perform ancestry clustering analyses based on the flashpca software (Abraham and Inouye 2014). 

This specific analysis should be integrated into the main code. Moreover, this packaged QC is only 

able to run in cluster environments similar to the MareNostrum in terms of the execution queuing 
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system. This limitation has to be generalized in order to make this tool accessible to all the 

community. 

Finally, working in this computationally optimization made me realize that without the collaboration 

with computer science experts, sophisticated solutions for more complex analytical workflows such 

as imputation and association testing could not have been attained.  Therefore, I have been fortunate 

to also participate in a join effort between our genomics group and the computer science department 

from the BSC to create an integrated framework to efficiently deal with large-scale autosomal and X-

wide GWAS, genotype imputation and cross-phenotype analysis through parallel computing 

infrastructures. The final outcome is GUIDANCE, which has been conceived to be an easy-to-use 

efficient solution for large imputed-based GWAS analysis that can exploit cluster infrastructures or 

cloud computing environments (Sanchez et al. 2016).  

2.1.2 Fostering guidelines for accurate genotype imputation of common and low-frequency 
variants for GWAS and sequence-based reference panels 

This thesis addressed the accuracy of imputed variants according to novel sequence-based 

reference panels. We established practical guidelines for the broad implementation of this strategy 

to better exploit any GWAS scenario and across a wider allele frequency spectrum. The focus of 

association studies has been extended beyond common variants to the rare and low allele frequency 

range, which indeed are more difficult to impute because the lower number of haplotype carriers. 

Therefore, we aimed to address the performance of a large population specific reference panel such 

as the UK10K in comparison with a global reference panel such as the 1000G-Phase1 and 

ultimately, the Phase3 release, for a better analysis of variants at lower allele frequency ranges. This 

work has been challenging because it was performed while imputation tools and reference panels 

were suffering a viral evolving progress and all the study had to be redone at different time points. 

Moreover, while we were able to individually assess the accuracy of the imputation of the novel rare 

variant associated with T2D in the X chromosome, future work will focus on performing the same 

assessment for the X-chromosome in a systematic manner. Performing the same assessment in the 

X-chromosome has additional layers of complexity due to the fact that the X-chromosome analysis 

forced us to stratify this evaluation between males and females, which compromised our power to 

evaluate the quality of imputed low-frequency and rare variants in this chromosome. Additionally, our 

results are confined to a single methodology, and thus, we recognize that this work should be 

extended to other imputation-software tools and resources, as there is no consensus in which is the 

best genotype imputation algorithmic approach. We decided to work with the Oxford statistical tools 

because the uncertainty of imputed genotypes is retained by delivering them as probabilities (i.e. an 

imputed genotype with a probability of 80% of being homozygous for the rare allele and 20% of being 

heterozygous will be provided as 0 0.20 0.80), they facilitate performing association tests under 

different inheritance modes and handle X-chromosome data through SNPTEST. All the experiences 
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learnt from this work were of great importance to foster the discovery of two novel T2D loci driven by 

a low-frequency and a rare variant. 

2.1.2.1 Fixing appropriate quality thresholds across genotyping platforms 

• Quality Control filtering for imputed variants 

Our first step was identifying a cut-off able to filter wrongly imputed variants without compromising 

the genomic coverage that can ultimately wipe out true disease associations. We fixed a minimal 

threshold to discard badly imputed variants at info score ≥ 0.7 (average R2 of ~0.5 between the 

true and the imputed allele dosages as determined in the original MACH paper to discern well 

imputed from badly imputed variants (Li et al. 2010; Pistis et al. 2015)). Interestingly, this cut-off was 

also suggested for low-frequency variants (MAF < 1%) imputed using reference panels genetically 

close to the study population (Pistis et al. 2015) or in a recent study focused on comparing the rate of 

false positives associations between a global and a population specific reference panel (Surakka et 

al. 2016). This thesis exposes that this threshold transcends reference panels and is valid for 

UK10K, the 1000G-Phase1 and the 1000G-Phase3.   

Of note, for this evaluation of the degree of accuracy of genotype imputation, we simulated a GWAS 

based on a dataset of controls genotyped using different arrays (see Methods). The improved 

performance obtained for this particular setup in this thesis is consistent with other studies that 

successfully demonstrated the advantage of using past powered sets of controls (Ho and Lange 

2010; Bonnelykke et al. 2014). The full deployment of data-sharing initiatives will continually 

challenge common GWAS designs and will inevitably demand for novel methods capable to 

handle with increasing sources of heterogeneity. 

Therefore, we consistently adjusted the quality filters for badly imputed variants and we proved that 

this protocol is valid for any reference panel. Our approach also exhibited greater performances in 

comparison with previous studies for challenging scenarios such as a study design based on 

“convenient controls”. Our results exposed the accuracy and the versatility of genotype 

imputation techniques, and encouraged us to struggle to gain the maximum coverage by 

characterizing sequence-based reference panels.  

• Seeking for an increased genomic coverage across the allele frequency spectrum 

Once we were able to determine the fraction of well-imputed variants, we evaluated genotype 

imputation accuracy across the whole allele spectrum through 1000G-Phase1 (and lastly, the 

1000G-Phase3) and UK10K reference panels.  UK10K outperformed the Phase1 and even the 

Phase3 release of the 1000G at every allele frequency range in terms of the proportion of false 

positive associations. However, we saw that the coverage (variants with IMPUTE2-info score ≥ 0.7) 

of the 1000G-Phase1 (and in addition the Phase3) was the most extensive for common variants in 
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comparison with UK10K, highlighting that these reference panels were complementary. Thus, we 

sought for integrating the contribution of a cosmopolitan reference panel with a population-

specific reference panel and we initially demonstrated that the combination of 1000G-Phase1 

and UK10K better captured the whole spectrum of allele frequency in autosomes. Huang and 

colleagues (Huang et al. 2015) also realized about the opportunity of integrating the non-exclusive 

contributions of distinctive reference panels in order to better reflect the broad allele frequency 

spectrum. They built a unified reference panel from the independent contributions of 1000G-

Phase1 and UK10K (Huang et al. 2015), which increased the number of high-confidence variants. In 

concordance with our results, UK10K was the major contributor for rare variants but 1000G-Phase1 

also provided a fraction of rare variants not well captured by UK10K. These variants might have 

reached very low frequencies in the UK population, but they prevailed elsewhere in Europe or in 

other ethnicities. As future work, both strategies for combining reference panels should be 

compared, but clearly the advent of novel, larger and diverse sequencing resources is spurring the 

development of additional methodologies.  

Of note, in section 2.2 section, we relied on the integration of 1000G-Phase1 and UK10K reference 

panels, which was the most powerful approach at that point. But once it was released, the potential 

of the 1000G-Phase3 could not be overlooked. Indeed, our comparison of reference panels 

ultimately included the 1000G-Phase3 and for rare variants it increased by a ~68% the number of 

well-imputed variants respect to the 1000G-Phase1. This increased coverage of rare genetic 

variation is likely to arise from more diverse populations and the larger sample size of the panel 

(Browning and Browning 2016). Hence, we evaluated the integration of the UK10K and the 1000G-

Phase3 reference panels that exhibited the most powerful performance at any range of allele 

frequency. In addition, the integration of the 1000G-Phase3 instead of the 1000G-Phase1 with the 

UK10K panel also minimized the number of FP associations, denoting the increased accuracy of this 

new release of the 1000G. The coverage of high confidence rare variants was extremely improved 

(15.49% increase with respect to the 1000G-Phase1 and UK10K integrated results), suggesting a 

clear distinctive contribution of rare genetic variants from 1000G-Phase3 and UK10K. Following the 

rationale of Huang and colleagues (Huang et al. 2015), an integrated reference panel comprising the 

1000G-Phase3 and UK10K was built and is available through the EGA repository (https://ega-

archive.org/studies/EGAS00001000713). Worthy of note is that highly deleterious rare alleles have 

been of the outmost interest as they are crucial to elucidate key biological processes from disease 

aetiology and to provide novel therapeutic breakthroughs. Therefore, these and many other 

sophisticated solutions are directed towards a better characterization of this fraction of genetic 

variation. Novel designs such as performing genotype imputation using a combination of SNP and 

exome chip data for the target dataset and a reference panel based on WES, SNP and exome chip 

data, offered an increased quality of imputation for rare variants (Kim et al. 2015). Hence, genotype 

imputation based on integrating population-specific WGS reference panels (UK10K) and novel 
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large-scale WES data such as the ExaC catalogue (Lek et al. 2016) or the recent Genome 

Aggregation Database (http://gnomad.broadinstitute.org) is a promising approach still unexplored. 

Moreover, the first release of the HRC comprises the largest collection of human genetic variation, 

which will be continuously expanded (McCarthy et al. 2016). This reference panel is expected to 

provide an unprecedented quality of imputation at any range of allele frequency and future work 

should focus on testing its performance through the limited subset available through the EGA 

repository (https://www.ebi.ac.uk/ega/studies/EGAS00001001710). Besides the emergence of novel 

reference panels, the sample size of genotyped datasets has increased from a few thousands until 

hundreds of thousands of individuals that will facilitate exploring lower disease associated alleles. 

The new SHAPEIT3 (O'Connell et al. 2016) or the new EAGLE (Loh et al. 2016) algorithm will 

mitigate the technical bottleneck of large-scale haplotype phasing derived from the analysis of these 

huge biobanks. In the near future, we will witness a development of imputation techniques parallel to 

novel software solutions that will require a closer collaboration with the computer science community. 

2.1.2.2 Preventing the occurrence of spurious associations from errors in genotyping 

We realized that despite applying multiple protocols for genotyped and imputed data, false positive 

associations still escape and propagate through genotype imputation. This is especially relevant in 

study designs based on different genotyping arrays, with an even worse rate of spurious 

associations. We developed a novel pre-filtering protocol for the identification of genotyping errors 

based on comparing the true genotypes from the array with the corresponding ones imputed from the 

LD structure with the surrounding markers (i.e. re-imputing SNPs that were already typed). We 

showed that our novel filter was able to achieve a 10.28-fold reduction in the rate of false 

positives, which was accompanied by only a ~20% loss of coverage. This strategy may lead to a 

substantial improvement for strategies based on using convenient controls, especially if a previous 

study proposed using the fraction of intersecting SNPs between multiple platforms to generate larger 

sets of controls (Johnson et al. 2013). Limiting the genotyping coverage to the fraction of intersecting 

SNPs represents that a limited number of typed markers are available, which will compromise the 

degree of accuracy from genotype imputation. Other approaches for ameliorating this rate of 

spurious associations consisted in restricting the analysis to imputed SNPs showing high accuracy 

(MACH R2 = 0.99) or genotyping a subset of controls on the array of the patient data (Sinnott and 

Kraft 2012).  We believe that our strategy can be easily implemented for checking those doubtful 

associated loci, driven by a single or a few imputed variants, which are likely to be an artefact, before 

exploring any possible functional effect.  

2.1.2.3 Exploring the impact of genotype imputation in meta-analysis  

We also addressed which appropriate filters should be applied for genotype imputation across 

case-control datasets genotyped with the same array technology and the effect on meta-analysis. 
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Discarding inaccurate imputed variants at each cohort can benefit the final performance of the 

meta-analysis by decreasing the degree of heterogeneity. In line with this, Li, J. and colleagues (Li 

et al. 2012) discussed that those markers genotyped in a subset of the cohorts from a meta-analysis 

but imputed in the rest of studies led to a 25% reduction of power, and in some cases the statistical 

power was even smaller than that of individual studies. This thesis extended this initial observation, 

and we demonstrated that by relying in our definition of well-imputed variants (i.e. IMPUTE2-info 

score higher than 0.7), there is no loss of statistical power due to the meta-analysis of imputed and 

genotyped variants. Therefore, we demonstrated that there is no need of applying additional filters 

such as looking for variants imputed or genotyped in all the cohorts that minimizes the statistical 

power of meta-analysis. 

To summarize this main section, we addressed several technological and methodological issues as 

well as many challenges still ahead. Overall, our results underscore many scenarios that can benefit 

from a broad application of genotype imputation by following our guidelines. All this knowledge has 

provided me the criteria to widely apply genotype imputation with novel sequence-based reference 

panels according to multiple scenarios in order to better exploit all the publicly available GWAS 

datasets. Specifically, our efforts are focused on enlarging the spectrum of allele frequency attainable 

with deeper large-scale genetic studies. Therefore, once we had achieved a robust methodological 

basis, as a proof of concept, we proceeded to the analysis of all publicly available GWAS data for 

T2D. 

2.2 Novel insights into the genetic architecture of T2D: crossing the boundaries of 
common variants 

This thesis has been able to unlock novel insights into the T2D aetiology by re-analysing with 

genotype imputation and two sequence-based reference panels all publicly T2D GWAS data 

available in the dbGaP and EGA repositories. Our approach has benefited from the disposal of the 

GERA cohort, which corresponds to almost ~70% of the 70KforT2D sample size. Importantly, this 

cohort gave us the opportunity to simultaneously phase a large set of individuals, which is 

indispensable to achieve higher accurate haplotypes, not attainable with only a few thousands of 

samples (Williams et al. 2012). Better-phased haplotypes minimizes spurious associations and 

increases the chances of detecting associations driven by low-frequency variants (O'Connell 

et al. 2016). Moreover, our approach looked for a unified re-analysis of independent published 

GWAS cohorts with systematic and homogenous analytical frameworks. Hence, this thesis sought 

to demonstrate the advantage of applying homogenous analytical pipelines with the aim to minimize 

between-study heterogeneity, which is a major concern in meta-analysis (Thompson and Sharp 

1999). This source of statistical heterogeneity arises from population structure or the variability 

caused by distinctive analytical approaches undertaken by different research institutions in, for 

instance, the context of large consortia. Actually, analysing homogenously and systematically 
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multiple GWAS case-control datasets was effective in the identification of 108 loci for schizophrenia 

including three of them in the X-chromosome (Schizophrenia Working Group of the Psychiatric 

Genomics 2014). Thus, we had an ideal basis to capture any contribution from the rare and low allele 

frequency range, and to bring new insights into the vivid debate about the genetic architecture of 

T2D. 

The 70KforT2D meta-analysis enclosed 70,127 individuals, which were imputed with a global 

(1000G-Phase1) and a population-specific reference panel (UK10K). This strategy substantially 

improved the number of good quality SNVs and INDELs available to test for association, generating 

a final resource of ~15 M variants. GWAS has mainly focused on common variants of small effect 

sizes (Hindorff et al. 2009), and the effect of low-frequency and rare non-coding variants has been 

started to be explored in isolated populations (Gudbjartsson et al. 2015; Sulem et al. 2015). This 

work underscored how UK10K, a large-scale population-specific sequence-based reference panel, 

allowed us addressing this latter question across heterogeneous European-ancestry populations. 

Moreover, a recent meta-analysis based on genotype imputation with 1000G-Phase1 and UK10K 

(based on the approach of (Huang et al. 2015)) has also demonstrated that larger reference panels 

enriched with the most relevant ethnicities fostered the discovery of low-frequency variants of large 

effects associated with bone mineral density and fracture (Zheng et al. 2015). 

2.2.1 Pathway analysis  

In order to illustrate the high potential of the 70KforT2D meta-analysis to capture the pathophysiology 

of T2D, we performed pathway and gene-set enrichment analysis. The overall results showed 

enrichment for the insulin-signalling function, exemplified by capturing the response to insulin 

stimulus category within the top ranked cluster of pathways. This result was also supported by the 

identification of MAPK signalling related pathways (Frojdo et al. 2009), which are involved in the 

insulin-signalling cascade.  For instance, the p38-mitogen activated protein kinase (MAPK) belongs 

to the MAPK super-family and it has been reported to be a critical regulator of hepatic glucose 

production (Cao et al. 2005; Wu et al. 2006) and lipid metabolism (Xiong et al. 2007). Additionally, 

SRC and BCAR1 protein complexes were highlighted, and the latter one has been suggested to 

mediate a crosstalk between the insulin-signalling cascade and the mitochondrial biology in 

one of the papers in which I have participated during this thesis (Mercader et al. 2012). Interestingly, 

the GERA cohort is the main contributor to the 70KforT2D resource and is based on aged population 

(median age of 63). We believe that this cohort has extensively enriched our picture of the insulin 

resistance molecular biology. Decline in insulin function has been associated with a variety of age 

related changes (Facchini et al. 2001) such as increased adiposity, decreased lean muscle mass, 

mitochondrial dysfunction and changes in the diet and the physical activity (Petersen et al. 2003; 

Morley 2010; Michalakis et al. 2013; Atkins et al. 2014; Leon-Latre et al. 2014). Tissue specific 

expression from enriched genes prioritized pancreas as the most relevant tissue influenced by T2D 
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susceptibility variants. Some of the contributor genes such as VEGFA, ADAMTS9-AS1 and 

SLC30A8 were related with the pancreatic islet vascularization and the insulin deliver to the 

bloodstream, the recruitment and release of insulin from insulin granules, and the maturation, storage 

and secretion of insulin, respectively (Brissova et al. 2006; Wijesekara et al. 2009; Simonis-Bik et al. 

2010; Pound et al. 2011).  These biological processes specifically underscore ß-cell related 

functions. Despite our limitation in the interpretation of this data, we believe that these results taken 

all together bring a quite consistent glimpse of the T2D pathophysiology that agrees with widely 

accepted molecular knowledge and invited us to dig deeper into the novel discoveries.   

2.2.2 Fine-mapping and functional characterization of T2D loci 

The discovery power from our 70KforT2D meta-analysis was complemented by the contribution of 

publicly available summary statistics of the DIAGRAM trans-ethnic study (Replication et al. 2014) 

and the T2D Portal (Flannick and Florez 2016). This strategy led to the identification of 56 GWAS loci 

significantly associated with T2D of which 7 were novel.  

