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Abstract 

The decision to choose a reinsurance program has many complexities since it is difficult to get 

simultaneously high levels in different optimal criteria including maximum gain, minimum 

variance and probability of ruin. This article suggests a new method in which through 

membership functions we can measure the distance of each alternative to an optimal result and 

aggregate it by using different types of aggregations. In this paper, particular attention is given 

to the induced Minkowski ordered weighted averaging distance operator and the induced 

Minkowski probabilistic ordered weighted averaging distance operator. The main advantage of 

these operators is that they include a wide range of special cases. Thus, they can adapt 

efficiently to the specific needs of the calculation processes. By doing so, the reinsurance 

system can make better decisions by using different scenarios in the uncertain environment 

considered. 
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1. Introduction 

 

Reinsurance is an instrument used by insurance companies to align risks with 

their financial capacity by transferring all or part of the risk assumed to reinsurer to not 

jeopardize the solvency of the insurer. But otherwise this level of reinsurance reduces 

the profits of the company by sharing part of its income from premiums. As in other 

problems of the insurance sector in the case of reinsurance, the statistical tools have 

proven very effective in their management. However, when deciding on a type of 

reinsurance the insurance company faces decisions involving internal and external 

factors that are determined by the general environment such as the expected economic 

situation and by the specific environment as legal regulations of the sector. 

The important role of reinsurance in the insurance sector is beyond dispute. So 

the decisions in insurance companies will have a direct and highly relevant influence on 

their organizational goals. In this regard it is important to highlight some of the basic 

reasons for hiring reinsurance. First, for spreading the risk of a possible loss, either 

partially or completely. Next, for taking risks for an amount exceeding what the 

company can cope with their own resources. Finally, to increase the volume of business 

or facilitating the emergence of new insurers. 

 These reasons lead to insurers to be primarily based on the criteria of 

profitability and solvency to decide on a particular reinsurance, being important to note 

that as well as quantitative information, there are other subjective criteria for decision-

making.  That is why in this article a method is proposed using tools such as fuzzy 

logic, fuzzy numbers and OWA operators (Yager, 1988; Yager et. al. 2011) with 

Minkowski distances to evaluate alternative reinsurance systems. This evaluation is 

based on the use of reinsurance optimization criteria (maximum gain, minimum 
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variance and minimum probability of ruin), in which it is very difficult for an alternative 

to be better than the others in all criteria at once. Therefore, from an optimal level of 

acceptance defined by experts, the alternatives are compared using Hamming and 

Euclidean distances. They are generalized with the Minkowski distance and are added 

with OWA operators, through the IMOWAD operator (Merigó & Casanovas, 2011a, 

2011b, 2011c) to make decisions involving the optimistic or pessimistic attitude of the 

decision maker. 

 Note that in the literature there are a variety of new operators with distances 

among which are the OWA distance (Merigó & Gil-Lafuente, 2010, Xu & Chen, 2008), 

continuous distances (Zhou et al 2013), distances with Choquet integral (Bolton et al., 

2008), the probabilistic weighted averaging distance (PWAD) (Merigó, 2013), the 

immediate probabilities (Merigó & Gil-Lafuente, 2012), the probabilistic OWA distance 

(Merigó et al. 2013) and moving distances (Merigó & Yager, 2013). Other models have 

focused on the use of imprecise information with distances including intervals numbers 

(Zeng, 2013a) and fuzzy numbers (Su et al 2013; Xu, 2013; Zeng, 2013b). Moreover, 

other related tools have been developed using norms such as the adequacy coefficient 

(Merigó & Gil-Lafuente, 2010, 2013). 

The paper is organized as follows. Section 2 reviews some basic preliminaries 

on reinsurance, OWA operators and distance measures. Section 3 analyzes some 

modern distance aggregation operators and Section 4 presents an application of these 

aggregation operators in a reinsurance problem. Section 5 summarizes the main results 

and conclusions of the paper. 
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2. Preliminaries  

 

This section consists of two parts. The first one explains the main classes of 

reinsurance and criteria for choosing an optimal reinsurance and the second part reviews 

the concepts of OWA operators and distance measures. 

