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A B S T R A C T

Background: In the next 25 years, transformative changes, in particular the rapid pace of technological
development and data availability, will require environmental epidemiologists to prioritize what should (rather
than could) be done to most effectively improve population health.
Objectives: In this essay, we map out key driving forces that will shape environmental epidemiology in the next
25 years. We also identify how the field should adapt to best take advantage of coming opportunities and prepare
for challenges.
Discussion: Future environmental epidemiologists will face a world shaped by longer lifespans but also larger
burdens of chronic health conditions; shifting populations by region and into urban areas; and global
environmental change. Rapidly evolving technologies, particularly in sensors and OMICs, will present
opportunities for the field. How should it respond? We argue, the field best adapts to a changing world by
focusing on healthy aging; evidence gaps, especially in susceptible populations and low-income countries; and by
developing approaches to better handle complexity and more formalized analysis.
Conclusions: Environmental epidemiology informing disease prevention will continue to be valuable. However,
the field must adapt to remain relevant. In particular, the field must ensure that public health importance drives
research questions, while seizing the opportunities presented by new technologies. Environmental epidemiol-
ogists of the future will require different, refined skills to work effectively across disciplines, ask the right
questions, and implement appropriate study designs in a data-rich world.

1. Introduction

Pekkanen and Pearce described the main challenges in environ-
mental epidemiology in 2001 (Pekkanen and Pearce, 2001). These
included complex mixtures of a large number of correlated exposures,
small effect sizes which can lead to inconclusive studies in the context
of residual confounding, and the need for new methods and inter-
disciplinarity to study links between global environmental change and
health. They also warned that new technologies, rather than public

health importance, might drive research questions (Pekkanen and
Pearce, 2001). Although notable advances have since been made in
statistical tools to derive useful information on mixtures of correlated
exposures, (Agier et al., 2016; Bobb et al., 2015; Chadeau-Hyam et al.,
2013) these, together with the precise measurement of exposures in
space and time, remain some of the key challenges in the field today.
The rapid pace of technological development and availability of data
have made the need more acute to prioritize what should be done for
maximum public health benefit over what could be done.
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In Part I of this essay, we map out key driving forces that will shape
environmental epidemiology in the next 25 years (a time span roughly
overlapping with most of the authors´ careers). In Part II, we suggest
how the field can leverage these forces to improve population environ-
mental health. Specifically, we suggest ways in which new paradigms,
measurement strategies, and analytical approaches can be adapted.
Among possible future scenarios, we highlight those which we believe
are preferable for achieving public health goals.

1.1. Part I. Forces that will shape the field

1.1.1. Demographics and urbanization
Within the broader context of the epidemiologic transition and

economic development, the changing age and geographic distribution
of the global population will continue transforming environmental
health research priorities. Lifespans have lengthened across the globe,
including important gains in low-income countries where life expec-
tancy has improved from 53 years in 1990 to 62 years in 2012 (WHO,
2014). Adults aged 60 and older comprised 8% of the global population
in 1940, which grew to 12% by 2013 and is projected to be 21% in
2050 (UN Department of Economic and Social Affairs, 2013). This
monumental shift in the global age distribution is due in part to public
health interventions, but also presents new health challenges.

There will also be notable shifts in the geographic distribution of the
global population. Most of the population growth between now and
2050 is projected to occur in just nine countries with high fertility or
already large populations; more than half of the expected growth will
be in Africa alone (UN Department of Economic and Social Affairs,
2015). The proportion of the population living in Africa will increase
from 16% to 25% between now and 2050, while the proportion in
Europe will shrink from 10% to 7% (UN Department of Economic and
Social Affairs, 2015). Population growth is projected to remain
especially high in the 48 least developed countries, adding to challenges
in meeting sustainable development goals (UN Department of Economic
and Social Affairs, 2015). There is currently very little data on
environmental exposures and their health effects in many countries
with the largest population growth. Effects of environmental exposures
are likely to differ from those observed in high-income countries, where
most environmental health research has been conducted, due to
differences in infectious disease burden, access to health services, and
material deprivation.