We better characterized known and novel associated loci for T2D with the 99% credible sets of 

variants, that benefited from the increased genomic coverage offered by the two-sequence based 

reference panels used in genotype imputation. The 99% credible set approach allowed us narrowing 

wide associated loci to a small set of variants that have in aggregation 99% probability of including 

the true causal variant. Afterwards, for each 99% credible set of variants, we provided the 

corresponding functional annotation that addressed the impact on the protein and gene 

expression. Actually, we thoroughly analysed how these variants were influencing gene expression in 

a large collection of tissues (Mele et al. 2015) and specifically in pancreatic islets (Fadista et al. 

2014). Moreover, the denser coverage from our imputed data was translated into a notable 

involvement of INDELs in the 99% credible sets of variants. The importance of this type of variation is 

supported by independent studies that observed how hundreds of small and large structural variants 

are in high LD with known trait-associated SNPs (Sudmant et al. 2015; Hehir-Kwa et al. 2016). 

Moreover, other studies have also benefited from genotype imputation with sequence-based 

reference panels, such as a large meta-analysis for fibrinogen, in which a known and four novel 

associated loci were led by INDELs (de Vries et al. 2016). Therefore, INDELs can be a novel source 

of functional candidate variants. 

To make the data more easily available, all these results will be accessible to the whole community 

by an initial deposit of the summary statistics to the T2D Portal (www.type2diabetesgenetics.org/). 

2.2.3 Identification of novel signals driven by common variants  

Five novel loci were driven by common variants with modest effect sizes but they may provide highly 

valuable insights of the pathophysiology of T2D. Of note, the NEUROG3 gene in the 10q22.1 locus is 

a key regulator of the development of pancreatic islets and enteroendocrine cells. NEUROG3 
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was reported to be involved in the genetics of a Permanent Neonatal Diabetes Mellitus (PNDM) 

(Tallapragada et al. 2015) and recessive mutations were attributed to a PNDM subtype with a severe 

congenital mal-absorptive diarrhea (Rubio-Cabezas et al. 2011). Our data joints other evidences 

showing the overlap between the molecular and genetic background of rare and common 

forms of DM (Flannick and Florez 2016). These observations are increasingly delineating DM as a 

disease continuum, in which common and rare forms are two different end-points of this landscape of 

phenotypes. 

2.2.4 Identification of a novel locus driven by a low-frequency variant 

Our unified re-analysis of public GWAS data with genotype imputation and global and population-

specific panels led to an excellent performance at lower allele frequency ranges. The majority of 

known T2D loci driven by low-frequency variants identified in European populations have been 

replicated by our approach, including the low-frequency variants in the PAM and the CCND2 gene 

(Steinthorsdottir et al. 2014). The rs76895963 CCND2 intronic variant only reached GWAS 

significance in our study when using the UK10K reference panel. The last state of the art paper for 

T2D identified this locus by means of a WGS-based association study. However, in that particular 

study, the CCND2 signal was lost in the final meta-analysis that also included imputed data, despite 

the study had nearly 100% statistical power to identify this locus (Fuchsberger et al. 2016). The loss 

of the CCND2 signal from the WGS study after the meta-analysis with the imputed data suggested 

that a sub-optimal quality filter of genotype imputed data and an inadequate reference panel 

might constrain the identification of low-frequency variants, even with sufficiently powered datasets. 

These evidences suggested that our 70KforT2D resource had a good coverage at the low allele 

frequency range, which in fact resulted into the identification of a novel low-frequency missense 

variant in the EHMT2 gene showing modest effect size (rs115884658, OR=1.22, p-value=2.33x10-11). 

The 99% credible set of variants did not clarify which is the most plausible effector transcript and 

further larger scale fine-mapping efforts will be needed to elucidate this. However, the EHMT2 gene 

was reported to be crucial in the FOXO1 translocation induced by insulin, which by decreasing the 

expression of PCK1, represses gluconeogenesis (Arai et al. 2015). Alternatively, another potential 

effector gene can be the CLIC1 gene, for which we identified an active eQTL across multiple tissues 

and in pancreatic islets. Moreover, through the dSysMap web-service (Mosca et al. 2015) we 

addressed if protein-coding variants in CLIC1 can interfere with binding interfaces and in the 

protein structure. We noticed that CLIC1 was interacting with the carnitine palmitoyltransferase 1 

(CPT1A), which is crucial for the mitochondrion fatty acid oxidation (FAO) (Eaton 2002; Schooneman 

et al. 2013). The role of FAO in relation to insulin resistance has not been elucidated, and it is 

unclear whether improves insulin resistance by decreasing lipid accumulation (Krssak et al. 1999; 

Dobbins et al. 2001; Bruce et al. 2006; Holland et al. 2007) or the excess of FAO intermediaries 

worsens insulin resistance (Koves et al. 2008; Mihalik et al. 2010; Muoio and Neufer 2012). 
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Interestingly, recent studies based on disease networks linked protein coding variants with protein-

protein interactions (Wang et al. 2012b) or novel insights from the aetiology of T2D were gained by 

the integration of GWAS and systems biology approaches (Mercader et al. 2012). These approaches 

demonstrated how the understanding of interaction networks might be an effective approach to 

disentangle the genetics underlying complex diseases. Therefore, we advocate for integrating large 

catalogues of protein coding variants such as ExAC (Lek et al. 2016) with resources such as 

dSysMap (Mosca et al. 2015), an extensive resource for mapping human disease-related mutations 

on the structural interactome to facilitate rationalizing the underlying mechanism of action.   

2.2.5 Identification of a novel rare variant in the X-chromosome 

In contrast with the majority of previous T2D meta-analyses, we incorporated the X-chromosome 

in the analysis. We nominally replicated the unique T2D known locus found in the X-chromosome 

(rs5945326, OR=1.15, p-value=4.97x10-2; new lead	  chrX:152889460:I, OR=1.25, p-value=3.50x10-4, 

R2 with rs5945326=0.62) (Voight et al. 2010) and we identified a novel rare variant association 

close to the AGTR2 gene. The risk for T2D was increased in males by nearly three fold 

(rs146662075, OR=2.72, p-value=1.73x10-8). The well ascertainment of this rare variant, with the 

largest OR ever identified in European ancestry for T2D, was tied to the UK10K reference panel, 

which underlined the importance of using a population-specific reference panel. Additionally, since 

the phasing in males is unnecessary, the X-chromosome analysis may offer a bright opportunity to 

dig into the role of rare variants in the genetics beneath complex diseases. Indeed, we align 

with other initiatives that suggested the potential contribution of the X-chromosome, beyond T2D risk, 

which resulted in specific methodologies for enhancing X-wide association studies (Chang et al. 

2014).  

Multiple previous studies have implicated angiotensin II in insulin sensitivity (Kim et al. 2006; Shum et 

al. 2013; Underwood and Adler 2013), and for instance the deletion of AGTR2 was reported to be 

protective for diet-induced insulin resistance by exerting a negative control on lipid utilization in 

muscles (Yvan-Charvet et al. 2005). However, the stimulation of the angiotensin II receptor type 2 by 

the C21 agonist accompanied with the PPAR𝛾 activation was shown to reduce insulin resistance in 

T2D mice by enhanced adipocyte differentiation and possibly, by a protective effect on pancreatic 

islets ß-cells (Ohshima et al. 2012). Therefore, the role of AGTR2 in insulin resistance is still unclear. 

Our study proved that this rare variant perturbs the activity of a distal enhancer of AGTR2 in cell lines 

and in primary human tissue. Our results pointed out that a gain of function of AGTR2 is contributing 

to the pathophysiology of T2D in the T risk allele carriers. Therefore, by blocking this protein in the 

most appropriate tissue, a novel therapeutic strategy for T2D for this highly-risk group of individuals 

may be efficient. Nonetheless, we should previously focus our efforts on the identification of the 

regulatory protein that binds in an allele-specific manner to the enhancer to elucidate the molecular 

mechanism underlying this association. 
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2.2.6 Future goals: beyond additive genetic variance 

By only relying on data-sharing and improved analytical approaches, this study has been able to 

undercover new susceptibility genes as well as to propose novel molecular mechanisms which may 

led to new preventing and therapeutic breakthroughs. Moreover, our results indicated that rare and 

low-frequency variants are true contributors to the susceptibility of T2D and are crucial for the 

comprehension of the underlying key biological processes. We hypothesise that more low-frequency 

and rare variants may be uncovered by applying the same strategy exposed in this thesis but in even 

larger sample sizes, such as the used in previous T2D GWAS meta-analyses.  

Besides the allele spectrum, the genetic architecture of T2D has many other open fronts. For 

instance, genetic variation is assumed to contribute to the risk of complex diseases under an additive 

model (Balding 2006). Less unexplored still is how missing heritability can also be explained under 

non-additive models. Actually, common variants influencing disease risk in a recessive manner 

(Vukcevic et al. 2011) can be captured under the additive model as the high number of available 

homozygotes leads to a strong signal (Vukcevic et al. 2011). At lower allele frequencies, the power of 

the additive model to capture recessive associations is notably reduced. Therefore, the analysis of 

the role of recessive effects in the genetic basis of complex diseases may lead to novel insights. 

Specifically, non-additive rare disease alleles can provide fruitful discoveries considering the high 

proportion of rare Mendelian alleles conferring risk under a dominant or a recessive model. In 

addition, detecting which genetic model best fits a disease association may be important to better 

optimize the use for predictive purposes (Salanti et al. 2009). To illustrate the importance of non-

additive modes, the novel signal in TBC1D4 found in Greenlandic population exposed the recessive 

inheritance for T2D (Moltke et al. 2014).  

Non-additive effects also include epistatic interactions, which are arduous to identify and even to 

study and they are one potential argument of the small fraction of heritability explained for complex 

diseases. Additionally, cis-regulatory common variants have been estimated to affect 20% of protein-

coding variants in a tissue-specific manner for a single subject (Dimas et al. 2008). Actually, a 

previous study demonstrated that interactions such as common cis-regulatory variation that 

modify the penetrance of rare putatively deleterious coding variants are likely to contribute to 

the genetic architecture of complex diseases (Lappalainen et al. 2011). Considering the intense 

genetic research towards loss-of-function coding variants, the integration with RNA-sequencing data 

from relevant tissues may elucidate how the predicted functional effect is translated in the 

downstream pathways and in the phenotype.  

Our approach has indeed extensively benefited from the disposal of novel functional annotation 

resources for regulatory functional variants. Therefore, among other approaches as the 
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aforementioned to push forward the study of rare and low allele frequency disease alleles, burden 

tests that have been confined to protein coding units can be now extended to non-coding regions.  

These and many more evidences and emerging lines of research are underscoring the lack of 

perspective when applying a reductionist view to T2D predisposition. Clearly, the genetic contribution 

to T2D transcends the common allele frequency range but to fully understand this complex picture, 

diverse exposures involved during lifetime should be taken into account or for instance the role of 

transgenerational epigenetic inheritance of diabetes risk (Jimenez-Chillaron et al. 2016). Therefore, 

before elucidating which elements are governing the individual risk for T2D, many factors should be 

thoroughly characterized. We have still a long path ahead to fully understand the complete 

mutational load of an individual genome, with much rarer variants and even the interaction with de 

novo and somatic variants. 

3. CONCLUDING REMARKS 
The dissertation of this thesis aimed to maximize the discovery power of GWAS data by a 

thorough assessment of genotype imputation analytical methodologies and the opportunities 

from computational techniques and HPC infrastructures. We demonstrated that the 

methodological experience gained during these years empowered this thesis to extract novel insights 

into the pathophysiology of T2D that were hidden in publicly available GWAS data but also this 

knowledge has been applied in other large-scale analyses for several complex diseases. Of note, 

two of our novel T2D loci were driven by low-frequency and rare variants, respectively. This suggests 

that the failure in linking lower allele frequencies to the T2D aetiology in previous studies, with larger 

sample sizes than the one analysed here, may come from a technical limitation rather than limited 

statistical power. Overall, this work represents a proof of concept of how data sharing initiatives in 

conjunction with appropriate methodologies can provide novel biological hypothesis about the 

molecular mechanisms governing complex diseases. We are encouraged to translate this 

strategy into the analysis of all publicly available GWAS data for many complex diseases. We believe 

that by building a map for all the spectrum of allele-frequency variants on the disease risk for the 

majority of complex diseases, we can capture complex interactions and pleiotropic effects. This next 

layer will be crucial for the translation of GWAS results into predictive, preventive, and personalised 

medicine.  
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1. Implementation of efficient computational and analytical 
frameworks for imputation based GWAS 

1.1) Quality controlled imputed data with the IMPUTE2-info score ≥ 0.7 filter minimizes the 

occurrence of false positive associations across global and population-specific sequence-

based reference panels at any range of allele frequencies.  

1.2) This filter was optimal to maximize the statistical power of meta-analytic approaches by 

reducing the levels of between-study heterogeneity. 

1.3) The integration of the imputed results from a population-specific (UK10K) and a global 

reference panel (1000G-Phase3) exhibited the highest performance across all the spectrum 

of allele frequencies. 

1.4) Our filtering protocol based on the diffBeta parameter identifies genotyping errors that escape 

standard QC practices and propagate through genotype imputation. This facilitates 

discarding artefacts from association analyses and the adoption of strategies such as reusing 

convenient controls. 

 

2. Novel insights into the genetic architecture of T2D: crossing the 
boundaries of common variants 
2.1) By re-analysing individual-level genetic data from 70,127 individuals with genotype 

imputation and sequence-based reference panels, seven novel loci associated with T2D 

were identified.  

2.2) Genotype imputation with multiple sequence-based reference panels provides a better 

characterization of all the T2D associated regions and facilitates highlighting the more 

plausible candidate causal variants.  

2.3) Our results showed that INDELs and large deletions are potential candidate causal variants 

for known and novel loci.  

2.4) We identified two novel loci driven by a low-frequency and a rare variant, which suggests that 

the genetic architecture of T2D extends well beyond common genetic variants.  

2.5) A novel locus driven by a rare variant and showing the largest OR found in European 

populations for T2D was identified in the X-chromosome and underscored the importance of 

genome-wide analyses of the sexual chromosomes.  

2.6) This rare variant alters the function of a distal enhancer, resulting in a gain of function of the 

AGTR2 gene, which may lead to a novel therapeutic strategy based on blocking the 

angiotensin II receptor type 2. 

2.7) The use of publicly available GWAS data through the implementation of accurate genotype 

imputation with sequence-based reference panels is a cost-effective approach to obtain novel 

insights into the genetic basis of T2D.   
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Original gene set ID Original gene set description Nominal p-value FDR

GO:0071375 cellular response to peptide hormone stimulus 1.47e-10 <= 0.05
GO:0032868 response to insulin stimulus 3.97e-08 <= 0.05
GO:0032869 cellular response to insulin stimulus 4.95e-08 <= 0.05
GO:0043434 response to peptide hormone stimulus 8.04e-08 <= 0.05
GO:0032870 cellular response to hormone stimulus 3.57e-07 <= 0.05
GO:0071495 cellular response to endogenous stimulus 1.38e-06 <= 0.05
GO:0008286 insulin receptor signaling pathway 6.25e-05 <= 0.05
GO:0045860 positive regulation of protein kinase activity 2.03e-06 <= 0.05
GO:0051347 positive regulation of transferase activity 2.95e-06 <= 0.05
GO:0033674 positive regulation of kinase activity 6.11e-06 <= 0.05
GO:0000165 MAPK cascade 7.09e-05 <= 0.05

ENSG00000134308 YWHAQ PPI subnetwork 4.21e-06 <= 0.05
ENSG00000165699 TSC1 PPI subnetwork 3.87e-05 <= 0.05
ENSG00000108953 YWHAE PPI subnetwork 4.24e-05 <= 0.05
ENSG00000103197 TSC2 PPI subnetwork 7.94e-05 <= 0.05
ENSG00000166913 YWHAB PPI subnetwork 0.000116 <= 0.05
ENSG00000082701 GSK3B PPI subnetwork 0.000191 <= 0.05

MP:0011100 complete preweaning lethality 7.36e-06 <= 0.05
MP:0001722 pale yolk sac 2.11e-05 <= 0.05
MP:0000295 trabecula carnea hypoplasia 2.18e-05 <= 0.05
MP:0011098 complete embryonic lethality during organogenesis 2.85e-05 <= 0.05
MP:0005312 pericardial effusion 3.01e-05 <= 0.05
GO:0001701 in utero embryonic development 5.69e-05 <= 0.05
MP:0011101 partial prenatal lethality 8.35e-05 <= 0.05
MP:0001651 necrosis 0.000124 <= 0.05
MP:0004076 abnormal vitelline vascular remodeling 0.00013 <= 0.05
MP:0004255 abnormal spongiotrophoblast layer morphology 0.00013 <= 0.05
MP:0004787 abnormal dorsal aorta morphology 0.000176 <= 0.05
MP:0001698 decreased embryo size 0.000211 <= 0.05
MP:0003984 embryonic growth retardation 0.000241 <= 0.05
MP:0008803 abnormal placental labyrinth vasculature morphology 0.000318 <= 0.05
MP:0002652 thin myocardium 0.000352 <= 0.05

ENSG00000138685 FGF2 PPI subnetwork 0.000417 <= 0.05
ENSG00000166908 PIP4K2C PPI subnetwork 0.000489 <= 0.05

