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MicroRNAs usually regulate gene expression negatively, and aberrant expression has been involved in the
development of several types of cancers. Microarray profiling of microRNA expression was performed to define a
microRNA signature in a series of mycosis fungoides tumor stage (MFt, n¼ 21) and CD30þ primary cutaneous
anaplastic large cell lymphoma (CD30þ cALCL, n¼ 11) samples in comparison with inflammatory dermatoses
(ID, n¼ 5). Supervised clustering confirmed a distinctive microRNA profile for cutaneous T-cell lymphoma
(CTCL) with respect to ID. A 40 microRNA signature was found in MFt including upregulated onco-microRNAs
(miR-146a, miR-142-3p/5p, miR-21, miR-181a/b, and miR-155) and downregulated tumor-suppressor microRNAs
(miR-200ab/429 cluster, miR-10b, miR-193b, miR-141/200c, and miR-23b/27b). Regarding CD30þ cALCL, 39
differentially expressed microRNAs were identified. Particularly, overexpression of miR-155, miR-21, or miR-142-
3p/5p and downregulation of the miR-141/200c clusters were observed. DNA methylation in microRNA gene
promoters, as expression regulatory mechanism for deregulated microRNAs, was analyzed using Infinium 450K
array and approximately one-third of the differentially expressed microRNAs showed significant DNA methyla-
tion differences. Two different microRNA methylation signatures for MFt and CD30þ cALCL were found.
Correlation analysis showed an inverse relationship for microRNA promoter methylation and microRNA
expression. These results reveal a subgroup-specific epigenetically regulated microRNA signatures for MFt and
CD30þ cALCL patients.
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INTRODUCTION
Mycosis fungoides (MF) and primary cutaneous CD30þ
T-cell lymphoproliferative disorders (lymphomatoid papulosis
and the CD30þ primary cutaneous anaplastic large cell
lymphoma (CD30þ cALCL)) are the most frequent subtypes
of primary cutaneous T-cell lymphomas (CTCL) (Willemze
et al., 2005; Swerdlow et al., 2008). MF and CD30þ cALCL
are clinically and pathologically different, but both are derived
from effector memory T cells. MF usually follows an indolent
clinical evolution, but up to 20% of patients may develop a
progressive disease with tumoral lesions (MFt), extracutaneous
spread, and an aggressive behavior (5-year survival of o40%
in advanced stages) (Agar et al., 2010). Unlike MFt, CD30þ
cALCL cases are associated with an excellent prognosis with
survival rates of 490% in patients after a 5-year follow-up
(Kempf et al., 2011).

Different studies have focused on the genetic characterization
of MF and CD30þ cALCL, applying conventional cyto-
genetics and array comparative genomic hybridization tech-
niques. These approaches have identified possible prognostic
markers and putative targets for directed therapeutic interven-
tion (van Doorn et al., 2009; Salgado et al., 2010; Laharanne
et al., 2010; van Kester et al., 2010; Sánchez-Schmidt et al.,
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2011; Szuhai et al., 2013). MF patients harboring frequent
genomic imbalances or genomic instability with multiple
DNA aberrations seem to show a shorter overall survival
(van Doorn et al., 2009; Salgado et al., 2010). Interestingly,
genetic aberrations in CD30þ cALCL differ from chromo-
somal alterations observed in other forms of CTCL. However,
genetic aberrations are not sufficient to explain the full
complexity of CTCL biology.

Epigenetic regulation, whose mechanisms involve many
different factors, is also mediated by noncoding RNAs.
MicroRNAs are a class of short noncoding RNAs that nega-
tively regulate gene expression post transcriptionally, usually
inducing degradation or inhibition of specific targeted genes. It
is known that microRNA expression is deregulated in several
types of cancers, disrupting biological processes related to
carcinogenesis including cell proliferation and differentiation,
invasiveness, or apoptosis. MicroRNAs have become of
special interest as specific biomarkers in identifying cancer
subtypes (Lu et al., 2005).

The microRNA-targeted genes have an important role in the
pathogenesis of CTCL. In addition to oncogenic or tumor-
suppressor properties, microRNAs participate in many biolo-
gical processes in T cells (Allan and Nutt, 2014). Resistance of
T cells to chemotherapy-induced apoptosis, aberrant cytokine
expression deregulating downstream signal transducer and
activator of transcription-5 signaling, and impaired immune
response have been reported as altered mechanisms in CTCL
that may be mediated by microRNA regulation (Persson,
2013). The usefulness of some CTCL-related microRNAs as
specific diagnostic or prognostic markers has been postulated,
and their potential role as promising targets has been proposed
(Schneider, 2012; Maj et al., 2012; Manfè et al., 2012; Kopp
et al., 2013a; Moyal et al., 2013; Manfè et al., 2013; McGirt
et al., 2014; Ito et al., 2014).