Large-scale migration will add further complexity for environmental
epidemiology, presenting challenges for follow-up of study participants
and environmental exposure assessment. Individuals living in areas
with similar levels of environmental exposures may have highly
variable cumulative exposure based on their migration history. For
migrants from poorly to better regulated societies, adult health may be
influenced by high levels of environmental exposures in early life,
exposures which may be particularly difficult to reconstruct. Migration
may also present opportunities for using natural experiments to under-
stand how environment shapes health.

The global population continues to shift from rural to urban areas.
In 2014, 54% of the population resided in urban areas; this is projected
to be 66% by 2050 (UN Department of Economic and Social Affairs,
2014). Nearly 90% of the projected increase in the world's urban
population will be concentrated in Asia and Africa, with India, China,
and Nigeria accounting for a large share of this growth. Urbanization
profoundly shapes (both positively and negatively) environmental
exposures (e.g. air pollution, noise, green space) and behaviors (e.g.
physical activity, food consumption) and thereby disease risks
(Nieuwenhuijsen, 2016).

1.1.2. Global environmental change
Climate change and emerging environmental risks will define much

of the future context for environmental epidemiology. Climate change
has been identified as “the biggest global health threat of the 21st

century” (Costello et al., 2009). Mean surface temperature is expected
to increase by 0.3 to 4.8 °C by 2100, (IPCC, 2013) leading to direct
impacts on health from heat stress and flooding, as well as indirect
health impacts mediated through infectious diseases, air quality, and
food security (Anstey, 2013; Costello et al., 2009; IPCC, 2014;
McMichael, 2012; Patz et al., 2016).

Recent reports have elaborated the multiple potential health
impacts of climate change (Whitmee et al., 2015). There is strong
evidence that heat-related mortality is rising as a result of climate
change; the Intergovernmental Panel on Climate Change anticipates an
increase in both the frequency and intensity of heat waves under all
climate scenarios (IPCC, 2014). The combined effect of global warming
and demographic change will expose an increasing number of vulner-
able older adults to heat stress (Watts et al., 2015). Health impacts of
extreme weather events such as storms and floods are likely to increase
this century if no adaptation measures are taken (IPCC, 2014). It is also
anticipated that climate change increases the risk of intense droughts in
some regions, (IPCC, 2013) affecting agricultural output and, subse-
quently, increasing food insecurity and malnutrition. Climate change
has been identified as one of the greatest challenges for food security
(High Level Panel of Experts on Food Security and Nutrition, 2012).
Droughts also elevate risks of water-related disease (e.g. E coli, cholera),
vector borne disease (e.g. dengue, West Nile Virus), airborne and dust-
related disease (e.g. coccidioidomycosis) and mental illness (Stanke
et al., 2013). Climate (change) may be an important factor in the
dynamics of vector borne disease transmission, including malaria,
dengue, and Lyme's disease (Chaves and Koenraadt, 2010; IPCC,
2014). Alongside shifts in land use, climate change appears to be
altering the geographic range of vectors that transmit pathogens (e.g.
Aedes albopictus, Aedes albopitcus, Ixodes scapularis) to humans (Murray,
2013; Ogden and Radojevic, 2014; Proestos et al., 2015).

Chemical exposures will remain an important environmental health
concern. Chemical production in 2000 was 1000 times higher than in
1930 (UNEP, 2013). Although chemical production is not a direct
measure of population exposure, it is likely that the number of
chemicals to which one is exposed will continue to increase in coming
decades. Of particular concern are those with short half-lives in the
body, now preferred to those with long half-lives for health and
environmental reasons, but which contribute to exposure misclassifica-
tion in traditional studies that rely on spot biomarkers (Perrier et al.,
2016).

1.1.3. Technology
Technology with applications to environmental exposure and health

outcome assessment is evolving rapidly. Technology will generate new
opportunities, particularly in regards to population datasets, e- and m
(obile)-health, personal and remote sensor technology, and OMICs data.
Below we highlight technologies that lie on the horizon and how they
could be applied to environmental epidemiology.