 

2.1. Reinsurance  

 

The reinsurance is a type of contract in which an insurer assumes the risk fully 

or partially covered by another insurer and the transferor may take on more risk by 

ensuring the solvency of the company. The three most common types of reinsurance 

are: 

 

1) Quota Share Reinsurance: is a type of proportional reinsurance where the insurer 

transfers a fixed proportion of the amount of losses to the reinsurer. It is defined as: 

 

                                       ,                                      (1) 

 

where       is the amount that the reinsurer pays for each claim,   is the proportion of 

the individual amount corresponding to the transferor and    is the maximum limit of 

liability. 

 

2) Excess of Loss Reinsurance Risk: is a type of non-proportional contract called 

deductible, in which the reinsurer agrees to assume claims above this amount until the 

limit of liability. It is defined as: 
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 ,                                                           (2) 

 

where       is the amount that the reinsurer pays for each claim,   is deductible 

assuming the transferor and    is the maximum limit of liability. 

 

3) Stop Loss Reinsurance: In this type of contract called priority, where the reinsurer 

covers the amount of losses from certain amount of responsibility to the maximum. It is 

defined as: 

 

       
                                      

                     
 ,                                                         (3) 

 

where      is the amount that the reinsurer pays for each claim,   is the aggregate 

amount of claims assumed by the transferor and    is the maximum limit of liability. 

 

 

2.2. Criteria for optimal reinsurance  

 

The reinsurance decision is a fairly complex process, because it must reconcile 

conflicting aims, being very important the level of risk you are willing to take of the 

insurer depending on the circumstances and environment. The most important criteria in 

this type of decision (Mondragón, 2009) are presented below: 
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1) Maximum Gain: Earnings for the direct insurer are obtained through the following 

expression: 

              ,                                                                (4) 

 

where   is the risk premium charged by the insurer regardless of the type of 

reinsurance,   is the aggregate amount of claims,    is the reinsurance premium and 

     is the aggregate amount of claims recovered. 

Keep in mind that: 

-   and      are random variables. 

-    and      depend on the chosen reinsurance. 

 

2) Minimum Variance: In this approach the optimal reinsurance is one in which the 

aggregate amount of retained claims (      ) is minimal. It is important to consider 

the values of    on this criterion, since the aim is to get the minimum variance at the 

lowest cost.  

An extension appropriate in this case may be the coefficient of variation of the 

portfolio that corresponds to the ratio between the standard deviation and the arithmetic 

mean. 

 

3) Low Probability of Ruin: The solvency of the insurer is a very important criterion 

for reinsurance decisions, this being assessed through the ruin probability. In this case 

an insurer will ruin when: 

      ,                                                                          (5) 
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where   is the gain and    is the capital of the insurer at the beginning of the period, 

where the probability of ruin for initial capital is given by: 

 

               .                                                               (6) 

 

Importantly, G depends on the chosen reinsurance and thus influences the 

probability of ruin. 

As can be seen, it is very complex that reinsurance programs meet all three 

criteria, because if for example you have a low variance, it makes sense that earnings 

are affected by having a higher premium and reinsurance vice versa. Thus reinsurance 

decisions influence the importance that is given to each of the criteria compared to 

others and the risk you are willing to take and this will depend on the optimistic or 

pessimistic attitude of decision maker, being very useful in these cases using OWA 

aggregation operators. 

 

 

2.3. Fuzzy logic and aggregation operators 

 

2.3.1. Fuzzy membership functions  

 

They were introduced by Zadeh (1965) to define the fuzzy sets, taking an 

element as an argument and assigning a value between 0 and 1, which relates the level 

of membership of the element to that set. Some of the most commonly used 

membership functions are the following ones: 
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2.3.2. The OWA operator  

 

The OWA operator provides a parameterized family of aggregation operators 

(Beliakov et. al., 2007; Grabisch et. al., 2011) between the minimum and maximum. In 

this way, information can be added depending on the degree of optimism or pessimism 

that the decision maker wants to take in the decision process (Belles et al. 2013; 

Figueira et. al., 2005; Zavadskas and Turskis, 2011). 