Recently, some studies have identified different microRNA
signatures for MF and CD30þ cALCL (van Kester et al., 2011;
Ralfkiaer et al., 2011; Benner et al., 2012), but the mech-
anisms involved in microRNA expression deregulation among
these putative mechanisms have not been fully elucidated.
DNA methylation in microRNA gene promoters has been
identified as a regulatory process that induces downregula-
tion of microRNA expression in cancer. DNA methylation
describes the covalent addition of a methyl group to the 50

carbon of cytosine within cytosine–guanine dinucleotides.
Aberrations in the DNA methylation patterns in microRNAs,
particularly the hypermethylation of the CpG island sequences
located in the promoter regions of tumor-suppressor micro-
RNAs, have been identified in different cancer cells (Lujambio
et al., 2008).

In this work, we evaluated the epigenetic mechanisms
involved in CTCL performing a large-scale global microRNA
expression analysis using a microarray platform. In addition,
the promoter methylation of these differentially expressed
microRNAs was explored using the Infinium 450K DNA
methylation BeadChip array. Our study has characterized
the microRNA landscape and the interplay with DNA methy-
lation for CTCL, revealing common and subgroup-specific
features for MF and CD30þ cALCL patients.

RESULTS
MicroRNA expression signature for CTCL

We first evaluated a global genome-wide expression profile of
937 identified microRNAs comparing inflammatory dermatoses
(ID n¼ 5) and a series of CTCL patients (n¼32; MFt¼21 and
CD30þ cALCL¼11). The unsupervised hierarchical clustering
analysis identified a distinctive microRNA expression pattern for
CTCL samples. However, the clustering of the complete micro-
RNA profile did not discriminate between MFt and CD30þ
cALCL subtypes (Figure 1a). The most relevant differentially
expressed microRNAs that discriminate CTCL from ID were
characterized by performing a supervised analysis with the
following criteria: D-value 41.2 and false discovery rate o5%.
We obtained a signature of 61 differentially expressed microRNAs
that clearly segregated CTCL from ID samples (Figure 1b).

In order to validate the microRNA gene expression micro-
array analysis, we analyzed the expression of five representa-
tive downregulated (miR-193b and miR-10b) and upregulated
(miR-142-3p, miR-142-5p, and miR-146a) microRNAs by
quantitative real-time reverse-transcriptase–PCR in an inde-
pendent cohort of CTCL patients (n¼ 10) and ID controls
(subacute cutaneous lupus erythematosus, n¼6 and psoriasis,
n¼7). The observed microRNA expression in this cohort of
CTCL patients was similar to that found in the microarray
(Supplementary Figure S1 online), supporting the reliability of
the microarray analysis previously performed.

The differentially expressed microRNAs showed an enrich-
ment in different functional categories with major biological
roles in cancer development. The most highly populated
KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways
altered by aberrant microRNAs expression were cell cycle,
DNA replication, NOD-like receptor signaling pathway,
mismatch repair, phosphatidylinositol 3 kinase/Akt signaling
pathway, the p53 signaling pathway, transcriptional dysregu-
lation, viral carcinogenesis, or Notch signaling pathway.
Importantly, many of these biological pathways have been
related to neoplastic T-cell biology (Allan and Nutt, 2014).

Distinctive microRNA expression profile in MFt

To elucidate whether MFt displays a distinctive microRNA
expression profile compared with ID, we performed a super-
vised analysis following the same previously mentioned
criteria and using exclusively the MFt cohort. A total of 40
microRNAs were differentially expressed in MFt samples with
respect to ID: 13 upregulated and 27 downregulated. Among
these microRNAs more significantly upregulated, a subset of
well-known cancer-related microRNAs was found, such as
miR-142-3p/5p and miR-146a, miR-155, miR-21, miR-181a/
miR-181b, and others. Among downregulated microRNAs
with tumor-suppressor properties, miR-193b, miR-10b, miR-
141/200c, and miR-200ab/429 clusters showed particularly
low expression levels. Other interesting lymphoma-related
microRNAs such as miR-203, miR-205, miR-23b/27b, and
others were also downregulated (Table 1a and Figure 2a).