Expanding data availability will allow prediction of diverse popula-
tion exposures and create new opportunities for exploring novel
exposures that have been previously difficult to quantify. Importantly,
geo-referenced data are becoming more widely available in low- and
middle-income countries, reducing barriers for conducting environ-
mental epidemiology in these countries. Such data include those
collected through remote sensing, sensor networks, smartphones, as
well as the “internet of things” (i.e., everyday objects with network
connectivity). Remote sensing has been used to estimate environmental
exposures including air pollution, (Geddes et al., 2016) green space,
(Dadvand et al., 2015) and temperature (Dadvand et al., 2014).
Opportunities for satellite-based exposure assessment will continue to
expand with increasing number of satellites and improved resolution of
detection. Quantifying neighborhood attributes will be enhanced by
applying developments in image processing to resources such as Google
Street View and to ecological momentary assessment based on indivi-
duals taking a photograph of their immediate environment from their
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mobile phone. (Advances in image processing will also improve
measurement of other exposures, such as diet or drug or cosmetics
use, for which study participants can take pictures of what they eat or
use, or scan bar codes). A new exposure pathway − visual exposure− -
will be easily investigated using miniaturized cameras or virtual reality
to understand how people internalize and interact with their environ-
ment. For example, such technology will allow advances beyond simple
proximity to green space to determine whether individuals are visually
exposed to green space and which activities they engage in using that
green space. Social media data will increasingly play a role in assessing
behaviors, exposures and outcomes. Such approaches have already
been used to identify symptoms, behavioral risk factors, and population
mobility patterns (Lee et al., 2016; Paul and Dredze, 2011).

The rise of e/m-health and new personal sensor technologies is
opening tremendous opportunity for environmental epidemiology.
Recruiting participants, collecting survey data, assessing outcomes,
and incorporating medical health records using mobile platforms (e.g.
smart phones) is becoming easier and will be the core mechanism used
to recruit cohorts (e.g. the NIH precision medicine cohort of 1 million
individuals) (NIH, 2016). The use of e/m-health is further propelled
forward by the quantified self movement (self tracking with technol-
ogy) (Swan, 2013). The growing acceptability of existing smart phones
and sensors foreshadow the types and size of data that may be available
when low-cost sensors for environmental exposures improve in terms of
data quality and continue to decrease in size and cost. Inexpensive
wearable devices can now register numerous biological parameters in
real time, including participants' physical activity, sleep, heart rate,
and, to a limited extent, blood pressure, with little participant burden.
These types of monitors will allow measurement of exposures and
health outcomes on larger scales for research purposes. As the price of
sensors drops, they are also likely to be widely used by individuals
outside of research contexts. Smart phone manufacturers will also
recognize the marketing value of differentiating their devices by adding
sensor packages.

In 25 years, new sensors will have completely revolutionized
environmental exposure and health outcome assessment. These sensors
will measure more things and give constant feedback to individuals,
with important implications for observational study design. There will
also be easy access to new sensors through widespread 3D printing
capabilities, revolutionizing the concept of citizen science. The avail-
ability and connectedness of disparate data-sources, the “internet of
things”, will be a driving force shaping exposure assessment. Homes,
street furniture, and cars will be increasingly equipped with smart
sensors to monitor environmental conditions (e.g. air pollutants,
asthma triggers, noise, etc.); smart cities will provide continuous data
streams, and crowd sourcing of personal sensor measurements will be
integrated within these environment measures. Environmental mea-
surements will be an established component of self-tracking, along with
health behaviors and a growing scope of biological measures (e.g.
wearable patches that transmit continuous heart rates measurements,
blood chemistry, stress levels, etc.). Wider access to and use of smart
devices could enhance the frequency of participation and reduce
selection bias where participation is linked to exposure (Weisskopf
et al., 2015). However, important challenges around data ownership
and accessibility will certainly arise; legal and ethical norms will
struggle to keep pace with what is technologically possible. There is
an obvious need for closer engagement between environmental epide-
miologists and the ethics community to provide practical, timely
guidance on how to take advantage of the opportunities for improving
population environmental health in an ethical way.

The paradigm of individuals having information drawn from them
may change to individuals being suppliers of information, choosing
how and with whom to share their data. Potential incentives to
individuals to “donate” their data to a central repository for research
purposes may include discounts on cell phone bills, tax write-offs, etc. -
processes that could lead to selection bias. Issues related to the

validation and quantification of exposure misclassification induced by
the use of heterogeneous measurement devices should not be under-
estimated and are expected to be even more complex than when a
single measurement device is used for all participants.