MP:0003229 abnormal vitelline vasculature morphology 0.000514 <= 0.05
ENSG00000100030 MAPK1 PPI subnetwork 9.4e-06 <= 0.05
ENSG00000102882 MAPK3 PPI subnetwork 6.32e-05 <= 0.05
ENSG00000166501 PRKCB PPI subnetwork 0.000149 <= 0.05
ENSG00000169032 MAP2K1 PPI subnetwork 0.000566 <= 0.05

REACTOME_SIGNALING_BY_SCF:KITREACTOME_SIGNALING_BY_SCF:KIT 9.48e-06 <= 0.05
KEGG_PROSTATE_CANCER KEGG_PROSTATE_CANCER 9.52e-06 <= 0.05

REACTOME_DOWNSTREAM_SIGNALING_OF_ACTIVATED_FGFRREACTOME_DOWNSTREAM_SIGNALING_OF_ACTIVATED_FGFR0.000103 <= 0.05
REACTOME_SIGNALLING_BY_NGFREACTOME_SIGNALLING_BY_NGF 0.000125 <= 0.05
REACTOME_SIGNALING_BY_FGFRREACTOME_SIGNALING_BY_FGFR 0.000135 <= 0.05

KEGG_CHRONIC_MYELOID_LEUKEMIAKEGG_CHRONIC_MYELOID_LEUKEMIA 0.000237 <= 0.05
GO:0019902 phosphatase binding 0.000258 <= 0.05

KEGG_INSULIN_SIGNALING_PATHWAYKEGG_INSULIN_SIGNALING_PATHWAY 0.00033 <= 0.05
REACTOME_NGF_SIGNALLING_VIA_TRKA_FROM_THE_PLASMA_MEMBRANEREACTOME_NGF_SIGNALLING_VIA_TRKA_FROM_THE_PLASMA_MEMBRANE0.000395 <= 0.05

REACTOME_DOWNSTREAM_SIGNAL_TRANSDUCTIONREACTOME_DOWNSTREAM_SIGNAL_TRANSDUCTION0.000506 <= 0.05
REACTOME_AMYLOIDS REACTOME_AMYLOIDS 9.86e-06 <= 0.05

MP:0001219 thick epidermis 0.000169 <= 0.05
REACTOME_APOPTOTIC_EXECUTION__PHASEREACTOME_APOPTOTIC_EXECUTION__PHASE 0.000219 <= 0.05

GO:0006917 induction of apoptosis 1.67e-05 <= 0.05
GO:0012502 induction of programmed cell death 2.07e-05 <= 0.05

Supplementary Material 5. Tissue enrichment of genes at Type II Diabetes associated loci (P-value<1e-05, 
FDR≤0.20) 
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ENSG00000197122 SRC PPI subnetwork 3.79e-05 <= 0.05
ENSG00000186716 BCR PPI subnetwork 4.44e-05 <= 0.05
ENSG00000171105 INSR PPI subnetwork 6.24e-05 <= 0.05

GO:0004713 protein tyrosine kinase activity 9.97e-05 <= 0.05
ENSG00000050820 BCAR1 PPI subnetwork 0.00031 <= 0.05
ENSG00000090020 SLC9A1 PPI subnetwork 0.000316 <= 0.05
ENSG00000176105 YES1 PPI subnetwork 0.000464 <= 0.05

GO:0019897 extrinsic to plasma membrane 0.000548 <= 0.05
MP:0002078 abnormal glucose homeostasis 3.88e-05 <= 0.05
MP:0000187 abnormal triglyceride level 6.06e-05 <= 0.05
MP:0001783 decreased white adipose tissue amount 9.38e-05 <= 0.05
MP:0005331 insulin resistance 0.000132 <= 0.05
GO:0042803 protein homodimerization activity 0.000148 <= 0.05
MP:0005668 decreased circulating leptin level 0.000186 <= 0.05
MP:0005459 decreased percent body fat 0.000345 <= 0.05
MP:0003566 abnormal cell adhesion 4.66e-05 <= 0.05

ENSG00000066032 CTNNA2 PPI subnetwork 0.000315 <= 0.05
GO:0005924 cell-substrate adherens junction 0.000432 <= 0.05

ENSG00000150867 PIP4K2A PPI subnetwork 0.000486 <= 0.05
GO:0005925 focal adhesion 0.000511 <= 0.05
GO:0019901 protein kinase binding 6.4e-05 <= 0.05
GO:0019900 kinase binding 0.000128 <= 0.05
GO:0008134 transcription factor binding 8.04e-05 <= 0.05
GO:0003705RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity0.000338 <= 0.05
GO:0040008 regulation of growth 0.000451 <= 0.05
GO:0051427 hormone receptor binding 0.000468 <= 0.05
GO:0043566 structure-specific DNA binding 0.000473 <= 0.05
GO:0035591 signaling adaptor activity 8.08e-05 <= 0.05
GO:0005070 SH3/SH2 adaptor activity 0.000175 <= 0.05

REACTOME_ERKMAPK_TARGETSREACTOME_ERKMAPK_TARGETS 9.94e-05 <= 0.05
REACTOME_NUCLEAR_EVENTS_KINASE_AND_TRANSCRIPTION_FACTOR_ACTIVATIONREACTOME_NUCLEAR_EVENTS_KINASE_AND_TRANSCRIPTION_FACTOR_ACTIVATION0.000176 <= 0.05

ENSG00000169083 AR PPI subnetwork 0.000116 <= 0.05
ENSG00000135679 MDM2 PPI subnetwork 0.000149 <= 0.05
ENSG00000170315 UBB PPI subnetwork 0.000408 <= 0.05
ENSG00000110092 CCND1 PPI subnetwork 0.000503 <= 0.05
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Supplementary Material 6. ForestPlots of the novel T2D associated loci. 
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Supplementary Material 7. 99% credible sets of variants representation of the novel T2D associated loci. 
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Supplementary Material 9. Comparison of imputation quality across males and females and 1000G-Phase1 
and UK10K reference panels. 58C cohort from the WTCCC (~3,000 individuals) that was genotyped by both 
Affymetrix 6.0 (Affy) and Illumina 1.2M (IL) platforms have been imputed independently. We computed the 
allelic dosage R2 coefficient between the dosages from imputing using Affy and Illumina as the backbone for 
each scenario. 
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Asthma exacerbations are among the most frequent causes of 
hospitalization during childhood, but the underlying mechanisms 
are poorly understood. We performed a genome-wide association 
study of a specific asthma phenotype characterized by recurrent, 
severe exacerbations occurring between 2 and 6 years of age in 
a total of 1,173 cases and 2,522 controls. Cases were identified 
from national health registries of hospitalization, and DNA was 
obtained from the Danish Neonatal Screening Biobank. We 
identified five loci with genome-wide significant association.  
Four of these, GSDMB, IL33, RAD50 and IL1RL1, were previously 
reported as asthma susceptibility loci, but the effect sizes for 
these loci in our cohort were considerably larger than in the 
previous genome-wide association studies of asthma. We also 
obtained strong evidence for a new susceptibility gene, CDHR3 
(encoding cadherin-related family member 3), which is highly 
expressed in airway epithelium. These results demonstrate the 
strength of applying specific phenotyping in the search for asthma 
susceptibility genes.

Acute asthma exacerbations are among the most frequent causes of 
hospitalization during childhood and are responsible for large health-
care expenditures1–4. Available treatment options for prevention and 
treatment of asthma exacerbations are inadequate5, suggesting that 
asthma with severe exacerbations may represent a distinct subtype 
of disease and demonstrating a need for improved understanding of 
its pathogenesis.

Asthma heritability is estimated to be 70–90% (refs. 6,7), but only 
a limited number of susceptibility loci have been verified in genome-
wide association studies (GWAS)8–13. Larger GWAS may identify 
new susceptibility loci with smaller effects, but, owing to the large 
heterogeneity in asthma14, an alternative strategy is to increase pheno-
type specificity in genome-wide analyses. A specific phenotype is 
likely to be more closely related to a specific pathogenetic mechanism, 
and focusing on a particular phenotype may increase the power of  
genetic studies.

We aimed to increase understanding of the genetic background of 
early childhood asthma with severe exacerbations by conducting a 
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GWAS of this particular asthma phenotype. We identified children 
with recurrent acute hospitalizations for asthma occurring between 2 
and 6 years of age (cases) from the Danish National Patient Register. 
We then extracted and amplified DNA from dried blood spot samples 
isolated from the Danish Neonatal Screening Biobank, as previously 
described15,16, before genome-wide array genotyping (Affymetrix 
Axiom CEU array).

Case criteria were fulfilled for 2,029 of 1.7 million children born in 
Denmark between 1982 and 1995 (1.1/1,000 children). The final case 
cohort (Copenhagen Prospective Studies on Asthma in Childhood 
exacerbation cohort, COPSACexacerbation) after genotyping and quality 
control comprised 1,173 children (Supplementary Fig. 1). Compared 
to the general population, cases were more often boys (67 versus 51%) 
and more often had mothers who smoked during pregnancy (32 ver-
sus 15%) (Supplementary Tables 1 and 2). Controls consisted of 2,511 

individuals of Danish descent without asthma who were previously 
genotyped (Illumina Human610-Quad v1.0 BeadChip). We analyzed 
association between disease and 124,514 SNPs genotyped in both 
cases and controls, and we accounted for population stratification 
by multidimensional scaling. The genomic inflation factor was 1.04. 
The genome-wide association analysis detected an excess of asso-
ciation signals beyond those expected by chance (Supplementary  
Fig. 2), and SNPs from five regions reached genome-wide signifi-
cance (P < 5 × 10−8; Fig. 1 and Supplementary Fig. 3). The top SNPs 
from the five loci were rs2305480 in GSDMB (odds ratio (OR) = 2.28,  
P = 1.3 × 10−48), rs928413 near IL33 (OR = 1.50, P = 4.2 × 10−13), 
rs6871536 in RAD50 (OR = 1.44, P = 1.7 × 10−9), rs1558641 in IL1RL1 
(OR = 1.56, P = 6.6 × 10−9) and rs6967330 in CDHR3 (OR = 1.45,  
P = 1.4 × 10−8) (Table 1). Validation of results for the top SNPs by 
regenotyping of cases and use of an alternative control population 
gave similar results (Supplementary Tables 3 and 4).

Association analyses in the discovery cohort stratified on 
number of asthma-related hospitalizations showed higher OR with 
increasing number of hospitalizations for all five SNPs (Table 2). 
There was no significant interaction between the top SNPs and no  
effect modification by sex.

We first sought replication in the childhood-onset stratum  
(with onset before 16 years of age) from a previous GWAS of 
asthma including 14,503 individuals conducted by the GABRIEL 
Consortium11 (Supplementary Table 5), which showed evi-
dence of association for all 5 of the genome-wide significant loci 
reported here (Table 1). The CDHR3 locus was the only locus 
that had not previously been associated with asthma or any other 
atopic trait. We therefore followed up the top SNP from this locus 
(rs6967330) by further replication in a total of 3,975 children from  
2 birth cohorts of European ancestry (COPSAC2000 and the 
Manchester Asthma and Allergy Study (MAAS)) and in 1 cohort with 
a population of mixed ancestry (Generation R). There was evidence 
for association with asthma before the age of 6 years in combined 
analyses of the three birth cohorts and in the combined replication 
sets (Table 1, Supplementary Fig. 4 and Supplementary Table 6), 
as well as in a subsample including the 980 individuals with non-
European ancestry (Supplementary Table 6).

Phenotype-specific replication was possible in the COPSAC2000 
and MAAS birth cohorts with prospective registration of acute asthma 
hospitalizations and exacerbations from birth to 6 years of age in a 
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Figure 1 Manhattan plot for the discovery genome-wide association 
analysis. The horizontal line indicates the genome-wide significance 
threshold (P < 5 × 10−8).

Table 1 Discovery and replication results for the five genome-wide significant loci in the discovery analyses

Chr.
SNP effect  

allele
Nearest  

gene
Distance to  
gene (bp)

Effect allele  
frequency Stage OR (95% CI)

P value (fixed- 
effects model)a

P value (random  
effects model) P heterogeneity

17 rs2305480[G] GSDMB 0 0.60 Discovery 2.28 (2.04–2.55) 1.3 × 10−48 – –
Replication 1 1.32 (1.23–1.39) 6.4 × 10−23 6.4 × 10−23 0.86

9 rs928413[G] IL33 2,418 0.28 Discovery 1.50 (1.34–1.67) 4.2 × 10−13 – –
Replication 1 1.24 (1.17–1.32) 8.8 × 10−13 2.5 × 10−6 0.007

5 rs6871536[C] RAD50 0 0.22 Discovery 1.44 (1.28–1.62) 1.8 × 10−9 – –
Replication 1 1.17 (1.10–1.25) 7.6 × 10−7 7.6 × 10−7 0.54

2 rs1558641[G] IL1R1 0 0.85 Discovery 1.56 (1.34–1.81) 6.6 × 10−9 – –
Replication 1 1.11 (1.04–1.19) 0.003 0.003 0.75

7 rs6967330[A] CDHR3 0 0.19 Discovery 1.45 (1.28–1.66) 1.4 × 10−8 – –
Replication 1 1.18 (1.10–1.27) 3.0 × 10−6 1.3 × 10−4 0.04
Replication 2 1.40 (1.16–1.67) 3.2 × 10−4 3.2 × 10−4 0.87
Replications 1 + 2 1.21 (1.13–1.29) 1.6 × 10−8 2.6 × 10−6 0.05
Discovery + replications 1 + 2 1.26 (1.18–1.33) 2.7 × 10−14 2.7 × 10−7 0.02

Replication P values are shown in bold if significant after Bonferroni correction for the five loci tested (P < 0.01). Replication 1 results are from a previously published large-scale 
GWAS of asthma (asthma onset before 16 years; subanalysis of ref. 11). Replication 2 results are from the COPSAC2000, MAAS and Generation R cohorts (asthma onset before  
6 years). Chr., chromosome.
aA fixed-effects model was not applied in the discovery analysis.
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total of 1,091 children. The rs6967330 risk allele (A) was associated 
with greater risk of asthma hospitalizations (hazards ratio (HR) = 1.7  
(95% confidence interval (CI) = 1.2–2.4), P = 0.002) and severe 
 exacerbations (HR = 1.4 (95% CI = 1.1–1.9), P = 0.007) in combined 
analyses (Fig. 2, Supplementary Fig. 5 and Supplementary Table 6).

In COPSAC2000, we observed a trend in the direction of increased 
neonatal bronchial responsiveness associated with the rs6967330 risk 
allele (P = 0.10) (Supplementary Table 7). There was no association 
with eczema in any of the three birth cohorts, and data on allergic 
sensitization were inconsistent (Supplementary Table 6).

The top SNP at the CDHR3 locus (rs6967330) is a nonsynony-
mous coding SNP, where the risk allele (A), corresponding to the 
minor allele, results in an amino acid change from cysteine to tyrosine 
at position 529. This SNP is the only known nonsynonymous vari-
ant in this linkage disequilibrium (LD) region, but there are other 
variants located within Encyclopedia of DNA Elements (ENCODE)-
 predicted regulatory regions that are in moderate to high LD (r2 > 0.5)  
with the sentinel SNP (Supplementary Table 8). Two SNPs with par-
tial LD (r2 = 0.71 and 0.58) were also associated with asthma in the  
discovery analysis but with less statistical significance. A similar 
association pattern with rs6967330 as the top SNP was observed in 
the GABRIEL (replication) study (Supplementary Fig. 6) and in 
the Generation R (replication) subsample of individuals with non-
European ancestry (Supplementary Fig. 7), suggesting that rs6967330 
might be the causal gene variant at this locus.

We investigated the potential functional consequences of the top 
variant in CDHR3 (rs6967330; p.Cys529Tyr) by generating an expres-
sion construct encoding tagged human CDHR3 and introducing the 
mutation encoding p.Cys529Tyr (A allele at rs6967330 resulting in 
mutation of cysteine 529 to tyrosine) by site-directed mutagenesis. 
We transfected the constructs for wild-type and mutant CDHR3 
into 293T cells. Consistent results from six independent experi-
ments involving flow cytometry (n = 3) (Supplementary Fig. 8) and 
immunofluorescence staining (n = 3) (Supplementary Fig. 9) showed 
that the wild-type protein was expressed at very low levels at the cell 
surface, whereas the Cys529Tyr mutant showed a marked increase in 
cell surface expression (Supplementary Note). These results support 
the possibility that rs6967330 represents the causal variant at this 
locus. A recent study17 reported that a SNP (rs17152490) in high LD 
(r2 = 0.69) with our top SNP was associated with lung expression of 
CDHR3, further supporting a functional role for this locus.

CDHR3 is a transmembrane protein with six extracellular cadherin 
domains. Protein structure modeling showed that the risk-associated 
alteration (p.Cys529Tyr) was located at the interface between two 
membrane-proximal cadherin domains, D5 and D6 (Fig. 3). 
Interestingly, Cys592 and Cys566, which are expected to form a 
disulfide bridge within D6, are close to Cys529 in D5, and the short 
distance between them could allow disulfide rearrangement (for 
the wild-type, non-risk cysteine variant). The location of the vari-
ant residue at the domain interface suggests that the variant residue 
may interfere with interdomain stabilization, overall protein stability, 
folding or conformation, in agreement with the observation in our 
experimental studies of altered cell surface expression.