Distinctive microRNA expression profile in CD30þ cALCL

Using a similar approach comparing CD30þ cALCL with ID,
we identified 39 deregulated microRNAs in this lymphoma
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subtype: 13 upregulated and 26 downregulated. Several onco-
microRNAs including miR-155, miR-21, and miR-142-3p/5p
were highly overexpressed, together with other relevant
pro-oncogenic microRNAs (let-7i, miR-424, miR-431, miR-
542-5p, miR-29b-1, miR-342-p, and miR-484). On other
hand, the miR-141/200c cluster was clearly downregulated.
There were other interesting tumor-suppressor microRNAs
with low expression levels such as miR-23b/miR-27b, miR-
203, miR-205, or miR-125b (complete microRNA profile is
illustrated in Table 1b and Figure 2b).

Distinctive microRNA signature for MFt and CD30þ cALCL

Although global differences among MFt and CD30þ cALCL
were not detected, using an individual comparative analysis
we found distinctively expressed microRNAs for each disease
(see Table 1a and b). The obtained results disclosed common
microRNAs in both groups: 6 upregulated and 20 down-
regulated. We detected seven differentially upregulated micro-
RNAs in MFt but not in CD30þ cALCL: miR-146a, miR-181a/
b, miR-15b, miR-130b, miR-62,5 and miR-103. Six micro-
RNAs were downregulated exclusively in MFt: miR-204, miR-
224, miR-152, miR-143, miR-652, and miR-486-5p. Five
microRNAs were upregulated in CD30þ cALCL but not in
MFt samples: miR-424, miR-542-5p, miR-29b, miR-431, and
miR-484. Five microRNAs were downregulated exclusively in

CD30þ cALCL: miR-125b, miR-96, let-7b, miR-193a-3p, and
miR-211.

We further compared the microarray results for the overall
analysis (MFt plus CD30þ cALCL vs. ID) with those observed
for each tumor subset and grouped in a Venn diagram in order
to identify those eligible disease-related microRNAs. Specific
microRNA subsets and intersections are detailed in Supple-
mentary Table S1 and Supplementary Figure S2 online.
Twenty-seven microRNAs were significantly altered in all
three analyses. There were 17 deregulated microRNAs in the
joint analysis (CTCL group) when compared with ID. Twelve
microRNAs shared MFt and CTCL joint analyses and only one
was found in MFt analysis. Five microRNAs in the CTCL group
were also found deregulated in the CD30þ cALCL group but
not in the MFt analysis; seven unique microRNAs were only
present in the CD30þ cALCL group.

Analysis of the promoter microRNA methylation in CTCL

Considering DNA methylation mechanism as a major check-
point in regulating microRNA expression (Lujambio et al.,
2008; Quintavalle et al., 2013), we evaluated the epigenetic
profile of these previously identified differentially expressed
microRNAs in CTCL. DNA methylation mapping was per-
formed in 11 available samples, including 4 MFt, 4 CD30þ
cALCL, and 3 ID samples as controls. Unsupervised
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Figure 1. MicroRNA expression profile in cutaneous T-cell lymphomas (CTCL). (a) Unsupervised analysis of microRNA expression microarray of mycosis

fungoides tumor stage (MFt), CD30þ cutaneous anaplastic T-cell lymphoma (CD30þ cALCL), and inflammatory dermatoses (ID). (b) Supervised analysis

differentiating MFt and CD30þ cALCL from ID. Each column represents patients, and each row represents the different microRNAs.
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hierarchical clustering of the differentially expressed
microRNA-associated CpG methylation data indicate that
CTCL show a distinct pattern in comparison to ID (Figure 3).
However, this analysis was unable to segregate both lym-
phoma subtypes (MFt and CD30þ cALCL) into two different
clearcut groups.