 

Definition 1: An OWA operator is defined as a mapping of dimension n,        , 

that has an associated weighting vector   of dimension n,                
 , that 

meets the following conditions: 

-         . 

-    
 
      

-                   
 
       . 
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The essence of the OWA (Yager, 1988; 1993; 1998) is the rearrangement of the 

elements or arguments, causing the aggregation in    are not associated with a 

weighting   , but the    will be associated with the position in the order for 

aggregation. 

Under this context, it is also possible to define the ascending OWA operator as 

follows. 

 

Definition 2: An Ascending OWA (AOWA) operator is defined as a mapping of 

dimension n,        , that has an associated weighting vector   of dimension n, 

               
 , that meets the following conditions: 

-         . 

-    
 
      

-                   
 
       , 

 

where bj is the jth smallest of the ai, such that,           , which thus differ 

from the OWA where           . 

 

The difference between the OWA operator (Descending OWA) and the 

AOWA is the way it manages the arguments, descending in the first and ascending in 

the second, respectively, and depends on the optimistic or pessimistic attitudes of the 

decision maker. Note that these two operators are related by using wj = w*nj+1, where 

wj is the jth weight of the AOWA and w*nj+1 the jth weight of the DOWA operator. 
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2.3.3. Distance measures  

 

The notion of distance is used to measure the difference or calculate the degree 

of distance between two elements or sets (Gil-Aluja, 1999; Kaufmann, 1975). The 

distances most commonly used are the Hamming distance, the Euclidean distance and 

the Minkowski distance. It can be considered a distance measure, provided that the 

following properties are satisfied: 

 

1. No negativity:           . 

2. Conmutativity:                  . 

3. Reflexivity:           . 

4. Triangle Inequality:                            . 

 

The Hamming distance can be formulated in the following two ways (Hamming, 

1950):  

 

Definition 3 (Discrete Scope): Let   be a finite referential and        , so that the 

Hamming distance is defined as: 

 

                       
 
   .                                                     (10) 

 

with                ;                    . 

 

Definition 4 (Continuous Scope): Assuming that the reference   is the set of real 

numbers      , the Hamming distance              is defined as: 



11 
 

 

                         
  

  
.                                                    (11) 

 

The Euclidean distance can be formulated in the following ways: 

Definition 6 (Discrete Scope): Let   a finite referential and        , so that the 

Euclidean distance is defined as: 

 

                         
 
   ,                                                    (12) 

 

with                ;                    . 

 

Definition 7 (Continuous Scope): Assuming that the reference   is the set of real 

numbers      , the Euclidean distance              is defined as: 

 

                           
  

  
.                                                  (13) 

 

The Minkowski distance is a generalization of a wide range of distances that 

includes the Euclidean and Hamming distances and is formulated as follows: 

 

Definition 8 (Discrete Scope): Let   a finite referential and        , so that the 

Minkowski distance is defined as: 

                        
  

    
 
  

,                                                 (14) 
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with                ;                     and        . 

 

Definition 7 (Continuous Scope): Assuming that the reference   is the set of real 

numbers      , the Minkowski distance              is defined as: 

                        
 
  

  

  
 
 
  

,                                                (15) 

 

with        . 

 

In the Minkowski distance, both in the discrete and continuous scopes, we have: 

 

 If    , it becomes the Hamming distance. 

 If    , it becomes the Euclidean distance. 