The biological function of CDHR3 is unknown, but it belongs to the 
cadherin family of transmembrane proteins involved in homologous 
cell adhesion and important for several cellular processes, including 
epithelial polarity, cell-cell interaction and differentiation18. Other 
members of the cadherin family have been associated with asthma 
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Figure 2 Cumulative risk of asthma hospitalization during the first 
6 years of life stratified on CDHR3 (rs6967330) genotype. Data are 
from combined analysis of the COPSAC2000 and MAAS birth cohorts 
(replication), including a total of 1,091 children, of whom 92 were 
hospitalized for asthma. Genotype distribution was as follows: AA,  
30 individuals; AG, 312 individuals; GG, 749 individuals. The P value for 
the association between genotype and risk of hospitalization was 0.002 
(Cox regression analysis using an additive genetic model).

Table 2 Association results for the five genome-wide significant and replicated top SNPs stratified on number of hospitalizations for 
asthma or acute bronchitis from 0–6 years of age in the discovery cohort

Number of asthma-related hospitalizations

2
n = 272

3
n = 228

4–5
n = 277

6 or more
n = 358

Association between 
number of hospitalizations  

and genotype

SNP effect allele Nearest gene OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value P valuea

rs2305480[G] GSDMB 1.87 (1.54–2.26) 2.24 (1.81–2.78) 2.24 (1.83–2.73) 2.72 (2.26–3.28) 0.002
1.5 × 10−10 2.1 × 10−13 1.7 × 10−15 3.5 × 10−27

rs928413[G] IL33 1.32 (1.09–1.61) 1.22 (0.98–1.50) 1.47 (1.21–1.79) 1.91 (1.61–2.26) 2.4 × 10−4

0.005 0.07 8.5 × 10−5 6.2 × 10−14

rs6871536[C] RAD50 1.31 (1.06–1.61) 1.26 (1.00–1.59) 1.45 (1.18–1.78) 1.58 (1.31–1.89) 0.09
0.01 0.05 3.6 × 10−4 1.3 × 10−6

rs1558641[G] IL1R1 1.53 (1.16–2.02) 1.20 (0.91–1.57) 1.32 (1.02–1.71) 2.19 (1.66–2.90) 0.02
0.002 0.20 0.04 3.2 × 10−8

rs6967330[A] CDHR3 1.23 (0.98–1,56) 1.37 (1.07–1.75) 1.42 (1.13–1.78) 1.63 (1.33–1.97) 0.04
0.07 0.01 0.003 1.6 × 10−6

Only the 1,135 children with full follow-up were included. The number of controls was 2,511 for all analyses.
aMantel-Haenszel test for linear association.
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and related traits, including E-cadherin19 and 
protocadherin-1 (ref. 20).

We demonstrated protein expression of 
CDHR3 in bronchial epithelium from adults 
and in fetal lung tissue (Supplementary 
Fig. 10). CDHR3 was previously found to 
be highly expressed in normal human lung 
tissue21 and specifically in the bronchial epi-
thelium22. CDHR3 (probe 235650_at) was 
upregulated by tenfold in differentiating epithelial cells (with a rank 
of 123 out of more than 47,000 transcripts ranked by magnitude of 
upregulation)23 and seems to be highly expressed in the developing 
human lung24.

There is an increasing focus on the role of the airway epithelium 
in asthma pathogenesis. Structural or functional abnormalities in the 
epithelium may increase susceptibility to environmental stimuli by 
exaggerating immune responses and structural changes in underly-
ing tissues and increasing airway reactivity25. Epithelial integrity is 
dependent on the interaction of proteins in cell-cell junction com-
plexes, including adhesion molecules. Studies have shown impaired 
tight junction function26 and reduced E-cadherin expression27 in the 
airway epithelium of individuals with asthma. CDHR3 is a plausible 
candidate gene for asthma because of its high level of expression in the 
airway epithelium and the known role of cadherins in cell adhesion 
and interaction. Most asthma exacerbations in children are caused 
by respiratory infections, predominantly common viral infections 
such as rhinovirus28, but bacterial infection may also have a role29, 
as well as exposure to air pollution30. It is therefore plausible that 
CDHR3 variation increases susceptibility to respiratory infections or 
other airway irritants through impaired epithelial integrity and/or 
disordered repair processes.

Interestingly, the CDHR3 asthma risk allele is the ancestral allele. 
Public data from protein databases suggest that humans are unique 
among 36 other vertebrate species in having the derived (non-risk) 
allele resulting in a cysteine at position 529 (Supplementary Table 9),  
which is now the wild-type allele in most human populations (Human 
Genome Diversity Project (HGDP) selection browser; see URLs). 
This finding suggests that the risk (ancestral) allele, associated with 
increased surface expression of CDHR3, may have been advantageous 
during early human evolution. This phenomenon in which the ances-
tral allele is the risk allele is known for other common diseases and 
may reflect a shift from a beneficial to a deleterious effect for a par-
ticular allele as a result of a changing environment31.

The CDHR3 variant seems to be associated with an asthma phe-
notype of early onset, as demonstrated by the strongest replication 
of association in the GABRIEL stratum with asthma onset before  
16 years of age (Supplementary Table 10) and in the second  
replication including children with asthma onset before 6 years of age 
(Table 1). Increased risk was already demonstrated in the first year 
of life (Fig. 2), particularly in children who were homozygous for the 
risk allele (A). This finding is in line with the tendency toward asso-
ciation of increased airway reactivity in neonates with the risk allele 

and findings of CDHR3 expression in the fetal lung. CDHR3 variation 
also seems to be more strongly associated with an asthma phenotype 
with exacerbations (Supplementary Table 6), particularly with recur-
rent exacerbations (Table 2 and Supplementary Table 6).

The top locus in this study, on chromosome 17q12-21, has consist-
ently been associated with childhood-onset asthma11,13. The effect 
size in the present study is remarkably high, with an OR of 2.3 that 
increases to 2.7 for the children with the highest number of exac-
erbations. This finding suggests a key role for this locus in severe 
exacerbations in early childhood, in line with a previous report from 
the COPSAC2000 birth cohort study32.

Genome-wide significant association with asthma has previously 
been shown for variants in or near IL33, RAD50-IL13 and IL1RL1 
(refs. 11,33). The fact that the top loci in our study were generally 
shared with previous GWAS of asthma suggests that early-onset 
asthma with severe exacerbations is at least partly driven by multiple 
common variants in the same genes that contribute to asthma without 
severe exacerbations.

The sample size of the present GWAS was less than one-fifth that 
of the largest published GWAS of asthma (GABRIEL)11, and, yet, we 
found a similar number of genome-wide significant loci, similar sta-
tistical significance and considerably larger effect estimates. Further 
increasing phenotypic specificity by stratified analysis in the 358 chil-
dren with the highest number of exacerbations resulted in an additional 
increase in effect estimates, with ORs between 1.6 and 2.7 per risk allele, 
and strong statistical significance. Effect estimates were also higher 
than previously reported when replicating the exact top SNP from the 
GABRIEL study (Supplementary Table 11). This finding demonstrates 
that specific phenotyping is a helpful approach in the search for asthma 
susceptibility genes. The narrow age criteria (2–6 years) for disease 
may be an important phenotypic characteristic, as heritability has been 
demonstrated to be higher for early-onset asthma34.

The method of case identification through national registries 
allowed us to define a specific and rare phenotype of repeated 
acute hospitalizations in young children from 2 to 6 years of age, 
which, to our knowledge, has not previously been done in a GWAS.  
One limitation of this study is that we had relatively poor genome-
wide coverage (approximately 125,000 SNPs).

In conclusion, our results demonstrate the strength of specific 
phenotyping in genetic studies of asthma. Future research focusing 
on understanding the role of CDHR3 variants in the development of 
asthma and severe exacerbations may increase understanding and 
improve treatment of this clinically important disease entity.

Extracellular
Model

D1 D2 D3 D4

D5

C529

20 Å C566

C592

D5 D6

D6

Membrane IntracellularFigure 3 Overview of the CDHR3 protein model.  
The model covers cadherin domains 2–6 (D2–D6)  
and is based on the structure of the entire 
mouse N-cadherin ectodomain (Protein Data 
Bank (PDB) 3Q2W; domains 1–5). The location 
of the alteration at position 529 is indicated 
with a blue star. The distance between residue 
529 and the disulfide bridge in D6 (between 
residues 566 and 592) is approximately 20 Å. 
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URLs. HGDP selection browser data for rs6967330, http://hgdp.
uchicago.edu/cgi-bin/alfreqs.cgi?pos=105445687&chr=chr7&rs=rs
6967330&imp=false.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
The individual studies are described in further detail in the Supplementary 
Note.

COPSACexacerbation cohort (GWAS). This is a register-based cohort of chil-
dren with asthma who were identified and characterized from national health 
registries. The study was approved by the Ethics Committee for Copenhagen 
(H-B-2998-103) and the Danish Data Protection Agency (2008-41-2622). 
According to Danish law, research ethics committees can grant exemption 
from obtaining informed consent for research projects based on biobank 
material under certain circumstances. For this study, such an exemption was 
granted (H-B-2998-103).

Case selection. Children with repeated acute hospitalizations (cases) 
were identified in the Danish National Patient Register covering all diag-
noses of discharges from Danish hospitals35. Information on birth-related 
events was obtained from the national birth register. Inclusion criteria were 
at least two acute hospitalizations for asthma (ICD8-codes 493, ICD-10 
codes J45-46) from 2 to 6 years of age (both years included). Duration of 
hospitalization had to be more than 1 d, and two hospitalizations had to 
be separated by at least 6 months. Exclusion criteria were side diagnosis  
during hospitalization, registered chronic diagnosis considered to affect 
risk of hospitalization for asthma, low birth weight (<2.5 kg) or gesta-
tional age of under 36 weeks at birth. Cases were further characterized with 
respect to the number of hospitalizations from asthma and acute bronchitis 
and for concurrent atopy.

DNA sampling and genotyping of cases. DNA was obtained from blood spots 
sampled as part of the Danish neonatal screening program and stored in the 
Danish Neonatal Screening Biobank36. Two disks, each 3.2 mm in diameter, 
were punched from each blood spot. DNA was extracted, and the whole 
genome for each individual sample was amplified in triplicate as previously 
described15,16. Cases were genotyped on the Affymetrix Axiom CEU array  
(567,090 SNPs). Top SNPs from the five genome-wide significant loci were  
regenotyped with the PCR KASPar genotyping system (KBiosciences) to 
validate the results (Supplementary Table 3). Two additional SNPs in the 
proximity of the newly discovered CDHR3 variant were genotyped for further 
exploration of the region encompassing it.

Controls. The control population was randomly drawn from two large 
Danish cohorts: the Danish National Birth Cohort (females) and the 
Copenhagen draft board examinations (males). Individuals who indicated 
in a questionnaire that they had physician-diagnosed asthma were excluded. 
Genome-wide genotyping had previously been performed as part of the 
Genomics of Overweight in Young Adults (GOYA) study37 on the Illumina 
Human610-Quad v1.0 BeadChip (545,350 SNPs). Potential bias introduced 
by differences in chemistry between the different platforms used for cases and 
controls (Affymetrix and Illumina, respectively) was investigated by also using 
control data from the Wellcome Trust Case Control Consortium 2 (WTCCC2) 
project that performed genotyping on an Affymetrix platform (Affymetrix 6.0) 
(Supplementary Table 4).

Replication in a previously published GWAS. Replication of the five genome-
wide significant loci from the discovery analysis was sought in publically 
available data from a GWAS performed by the GABRIEL Consortium11. 
This replication included 19 studies of childhood-onset asthma (onset before  
16 years of age) with a total of 6,783 cases and 7,720 controls.

Replication in birth cohorts for the CDHR3 top SNP. The COPSAC2000 
replication cohort. Replication and phenotypic characterization of the CDHR3 
risk locus were sought in the COPSAC2000 cohort, a prospective clinical study 
of a birth cohort of 411 children. This cohort is not overlapping with the 
COPSACexacerbation discovery study. The COPSAC2000 cohort study was 
approved by the Ethics Committee for Copenhagen (KF 01-289/96) and the 
Danish Data Protection Agency (2008-41-1754), and informed consent was 
obtained from both parents of each child. All mothers had a history of a doc-
tor’s diagnosis of asthma after 7 years of age. Newborns were enrolled in the 
first month of life, as previously described in detail38–40. This cohort is charac-
terized by deep phenotyping during close clinical follow-up. Doctors employed 
in the clinical research unit were acting primary physicians for the children 

from the cohort and diagnosed and treated respiratory and skin symptoms, 
and asthmatic symptoms were recorded in daily diaries41.

Acute, severe exacerbations from birth to 6 years of age were defined as 
requiring the use of oral prednisolone or high-dose inhaled corticoster-
oid for wheezy symptoms, prescribed at the discretion of the doctor in the 
clinical research unit, or by acute hospitalization at a local hospital for such 
 symptoms32. Asthma from birth to 7 years of age was diagnosed on the basis 
of predefined algorithms of symptoms and response to treatment, as previ-
ously described40.

Neonatal spirometry and analysis of neonatal bronchial responsiveness to 
methacholine were carried out by 4 weeks of age, applying the raised vol-
ume, rapid thoracic compression technique. Lung function was measured by 
spirometry in the child’s seventh year of life. Specific airway resistance (sRaw) 
was measured at 4 and 6 years by whole-body plethysmography. Bronchial 
responsiveness at ages 4 and 6 years was determined as the relative change in 
sRaw after hyperventilation of cold, dry air.

Allergic sensitization against common inhalant allergens was determined 
at 6 years of age by measurement of serum-specific IgE levels. Atopic derma-
titis was diagnosed using the Hanifin-Rajka criteria42 from birth to 7 years 
of age.

High-throughput genome-wide SNP genotyping was performed using the 
Illumina Infinium II HumanHap550 v1, v3 or Quad BeadChip platform at 
the Children’s Hospital of Philadelphia’s Center for Applied Genomics. We 
excluded SNPs with call rate of <95%, minor allele frequency (MAF) of <1% 
or Hardy-Weinberg equilibrium P value of <1 × 10−5. rs6967330 was a geno-
typed SNP on this array.

MAAS replication cohort. The Manchester Asthma and Allergy Study is 
a population-based birth cohort described in detail elsewhere43. Subjects 
were recruited prenatally and were followed prospectively. The study was 
approved by the local research ethics committee (South Manchester, reference 
03/SM/400). Parents gave written informed consent. Participants attended 
follow-up at ages 1, 3 and 5 years of age.

For asthma, validated questionnaires were administered by interviewers to 
collect information on parentally reported symptoms, physician-diagnosed 
asthma and treatments received. ‘Current wheeze and asthma treatment’ was 
defined as parentally reported wheeze in the past 12 months. ‘Asthma ever’ 
was defined as positive if, at any given time point, two of three responses were 
positive to the following questions: “Has your child wheezed within the past 
12 months?”, “Does your child currently take asthma medication?” or “Has 
a doctor ever told you that your child has asthma?” Controls were defined as 
children with none of these symptoms.

For exacerbations, a pediatrician extracted data from primary-care medi-
cal records, including information on diagnosis with wheeze and/or asthma, 
all prescriptions (including inhaled corticosteroids (ICS) and 2 agonists), 
unscheduled visits and hospital admissions for asthma and/or wheeze during 
the first 8 years of life. Following American Thoracic Society guidelines, we 
defined asthma exacerbations by either admission to a hospital or an emergency 
department visit and/or by receipt of oral corticosteroids for at least 3 d44.

DNA samples were genotyped on the Illumina Human610-Quad BeadChip. 
Genotypes were called using the Illumina GenCall application, following the 
manufacturer’s instructions. Quality control criteria for samples included call 
rate of greater than 97%, exclusion of samples with outlier autosomal hetero-
zygosity and sex validation. We excluded SNPs with call rate of <95%, Hardy-
Weinberg equilibrium P value of >5.9 × 10−7 and MAF of <0.005. We then 
performed a look-up for SNP rs6967330, which showed a genotyping success 
rate of 100% and a Hardy-Weinberg equilibrium P value of 0.4164.

Generation R replication cohort. The Generation R Study is a population- 
based prospective cohort study of pregnant women and their children from 
fetal life onward in Rotterdam, The Netherlands45. The study protocol 
was approved by the Medical Ethical Committee of the Erasmus Medical 
Center, Rotterdam (MEC 217.595/2002/20). Written informed consent 
was obtained from all mothers and biological fathers or legal guard-
ians. Information on wheezing, asthma and eczema was collected for the 
children by questionnaires at the ages of 1 to 4 and 6 years46. Questions  
about wheezing included: “Has your child had problems with a wheezing 
chest during the last year? (never, 1–3 times, >4 times) (age 1 to 4 years)” 
and “Did your child ever suffer from chest wheezing? (never, 1–3 times, 
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>4 times) (age 6 years).” Questions about asthma included: “Has a doctor  
diagnosed your child as having asthma during the past year? (yes, no) (age 2 
and 4 years)” and “Was your child ever diagnosed with asthma by a doctor? 
(yes, no) (age 3 and 6 years).” On the basis of the last obtained questionnaire, 
we grouped children as having ‘asthma ever before 6 years of age’. Reported 
asthma at 2, 3 or 4 years of age was used to reclassify children included in 
this group where appropriate. We then recategorized children as those with 
an asthma diagnosis before 3 years of age and at 3 years of age or older. 
Reported numbers of wheezing episodes at 1 and 2 years of age and at 3 to 
6 years of age, respectively, were used to reclassify asthma diagnosis before 
and at 3 years of age into ‘asthma diagnosis or 3 episodes of wheezing before  
3 years of age’. Questions about eczema included: “Has a doctor diagnosed 
your child as having eczema during the past year? (yes, no) (age 1 to 4 years)” 
and “Was your child ever diagnosed with eczema by a doctor? (yes, no)  
(6 years).” As with asthma, we grouped children into those with ‘eczema ever 
before 6 years of age’ on the basis of the last obtained questionnaire and used 
reported eczema at 1 or 4 years of age to reclassify children included in this 
group where appropriate.