Next, in order to identify particular lymphoma-related
differences, we determined differentially methylated micro-
RNAs (dmmiRNAs) between controls and each particular
tumor type. The Db-values of 40.2 and multiple testing
corrected P-value of o0.1 were used as the criteria for this
analysis. Approximately 36% of the differentially expressed
microRNAs showed DNA methylation differences between
MFt and the CD30þ cALCL group (Figure 4a and d and
Supplementary Tables S2 and S3 online). Two specific
signatures for CD30þ cALCL and MFt represented by 17
and 33 differentially methylated CpGs were, respectively,
identified. Moreover, 16 differentially methylated CpGs were
common to both disease groups. In particular, we found 16
dmmiRNAs (including 15 CpGs hypermethylated in 8 micro-
RNAs and 18 CpGs hypomethylated in 8 microRNAs) and 17
dmmiRNAs (with 22 CpGs hypermethylated in 5 microRNAs
and 27 CpGs hypomethylated in 12 microRNAs) in CD30þ
cALCL and MFt, respectively (Supplementary Tables S3 and S4
online). Among the dmmiRNAs identified, we observed a
specific and significant hypermethylation pattern for miR-141/
200c in CD30þ cALCL (Figure 4b) and for miR-193b and
miR-10b in MFt (Figure 4e). MiR-21 and miR-429 were
detected as specific and significant hypomethylated micro-
RNAs in CD30þ cALCL and MFt, respectively, whereas miR-
142 was found hypomethylated in both lymphoma subtypes.
Other significant dmmiRNAs for MFt and CD30þ cALCL are
included in Supplementary Tables S3 and S4 online.

Furthermore, to obtain more information about the influ-
ence of DNA methylation on the regulation of the microRNA
expression pattern, a correlation analysis between the micro-
RNA promoter methylation and the differentially expressed
microRNA levels was performed (Figure 4c and f). An inverse
correlation between the levels of DNA methylation at CpG
sites in the promoter region and microRNA expression for both
the MFt and the CD30þ cALCL groups was found. Conse-
quently, the promoter hypermethylation of microRNAs highly
correlated with the decrease in their expression in MFt and
CD30þ cALCL, suggesting a possible role as epigenetically
regulated tumor-suppressor microRNAs.

The microRNAs miR-10b, miR-193b, and miR-141 have
shown an epigenetic regulation by DNA methylation in
diverse cutaneous tumors (Rauhala et al., 2010; Vrba et al.,
2010; Biagioni et al., 2012). Similarly, we observed that these
microRNAs are methylated throughout their promoters in the
human CTCL cell lines Myla, HuT-78, and HH (Figure 5a and
Supplementary Figure S3 online). Importantly, after the treat-
ment of these cell lines with the demethylating agent 5-aza-20-
deoxycytidine, the methylation levels of the microRNAs
decreased (data not shown) and the expression of these
microRNAs was significantly restored (Figure 5b). These
results indicate that DNA methylation has a functional
role in the transcriptional control of miR-10b, miR-193b,