 

The normalized Minkowski distance corresponds to a measure that uses 

arithmetic means in the aggregation process and generalizes a wide range of distances 

such as the normalized Hamming distance and the normalized Euclidean distance. This 

distance may be formulated to two sets A and B as follows: 

 

Definition 10: A normalized Minkowski distance of dimension  , is a mapping 

     
       , such that: 

 

          




/1

1

1








 


n

i
ii ba

n
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where    and    are the arguments of the sets A and B and λ is a parameter such that λ ∈ 

(-∞, ∞). 

 

The weighted Minkowski distance is applied in cases where it is preferred to 

give different weights to the individual distance. It is defined as follows: 

 

Definition 11: A weighted Minkowski distance of dimension   is a mapping 

     
       , which has an associated weighting vector   of dimension   such 

that    
 
      and   ∈      . So that: 

 

         




/1

1








 


n

i
iii baw ,                                               (17) 

 

where    and    are the arguments of the sets A and B and λ is a parameter such that λ ∈ 

(-∞, ∞). 

If different values for the parameter λ are formulated, we can obtain a wide 

range of special cases. For example: 

 

 If    , it becomes the weighted Hamming distance. 

 If    , it becomes the weighted Euclidean distance. 
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3. OWA operators and Minkowski distances  

 

3.1 Introduction 

 

Next, let us study some Minkowski distances that use different types of OWA 

operators. The Minkowski OWA distance (MOWAD) operator (Merigó and Casanovas, 

2011a) represents an extension of the normalized Minkowski distance using OWA 

operators, with the difference that the rearrangement of the distances of the arguments is 

in accordance with their values, so that it takes into account the attitudinal character of 

the decision maker. It is defined as follows: 

 

Definition 12: The MOWAD operator of dimension  , is a mapping: 

              , which has an associated weighting vector  , of dimension   

such that    
 
       and   ∈      . So that: 

 

                   




/1

1











n

i
ii Dw ,                                          (18) 

 

where    is the jth largest of the   ,    is the individual distance between A and B, such 

that              and λ is a parameter such that λ ∈ (- ∞, ∞). 

 

If different values for the parameter λ are formulated, you can have a wide range 

of special cases. For example: 

 

 If    , it becomes the Hamming OWA distance operator. 
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 If    , it becomes the Euclidean OWA distance operator. 

 

Another interesting extension is the induced MOWAD (IMOWAD) operator. 

The IMOWAD (or IGOWAD) operator (Merigó & Casanovas, 2011a) is an aggregation 

operator, in which the ordering of the arguments does not depend on their individual 

characteristics, but rather on the induced sorting variables and is defined as follows: 

 

Definition 13: The IMOWAD operator of dimension , is a mapping 

                , which has an associated weighting vector   of dimension   

such that    
 
      and   ∈      .  So that: 

 

                                           




/1

1











n

i
ii Dw ,             (19) 

 

where    is the            , value of the triplet IMOWAD            with the j-th 

largest   ,    is the induced ordering variable,          is the argument variable that is 

represented by individual distances and λ is a parameter such that λ ∈ (- ∞, ∞). 

 

If different values for the parameter λ are formulated, you can have a wide range 

of special cases. For example: 

 

 If    , it becomes the IHOWAD operator (Merigó & Casanovas, 2011b). 

 If    , it becomes the IEOWAD operator (Merigó & Casanovas, 2011c). 
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3.2. The Minkowski probabilistic OWA distance  

 

 The Minkowski probabilistic ordered weighted averaging distance (MPOWAD) 

operator is a distance aggregation operator that provides a unified framework between 

the probability and the OWA operator. It also uses generalized means providing a 

general formulation that includes a wide range of particular cases including the 

probabilistic OWA distance (POWAD) (Merigó et al. 2013) and the Euclidean 

probabilistic ordered weighted averaging distance (EPOWAD). Note that the 

probability can also be seen as the weighted average. For two sets X = {x1, x2, …, xn} 

and Y = {y1, y2, …, yn}, it can be defined as follows. 