Similarly, important advances have been made recently in OMICS
technologies (i.e. any group of measurements covering the totality (or
large proportion) of a dimension of an environmental, behavioral,
social, or biological variable, (e.g., genomics, epigenomics, transcrip-
tomics, proteomics, adductomics, metabolomics, microbiomics, expo-
somics) that could be used to supplement the assessment of internal
exposures by more traditional means (Pedersen and Nieuwenhuijsen,
2015). These technologies are rapidly decreasing in cost and can
increasingly be applied to larger populations for multiple purposes.
Current applications of OMICs technologies provide an indication of
what will be possible as the technology improves and costs decrease
further. An integrated personal OMICs profile combining genomic,
transcriptomic, proteomic, metabolomic and autoantibody profiles has
been constructed for a single individual over 14 months, revealing
dynamic phenotypes as well as internal exposures (Chen et al., 2012).
Although, it is not currently possible to measure personal OMICs
profiles in such a dense format on large numbers of participants,
studies have started to measure repeated OMICs profiles in populations
with a few thousand participants (Vrijheid et al., 2014). OMICs profiles
have been used to measure exposure directly or by measuring the
imprint that environmental factors leave in the biological system. For
example, transcriptomics and methylation patterns have recently been
used to identify participants´ smoking history (Beane et al., 2007; Guida
et al., 2015) and exposure to smoky vs. smokeless coal (Wang et al.,
2015b). Further rapid advances are expected through current exposome
projects (e.g. HELIX, EXPOsOMICs, HEALS, and CHEAR).(CHEAR, n.d.;
HEALS, n.d.; Vineis et al., 2016; Vrijheid et al., 2014).

Projections based on current advances in OMICs technologies,
suggest that by 2035–45, we should be able to measure an individual's
full OMICs profile (Fig. 1). Repeated OMICs profiles would open
enormous possibilities for life-course studies, natural experiments,
and assessing the long-term impacts of interventions. It would also
allow for systematic screening of known, suspected and unknown
agents/phenomes in a holistic way. However, interpretation will
become the major challenge as our biological knowledge may not keep
up with the technology. Similarly, statistical and bio-informatics
capabilities could become rate limiting and will require rapid further
development.

1.1.4. Data availability
Data creation is already exceeding worldwide storage capacity;

(Harcourt, 2014) this may become a problem in epidemiologic studies.
Table 1 illustrates the size of different types of data currently collected
in epidemiologic studies. Genomics is a familiar example where data
size is already an issue. The addition of other OMICs escalates the
problem (e.g. the human microbiome would contain the genomic
information of 100 trillion cells). New technologies (e.g. sensors,
medical image and video) are also able to provide huge amounts of
data for a single participant. This movement towards Big Data studies
will make parallel processing on computer clusters or a cloud, and the
use of Big Data platforms more common. In many instances, raw data
will be discarded owing to storage problems and only relevant
summaries will be stored. Big data created for purposes other than
research are likely to present challenges in terms of data quality and
representativeness of the wider population.

1.1.5. Study design, models of research
We will increasingly move towards studies with very large sample

sizes with individual exposure information, even including the entire
population (N = all) as is currently possible with census cohorts. One
may think that statistics are no longer needed if the entire population is
observed, but this is probably the case only when computing simple
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summary statistics (e.g. a mean). Environmental epidemiology often
deals with complex causal questions, which require the observation of a
set of confounders. Empirical estimations of those effects would require
calculating averages over all possible combinations of confounders.
With just 10 confounders, this becomes unfeasible with huge datasets,
because of empty cells, so statistical models will continue to be needed
(van der Laan and Starmans, 2014). In addition, if the entire population
is observed, the traditional statistical paradigm based on the sampling
of independent observations no longer holds. Informative dependencies
exist in the population, and some authors suggest that the population's
network structure should be taken into account when analyzing whole-
population data (van der Laan and Starmans, 2014). More importantly,
considering the expected explosion in OMICs and sensor data, future
studies will tend to have a much larger number of variables than
participants (so-called high-dimension data). Most of the statistical
methods commonly used today such as maximum likelihood estimation
do not provide consistent estimates in such settings (Fan et al., 2014).
Large dimensionality brings spurious correlations, among other pro-
blems (Fan et al., 2014). Techniques for dimension reduction, variable

selection, and sparse models that can work effectively in that setting
will become crucial.