Table 1a. MicroRNA signature in MFt

MicroRNA Log FC Adjusted P-value Chromosome location

Upregulated

hsa-miR-142-3p 5.9902 0.0005 17q22

hsa-miR-21 2.6217 0.0016 17q23.1

hsa-miR-146a 5.5520 0.0020 5q34

hsa-miR-342-3p 2.6223 0.0020 14q32.2

hsa-miR-142-5p 5.2473 0.0023 17q22

hsa-miR-181a 2.9545 0.0033 9q33.3

hsa-miR-155 4.5118 0.0103 21q21.3

hsa-miR-625 1.4718 0.0218 14q23.3

hsa-miR-181b 2.0274 0.0226 9q33.3

hsa-let-7i 1.5800 0.0375 12q14.1

hsa-miR-130b 1.6729 0.0410 22q11.21

hsa-miR-103 1.4544 0.0410 5q34

hsa-miR-15b 1.8579 0.0421 3q25.33

Downregulated

hsa-miR-429 �1.6484 0.0000 1p36.33

hsa-miR-200a �2.1491 0.0000 1p36.33

hsa-miR-30a* �1.2511 0.0000 6p13

hsa-miR-452 �1.2279 0.0000 Xq28

hsa-miR-200b �2.7533 0.0001 1p36.33

hsa-miR-30a �1.7810 0.0020 6q13

hsa-miR-193b �1.6595 0.0022 16p13.12

hsa-miR-23b �2.8029 0.0037 9q22.32

hsa-miR-27b �2.4158 0.0075 9q22.32

hsa-miR-204 �1.2910 0.0075 9q21.12

hsa-miR-224 �1.4480 0.0083 Xq28

hsa-miR-99a �2.5959 0.0103 21q21.1

hsa-miR-183 �1.3477 0.0149 7q32.2

hsa-miR-130a �1.7556 0.0158 11q12.1

hsa-miR-200c �2.5097 0.0216 12p13.31

hsa-miR-100 �2.0314 0.0226 11q24.1

hsa-miR-152 �1.2207 0.0226 17q21.32

hsa-miR-203 �4.4807 0.0272 14q32.33

hsa-miR-143 �1.4855 0.0272 5q32

hsa-miR-195 �1.8171 0.0293 17p13.1

hsa-miR-205 �4.4161 0.0316 1q32.2

hsa-miR-141 �2.9076 0.0316 12p13.31

hsa-miR-652 �1.2260 0.0322 Xq23

hsa-miR-10b �1.5321 0.0360 2q31.1

hsa-miR-486-5p �1.6457 0.0375 8p11.21

hsa-let-7a �1.5740 0.0403 9q22.32

hsa-miR-497 �1.5925 0.0437 17p13.1

Abbreviations: FC, fold change; MFt, mycosis fungoides tumor stage.
Expression (log fold change), P-value, and chromosome location are
shown. In bold and italics are loci with reported recurrent genomic
alterations. The miR-30a*/miR-30a were categorized as separate micro-
RNAs.
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and miR-141 in CTCL. This also suggests that restoring the
expression of DNA-methylated microRNAs might have a
potential therapeutic role in CTCL.

DISCUSSION
There is increasing evidence that altered microRNA pattern
expression is associated with distinct clinical aspects in many
benign and malignant diseases (Calin and Croce, 2006; Kent
and Mendell, 2006; Cowland et al., 2007; Croce, 2009; O
Connell et al., 2010). Our results identified a distinctive
microRNA expression signature in MFt and CD30þ cALCL.
Importantly, we have found unreported microRNAs with
altered expression and confirmed others that have been
previously described in both MFt and cALCL (Ballabio et al.,
2010; Ralfkiaer et al., 2011; van Kester et al., 2011; Benner
et al., 2012). Moreover, a set of three microRNAs detected in
our series (miR-155, miR-203, and miR-205) has been
proposed as a diagnostic tool to discriminate CTCL from ID
samples (Ralfkiaer et al., 2011; Marstrand et al., 2014).

Although both CTCL groups shared many altered micro-
RNAs in our work, we have also found specific microRNAs for
each CTCL subtype. In MFt, upregulated microRNAs found in
our study (miR-142-5p, miR-155, and mir146a ) present
pro-oncogenic activities and regulatory properties within the
immune system and lymphocyte homeostasis (Lawrie, 2013;
Jardin and Figeac, 2013). MiR-155 is one of the most
investigated microRNAs in cancer that drives some functions
of interest in CTCL development. This microRNA promotes an
aberrant activation of the signal transducer and activator of

transcription-5 pathway (Persson, 2013; Kopp et al., 2013b)
and has a critical role for T-cell response, throughout regulat-
ing CTLA-4 (cytotoxic T-lymphocyte-associated protein 4),
promoting T-cell proliferation in atopic dermatitis (Sonkoly
et al., 2010). Other interesting onco-microRNAs are miR-142-
5p, a suppressor of pro-apoptotic gene TP53INP1 (Saito et al.,
2012), and the regulators of the Notch signaling pathway:
miR-146a (negative regulator of Numb-Notch) and miR-181a/
miR-181b (controlling the strength and threshold of Notch
oncogenic activity and targeting multiple anti-apoptotic genes)
(Wang et al., 2010). Therefore, these microRNAs seem to be of
great interest to further investigations in CTCL (Kamstrup et al.,
2010a, b). Some relevant downregulated tumor-suppressor
microRNAs in MFt included members of the Notch-related
miR-141/200c cluster, miR-10b with apoptotic regulatory
properties through TWIST-1 (Li et al., 2013a), and miR-193b
that represses cell proliferation controlling critical genes as
cyclin D1 (Chen et al., 2010). Moreover, other deregulated
microRNAs may also be potential biomarkers suitable for
further studies in MF: miR-23b (c-myc-driven microRNA
targeting pro-apoptotic Fas in thymus lymphoma) (Gao
et al., 2009; Li et al., 2013b) and miR-204 (B-cell
lymphoma 2 (BCL2) protein regulator and AKT/mammalian
target of rapamycin (mTOR) signaling activator) (Sacconi
et al., 2012; Imam et al., 2012).