Samples were genotyped using Illumina Infinium II HumanHap610 Quad 
arrays, following standard manufacturer’s protocols. Intensity files were ana-
lyzed using BeadStudio Genotyping Module software v.3.2.32, and genotypes 
were called using default cluster files. Any sample with a call rate of less than 
97.5%, excess autosomal heterozygosity (F < mean – 4 s.d.) or mismatch 
between called and phenotypic sex was excluded. rs6967330 was a genotyped 
SNP in this set. Individuals identified as genetic outliers by identity-by-state 
(IBS) clustering analysis (>3 s.d. away from the mean for the HapMap CEU 
population (Utah residents of Northern and Western European ancestry)) were 
considered to have non-European ancestry. Ancestry determination analysis 
included genomic data from all Generation R individuals merged with data for 
three reference panels from Phase 2 of the HapMap Project (YRI (Yoruba from 
Ibadan, Nigeria), CHB + JPT (Han Chinese in Beijing, China, and Japanese 
in Tokyo, Japan) and CEU). Analysis of association between an asthma or 
eczema phenotype and GWAS SNPs was carried out using a regression frame-
work, adjusting for population stratification in the Generation R cohort using 
MACH2QTL, as implemented in GRIMP. Ten genomic principal components 
obtained after the application of SNP quality exclusion criteria and LD pruning 
were used to adjust for population substructure in the combined population, 
four principal components were used for the European subpopulation and 
eight principal components were used for the non-European subpopulation. 
Individuals were grouped as having European (n = 1,962; 64.5%) or non-
European (n = 1,078; 35.5%) ancestry on the basis of genetic ancestry. On  
the basis of information on the country of birth of parents and grandpar-
ents obtained by questionnaires, the largest non-European ancestry groups 
included individuals of Turkish (5.4%), Surinamese (4.6%), Dutch Antillean 
(4.0%), Moroccan (2.9%) and Cape Verdean (2.3%) origin.

Statistical analyses. Genome-wide association analysis. Quality control was 
carried out separately on cases and controls. This included filtering on SNP 
call rate (>99%) and sample call rate (>98%) and tests for excess heterozygosity,  
deviation from Hardy-Weinberg equilibrium, sex mismatch and familial relat-
edness. Non-European individuals were excluded on the basis of deviation 
from the HapMap CEU reference panel (release 22). Indication of population 
stratification or genotyping bias was tested by multidimensional scaling (MDS) 
after quality control. This analysis showed evidence of association with disease 
status for the first seven MDS components, and these were therefore included 
as covariates in the association analysis. Additional analyses including the 
first 100 MDS components did not materially alter the results. Merged data 
for SNPs present on both arrays after quality control were used for association 
testing with PLINK (v. 1.07) using a logistic additive model, adjusting for the 
first seven MDS components. Additional quality control was performed for 
genome-wide significant SNPs after association analysis, including a test for 
genotyping batch effects, resulting in the removal of one genome-wide signifi-
cant SNP with strong evidence of batch-related genotyping error.

Functional annotation for the SNPs in LD (r2 > 0.5) with the CDHR3 
top SNP (rs6967330) was obtained from the RefSeq track downloaded 
from the UCSC Genome Browser. SNPs were associated with regulatory 
elements by HaploReg47 in terms of predicted ENCODE chromatin state  

(promoter and enhancer histone modification signals) and DNase I hyper-
sensitivity (Supplementary Table 8).

Regional imputation was performed to describe the identified loci from the 
discovery analysis (Supplementary Fig. 3) as well as reported loci from the 
previous largest published GWAS (GABRIEL)11 (Supplementary Table 11). 
We used two-step genotype imputation as described48. We used the SHAPEIT 
algorithm to prephase the haplotypes49 and then used IMPUEv2 software 
for the imputation of unknown genotypes50 separately in cases and controls. 
We used the 1000 Genomes Project reference panel51 (April 2012 version). 
We used a strict cutoff (info of 0.88), which, according to our analyses, pro-
vides an allelic dosage R2 correlation between real and imputed genotypes of 
greater than 0.8 and shows an optimal balance between sufficient accuracy and 
power52. We then compared the resulting allelic frequencies using SNPTEST 
2.4.1 (ref. 53).

CDHR3 protein expression in experimental models. The top SNP at the 
CDHR3 locus is a nonsynonymous SNP (encoding p.Cys529Tyr). To determine 
the functional consequences of the p.Cys529Tyr variant, we generated expres-
sion constructs encoding tagged human CDHR3 protein, and the mutation 
encoding the p.Cys529Tyr alteration was introduced by site-directed muta-
genesis. Plasmids encoding wild-type or mutant CDHR3 or empty vector were 
transfected into 293T cells, and cells were monitored for surface and intra-
cellular expression of CDHR3 by flow cytometry. 293T cells were from the 
American Type Culture Collection (ATCC), catalog number CRL-3216. They 
were recently tested for mycoplasma contamination but were not authenticated. 
For protein blotting, cells expressing CDHR3 proteins were lysed, and whole-
cell lysates were separated by SDS-PAGE under reducing or non-reducing  
conditions, transferred to PVDF membranes and blotted for Flag (anti-Flag 
antibody, clone M2 (Agilent Technologies, 200470-21) at a dilution of 1:2,000). 
For immunofluorescence and confocal microscopy, 293T cells were grown on 
glass coverslips in DMEM with 3 mM glutamine and 10% heat-inactivated 
FBS at 37 °C and 5% CO2 before and for 2 d after transfection with expres-
sion constructs for Flag-tagged wild-type CDHR3 and CDHR3 Cys529Tyr 
using TransIT 2020 reagent according to a standard protocol (Mirus Bio). 
Cells were obtained and used at a low passage from ATCC and had recently 
been tested for mycoplasma. Cells were incubated in 10% serum-containing 
culture medium plus primary anti-Flag mouse antibodies (F3165, Sigma; 1:300 
dilution) for 1 h at 37 °C before being washed briefly with culture medium. 
Cells were then stained with secondary rabbit anti-mouse antibodies (F0261, 
Daco; 1:600 dilution) conjugated with fluorescein isothiocyanate (FITC) 
with incubation at 37 °C for 30 min and washed with culture medium before 
PBS. Afterward, cells were fixed in 2% paraformaldehyde for 15 min, washed 
with PBS and permeabilized in 0.2% Triton X-100 in PBS for 5 min, washed 
and incubated with Cy3-conjugated mouse anti-Flag antibody (Cy3-labeled  
F3165, Sigma; 1:300 dilution). Finally, cells were mounted with ProLong Gold 
antifade reagent with DAPI (Invitrogen). Images were acquired using a Leica 
DMI 6000-B confocal microscope (Leica Microsystems) with 40× magnifica-
tion and were processed in Photoshop (Adobe Systems). Experiments were 
performed in triplicate (independent transfections) for both flow cytometry 
and immunofluorescence staining. Data presented (Supplementary Figs. 8 
and 9) were chosen as being representative of the repeated experiments.

CDHR3 protein structure modeling. A homology model of CDHR3 domains 
2–6 (residues 141–681) was generated using the HHpred server54. The model 
was based on the structure of mouse N-cadherin (PDB 3Q2W) domains 1–5. 
A disulfide bridge was manually introduced in the final model between the 
structurally adjacent residues Cys566 and Cys592, as this corresponds to a 
disulfide bridge commonly observed in cadherin domains.
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Birth weight (BW) has been shown to be influenced by both fetal 
and maternal factors and in observational studies is reproducibly 
associated with future risk of adult metabolic diseases including 
type 2 diabetes (T2D) and cardiovascular disease1. These life-
course associations have often been attributed to the impact of an 
adverse early life environment. Here, we performed a multi-ancestry 
genome-wide association study (GWAS) meta-analysis of BW in 
153,781 individuals, identifying 60 loci where fetal genotype was 
associated with BW (P < 5 × 10−8). Overall, approximately 15% 
of variance in BW was captured by assays of fetal genetic variation. 
Using genetic association alone, we found strong inverse genetic 
correlations between BW and systolic blood pressure (Rg = −0.22, 
P = 5.5 × 10−13), T2D (Rg = −0.27, P = 1.1 × 10−6) and coronary 
artery disease (Rg = −0.30, P = 6.5 × 10−9). In addition, using large - 
cohort datasets, we demonstrated that genetic factors were the  
major contributor to the negative covariance between BW and future 
cardiometabolic risk. Pathway analyses indicated that the protein 
products of genes within BW-associated regions were enriched for 
diverse processes including insulin signalling, glucose homeostasis, 
glycogen biosynthesis and chromatin remodelling. There was also 
enrichment of associations with BW in known imprinted regions 
(P = 1.9 × 10−4). We demonstrate that life-course associations 

between early growth phenotypes and adult cardiometabolic disease 
are in part the result of shared genetic effects and identify some of the 
pathways through which these causal genetic effects are mediated.

We combined GWAS data for BW from 153,781 individuals rep-
resenting multiple ancestries from 37 studies across three compo-
nents (Extended Data Fig. 1 and Supplementary Table 1): (i) 75,891 
 individuals of European ancestry from 30 studies; (ii) 67,786  individuals 
of European ancestry from the UK Biobank; and (iii) 10,104 individuals 
of diverse ancestries (African American, Chinese, Filipino, Surinamese, 
Turkish and Moroccan) from six studies. Within each study, BW was 
Z-score transformed separately in males and females after excluding 
non-singletons and premature births and adjusting for gestational age 
where available. Genotypes were imputed using reference panels from 
the 1000 Genomes (1000G) Project2 or combined 1000G and UK10K 
projects3 (Supplementary Table 2). We performed quality  control 
assessments to confirm that the distribution of BW was  consistent 
across studies, irrespective of the data collection protocol, and  
confirmed that self-reported BW in the UK Biobank showed genetic 
and phenotypic associations consistent with those seen for measured 
BW in other studies4 (Methods).

We identified 60 loci (of which 59 were autosomal) associated with 
BW at genome-wide significance (P <  5 ×  10−8) in either the European 

A list of affiliations appears in the online version of this paper.
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ancestry or trans-ancestry meta-analyses (Extended Data Fig. 2a, 
Extended Data Table 1a and Supplementary Data; Methods). For lead 
single nucleotide polymorphisms (SNPs), we observed no heteroge-
neity in allelic effects between the three study components (Cochran’s 
Q statistic P >  0.00083) (Supplementary Table 3). We found that 53 of  
these loci were novel in that the lead SNP mapped >2 Mb away from, 
and was independent (R2 <  0.05 in the European (EUR)  component 
of 1000G) of, the seven previously reported BW signals5, all of 
which were confirmed in this larger analysis (Supplementary Table 
4). Approximate conditional analysis in the European ancestry data 
 indicated that three of these novel loci (near ZBTB7B, HMGA1 and 
PTCH1) harboured multiple distinct association signals that attained 
genome-wide  significance (P <  5 ×  10−8) (Methods, Supplementary 
Table 5 and Extended Data Fig. 3).

The lead variants for most signals mapped to non-coding sequences, 
and at only two loci, ADRB1 (rs7076938; R2 =  0.99 with ADRB1 G389R) 
and NRIP1 (rs2229742, R448G), did the association data point to 
potential causal non-synonymous coding variants (Supplementary 
Table 6 and Methods). Lead SNPs for all but two loci (those map-
ping near YKT6–GCK and SUZ12P1–CRLF3) were common (minor 
allele frequency (MAF) ≥  5%) with individually modest effects on 
BW (β =  0.020–0.053 standard deviations (s.d.) per allele, equivalent 
to 10–26 g). This was despite the much-improved coverage of low- 
frequency variants in this study (compared to previous HapMap 2 
imputed meta-analyses, ref. 5) reflecting imputation from larger, 
and more complete, reference panels (Extended Data Table 1b). 
Indeed, all but five of the common variant association signals were 
tagged by  variants (EUR R2 >  0.6) in the HapMap 2 reference panel 
(Supplementary Tables 4, 5), indicating that most of the novel discov-
eries in the  present study were driven by increased sample size5. Fine-
mapping analysis yielded 14 regions in which fewer than ten variants 
contributed to the locus-specific credible sets that accounted for > 99% 
of the posterior probability of association (Methods and Supplementary  
Table 7). The greatest refinement was at YKT6–GCK, where the  
credible set included only the low frequency variant rs138715366, 
which maps intronic to YKT6. These credible-set variants collectively 
showed enrichment for overlap with DNaseI hypersensitivity sites, 
particularly those  generated, by ENCODE, from fetal (4.2-fold, 95% 
CI 1.8–10.7) and neonatal tissues (4.9-fold, 1.8–11.0) (Supplementary 
Fig. 1, Supplementary Table 8 and Methods).

In combination, the 62 distinct genome-wide significant signals 
at the 59 autosomal loci explained at least 2.0 ±  1.1% (standard error 
(s.e.)) of variance in BW (Supplementary Table 9 and Methods), which 
is  similar in magnitude to that attributable to sex or maternal body mass 
index (BMI)5. However, the variance in BW captured collectively by 
all autosomal genotyped variants on the array was considerably larger, 
estimated at 15.1 ±  0.9% in the UK Biobank (Methods). These figures 
are consistent with a large number of genetic variants with smaller 
effects contributing to variation in BW.

Associations between fetal genotype and BW could result from 
 indirect effects of the maternal genotype influencing BW via the 
intrauterine environment, given the correlation (R ≈  0.5) between 
maternal and fetal genotype. However, two lines of evidence  indicated 
that variation in the fetal genome was the predominant driver of 
BW associations. First, an analysis of the global contribution of 
 maternal versus fetal genetic variation, using a maternal genome-
wide complex trait analysis (GCTA) model (ref. 6) (Methods) applied 
to 4,382 mother–child pairs, estimated that the child’s genotype 
(σC

2 =  0.24 ±  0.11) made a larger contribution to BW variance than 
either the mother’s genotype (σM

2 =  0.04 ±  0.10), or the covariance 
between the two (σCM =  0.04 ±  0.08). Second, when we compared 
the point estimates of the BW-effect size dependent on maternal  
genotype at each of the 60 loci (as measured in up to 68,254 women7) 
with those dependent on fetal genotype (using European ancestry data 
from 143,677 individuals in the present study), fetal variation had a 
greater impact than maternal variation at 93% of the loci (55 out of 60; 

binomial P =  10−11) (Supplementary Table 10, Extended Data Figs 4, 5  
and Methods). The power to further disentangle maternal and fetal 
contributions using analyses of fetal genotype which were  conditional 
on maternal genotype was constrained by the limited sample size 
 available (n =  12,909 mother–child pairs) (Supplementary Table 11).

Collectively, these analyses provide evidence that the fetal  genotype 
has a substantial impact on early growth, as measured by BW. We 
used these genetic associations to understand the causal relationships 
underlying observed associations between BW and disease, and to 
 characterize the processes responsible.

To quantify the shared genetic contribution to BW and other 
health-related traits, we estimated their genetic correlations 
using linkage-disequilibrium score regression8 (Methods). BW  
(in European ancestry samples) showed strong positive genetic 
 correlations with anthropometric and obesity-related traits 
 including birth length (Rg =  0.81, P =  2.0 ×  10−44) and, in adults, 
height (Rg =  0.41, P =  4.8 ×  10−52), waist circumference (Rg =  0.18, 
P =  3.9 ×  10−10) and BMI (Rg =  0.11, P =  7.3 ×  10−6). By contrast, 
BW showed inverse genetic correlations with indicators of adverse 
 metabolic and cardiovascular health including coronary artery  disease 
(CAD, Rg =  − 0.30, P =  6.5 ×  10−9), systolic blood pressure (SBP, Rg =   
− 0.22, P =  5.5 ×  10−13) and T2D (Rg =  − 0.27, P =  1.1 ×  10−6) (Fig. 1,  
Supplementary Table 12). The  correlations between BW and adult car-
diometabolic phenotypes are of similar  magnitude, although direction-
ally opposite, to the reported genetic correlations between adult BMI 
and those same cardiometabolic  outcomes8. These findings support 
observational associations between a history of paternal T2D and lower 
BW (ref. 4), and establish more generally that the observed life-course 
associations between early growth and adult disease, at least in part, 
reflect the impact of shared genetic variants that influence both sets 
of phenotypes.

In an effort to estimate the extent of genetic contribution to these 
life-course associations, we first focused on data from the UK Biobank 
(n =  57,715). For many of the traits for which data were available, 
genetic variation contributed substantially to the life-course relation-
ship between BW and adult phenotypes, and in some cases appeared 
to be the major source of covariance between the traits. For example, 
we estimated that 85% (95% CI =  70–99%) of the negative covariance 
between BW and SBP was explained by shared genetic associations cap-
tured by directly genotyped SNPs (Supplementary Table 13, Methods 
and Supplementary Fig. 2). For continuous cardiometabolic measures, 
including lipids and fasting glycaemia, for which measures are not cur-
rently available in the UK Biobank, we used data from the Northern 
Finland Birth Cohort (n =  5,009), and obtained similar results 
(Supplementary Table 13). However, these estimates were limited, not 
only by wide confidence intervals, but also by the assumption of a lin-
ear relationship between BW and each of the phenotypes and by the 
inability to explicitly model maternal genotypic effects. In other words, 
the inverse genetic correlations between BW and cardiometabolic traits 
may not exclusively reflect genetic effects mediated directly through 
the offspring, but also effects mediated by maternal genotype acting 
indirectly on the fetus via perturbation of the in utero environment. 
Nevertheless, these estimates indicate that a substantial proportion of 
the variance in cardiometabolic risk that correlates with BW can be 
attributed to the effects of common genetic variation.