Other models of research production will come online. Citizen
science, to date most widely used in fields of biology and ecology, is
likely to play a greater role in environmental epidemiological research
production and may offer benefits in terms of better knowledge,
empowered communities, and improved health outcomes (Den
Broeder et al., 2016). However, these benefits have yet to be fully
evaluated and several practical challenges remain (Den Broeder et al.,
2016). The current model of research production encourages publica-
tion of single analyses, often performed by a single research group,
which can be dominated by subjective decisions during the analysis and
favor extreme results. Moving towards a researcher-based crowd-
sourced analysis model potentially offers many advantages, including
greater transparency, opportunity to vet analytical approaches with
peers before publication, and more nuanced, balanced results
(Silberzahn and Uhlmann, 2015). The Many Lab, launched by the
Centre for Open Science, is a current example of a web-platform for
crowdsourced research production where researchers can join projects

Fig. 1. Predicted growth over time in internal exposure assessment capacity.
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(Center for Open Science, n.d.). The advantages of research involving
large groups should be weighed against bureaucratic inefficiencies that
hamper individual creativity and curiosity-driven fundamental re-
search.

1.2. Part II. How environmental epidemiology should adapt to take
advantage of coming opportunities and prepare for future challenges

1.2.1. Prioritize healthy aging
Environmental epidemiology should respond to demographic trends

by increasing focus on healthy aging. By not succumbing to the diseases
of infancy, childhood, and middle age, a growing number of people are
affected by chronic health conditions of older age. Worldwide, all-cause
dementia affected 36 million in 2010, a number anticipated to sky-
rocket to 115 million by 2050 (Prince et al., 2013). Even more common
in older adulthood is physical disability, (WHO and NIH, 2011) which
afflicts over 40% of older adults in the US, England and Europe
(Avendano et al., 2009). In 188 countries evaluated by the Global
Burden of Disease Study (GBD), life expectancy increased between 1990
and 2013, but so did the years lived with disability (Global Burden of
Disease Collaborators, 2015). Although the burden of these conditions
has been a paradoxical luxury of living in a high-income country, low
and middle-income countries will bear more of the brunt of the
dementia burden, (WHO and NIH, 2011) and the same can be expected
of physical disability.

Aging is universal and unavoidable, but the aging process does not
occur uniformly. It is a complex phenotype responsive to a plethora of
drivers. Genetic, behavioral and environmental factors interact with
each other to define an individual's aging trajectory. If environmental
exposures influence the development of dementia, physical disability or
even the many other common conditions of older age, the potential
benefit of shifting these epidemic curves downward is enormous due to
the high prevalence of both the outcomes and many environmental
exposures. Better understanding of the effects of environmental ex-
posures over the life course on health in older ages is critical to effective

prevention strategies, as disease onset may start in early life (Vrijheid
et al., 2014).

1.2.2. Increase equity of information
Environmental epidemiology should prioritize improving the equi-

table distribution of data on environmental exposures and their health
effects, and maximizing the societal benefit of such data. Global,
systematic research initiatives such as the GBD have highlighted
dramatic inequities across populations in the availability of exposure
and epidemiological evidence. For example, early iterations of the GBD
highlighted the relative lack of outdoor air pollution exposure informa-
tion for most of the global population (Cohen et al., 2004). The
exposure-response estimate from a single large US population was
assumed to apply to the entire global population, even though that
study covered a fraction of the global exposure range (Cohen et al.,
2004). Such efforts have put into focus the need for better exposure and
epidemiological information across the true global exposure range.
Low-cost, scalable data collection methods, particularly through remote
sensing and small sensors, offer an important opportunity to achieve
better equity of information on environmental exposures, health out-
comes, and epidemiological evidence, particularly for rural, low-
income, or other populations currently living in “information deserts”.

Systematic data registration will uncover gaps in available environ-
mental exposure data and exposure-response estimates. Meta-research,
or research on research, can push forward systematic mapping of gaps
in the environmental epidemiology evidence base (Khoury et al., 2013).
Decision analysis approaches will be useful in prioritizing particular
populations for which additional research would be most scientifically
valuable and policy relevant. Populations to target would be those
outside of previously studied exposure ranges, unique combinations of
exposures, or high likelihood for effect modification.