Regarding CD30þ cALCL, we detected overexpression of
the onco-microRNAs miR-155, miR-21, or miR-142 and
low expression of miR-141/200c cluster as the most rele-
vant features. Previously, Benner et al. (2012) also found

hsa–miR–652

hsa–miR–142–5p
hsa–miR–142–3p
hsa–miR–342–3p
hsa–let–7i

hsa–miR–21
hsa–miR–424

hsa–miR–542–5p
hsa–miR–155
hsa–miR–29b–1*
hsa–miR–21*
hsa–miR–484
hsa–miR–431*
hsa–miR–424*
hsa–miR–205
hsa–miR–203
hsa–miR–200c
hsa–miR–141
hsa–miR–200b
hsa–miR–200a
hsa–miR–429

hsa–miR–96
hsa–miR–183
hsa–miR–193a–3p
hsa–miR–211
hsa–let–7b
hsa–let–7a
hsa–miR–30a
hsa–miR–30a*
hsa–miR–125b
hsa–miR–99a
hsa–miR–100
hsa–miR–195
hsa–miR–497
hsa–miR–130a
hsa–miR–27b

hsa–miR–10b
hsa–miR–23b

hsa–miR–193b

ID MFt

Color key

Row Z–score
–2

a b

2

hsa–miR–452

hsa–miR–183
hsa–miR–204
hsa–miR–143
hsa–miR–30a*
hsa–miR–30a
hsa–miR–452
hsa–miR–152
hsa–miR–497
hsa–miR–195
hsa–miR–100
hsa–miR–99a
hsa–miR–130a
hsa–miR–10b
hsa–miR–193b
hsa–let–7a
hsa–miR–27b
hsa–miR–23b
hsa–miR–224
hsa–miR–200b
hsa–miR–200a
hsa–miR–429
hsa–miR–205
hsa–miR–203
hsa–miR–200c
hsa–miR–141
hsa–miR–486–5p
hsa–miR–103
hsa–let–7i
hsa–miR–21
hsa–miR–625

hsa–miR–142–5p
hsa–miR–142–3p
hsa–miR–155
hsa–miR–15b
hsa–miR–181b
hsa–miR–181a
hsa–miR–342–3p
hsa–miR–130b

hsa–miR–146a

ID CD30+ cALCL

Figure 2. Distinctive expression profiles in mycosis fungoides tumor stage (MFt) and CD30þ cutaneous anaplastic T-cell lymphoma (CD30þ cALCL). (a)

Heatmap representing the supervised clustering corresponding to the comparison between MFt and control samples (inflammatory dermatoses (ID)). (b) Heatmap

representing the distinctive microRNAs in supervised clustering corresponding to the comparison between CD30þ cALCL and control samples (ID).
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indistinguishable microRNA expression profile for CD30þ
ALCL and MFt, although subtle differences were found by
quantitative real-time reverse-transcriptase–PCR. The microRNA
profile reported in systemic ALCL differs considerably from
those reported in CD30þ cALCL, suggesting different
underlying pathogenic mechanisms (Lawrie, 2008; Liu et al.,
2013).

The mechanisms regulating microRNA expression are
diverse and include somatic mutations or genomic alterations,
indicating a general link between the microRNA deregulation