 

Definition 14. A MPOWAD operator is a mapping MPOWAD: R
n
  R

n
 → R of 

dimension n, if it has an associated weighting vector W, with 1
1

 
n
j jw  and wj  [0, 

1] and a weighting vector V that affects the probability, with 1
1

 
n
i iv  and vi  [0, 1], 

such that:  

 

MPOWAD (x1, y1, …, xn, yn) =






 

/1

1

/1

1

)1( 
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 
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















n

i
iii

n

j
jj yxvbw ,   (20) 

 

where bj is the jth smallest of the |xi  yi|, xi is the ith argument of the set X = {x1, …, 

xn}, yi is the ith argument of the set Y = {y1, …, yn},   [0, 1] and  and σ are 

parameters such that , σ  (, ) – {0}.  
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Note that it is possible to distinguish between ascending (AMPOWAD) and 

descending (DMPOWAD) orders by using wj = w*nj+1, where wj is the jth weight of the 

AMPOWAD and w*nj+1 the jth weight of the DMPOWAD operator. The MPOWAD 

operator is bounded, idempotent and monotonic. It is also reflexive and non-negative. If 

λ = σ = 1, the MPOWAD operator becomes the POWAD operator (Merigó et al. 2013): 

 

POWAD (x1, y1, …, xn, yn) = 







 


















n

i
iii

n

j
jj yxvbw

11

)1(  ,                 (21) 

 

And if λ = σ = 2, the MPOWAD becomes the EPOWAD operator: 

 

EPOWAD (x1, y1, …, xn, yn) = 







 



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
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








n

i
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n

j
jj yxvbw

1

2

1

2 )1(  .           (22) 

 

3.3. The induced Minkowski probabilistic OWA distance 

 

The induced Minkowski probabilistic ordered weighted averaging distance 

(IMPOWAD) operator is a distance measure that uses a unified framework between the 

probability and the IOWA operator (Yager and Filev, 1999) in the normalization 

process of the Minkowski distance. Thus, the reordering of the individual distances is 

developed according to order-inducing variables that represent a complex reordering 

process of the individual distances. Moreover, it also uses generalized means. 

Therefore, it includes a wide range of distance aggregation operators including the 

induced POWAD (IPOWAD) operator and the induced Euclidean POWAD 

(IEPOWAD) operator.   
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The first main advantage of this new approach is that it is able to deal with 

situations where we have some objective information about the possibility of occurrence 

of the different results. The second main advantage is the use of a parameterized family 

of aggregation operators between the minimum and the maximum. This is assessed with 

order-inducing variables in order to represent the attitudinal character of the decision 

maker in a complete way, considering a wide range of aspects such as the degree of 

optimism, psychological aspects and time pressure. For two sets X = {x1, x2, …, xn} and 

Y = {y1, y2, …, yn}, it can be defined as follows. 

 

Definition 15. An IMPOWAD operator is a mapping IMPOWAD: R
n
  R

n
  R

n
 → R of 

dimension n, if it has an associated weighting vector W, with 1
1

 
n
j jw  and wj  [0, 

1] and a weighting vector V that affects the probability, with 1
1

 
n
i iv  and vi  [0, 1], 

such that:  

 

IMPOWAD (u1, x1, y1, …, un, xn, yn) = 

=






 
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

n
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iii

n

j
jj yxvbw ,      (23) 

 

where bj is the |xi  yi| value of the IGPOWAD triplet ui, xi, yi having the jth largest ui, 

ui is the order-inducing variable, xi is the ith argument of the set X = {x1, …, xn}, yi is 

the ith argument of the set Y = {y1, …, yn},   [0, 1] and  and σ are parameters such 

that , σ  (, ) – {0}.  