The full potential of the vast exposure data that will be collected in
the future is best realized when those data are open (in a sufficiently
anonymized form to protect privacy). Open exposure data will allow for
use, reuse, and redistribution of data with proper attribution. Open data
platforms that provide standards of data quality could be used as a
global repository for crowd sourced exposure data. A useful example in
this regard is Open Street Map, a collaborative project to create a free,
editable, global geodatabase. Although currently limited to data from
official, stationary government monitors, openaq.org is another exam-
ple of a collaborative project to aggregate, standardize, and share real-
time air quality data from around the world. Platforms that standardize
and harmonize environmental data globally will play an increasingly
important role in maximizing value from environmental exposure data
for societal gain. Mechanisms to support (financially and otherwise) the
curation of these databases should be further developed.

1.2.3. Reduce participant burden
Data collection methods should become increasingly passive to

minimize the burden to participants. Already several countries allow
linkage of administrative and registry data for research purposes,
allowing for epidemiology on entire populations with minimal partici-
pant burden. Response rates in many population studies are falling
compared to past decades; this has been cited as a possible factor
leading to the cancellation of a major birth cohort study in the UK due
to low recruitment (Pearson, 2015). By embedding data collection in
routine medical care, longitudinal OMICs data could be collected with
little additional burden. Potentially thousands of analytes could be
measured on each blood or urine sample collected as part of clinical
care; access to these samples for research would be an important way to
enable lifecourse epidemiology.

1.2.4. Expand approaches to handle complexity
The traditional and currently dominant epistemological approach in

epidemiology is reductionism: individual exposures are studied rather
than the system of health determination as a whole or the causal

Table 1
Examples of storage needs (per person).

Information Size

Human genome
+structure determination of
the proteins

1 GB
Several PBa

Electronic health record 1 MB-5GB, expected to increase 50-fold
from 2012 to 2020b,c

Heart rate monitor (per month) 9 GBd

Continuous video life-logger (per
month)

58GBe

Accelerometer (8-h a day, per
month)

1 GBf

Medical image MB to GB, up to 1 TB. e.g. 64/128-slice CT
scan, 3.0 T MRI and PET often exceeding
100 MBb.

MB = 106 bytes; GB = 109 bytes; TB = 1012 bytes; PB = 1015 bytes.
a Al-Jarrah OY, Yoo PD, Muhaidat S, Karagiannidis GK, Taha K. 2015. Efficient

machine learning for big data: a review. Big Data Research, 2(3), 87–93.
b Piai S, Claps, M. 2013. Bigger data for better healthcare. IDC Health Insights. Available:

http://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/bigger-data-
better-healthcare-idc-insights-white-paper.html [accessed 16 February 2016]

c Radding A. 2008. Storage gets a dose of medical data. Storage Magazine. Available:
http://searchstorage.techtarget.com/magazineContent/Storage-gets-a-dose-of-medical-
data [accessed 16 Feb 2016]

d Swan M. 2013. The quantified self: Fundamental disruption in big data science and
biological discovery. Big Data, 1(2), 85–99.

e Schneier, Bruce. Data and Goliath: The hidden battles to collect your data and control
your world. WW Norton & Company, 2015.

f Baumann, L., Kesztyüs, T., & Blechschmidt, R. A. Standard compliant communication
of motion data in a telemonitoring system. GMS Medizinische Informatik, Biometrie und
Epidemiologie 2015, 11(1), 1–12.
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architecture (Keyes and Galea, 2017). Study designs focus on precisely
estimating individual causal-effect relationships rather than exploring
system interactions. Moving towards system-based approaches would
allow for possible interactions between different exposures, biological
parameters and developments (including urbanization, climate change
adaptation) (Huynen et al., 2013; Rydin et al., 2012; Whitmee et al.,
2015). Single exposures and regression-based analysis methods should
be replaced with approaches better equipped to deal with multiple
exposures, as is envisaged in the exposome and consequential epide-
miology approaches (Keyes and Galea, 2017; Wild, 2012).