Table 1b. MicroRNA signature in CD30þ cALCL

MicroRNA Log FC Adjusted P-value Chromosome location

Upregulated

hsa-miR-155 9.2955 0.0003 21q21.3

hsa-miR-21* 2.6247 0.0003 17q23.1

hsa-miR-21 3.0527 0.0006 17q23.1

hsa-miR-142-3p 4.8551 0.0047 17q22

hsa-miR-424 2.5167 0.0067 Xq26.3

hsa-miR-542-5p 1.1619 0.0096 Xq26.3

hsa-miR-29b-1 1.1953 0.0203 7q32.3

hsa-miR-142-5p 4.1513 0.0205 17q22

hsa-miR-424* 1.1305 0.0226 Xq26.3

hsa-miR-431 1.1505 0.0255 14q32.2

hsa-miR-342-3p 2.1726 0.0275 14q32.2

hsa-miR-484 1.1556 0.0297 16p13.11

hsa-let-7i 1.6132 0.0470 12q14.1

Downregulated

hsa-miR-429 �1.6811 0.0000 1p36.33

hsa-miR-200a �2.2797 0.0000 1p36.33

hsa-miR-30a* �1.2898 0.0000 6p13

hsa-miR-200b �3.0737 0.0001 1p36.33

hsa-miR-452 �1.2281 0.0002 Xp28

hsa-miR-30a �2.0813 0.0003 6p13

hsa-miR-183 �1.4675 0.0037 7q32.2

hsa-miR-141 �4.4498 0.0037 12p13.31

hsa-miR-200c �3.3745 0.0037 12p13.31

hsa-miR-100 �2.5358 0.0043 11q24.1

hsa-miR-193b �1.6812 0.0043 16p13.12

hsa-miR-23b �2.8684 0.0073 9q22.32

hsa-miR-497 �1.8667 0.0094 17p13.1

hsa-miR-195 �2.0687 0.0118 17p13.1

hsa-miR-99a �2.7552 0.0119 21q21.1

hsa-miR-203 �5.8234 0.0147 14q32.33

hsa-miR-27b �2.4004 0.0156 9q22.32

hsa-miR-125b �2.9092 0.0170 11q24.1

hsa-miR-205 �5.4667 0.0205 1q32.2

hsa-let-7a �1.7179 0.0205 9q22.32

hsa-miR-96 �2.0958 0.0216 7q32.2

hsa-miR-10b �1.5941 0.0328 2q31.1

hsa-miR-130a �1.7167 0.0364 11q12.1

hsa-miR-193a-3p �1.3866 0.0414 17q11.2

hsa-let-7b �2.0900 0.0425 22q13.31

hsa-miR-211 �1.5881 0.0425 15q13.3

Abbreviations: cALCL, cutaneous anaplastic T-cell lymphoma; FC, fold
change.
Expression (log fold change), P-value, and chromosome location are
shown. In bold and italics are loci with reported recurrent genomic
alterations. The miR-30a*/miR-30a, miR-21*/miR-21 and miR-424*/miR-
424, were categorized as separate microRNAs.

ID CD30+ cALCL MFt

Methylation
levels

1

0.5

0

Figure 3. Unsupervised DNA methylation analysis using CpGs from

differentially expressed microRNA cutaneous T-cell lymphoma (CTCL)

samples with respect to inflammatory dermatoses (ID). Unsupervised

hierarchical clustering and heatmap associated with the methylation profile

(according to the color scale shown) of the sample specimens based on the b-

values of the 229 differentially expressed microRNA CpGs. Three different

types of samples are represented: ID, mycosis fungoides tumor stage (MFt), and

CD30þ cutaneous anaplastic T-cell lymphoma (cALCL). Each column

represents an individual patient and each row an individual CpG.
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and genome fragility (Calin and Croce, 2006b, 2007). Some of
the upregulated microRNAs detected in our series are
encoded in frequently gained genomic regions in both MFt

(van Doorn et al., 2009; Salgado et al., 2010; Laharanne et al.,
2010) and CD30þ cALCL (Laharanne et al., 2010; van Kester
et al., 2010; Sánchez-Schmidt et al., 2011; Szuhai et al.,
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Figure 4. DNA methylation signatures for CD30þ cutaneous anaplastic T-cell lymphoma (CD30þ cALCL) and mycosis fungoides tumor stage (MFt) patients.

(a, d) Scatter plots representing DNA methylation normalized level of differentially expressed CpG sites using the Infinium 450K DNA methylation assay. In red

color (a) and blue color (d) are displayed the differentially methylated microRNA CpGs associated with MFt and CD30þ cALCL, respectively. (b, e) The

hierarchical cluster and heatmap of differentially methylated microRNA CpGs in four CD30þ cALCL (blue) and four MFt (red) versus ID controls (orange),

respectively. Selected differentially methylated microRNA (dmmiRNA) CpGs are highlighted. (c, f) Promoter methylation correlation with gene expression. The

symbols (þ ) and (� ) denote an increase and a decrease in expression or methylation, respectively.

MiR-10b

MiR-10b

MiR-141

Myla HuT-78 Myla HuT-78 HH HuT-78

Myla HuT-78 Myla HuT-78 HH HuT-78

MiR-193b

MiR-141MiR-193b

M
et

hy
la

tio
n 

(%
)

R
el

at
iv

e 
ex

pr
es

io
n 

le
ve

ls

R
el

at
iv

e 
ex

pr
es

io
n 

le
ve

ls

R
el

at
iv

e 
ex

pr
es

io
n 

le
ve

ls

M
et

hy
la

tio
n 

(%
)

M
et

hy
la

tio
n 

(%
)