Note that the IMPOWAD operator accomplishes similar properties than the 

MPOWAD operator including monotonicity, idempotency, reflexivity, non-negativity 
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and the boundary condition. It includes a wide range of particular cases by using 

different expressions in the weighting vectors and different values of λ and σ. If λ = σ = 

1, the IMPOWAD operator becomes the IPOWAD operator as follows: 

 

IPOWAD (u1, x1, y1, …, un, xn, yn) = 







 


















n

i
iii

n

j
jj yxvbw

11

)1(  ,         (24) 

 

And if λ = σ = 2, the IMPOWAD operator becomes the IEPOWAD operator: 

 

IEPOWAD (u1, x1, y1, …, un, xn, yn) = 







 

















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2 )1(  .  (25) 

 

 

4. Reinsurance systems with OWA operators and distance measures 

 

4.1. Suggested methodology 

 

From statistical techniques it is possible to evaluate different reinsurance 

programs, taking into account different criteria to make optimal decisions (maximum 

gain, minimum variance or probability of ruin), but with data themselves is not easy to 

choose a program. The experts must finally agree on a decision in accordance with the 

objectives of the company. This method uses fuzzy logic tools for evaluating the 

alternatives, through the following process: 
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Step 1: Determine the characteristics or criteria that are most important in the 

decision. These criteria usually have a different numerical scale that can be unified 

using fuzzy numbers through membership functions on a scale of 0-1. 

Step 2: From the results of the previous step a matrix        , containing the 

set of alternatives                and the feature set               is 

constructed.  

Step 3: The optimal strategy where a group of experts defined the most 

appropriate value required for each feature on a scale of 0 to 1 is determined. The 

results will be aggregated using the vector              , such that        
    

and         , which weights the view of each expert, unifying criteria of optimal 

characteristics for the vector              .. 

Step 4: The distances between the characteristics C for each strategy A and the 

vector of optimal strategy E are calculated. The Minkowski distances will be the 

Hamming distance when λ = 1 and the Euclidean distance when λ = 2. 

Step 5: The results of the previous step are added taking into account the 

weighted average with the vector               , such that       
    and 

        , the OWA with the vector               , such that       
    and 

         and a vector of induction               ,  which will be considered in the 

rankings and corresponds to the importance that the experts give to each one of the 

characteristics of the alternatives. 

Step 6: The optimum alternative is chosen establishing a ranking of alternatives 

for every aggregation operators used in ascending order, since the shorter distance will 

be the best result. 
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4.2. Illustrative example  

 

The aim of this case based on the examples of Lemaire (1990) and De Andres 

and Terceño (2002), is to illustrate the decision-making process to choose the most 

suitable XL reinsurance program for a portfolio among different programs proposed by 

a reinsurance company. The criteria taken into account are: 

 

- Criterion 1: Ratio: reinsurance premium / total premium transferor.  

- Criterion 2: Coefficient of variation of the retained portfolio.  

- Criterion 3: Probability of ruin.  

- Criterion 4: Ratio: full / total premium transfer. 

 

The suggested reinsurance programs are shown in the following Table 1:  

 

Table 1: Characteristics of reinsurance programs 

Programs C1 C2 C3 C4 

XL1 0,040 3,85 0,000420 1,45 

XL2 0,030 4,07 0,000263 0,95 

XL3 0,035 4,36 0,000411 1,00 

XL4 0,042 3,92 0,000295 0,85 

XL5 0,028 3,80 0,000398 1,20 

XL6 0,025 4,50 0,000562 1,30 

 

As we can see at a glance whether the decision is made considering only one 

criterion, you may have other problems reflected in the other criteria, being necessary to 
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have more tools to make the decision. To do this all data will be put in the same scale of 

0-1 through fuzzy numbers with membership functions as well: 

 

Criterion 1: Ratio: reinsurance premium / total premium transferor. 

 

            

                                                     

 
       

          
                      

                                                      

  .                              (26) 

 

Criterion 2: Coefficient of variation of the retained portfolio. 

 

            

                                                 

 
    

     
                             

                                                 

  .                                (27) 

 

Criterion 3: Probability of ruin. 
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Criterion 4: Ratio: full / total premium transferor. 