To elucidate the biological pathways and processes underlying regu-
lation of fetal growth, we first performed gene set enrichment analysis 
of our BW GWAS analysis using MAGENTA (Meta-Analysis Gene-
set Enrichment of variaNT Associations, ref. 9) approach (Methods). 
Twelve pathways reached study-wide significance (false discovery rate, 
FDR <  0.05), including pathways involved in metabolism (insulin  
signalling, glycogen biosynthesis and cholesterol biosynthesis), 
growth (IGF signalling and growth hormone pathway) and devel-
opment  (chromatin remodelling) (Extended Data Table 2a). Similar 
pathways were detected in a complementary analysis in which we 
analysed empirical protein–protein interaction (PPI) data  identifying 
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13 PPI network modules with marked (Z score >  5) enrichment for 
BW-association scores (Extended Data Table 2b, Extended Data  
Fig. 6a, b and Methods). The proteins within these modules were them-
selves enriched for diverse processes related to metabolism, growth and 
development (Extended Data Fig. 6a, b).

We also observed enrichment of BW association signals across the 
set of 77 imprinted genes defined by the Genotype-Tissue Expression 
(GTEx) project (ref. 10) (P =  1.9 ×  10−4; Extended Data Table 2a and 
Supplementary Table 14). Such enrichment is consistent with the 
‘parental conflict’ hypothesis regarding the allocation of  maternal 
resources to the fetus11. Although the role of imprinted genes in 
fetal growth has been described in animal models and rare human 
 disorders12, these data provide a large-scale, systematic indication 
of their contribution to normal variation in BW. Of the 60 genome-
wide significant loci, two (INS–IGF2 and RB1) fall within (or near) 
imprinted regions (Extended Data Fig. 2b), with a noteworthy third 
signal at DLK1 (previously fetal antigen-1; P =  5.6 ×  10−8). Parent-
of-origin specific analyses to further investigate these individual loci 
 (comparing heterozygote versus homozygote BW variance in 57,715 
unrelated individuals, and testing BW associations with paternal  versus 
maternal alleles in 4,908 mother–child pairs; see Methods) proved, 
despite these sample sizes, to be underpowered (Extended Data Fig. 7 
and Supplementary Tables 15, 16).

Many of the genome-wide signals for BW detected here are also 
established genome-wide association signals for a wide variety of 
 cardiometabolic traits (Fig. 2). These include the BW signals near 
CDKAL1, ADCY5, HHEX–IDE and ANK1 (also genome-wide 
 significant for T2D), NT5C2 (for blood pressure, CAD and BMI) and 
ADRB1 (for blood pressure). We used two approaches to understand 
whether this pattern of adult trait association represented a generic 
property of BW-associated loci or reflected heterogeneous mechanisms 
linking BW to adult disease.

First, we applied unsupervised hierarchical clustering (Methods) to 
the non-BW trait association statistics for the 60 significant BW loci. 
The resultant heat map showed the heterogeneity of locus-specific effect 
sizes across the range of adult traits (Fig. 2 and Supplementary Table 17).  
For example, it revealed that the associations between BW-raising 
alleles and increased adult height are concentrated amongst a subset 

of loci including HHIP and GNA12, and highlighted particularly strong 
 associations with lipid traits for variants at the TRIB1 and MAFB loci.

Second, we constructed trait-specific ‘point-of-contact’ (PoC) PPI 
networks from proteins represented in both the global BW PPI  network 
and equivalent PPI networks generated for each of the adult traits 
(Methods and Extended Data Figs 6c–e). We reasoned that these PoC 
PPI networks would be enriched for the specific proteins mediating the 
observed links between BW and adult traits, generating  hypotheses that 
are amenable to subsequent empirical validation. To highlight  processes 
implicated in specific BW-trait associations, we overlaid these PoC PPI 
with the top 50 pathways that were over-represented in the global BW 
PPI network. These analyses revealed, for example, that proteins in 
the Wnt canonical signalling pathway were detected in the PoC PPI 
network only for blood pressure traits. We used these PPI overlaps to 
highlight the specific transcripts within BW GWAS loci that were likely 
to mediate the mechanistic links. For example, the overlap between the 
Wnt signalling pathway and the PoC PPI network for the intersection 
of BW and blood pressure-related traits implicated FZD9 as the likely 
effector gene at the MLXIPL BW locus (Extended Data Fig. 6d and 
Supplementary Table 6).

We focused our more detailed investigation of the mechanistic links 
between early growth and adult traits on two phenotypic areas: arterial 
blood pressure and T2D/glycaemia. Across both the overall GWAS and 
specifically among the 60 significant BW loci, most BW-raising alleles 
were associated with reduced blood pressure (Figs 1, 2); the strongest 
inverse associations were seen for the loci near NT5C2, FES, NRIP1, 
EBF1 and PTH1R. However, we also observed locus-specific hetero-
geneity in the genetic relationships between blood pressure and BW: 
the SBP-raising allele at ADRB113 is associated with higher, rather than 
lower, BW (Extended Data Fig. 8a). When we considered the reciprocal 
relationship, that is, the effects on BW of blood-pressure-raising alleles 
at 30 reported loci for SBP13,14, there was an excess of associations  
(5 out of 30 with lower BW at P <  0.05; binomial P =  0.0026; Extended 
Data Fig. 8a). To dissect maternal and fetal genotype effects at these 
loci, we tested the impact on BW of a risk score generated from the 30 
SBP SNPs, restricted to the untransmitted maternal haplotype score15 
in a set of 5,201 mother–child pairs. Analysis of these loci  indicated that 
maternal genotype effects on the intrauterine environment  probably 
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Figure 1 | Genome-wide genetic correlation between BW and 
a range of traits and diseases in later life. Genetic correlation 
(Rg) and corresponding s.e. (error bars) between BW and the 
traits displayed on the x axis were estimated using linkage-
disequilibrium score regression (ref. 8). The genetic correlation 
estimates (Rg) are colour coded according to their intensity and 
direction (red for positive and blue for inverse correlation). 
WHRadjBMI, waist–hip ratio adjusted for body mass index; 
HOMA-B/IR, homeostasis model assessment of beta-cell 
function/insulin resistance; HbA1c, haemoglobin A1c; BMD, bone 
mineral density; ADHD, attention deficit hyperactivity disorder. 
See Supplementary Table 12 for references for each of the traits 
and diseases displayed.
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contribute to the inverse genetic correlation between SBP and BW 
(Methods and Supplementary Table 18), and was consistent with 
the results of a wider study of > 30,000 women which demonstrated 
 associations between a maternal genetic score for SBP (conditional on 
fetal genotype) and lower offspring BW16.

The blood-pressure-raising allele with the largest BW-lowering 
effect mapped to the NT5C2 locus (index variant for BW, rs74233809, 
R2 =  0.98 with index variant for blood pressure, rs11191548; ref. 14) and 
was also associated with lower adult BMI (R2 =  0.99 with rs11191560; 
ref. 17). The BW-lowering allele at rs74233809 is a proxy for a recently 
described18 functional variant in the nearby CYP17A1 gene (R2 =  0.92 
with rs138009835). The CYP17A1 gene encodes the cytochrome 
P450c17α enzyme CYP17 (ref. 19), which catalyses key steps in steroi-
dogenesis that determine the balance between  mineralocorticoid, 
 glucocorticoid and androgen synthesis. This variant has been shown to 
alter transcriptional efficiency in vitro and is associated with increased 
urinary tetrahydroaldosterone excretion18. CYP17A1 is expressed in 
fetal adrenal glands and testes from early gestation20 as well as in the 
placenta21. These data suggest that variation in CYP17A1 expression 
contributes to the observational association between low BW and adult 
hypertension22.

When we analysed 45 loci associated with CAD23, the inverse genetic 
correlation between CAD and BW was concentrated amongst the five 
CAD loci with primary blood pressure associations. This suggests that 
genetic determinants of blood pressure play a leading role in mediating 
the life-course associations between BW and CAD (Extended Data 
Fig. 8b, e).

Linkage-disequilibrium score regression analyses demonstrated 
 overall inverse genetic correlation between lower BW and elevated risk 
of T2D (Fig. 1). However, the locus-specific heat map indicates a heter-
ogeneous pattern across individual loci (Fig. 2). To explore this further, 
we tested the 84 reported T2D loci24 for association with BW. Some T2D 
risk alleles (such as those at ADCY5, CDKAL1 and HHEX–IDE) were 
strongly associated with lower BW, while others (including ANK1 and 

MTNR1B) were associated with higher BW (Extended Data Fig. 8c).  
This was in contrast with the BW effects of 422 known height loci25 
(Extended Data Fig. 8d), which showed a strong positive correlation 
consistent with the overall genetic correlation between height and BW, 
indicating that the growth effects of many height loci start prenatally 
and persist into adulthood.

The contrasting associations of T2D-risk alleles with both higher 
and lower BW probably reflect the differential impacts, across loci, 
of  variation in the maternal and fetal genomes. Observational data 
link paternal diabetes with lower offspring BW4, indicating that the 
inheritance of T2D risk alleles by the fetus tends, in line with the 
 linkage-disequilibrium score regression analysis, to reduce growth. 
These relationships are consistent with the precepts of the ‘fetal insulin 
hypothesis’26 and reflect the potential for reduced insulin secretion and/
or signalling to lead to both reduced fetal growth and, many decades 
later, enhanced predisposition to T2D. In line with this, the inferred 
paternal transmitted haplotype score generated from the 84 T2D risk 
variants was associated with lower BW (P =  0.045) in 5,201 mother–
child pairs (Methods and Supplementary Table 18). In contrast, 
 maternal diabetes is observationally associated with higher offspring 
BW4, reflecting the ability of maternal hyperglycaemia to stimulate fetal 
insulin secretion. The contribution of genotype-dependent maternal 
hyperglycaemia to BW is in line with the evidence, from a recent study, 
that maternal genotype scores for fasting glucose and T2D (conditional 
on fetal genotype) were causally associated with higher offspring BW16. 
It is also consistent with the observation that a subset of glucose-raising 
alleles is associated with higher BW7. For example, the T2D-risk variant 
at MTNR1B (which also has a marked effect on fasting glucose levels 
in non-diabetic individuals27,28) was amongst the subset of BW loci  
(5 out of 60) for which the BW effect attributable to maternal genotype 
exceeded that associated with the fetal genotype (maternal: β =  0.048, 
P =  5.1 ×  10−15; fetal: β =  0.023, P =  2.9 ×  10−8) (Supplementary 
Table 10 and Extended Data Figs 4, 5). Thus, both maternal and fetal 
genetic effects connect BW to later T2D risk, albeit acting in  opposing 
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Figure 2 | Hierarchical clustering of BW loci based on similarity of 
overlap with adult diseases, metabolic and anthropometric traits. For 
the lead SNP at each BW locus (x axis), Z scores (aligned to BW-raising 
allele) were obtained from publicly available GWAS for various traits  
(y axis; see Supplementary Table 17). A positive Z score (red) indicates a 
positive association between the BW-raising allele and the outcome trait, 

while a negative Z score (blue) indicates an inverse association. BW loci 
and traits were clustered according to the Euclidean distance amongst  
Z scores (see Methods). Squares are outlined with a solid black line if the 
BW locus is significantly (P <  5×  10−8) associated with the trait in publicly 
available GWAS, or with a dashed line if reported significant elsewhere.
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 directions. When we categorized T2D loci using a classification of 
physiological functions derived from their effects on related glycaemic 
and anthropometric traits27, we found that T2D-risk alleles associated 
with lower BW were those typically characterized by reduced insulin 
 processing and secretion without detectable changes in fasting glucose 
(the ‘Beta Cell’ cluster in Extended Data Fig. 8f).

The YTK6 signal at rs138715366 is notable not only because the 
genetic data indicate that a single low-frequency non-coding  variant 
is driving the association signal (see above) but also because of the 
proximity of this signal to GCK. Rare coding variants in glucoki-
nase are causal for a form of monogenic hyperglycaemia and lead 
to large  reductions in BW when parental alleles are passed on to 
their  offspring29. In addition, common non-coding variants nearby 
are implicated in T2D risk and fasting hyperglycaemia28. However, 
the latter variants are conditionally independent of rs138715366 
(Supplementary Table 19) and show no comparable association with 
lower BW. Either rs138715366 acts through effector transcripts other 
than GCK, or the impact of the low-frequency SNP near YKT6 on 
GCK expression involves tissue- and/or temporal-specific variation in  
regulatory impact.

In conclusion, we have identified 60 genetic loci associated with BW 
and used them to gain insights into the aetiology of fetal growth and 
into well-established, but until now poorly understood, life-course 
disease associations. The evidence that the relationship between early 
growth and later metabolic disease has an appreciable genetic com-
ponent contrasts with, but is not necessarily incompatible with, the 
emphasis on adverse early environmental events highlighted by the 
fetal origins hypothesis1. As we have shown, these genetic effects reflect 
variation in both the fetal and the maternal genome: the impact of 
the latter on the offspring’s predisposition to adult disease could be 
 mediated, at least in part, through perturbation of the antenatal and 
early life environment. Future mechanistic and genetic studies should 
support reconciliation between these alternative, but complementary, 
explanations for the far-reaching life-course associations that exist 
between events in early life and predisposition to cardiometabolic 
 disease several decades later.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Ethics statement. All human research was approved by the relevant institutional 
review boards and conducted according to the Declaration of Helsinki. All par-
ticipants provided written informed consent. Ethical approval for the study was 
obtained from the ALSPAC Ethics and Law Committee and the local Research 
Ethics Committees.
Study-level analyses. No statistical methods were used to predetermine sample 
size: to maximise power to detect association signals, we set out to collect the largest 
possible set of samples for which the combination of genome-wide genotyping 
data and reliable measures of BW could be made available for analysis. Within 
each study, BW was collected from a variety of sources, including measurements 
at birth by medical practitioners, obstetric records, medical registers, interviews 
with the mother and self-report as adults (Supplementary Table 1). BW was 
Z-score transformed separately in males and females. Individuals with extreme BW  
(> 5 s.d. from the sex-specific study mean), monozygotic or polyzygotic siblings, or 
preterm births (gestational age < 37 weeks, where this information was available) 
were excluded from downstream association analyses (Supplementary Table 1).

Within each study, stringent quality control of the GWAS genotype scaffold was 
carried out before imputation (Supplementary Table 2). Each scaffold was then 
pre-phased and imputed30,31 up to reference panels from the 1000G project2 or the 
combined 1000G and UK10K projects3 (Supplementary Table 2). Association of 
BW with each variant passing established GWAS quality control filters32 was tested 
in a linear regression framework, under an additive model for the allelic effect, after 
adjustment for study-specific covariates, including gestational age, where available 
(Supplementary Table 2). Where necessary, population structure was accounted for 
by adjustment for axes of genetic variation from principal components analysis33 
and subsequent genomic control correction34, or inclusion of a genetic relationship 
matrix in a mixed model35 (Supplementary Table 2). We calculated the genomic 
control inflation factor (λ) in each study to confirm that study-level population 
structure was accounted for before meta-analysis.
Preparation, quality control and genetic analysis in UK Biobank samples. UK 
Biobank phenotype data were available for 502,655 participants36. All participants 
in the UK Biobank were asked to recall their BW, of which 279,971 did so at either 
the baseline or follow-up assessment visit. Of these, 7,686 participants reported 
being part of multiple births and were excluded from downstream analyses. 
Ancestry checks, based on self-reported ancestry, resulted in the exclusion of 8,998 
additional participants reported not to be white European. Of those individuals 
reporting BW at baseline and follow-up assessments, 393 were excluded because 
the two reported values differed by more than 0.5 kg. For those reporting different 
values (≤ 0.5 kg) between baseline and follow-up, we took the baseline measure 
forward for downstream analyses. We then excluded 36,716 individuals reporting 
values < 2.5 kg or > 4.5 kg as implausible for live term births before 1970. In total 
226,178 participants had data relating to BW that matched these inclusion criteria.

Genotype data from the May 2015 release were available for a subset of 152,249 
participants from UK Biobank. In addition to the quality control  metrics  performed 
centrally by UK Biobank, we defined a subset of ‘white European’  ancestry samples 
using a K-means (K =  4) clustering approach based on the first four genetically 
determined principal components. A maximum of 67,786  individuals (40,425 
females and 27,361 males) with genotype and valid BW measures were available 
for downstream analyses. We tested for association with BW, assuming an additive 
allelic effect, in a linear mixed model implemented in BOLT-LMM (ref. 37) to 
account for cryptic population structure and relatedness. Genotyping array was 
included as a binary covariate in all models. Total chip heritability (that is, the 
 variance explained by all autosomal polymorphic genotyped SNPs passing  quality 
control) was calculated using restricted maximum likelihood (REML) imple-
mented in BOLT-LMM (ref. 37). We additionally analysed the association between 
BW and directly genotyped SNPs on the X chromosome: for this analysis, we used 
57,715 unrelated individuals with BW available and identified by UK Biobank as 
white British. We excluded SNPs with evidence of deviation from Hardy–Weinberg 
equilibrium (P <  1 ×  10−6), MAF <  0.01 or overall missing rate > 0.015, resulting 
in 19,423 SNPs for analysis in Plink v1.07 (http://pngu.mgh.harvard.edu/purcell/
plink/)38, with the first five ancestry principal components as covariates.