Improving integrated risk assessments in environmental epidemiol-
ogy should be a priority, particularly for the link between climate
change and health. Traditional forms of risk assessment do not
adequately assess systemic and/or longer-term global environmental
health risks (Briggs, 2008). For example, most climate-related health
impacts are mediated through complex ecological and social processes
(Watts et al., 2015). As such, climate change affects health through
extensive and complex linkages between multitudes of factors, which
together determine the vulnerability-context of a specific population.
Through these system interactions, climate change can often act as an
important amplifier of existing health risks (Costello et al., 2009;
Huynen et al., 2013; WHO, 2009). In line with such broader ap-
proaches, risk assessments should, at a minimum, explore the negative
and positive impacts of climate-related mitigation and adaptation
policies in other sectors (Milner et al., 2014; Sabel et al., 2016; WHO,
2009).

1.2.5. Formalize data analysis
Data analysis and consequently epidemiology, should go through a

formalization process to become a less subjective process and to prevent
publication of analyses lacking theoretical rigor (van der Laan, 2015).
This includes explicitly stating the assumed causal structure (e.g.
through causal directed acyclic graphs) and assumptions, which can
be particularly challenging in the context of repeated measures of time-
varying OMICs. Methods for evaluating a finding's sensitivity to
different forms of bias and departures from assumptions are coming
into wider use (Power et al., 2016). These methods will become a
pivotal tool for overcoming a frequent obstacle in environmental
epidemiology, which is that randomized controlled trials are infre-
quently possible or ethical. Appropriate methods for causal inference
should, as standard procedure, include techniques to correct for non-
participation, missing data, measurement error and multiple testing.
Semi-parametric and non-parametric methods should be favored, as
parametric models make unrealistic simplifying assumptions that are
believed to produce invalid inferences (Rudin et al., 2014; van der Laan
and Starmans, 2014). Other future challenges for statisticians and
epidemiologists include being able to formulate testable hypotheses
from poorly defined and ambiguous problems involving increasingly
dense data from different fields (Wang et al., 2015a).

1.2.6. Adapt training of future environmental epidemiologists
To maintain relevance as a field, future environmental epidemiol-

ogists must be prepared for the coming changes, a topic recently
discussed in the context of epidemiology more broadly (Brownson
et al., 2016). Big Data will drive many changes in the way we work and
analyze data. With Big Data, even simple models involve large amounts
of computation and some become computationally intractable (Rudin
et al., 2014). Future epidemiologists will require training in new
techniques to scale existing methods for Big Data, and new statistical
methods to overcome limitations of existing ones. New methods for
knowledge discovery will be developed in other fields (e.g. machine
learning, applied mathematics, statistics) which are likely to crossover
into epidemiology. Future data analysts will need to be familiar with
those fields and with large-scale computing (e.g. parallel processing).
As in the past, trainees will require strong backgrounds in epidemiology
methods and statistics; however these areas will also change to adopt

different methods and even priorities.
Epidemiologist of the future will be part of transdisciplinary teams,

working alongside social scientists, biologists, toxicologists, patholo-
gists, computer scientists, urban planners, and specialists in knowledge
translation. Training should include more focus on implementation,
evaluation, and intervention. In parallel, there is an argument to shift
the focus of some environmental epidemiology from ever more precise
estimation of individual risk factors to what matters most to population
health (Keyes and Galea, 2015).

2. Conclusions

A large amount of disease etiology remains unexplained and is likely
to be due to the environment (Norman et al., 2013; Willett, 2002).
Many transformative changes are expected in the next 25 years, and
environmental epidemiologists will continue to have a role to play in
disease prevention.

However, the field must adapt in order to remain relevant. New
technologies are inevitable and many present important opportunities
for environmental epidemiology. The previously cited risk of new
technologies driving research questions rather than public health
importance (Pekkanen and Pearce, 2001) will become increasingly
relevant. The challenge will be how best to harness these technologies
for environmental health goals.

With increasing data availability there will be greater need for
robust and new study designs to identify causal associations in a data-
rich world full of false positives. The distinction between population
and individual exposure and outcome assessment will erode due to the
magnitude of individual-level data available through sensors interfaced
with smart technologies and biotechnologies. The environmental
epidemiologist of the future will require different and refined skills to
work effectively across disciplines, ask the right questions, implement
the most appropriate designs and analyses methods, to identify causal
relationships, ignite and engage interest of the public and policy
makers, and design effective interventions. If successful, environmental
epidemiology will continue to develop novel preventive strategies that
save health care costs and add years and quality to life at the population
level.
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