 

            

                          
                         
                   
                           

 .                                                (29) 
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From the above functions the following degrees of membership for each 

reinsurance program are obtained as shown in Table 2:  

 

Table 2: Degrees of membership of criteria 

Programs C1 C2 C3 C4 

XL1 0,40 0,96 0,56 0,55 

XL2 0,80 0,78 1,00 0,95 

XL3 0,60 0,53 0,59 1,00 

XL4 0,32 0,90 0,95 0,85 

XL5 0,88 1,00 0,63 0,80 

XL6 1,00 0,42 0,12 0,70 

 

As noted, no program reaches the maximum level on all criteria and in contrast a 

good value in any of the criteria, is affected by a more negative effect on the others. 

Therefore, it has asked a group of experts to define the optimal level of each of the 

criteria, as shown in Table 3 below: 

 

Table 3: Optimal level of criteria 

Experts C1 C2 C3 C4 

E1 0,9 0,8 0,8 0,9 

E2 0,8 0,7 0,9 0,8 

E3 0,9 0,8 0,7 0,8 

E4 0,9 0,7 0,8 0,9 

E5 0,9 0,9 0,7 0,8 
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These expert opinions are aggregated with the arithmetic mean obtaining the 

following vector of optimal reinsurance presented in Table 4: 

 

Table 4: Optimal reinsurance 

Program C1 C2 C3 C4 

E 0,88 0.78 0.78 0.84 

 

The results have been added using the vectors W = (0.35, 0.25, 0.20, 0.20) and V 

= (0.2, 0.3, 0.2, 0.3) and the induction vector I = (0.87, 0.77, 0.80, 0.84). Moreover, the 

expert opinions about the optimal reinsurance are aggregated with the vector U = (0.3, 

0.3, 0.2, 0.2, 0.1). The criteria for aggregations based on Minkowski distance will be the 

Hamming distance when λ = 1 and the Euclidean distance when λ = 2. The degree of 

importance of the weights (probabilities) is 0.6 while the OWA is 0.4. The results are 

presented in Tables 5 and 6: 

 

Table 5: Aggregated results 1 

Program NHD NED WHD WED OWAHD OWAED POWAD EPOWAD 

XL1 0,29 0,31 0,28 0,30 0,32 0,34 0,296 0,316 

XL2 0,10 0,13 0,09 0,12 0,11 0,15 0,098 0,132 

XL3 0,22 0,22 0,22 0,22 0,23 0,23 0,224 0,224 

XL4 0,22 0,30 0,19 0,27 0,27 0,35 0,222 0,302 

XL5 0,10 0,13 0,11 0,14 0,12 0,15 0,114 0,144 

XL6 0,32 0,39 0,31 0,37 0,37 0,44 0,334 0,398 
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Table 6: Aggregated results 2 

Program AOWAHD AOWAED IOWAHD IOWAED IAOWAHD IAOWAED IPOWAD IEPOWAD 

XL1 0,27 0,29 0,32 0,34 0,27 0,29 0,296 0,316 

XL2 0,09 0,12 0,10 0,12 0,09 0,13 0,094 0,12 

XL3 0,21 0,21 0,23 0,23 0,22 0,23 0,224 0,224 

XL4 0,18 0,27 0,26 0,34 0,20 0,27 0,218 0,298 

XL5 0,08 0,12 0,08 0,12 0,12 0,15 0,098 0,132 

XL6 0,28 0,35 0,28 0,35 0,34 0,40 0,298 0,362 

 

Abbreviations: Normalized Hamming distance (NHD); Normalized Euclidean distance 

(NED); Weighted Hamming distance (WHD); Weighted Euclidean distance (WED); 

Ordered weighted averaging Hamming distance (OWAHD); Ordered weighted 

averaging Euclidean distance (OWAED); Probabilistic ordered weighted averaging 

distance (POWAD); Euclidean probabilistic ordered weighted averaging distance 

(EPOWAD); Ascending ordered weighted averaging Hamming distance (AOWAHD); 

Ascending ordered weighted averaging Euclidean distance (AOWAED); Induced 

ordered weighted averaging Hamming distance (IOWAHD); Induced ordered weighted 

averaging Euclidean distance (IOWAED); Induced ascending ordered weighted 

averaging Hamming distance (IAOWAHD); Induced ascending ordered weighted 

averaging Euclidean distance (IAOWAED); Induced probabilistic ordered weighted 

averaging distance (IPOWAD); Induced Euclidean probabilistic ordered weighted 

averaging distance (IEPOWAD). 