In both the full UK Biobank sample and our refined sample, we observed that 
BW was associated with sex, year of birth and maternal smoking (P <  0.0015, all in 
the expected directions), confirming more comprehensive previous validation of 
self-reported BW4. We additionally verified that BW associations with lead SNPs 
at seven established loci5 based on self-report in UK Biobank were consistent with 
those previously published.
European ancestry meta-analysis. The European ancestry meta-analysis  consisted 
of two components: (i) 75,891 individuals from 30 GWAS from Europe, USA 
and Australia; and (ii) 67,786 individuals of white European origin from the 
UK Biobank. In the first component, we combined sex-specific BW  association 

 summary statistics across studies in a fixed-effects meta-analysis, implemented in 
GWAMA (ref. 39) and applied a second round of genomic control34 (λ GC =  1.001). 
Subsequently, we combined association summary statistics from this component 
with the UK Biobank in a European ancestry fixed-effects meta-analysis, imple-
mented in GWAMA (ref. 39). Variants failing GWAS quality control filters in 
the UK Biobank, reported in less than 50% of the total sample size in the first 
 component, or with MAF < 0.1%, were excluded from the European ancestry 
meta-analysis. We aggregated X-chromosome association summary statistics from 
the UK Biobank (19,423 SNPs) with corresponding statistics from the European 
GWAS component using fixed effects P-value-based meta-analysis in METAL  
(ref. 40) (max n =  99,152).

We were concerned that self-reported BW as adults in the UK Biobank would 
not be comparable with that obtained from more stringent collection methods used 
in other European ancestry GWAS. In addition, the UK Biobank lacked informa-
tion on gestational age for adjustment, which could have an impact on strength 
of association compared with the results obtained from other European ancestry 
GWAS. However, we observed no evidence of heterogeneity in BW allelic effects 
at lead SNPs between the two components of European ancestry meta-analysis, 
using Cochran’s Q statistic41 implemented in GWAMA (ref. 39) after Bonferroni 
correction (P >  0.00083) (Supplementary Table 3). We tested for heterogeneity in 
allelic effects between studies within the European component using Cochran’s Q. 
At loci demonstrating evidence of heterogeneity, we confirmed that association 
signals were not driven by outlying studies by visual inspection of forest plots. 
We performed sensitivity analyses to assess the impact of covariate adjustment 
(gestational age and population structure) on heterogeneity.

We were also concerned that overlap of individuals (duplicated or related) 
between the two components of the European ancestry meta-analysis might lead 
to false positive association signals. We performed bivariate linkage- disequilibrium 
score regression8 using the two components of the European ancestry meta- analysis 
and observed a genetic covariance intercept of 0.0156 ±  0.0058 (s.e.), indicating 
a maximum of 1,119 duplicate individuals. Univariate linkage- disequilibrium 
score regression8 of the European ancestry meta-analysis estimated the intercept 
as 1.0426, which may indicate population structure or relatedness that was not 
adequately accounted for in the analysis. To assess the impact of this inflation on 
the European ancestry meta-analysis, we expanded the standard errors of BW 
allelic effect size estimates and re-calculated association P values. On the basis of 
this adjusted analysis, only the lead SNP at MTNR1B dropped below genome-wide 
significance (rs10830963, P =  5.5 ×  10−8).
Trans-ancestry meta-analysis. The trans-ancestry meta-analysis combined the 
two European ancestry components with an additional 10,104 individuals from 
six GWAS from diverse ancestry groups: African American, Chinese, Filipino, 
Surinamese, Turkish and Moroccan. Within each GWAS, we first combined 
sex-specific BW association summary statistics in a fixed-effects meta- analysis, 
implemented in GWAMA (ref. 39) and applied a second round of genomic 
 control34. Subsequently, we combined association summary statistics from the 
six non-European GWAS and the two European ancestry components in a trans- 
ancestry fixed-effects meta-analysis, implemented in GWAMA (ref. 39). Variants 
failing GWAS quality control filters in the UK Biobank, reported in less than 50% 
of the total sample size in the first component, or with MAF < 0.1%, were excluded 
from the trans-ancestry meta-analysis. We tested for heterogeneity in allelic effects 
between ancestries using Cochran’s Q (ref. 41).
Approximate conditional analysis. We searched for multiple distinct BW 
association signals in each of the established and novel loci, defined as 1 Mb 
up- and down-stream of the lead SNP from the trans-ancestry meta-analysis, 
through approximate conditional analysis. We applied GCTA (ref. 42) to  identify 
‘index SNPs’ for distinct association signals attaining genome-wide significance 
(P <  5 ×  10−8) in the European ancestry meta-analysis using a reference  sample 
of 5,000 individuals of white British origin, randomly selected from the UK 
Biobank, to approximate patterns of linkage disequilibrium between variants in 
these regions. Note that we performed approximate conditioning on the basis of 
only the European ancestry meta-analysis because GCTA cannot accommodate 
linkage-disequilibrium variation between diverse populations.
Prioritizing candidate genes in each BW locus. We combined a number of 
approaches to prioritize the most likely candidate gene(s) in each BW locus. 
Expression quantitative trait loci (eQTLs) were obtained from the Genotype 
Tissue Expression (GTEx) Project43, the GEUVADIS project44 and eleven other 
studies45–55 using HaploReg v4 (ref. 56). We interrogated coding variants for each 
BW lead SNP and its proxies (EUR R2 >  0.8) using Ensembl57 and HaploReg. Their 
likely functional consequences were predicted by SIFT (ref. 58) and PolyPhen2  
(ref. 59). Biological candidacy was assessed by presence in significantly enriched 
gene set pathways from MAGENTA analyses (see below for details). We extracted 
all genes within 300 kb of all lead BW SNPs and searched for connectivity between 
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any genes using STRING (ref. 60). If two or more genes between two separate BW 
loci were connected, they were given an increased prior for both being plausible 
candidates. We also applied protein–protein interaction (PPI) analysis (see below 
for details) to all genes within 300 kb of each lead BW SNPs and ranked the genes 
based on the score for connectivity with the surrounding genes.
Evaluation of imputation quality of the low-frequency variant at the YKT6–
GCK locus. At the YKT6–GCK locus, the lead SNP (rs138715366) was found at 
a low frequency in European ancestry populations (MAF =  0.92%) and was even 
rarer in other ancestry groups (MAF =  0.23% in African Americans, otherwise 
monomorphic) and was not present in the HapMap reference panel61. To assess the 
accuracy of imputation for this low-frequency variant, we genotyped rs138715366 
in the Northern Finland Birth Cohort (NFBC) 1966 (Supplementary Table 1). Of 
the 5,009 samples in the study, 4,704 were successfully imputed and genotyped 
(or sequenced) for rs138715366. The overall concordance rate between imputed 
and directly assayed genotypes was 99.8% and for directly assayed heterozygote 
calls was 75.0%.
Fine-mapping analyses. We investigated linkage-disequilibrium differences 
between populations contributing to the trans-ancestry meta-analysis and to take 
advantage of the improved coverage of common and low-frequency  variation 
offered by 1000G or 1000G and UK10K combined imputation to localize  variants 
driving each distinct association signal achieving locus-wide significance. For 
each distinct signal, we used MANTRA (ref. 62) to construct 99% credible sets of 
 variants63 that together account for 99% of the posterior probability of  driving the 
association. MANTRA incorporates a prior model of relatedness between  studies, 
based on mean pair-wise allele frequency differences across loci, to account for 
 heterogeneity in allelic effects (Supplementary Table 3). MANTRA has been 
demonstrated, by simulation, to improve localization of causal variants compared 
with either a fixed- or random-effects trans-ancestry meta-analysis62,64.

For loci with only one signal of association, we used MANTRA to combine 
 summary statistics from the six non-European GWAS and the two European 
 ancestry components. However, for loci with multiple distinct association signals, 
we used MANTRA to combine summary statistics from approximate conditioning 
for the two European components, separately for each signal.

For each distinct signal, we calculated the posterior probability that the jth 
variant, πCj, is driving the association, given by

π =
Λ

∑ Λ
j

j

k k
C

where the summation is over all variants mapping within the (conditional) 
meta-analysis across the locus. In this expression, Λj is the Bayes’ factor in 
favour of association from the MANTRA analysis. A 99% credible set63 was then 
constructed by: (i) ranking all variants according to their Bayes’ factor, Λj; and  
(ii) including ranked variants until their cumulative posterior probability  
exceeds 0.99.
Genomic annotation. We used genomic annotations of DNaseI hypersensitive 
sites (DHS) from the ENCODE (ref. 65 project and protein coding genes from 
GENCODE (ref. 66). We filtered cell types that are cancer cell lines (karyotype 
‘cancer’ from https://genome.ucsc.edu/ENCODE/cellTypes.html), and merged data 
from multiple samples from the same cell type. This resulted in 128 DHS cell-type 
annotations, as well as 4 gene-based annotations (coding exon, 5′ UTR, 3′ UTR and 
1 kb upstream of the transcription start site (TSS)). First, we tested for the effect of 
each cell type DHS and gene annotation individually using the Bayes’ factors for 
all variants in the 62 credible sets using fgwas (ref. 67). Second, we categorized the 
annotations into ‘genic’, ‘fetal DHS’, ‘embryonic DHS’, ‘stem cell DHS’, ‘neonatal 
DHS’ and ‘adult DHS’ based on the description fields from ENCODE, and tested 
for the effect of each category individually as described above using fgwas. Third, 
we then tested the effect of each category by including all categories in a joint model 
using fgwas. For each of the three analyses, we obtained the estimated effects and 
95% confidence intervals (CI) for each annotation, and considered an annotation 
enriched if the 95% CI did not overlap zero.
Estimation of genetic variance explained. The ‘variance explained’ statistic 
was calculated using the REML method implemented in GCTA (ref. 68). We 
 considered the variance explained by two sets of SNPs: (i) lead SNPs of all 62 
distinct association signals at the 59 established and novel autosomal BW loci 
identified in the European-specific or trans-ancestry meta-analyses; (ii) lead SNPs 
of 55 distinct association signals at the 52 novel autosomal BW loci (Extended 
Data Table 1a and Supplementary Table 7). The ‘variance explained’ was calculated 
in samples of European ancestry in the Hyperglycemia and Adverse Pregnancy 
Outcome (HAPO) study69 (independent of the meta-analysis) and two studies 
that were part of the European ancestry meta-analysis: NFBC1966 and Generation 
R (Supplementary Table 1). In each study, the genetic relationship matrix was 
estimated for each set of SNPs and was tested individually against BW (males 

and females combined) with study specific covariates. These analyses provided 
an estimate and s.e. for the variance explained by each of the given sets of SNPs.
Examining the relative effects on BW of maternal and fetal genotype at the 60 
identified loci. We performed four sets of analyses. First, we used GWAS data 
from 4,382 mother–child pairs in the Avon Longitudinal Study of Parents and 
Children (ALSPAC) study to fit a ‘maternal-GCTA model’6 to estimate the extent 
to which the maternal genome might influence offspring BW independent of the 
fetal genome. The maternal-GCTA model uses genome-wide genetic similarity 
between mothers and offspring to partition the phenotypic variance in BW into 
components due to the maternal genotype, the child’s genotype, the covariance 
between the two and environmental sources of variation.

Second, we compared associations with BW of the fetal versus maternal 
 genotype at each of the 60 BW loci. The maternal allelic effect on offspring BW 
was obtained from a maternal GWAS meta-analysis of 68,254 European mothers 
from the EGG Consortium (n =  19,626)7 and the UK Biobank (n =  48,628). In 
the UK Biobank, mothers were asked to report the BW of their first child. Women 
of European ancestry with genotype data available in the May 2015 data release 
were included, and those with reported BW equivalent to < 2.5 kg or > 4.5 kg were 
excluded. No information on gestational age or gender of child was available. 
BW of first child was associated with maternal factors such as smoking status, 
BMI and height in the expected directions. Of the 68,254 women included in the 
maternal GWAS, 13% were mothers of individuals included in the current fetal 
European ancestry GWAS, and a further ∼45% were themselves (with their own 
BW) included in the fetal GWAS.

Third, we additionally conducted analyses in 12,909 mother–child pairs from 
nine contributing studies: at each of the 60 loci, we compared the effect of the fetal 
genotype on BW adjusted for sex and gestational age, with and without adjust-
ment for maternal genotype. We reciprocally compared the association between 
the maternal genotype and BW with and without adjustment for fetal genotype.

Fourth, we used the method of Zhang et al.15 to test associations between BW 
and the maternal untransmitted, maternal transmitted and inferred paternal 
 transmitted haplotype score of 422 height SNPs25, 30 SBP SNPs13,14 and 84 T2D 
SNPs24 in 5,201 mother–child pairs from the ALSPAC study.
Linkage-disequilibrium score regression. The use of linkage-disequilibrium 
score regression to estimate the genetic correlation between two traits/diseases 
has been described in detail elsewhere70. Briefly, the linkage-disequilibrium score 
is a measure of how much genetic variation each variant tags; if a variant has a 
high linkage-disequilibrium score then it is in high linkage disequilibrium with 
many nearby polymorphisms. Variants with high linkage-disequilibrium scores 
are more likely to contain more true signals and hence provide more chance of 
overlap with genuine signals between GWAS. The linkage-disequilibrium score 
regression method uses summary statistics from the GWAS meta-analysis of BW 
and the other traits of interest, calculates the cross-product of test statistics at each 
SNP, and then regresses the cross-product on the linkage-disequilibrium score. 
Bulik-Sullivan et al.70 show that the slope of the regression is a function of the 
genetic covariance between traits:

ρ ρ= +E z z
N N

M
l N

N N
( )j j

g
j

s
1 2

1 2

1 2

where Ni is the sample size for study i, ρg is the genetic covariance, M is the number 
of SNPs in the reference panel with MAF between 5% and 50%, lj is the linkage- 
disequilibrium score for SNP j, Ns quantifies the number of individuals that  overlap 
both studies, and ρ is the phenotypic correlation amongst the Ns overlapping 
 samples. Thus, if there is sample overlap (or cryptic relatedness between samples), 
it will only affect the intercept from the regression (that is, the term ρN

N N
s

1 2
) and 

not the slope, and hence estimates of the genetic covariance will not be biased by 
sample overlap. Likewise, population stratification will affect the intercept but will 
have minimal impact on the slope (that is, intuitively since population stratification 
does not correlate with linkage disequilibrium between nearby markers).

Summary statistics from the GWAS meta-analysis for traits and diseases of 
interest were downloaded from the relevant consortium website. The summary 
statistics files were reformatted for linkage-disequilibrium score regression 
 analysis using the munge_sumstats.py python script provided on the  developer’s 
website (https://github.com/bulik/ldsc). For each trait, we filtered the summary 
 statistics to the subset of HapMap 3 SNPs71, as advised by the developers, to 
ensure that no bias was introduced due to poor imputation quality. Summary 
statistics from the European-specific BW meta-analysis were used because of the 
variable  linkage-disequilibrium structure between ancestry groups. Where the 
sample size for each SNP was included in the results file this was flagged using 
N-col; if no  sample size was available then the maximum sample size reported in 
the  reference for the GWAS meta-analysis was used. SNPs were excluded for the 
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 following reasons: MAF <  0.01; ambiguous strand; duplicate rsID; non- autosomal 
SNPs; reported sample size less than 60% of the total available. Once all files were 
 reformatted, we used the ldsc.py python script, also on the developers’ website, to 
calculate the genetic correlation between BW and each of the traits and  diseases. 
The European linkage-disequilibrium score files calculated from the 1000G 
 reference panel and provided by the developers were used for the analysis. Where 
multiple GWAS meta-analyses had been conducted on the same phenotype (that 
is, over a period of years), the genetic correlation with BW was estimated using 
each set of summary statistics and presented in Supplementary Table 12. The 
phenotypes with multiple GWAS included height, BMI, waist–hip ratio (adjusted 
for BMI), total cholesterol, triglycerides, high density lipoprotein (HDL) and low 
density lipoprotein (LDL). The estimate of the genetic correlation between the 
multiple GWAS meta-analyses on the same phenotype were comparable and the 
later GWAS had a smaller standard error due to the increased sample size, so 
only the genetic correlation between BW and the most recent meta-analyses were 
presented in Fig. 2.