 

Next, let us analyze the ordering of the alternatives with the results obtained 

shown in table 7: 
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Table 7: Ranking of alternatives 

Method Ranking 

NHD XL5 = XL2 < XL3 = XL4 < XL1 < XL6 

NED XL2 = XL5 < XL3 < XL4 < XL1 < XL6 

WHD XL2 < XL5 < XL4 < XL3 < XL1 < XL6 

WED XL2 < XL5 < XL3 < XL4 < XL1 < XL6 

OWAHD XL2 < XL5 < XL3 < XL4 < XL1 < XL6 

OWAED XL2 = XL5 < XL3 < XL4 < XL1 < XL6 

POWAD XL2 < XL5 < XL4 < XL3 < XL1 < XL6 

EPOWAD XL2 < XL5 < XL3 < XL4 < XL1 < XL6 

AOWAHD XL5 < XL2 < XL4 < XL3 < XL1 < XL6 

AOWAED XL2 = XL5 < XL3 < XL4 < XL1 < XL6 

IOWAHD XL5 < XL2 < XL3 < XL4 < XL6 < XL1 

IOWAED XL2 = XL5 < XL3 < XL1 = XL4 < XL6 

IAOWAHD XL2 < XL5 < XL4 < XL3 < XL1 < XL6 

IAOWAED XL2 < XL5 < XL3 < XL4 < XL1 < XL6 

IPOWAD XL2 < XL5 < XL4 < XL3 < XL1 < XL6 

IEPOWAD XL2 < XL5 < XL3 < XL4 < XL1 < XL6 

 

When ordering the distances of the alternatives from lowest to highest for each 

of the criteria it can be observed that XL2 is the best alternative when using the 

Hamming distance, WHD, OWAHD, IAOWAHD, POWAD and IPOWAD operator. 

AOWAHD and IOWAHD consider that XL5 is the best alternative, while NHD 

presents a tie between XL2 and XL5. Focusing on the Euclidean distance, NED, 
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OWAED, AOWAED and IOWAED have a tie between XL2 and XL5, while WED, 

EPOWAD, IAOWAED and IEPOWAD indicate that XL2 is better. 

 

 

5. Conclusions 

 

This paper has presented a new method to evaluate reinsurance strategies using 

different tools such as fuzzy logic, membership functions, distance measures 

and OWA operators. With this method we have seen that very different criteria can be 

compared on the same scale to establish distances to the optimum level and then be 

added to enhance the decision-making process on reinsurance. 

The Minkowski distance generalizes a wide range of distances such as the 

Hamming and Euclidean distance among others, taking into account multiple decision 

criteria for a more complete evaluation of the alternatives according to its 

characteristics. The great advantage of using the OWA operator is that it can consider a 

wide range of distances between the minimum and the maximum. Thus, the information 

is not lost in the process of analysis and the attitude of decision maker in the problem 

can be assessed. The main idea of this analysis is to consider a variety of scenarios from 

the most optimistic to the most pessimistic and select the method that best meets the 

goals of the company. Some key modern distance measures have been suggested for 

solving the reinsurance system including the IMOWAD and the IMPOWAD operator 

which include a wide range of particular cases. 

Future research will consider other operators in the process of aggregation such 

as those that use inaccurate information in the analysis including intuitionistic fuzzy sets 

(He et al. 2014; Tao et al. 2014) and hesitant fuzzy sets (Zhao et al. 2014). The use of 
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other distance measures and other applications will be also considered in the insurance 

field and other related disciplines. 
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