In the published GWAS for blood pressure14 the phenotype was adjusted for 
BMI. Caution is needed when interpreting the genetic correlation between BW 
and BMI-adjusted SBP owing to the potential for collider bias72. Since BMI is 
associated with both blood pressure and BW, it is possible that the use of a blood 
pressure genetic score adjusted for BMI might bias the genetic correlation estimate 
towards a more negative value. To verify that the inverse genetic correlation with 
BW (rg =  − 0.26, s.e. =  0.05, P =  6.5 ×  10−9) was not due to collider bias caused by 
the BMI adjustment of the phenotype, we obtained an alternative estimate using 
UK Biobank GWAS data for SBP that was unadjusted for BMI and obtained a 
similar result (Rg =  − 0.22, s.e. =  0.03, P =  5.5 ×  10−13). The SBP phenotype in the 
UK Biobank was prepared as follows. Two blood pressure readings were taken at 
assessment, approximately 5 min apart. We included all individuals with an auto-
mated blood pressure reading (taken using an automated Omron blood pressure 
monitor). Two valid measurements were available for most participants (averaged 
to create a blood pressure variable, or alternatively a single reading was used if only 
one was available). Individuals were excluded if the two readings differed by more 
than 4.56 s.d. Blood pressure measurements more than 4.56 s.d. away from the 
mean were excluded. We accounted for blood pressure medication use by adding 
15 mm Hg to the SBP measure. Blood pressure was adjusted for age, sex and centre 
location and then inverse rank normalized. We performed the GWAS on 127,698 
individuals of British descent using BOLT-LMM (ref. 37), with genotyping array 
as covariate.
Estimating the proportion of the BW-adult traits covariance attributable to 
genotyped SNPs. We estimated the phenotypic, genetic and residual correlations 
as well as the genetic and residual covariance between BW and several quantitative 
traits and/or disease outcomes in the UK Biobank using directly genotyped SNPs 
and the REML method implemented in BOLT-LMM (ref. 37). The traits examined 
included T2D, SBP, diastolic blood pressure, CAD, height, BMI, weight, waist–hip 
ratio, hip circumference, waist circumference, obesity, overweight, age at menarche, 
asthma, and smoking. Where phenotypes were not available (for example, serum 
blood measures are not currently available in the UK Biobank), we obtained 
 estimates using the NFBC1966 study (for correlations/covariance between BW and 
triglycerides, total cholesterol, HDL, LDL, fasting glucose and fasting  insulin). In 
the UK Biobank analysis, we used 57,715 unrelated individuals with BW available 
and identified by the UK Biobank as white British. SNPs with evidence of deviation 
from Hardy–Weinberg equilibrium (P <  1 ×  10−6), MAF <  0.05 or overall missing 
rate > 0.015 were excluded, resulting in 328,928 SNPs for analysis. We included the 
first five ancestry principal components as covariates. In the NFBC1966 analysis, 
5,009 individuals with BW were enrolled. Genotyped SNPs that passed quality 
 control (Supplementary Table 2) were included, resulting in 324,895 SNPs for 
analysis. The first three ancestry principal components and sex were included 
as covariates.
Gene set enrichment analysis. Meta-analysis gene-set enrichment of variant 
associations (MAGENTA) was used to explore pathway-based associations using 
summary statistics from the trans-ancestry meta-analysis. MAGENTA implements 
a gene set enrichment analysis (GSEA) based approach, as previously described9. 
Briefly, each gene in the genome was mapped to a single index SNP with the 
lowest P value within a 110 kb upstream and 40 kb downstream window. This 
P value, representing a gene score, was then corrected for confounding factors 
such as gene size, SNP density and linkage-disequilibrium-related properties in a 
 regression model. Genes within the HLA-region were excluded from analysis due 
to difficulties in accounting for gene density and linkage-disequilibrium patterns. 
Each mapped gene in the genome was then ranked by its adjusted gene score. At 
a given significance threshold (95th and 75th percentiles of all gene scores), the 
observed number of gene scores in a given pathway, with a ranked score above 
the specified threshold percentile, was calculated. This observed statistic was 

then compared to 1,000,000 randomly permuted pathways of identical size. This 
generates an empirical GSEA P value for each pathway. Significance was attained 
when an  individual pathway reached a FDR <  0.05 in either analysis. In total, 3,216 
pre-defined  biological pathways from Gene Ontology, PANTHER, KEGG and 
Ingenuity were tested for enrichment of multiple modest associations with BW. 
The MAGENTA software was also used for enrichment testing of custom gene sets.
Protein–protein interaction network analyses. We used the integrative 
 protein-interaction-network-based pathway analysis (iPINBPA) method73. Briefly, 
we generated gene-wise P values from the trans-ancestry meta-analysis using 
VEGAS2 (ref. 74), which mapped the SNPs to genes and accounted for  possible 
confounders, such as linkage-disequilibrium between markers. The  empirical 
gene-wise P values were calculated using simulations from the multivariate  normal 
 distribution. Those that were nominally significant (P ≤  0.01) were selected as 
‘seed genes’, and were collated within a high confidence version of inweb3  
(ref. 75) to weight the nodes in the network following a guilt-by-association 
approach. In a second step, a network score was defined by the combination of 
the Z scores derived from the gene-wise P values with node weights using the 
Liptak-Stouffer method76. A heuristic algorithm was then applied to extensively 
search for modules enriched in genes with low P values. The modules were 
 further  normalized using a null distribution of 10,000 random networks. Only 
those  modules with Z score >  5 were selected. Finally, the union of all modules 
 constructed a BW-overall PPI network. Both the proteins on the individual 
modules and on the overall BW-PPI were interrogated for enrichment in Gene 
Ontology terms (biological processes) using a hypergeometric test. Terms were 
considered as significant when the adjusted P value, following the Benjamini–
Hochberg procedure, was below 0.05.
Point of contact analyses. The same methodology described above was applied 
to 16 different adult traits resulting in a number of enriched modules per trait. 
Different modules for each trait were combined in a single component and the 
intersection between these trait-specific components and the BW component 
was calculated. This intersection was defined as the PoC network. We used the 
 resulting PoC networks in downstream analyses to interrogate which set of  proteins 
 connected BW variation and adult trait variation via pathways enriched in the 
overall BW analysis.
Parent-of-origin specific associations. We first searched for evidence of 
 parent-of-origin effects in the UK Biobank samples by comparing variance between 
heterozygotes and homozygotes using Quicktest (ref. 77). In this analysis, we 
used only unrelated individuals identified genetically as of white British origin 
(n =  57,715). Principal components were generated using these individuals and the 
first five were used to adjust for population structure as covariates in the analysis, 
in addition to a binary indicator for genotyping array.

We also examined 4,908 mother–child pairs in ALSPAC and determined the 
parental origin of the alleles where possible78. Briefly, the method used mother–
child pairs to determine the parent of origin of each allele. For example, if the 
mother/child genotypes were AA/Aa, the child’s maternal/paternal allele combi-
nation was A/a. For the situation where both mother and child were heterozygous, 
the child’s maternal/paternal alleles could not be directly specified. However, the 
parental origin of the alleles could be determined by phasing the genotype data 
and comparing maternal and child haplotypes. We then tested these alleles for 
association with BW adjusting for sex and gestational age.

Statistical power in these currently available sample sizes was insufficient to rule 
out widespread parent-of-origin effects across the regions tested. Using the mean β 
(0.034 s.d.) and MAF (0.28) of the identified loci, we estimate that we would need 
at least 200,000 unrelated individuals or 70,000 mother–child pairs for 80% power 
to detect parent-of-origin effects at P <  0.00085.
Hierarchical clustering of BW loci. To explore the different patterns of  association 
between BW and other anthropometric/metabolic/endocrine traits and  diseases, 
we performed hierarchical clustering analysis. The lead SNP (or proxy, EUR 
R2 >  0.6) at the 60 BW loci was queried in publicly available GWAS meta- 
analysis datasets or in GWAS results obtained through collaboration79. Results 
were  available for 53 of those loci and the extracted Z score (allelic effect/s.e., 
Supplementary Table 17) was aligned to the BW-raising allele. We performed 
two dimensional clustering by trait and by locus. We computed the Euclidean 
 distance amongst Z scores of the extracted traits and loci and performed complete 
hierarchical clustering implemented in the pvclust package (http://www.sigmath.
es.osaka-u.ac.jp/shimo-lab/prog/pvclust/) in R v3.2.0 (http://www.R-project.org/). 
Clustering uncertainty was measured by multiscale bootstrap resampling estimated 
from 1,000 replicates. We used α =  0.05 to define distinct clusters and, based on 
the bootstrap analysis, calculated the Calinski index to identify the number of 
well-supported clusters (cascadeKM function, vegan package, http://CRAN.R-
project.org/package= vegan). Clustering was visualized by constructing dendro-
grams and a heat map.
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Separately from the hierarchical clustering analysis, we queried the lead SNP 
at EPAS1 in a GWAS of haematological traits80 because variation at that locus has 
previously been implicated in BW and adaptation to hypoxia at high altitudes in 
Tibetans81,82 (Supplementary Table 17).
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Extended Data Figure 1 | Flow chart of the study design. 

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



	  

	  222 

LETTER RESEARCH

Extended Data Figure 2 | Manhattan and quantile–quantile (QQ) plots 
of the trans-ancestry meta-analysis for BW. a, Manhattan (main panel) 
and QQ (top right) plots of genome-wide association results for BW from 
trans-ancestry meta-analysis of up to 153,781 individuals. The association 
P value (on − log10 scale) for each of up to 22,434,434 SNPs (y axis) was 
plotted against the genomic position (NCBI Build 37; x axis). Association 
signals that reached genome-wide significance (P <  5 ×  10−8) are shown 
in green if novel and pink if previously reported. In the QQ plot, the black 
dots represent observed P values and the grey line represents expected  
P values under the null distribution. The red dots represent observed  
P values after excluding the previously identified signals5. b, Manhattan 

(main panel) and QQ (top right) plots of trans-ethnic GWAS meta-
analysis for BW highlighting the reported imprinted regions described in 
Supplementary Table 14. Novel association signals that reached genome-
wide significance (P <  5 ×  10−8) and mapped to imprinted regions are 
shown in green. Genomic regions outside imprinted regions are shaded 
in grey. SNPs in the imprinted regions are shown in light blue or dark 
blue, depending on chromosome number (odd or even). In the QQ plot, 
the black dots represent observed P values and the grey lines represent 
expected P values and their 95% confidence intervals under the null 
distribution for the SNPs within the imprinted regions.
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Extended Data Figure 3 | Regional plots for multiple distinct signals 
at three BW loci. Regional plots for each locus, ZBTB7B (a), HMGA1 
(b) and PTCH1 (c), are displayed from: the unconditional European-
specific meta-analysis of up to 143,677 individuals (left); the approximate 
conditional meta-analysis for the primary signal after adjustment for the 
index variant for the secondary signal (middle); and the approximate 
conditional meta-analysis for the secondary signal after adjustment for the 
index variant for the primary signal (right). Directly genotyped or imputed 

SNPs were plotted with their association P values (on a − log10 scale) as a 
function of genomic position (NCBI Build 37). Estimated recombination 
rates (blue lines) were plotted to reflect the local linkage-disequilibrium 
structure around the index SNPs and their correlated proxies. SNPs were 
coloured in reference to linkage-disequilibrium with the particular index 
SNP according to a blue to red scale from R2 =  0 to 1, based on pairwise 
R2 values estimated from a reference of 5,000 individuals of white British 
origin, randomly selected from the UK Biobank.
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Extended Data Figure 4 | Comparison of fetal effect sizes and maternal 
effect sizes at 60 known and novel birth weight loci, for the first 24 
loci. The remaining loci are shown in Extended Data Fig. 5a. For each 
BW locus, the following six effect sizes (with 95% CI) are shown, all 
aligned to the same BW-raising allele: fetal_GWAS, fetal allelic effect 
on BW (from European ancestry meta-analysis of up to n =  143,677 
individuals); fetal_unadjusted, fetal allelic effect on BW (unconditioned 
in n =  12,909 mother–child pairs); fetal_adjusted, fetal effect (conditioned 
on maternal genotype, n =  12,909); maternal_GWAS, maternal allelic 
effect on offspring BW (from meta-analysis of up to n =  68,254 European 
mothers)7; maternal_unadjusted, maternal allelic effect on offspring 

BW (unconditioned, n =  12,909); maternal_adjusted, maternal effect 
(conditioned on fetal genotype, n =  12,909). The 60 BW loci were ordered 
by chromosome and position (Supplementary Tables 10, 11). These 
plots illustrate that, in large GWAS of BW, fetal effect size estimates are 
larger than those of maternal at 55 out of 60 identified loci (binomial 
P =  1 ×  10−11), suggesting that most of the associations are driven by the 
fetal genotype. In conditional analyses that modelled the effects of both 
maternal and fetal genotypes (n =  12,909 mother–child pairs), confidence 
intervals around the estimates were wide, precluding inference about the 
likely contribution of maternal versus fetal genotype at individual loci.
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Extended Data Figure 5 | Comparison of fetal effect sizes and maternal effect sizes at 60 known and novel birth weight loci, for the remaining 36 
loci. a, Continued from Extended Data Fig. 4. b, The scatter plot illustrates the difference between the fetal (x axis) and maternal (y axis) effect sizes in 
the overall maternal versus fetal GWAS results.
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Extended Data Figure 6 | Protein–protein Interaction (PPI) Network 
analysis. a, The largest global component of BW PPI network containing 
13 modules is shown. b, The histogram shows the null distribution of  
Z scores of BW PPI networks based on 10,000 random networks, and 
where the Z scores for the 13 BW modules (M1–13) lie. For each module, 
the two most significant GO terms are shown. c, A heat map is shown, 
which takes the top 50 biological processes over-represented in the global 
BW PPI network (listed at the right of the plot), and displays the extent 
of enrichment for the various trait-specific “point of contact“ (PoC) PPI 
networks. d, e, Trait-specific PoC PPI networks composed of proteins that 
are shared in both the global BW PPI network and networks generated 

using the same pipeline for each of the adult traits: d, canonical Wnt 
signalling pathway enriched for PoC PPI between BW and blood pressure 
(BP)-related phenotypes; and e, regulation of insulin secretion pathway 
enriched for PoC between BW and T2D/fasting glucose (FG). Red nodes 
indicate those present in PoC for BW and traits of interest; blue nodes 
correspond to the pathway nodes; purple nodes are those present in both 
the pathway and PoC; orange nodes are genes in BW loci that overlap 
with both the pathway and PoC. Large nodes correspond to genes in BW 
loci (within 300 kb from the lead SNP), and have a black border if they, 
amongst all BW loci, have a stronger (top 5) association with at least one  
of the pairing adult traits.
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Extended Data Figure 7 | Quantile–Quantile (QQ) plots of variance 
comparison between heterozygotes and homozygotes analysis in 57,715 
UK Biobank samples and parent-of-origin specific analysis in 4,908 
ALSPAC mother–child pairs at 59 autosomal BW loci plus DLK1. a, QQ 
plot from the Quicktest analysis (ref. 77) comparing the BW variance of 
heterozygotes with homozygotes in 57,715 UK Biobank samples. b, QQ 
plot from the parent-of-origin specific analysis testing the association 
between BW and maternally transmitted versus paternally transmitted 
alleles in 4,908 mother–child pairs from the ALSPAC study (Methods, 

Supplementary Tables 15, 16). In both panels, the black dots represent lead 
SNPs at 59 identified autosomal BW loci and a further sub-genome-wide 
significant signal for BW near DLK1 (rs6575803; P =  5.6 ×  10−8). The grey 
lines represent expected P values and their 95% confidence intervals under 
the null distribution for the 60 SNPs. Both results show trends in favour of 
imprinting effects at BW loci; however, despite the large sample size, these 
analyses were underpowered (see Methods) and much larger sample sizes 
are required for definitive analysis.
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Extended Data Figure 8 | Summary of previously reported loci for SBP, 
CAD, T2D and adult height and their effect on birth weight. a–d, Effect 
sizes (left y axis) of previously reported 30 SBP loci13,14, 45 CAD loci23,  
84 T2D loci24 and 422 adult height loci25 were plotted against effects on 
BW (x axis). Effect sizes were aligned to the adult trait (or risk)-raising 
allele. The colour of each dot indicates BW association P value: red, 
P <  5 ×  10−8; orange, 5 ×  10−8 ≤  P <  0.001; yellow, 0.001 ≤  P <  0.01; white, 
P ≥  0.01. The superimposed grey frequency histogram shows the number 
of SNPs (right y axis) in each category of BW effect size. e, Effect sizes 
(with 95% CI) on BW of 45 known CAD loci were plotted arranged in the 
order of CAD effect size from highest to lowest, separating out the known 

SBP loci. CAD loci with a larger effect on BW concentrated amongst loci 
with primary blood pressure association. f, Effect sizes (with 95% CI) on 
BW of 32 known T2D loci were plotted, subdivided by previously reported 
categories derived from detailed adult physiological data27. Heterogeneity 
in BW effect sizes between five T2D loci groups with different mechanistic 
categories was substantial (Cochran’s Q statistic Phet =  1.2 ×  10−9). In 
pairwise comparisons, the ‘beta cell’ group of variants differed from the 
other four groups: fasting hyperglycaemia (Phet =  3 ×  10−11), insulin 
resistance (Phet =  0.002), proinsulin (Phet =  0.78) and unclassified 
(Phet =  0.02) groups. All of the BW effect sizes plotted in the forest plots 
were aligned to the trait (or risk)-raising allele.
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Extended Data Table 1 | Sixty loci associated with BW (P < 5 × 10−8) in European ancestry meta-analysis of up to 143,677 individuals  
and/or trans-ancestry meta-analysis of up to 153,781 individuals

a, Effects (β  values) were aligned to the BW-raising allele. Effect allele frequency (EAF) was obtained from the trans-ancestry meta-analysis, except for PLAC1, for which the EAF was obtained from  
the European ancestry meta-analysis due to lack of X chromosome data from the non-European studies. Chr, chromosome; bp, base pair; b37, build 37; EAF, effect allele frequency; SE, standard error. 
b, The effect of the lead SNP (absolute value of β , y axis) is given as a function of minor allele frequency (x axis) for 60 known (pink) and novel (green) BW loci from the trans-ancestry meta-analysis. 
Error bars are proportional to the standard error of the effect size. The dashed line indicates 80% power to detect association at genome-wide significance level for the sample size in trans-ancestry 
meta-analysis.
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Extended Data Table 2 | Gene set enrichment analysis and protein–protein interaction (PPI) analysis

Two complementary analyses of the overall GWAS summary data identified enrichment of BW associations in biological pathways related to metabolism, growth and development. a, The top results 
(FDR <  0.05 at the 95th percentile enrichment threshold) from a total of 3,216 biological pathways tested for enrichment of multiple modest associations with BW. Additionally, results are shown for 
custom sets of imprinted genes: Primary, genes identified as highly likely to be imprinted in the GTEx database (tested n = 38); Primary + suggestive, genes identified as highly likely and suggestively 
imprinted in GTEx (n = 55); All, the above plus genes selected from the literature where imprinting status is consistent in GTEx (n = 77). b, The results of a complementary analysis of empirical PPI data, 
displaying the top 10 most significant pathways enriched for BW-association scores.  
aP value is adjusted for multiple correction using the Benjamini–Hochberg method.
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