100

4.0

*

*

*

*

*

*22.0 Ctrl
AZACtrl

AZA

Ctrl
AZA

3.0

20.0
18.0
3.0

2.0 2.0

1.0 1.0

0.0 0.0

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

10.0

8.0

6.0

4.0

2.0

0.0
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2013). However, aberrant expression of microRNAs, non-
related to genomic gains or losses, could be due to other
regulatory mechanisms including epigenetic modifications.
DNA methylation represents the most studied epigenetic
regulatory mechanism of modifying gene expression in both
coding and noncoding genes such as microRNAs (Lopez-Serra
and Esteller, 2012, Sandoval and Esteller, 2012; Altorok et al.,
2014). Analyzing the DNA methylation profile in promoter
regions of the differentially expressed microRNAs permitted us
to identify a characteristic methylation pattern in CTCL. Prior
studies have described DNA methylation signatures associated
with different types of tumors related to both coding genes
(Sandoval et al., 2013) and microRNAs (Lujambio et al.,
2008). However, to our knowledge, the DNA methylation
profile of differentially expressed microRNAs has not been
previously reported in association with CTCL. Importantly,
epigenetically deregulated microRNAs in our series have been
also linked as a mechanism to disease in different cancer
subtypes (Neves et al., 2010; Vrba et al., 2011; Li et al.,
2013c, 2014a, b).

Promoter DNA methylation is known to silence gene expres-
sion (Sanchez-Mut et al., 2013; Chambwe et al., 2014). In our
series, an inverse correlation between microRNA expression
and DNA methylation data in both MFt and the CD30þ
cALCL groups was detected. Furthermore, demethylating
agents restored the expression of methylated microRNAs,
supporting the implication of DNA methylation on the regula-
tion of the differentially expressed microRNAs in CTCL.
In this sense, epigenetic therapy (methylation inhibitors or
histone deacetylase inhibitors) has shown some benefit in
cancer, including CTCL (Hassler et al., 2012; Wong, 2013).
Our results provide further evidence for the potential use of
evolving epigenetic clinical strategies in the management of
CTCL patients.

In conclusion, the identification of expression profiles
of microRNAs in CTCL and integrating these findings with
data from epigenetic and genomic alterations may contribute
to a better understanding of the pathogenic mechanisms
involved in the development of both MF and CD30þ cALCL.
This data set will allow to further evaluate the usefulness
of microRNAs as diagnostic or progression markers in
these diseases, and the possible design of more specific and
selective treatments.

MATERIALS AND METHODS
Patients

This is a collaborative and retrospective study including a total of 32

CTCL samples obtained from different institutions in Spain (Hospital

del Mar, Hospital de Bellvitge, Hospital Clı́nic, and Hospital de Sant

Pau in Barcelona; Hospital General in Valencia; and Hospital 12 de

Octubre in Madrid). Skin biopsy specimens were included in the

study: from 21 patients with tumoral stage MF (MFt) and from

11 patients with CD30þ cALCL. All patients were diagnosed

according to the World Health Organization/European Organization

for Research and Treatment of Cancer classification (Willemze et al.,

2005). The MFt group included 9 females and 12 males with a

median age of 63 years (range, 17–83). Six deaths were recorded in

the MFt group at the end of the study. CD30þ cALCL cases were

6 males and 5 females with a median age of 52 years (range, 21–79).

No deaths were recorded in this group. As a control group, we

included a subset of 5 ID samples showing a dense lymphocytic

infiltrate (subacute cutaneous lupus erythematosus, n¼ 3 and

psoriasis, n¼ 2). An independent cohort of CTCL patients (n¼ 10)

and ID controls (subacute cutaneous lupus erythematosus, n¼ 6 and

psoriasis, n¼ 7) was used for validation analyses.

MicroRNA expression microarray

For all samples, a hematoxylin–eosin staining of a frozen section was

performed in order to confirm the presence of at least 70% of tumor

cells. Total RNA was extracted for microRNA profiling from

20� 10mm snap-frozen samples using a commercial kit, MirVana

miRNA Isolation Kit, following the manufacturer’s protocol (Ambion,

Austin, TX). RNAs were analyzed using the RNA nano 6000,

(Bioanalyzer 2100, Agilent Technologies, Palo Alto, CA) in order to

check the RNA integrity. Samples included in the microarray analysis

had a quality index RIN (RNA integrity number) of Z6.

Briefly, 100 ng of total RNA from each sample was hybridized

using the Agilent Human microRNA microarrays v3 (ID021827;

Agilent Technologies) as the manufacturer’s protocol (see Supplemen-

tary Methods online). Unsupervised and supervised clustering to

determine microRNAs differentially expressed compared with con-

trols and between the two groups of CTCL (MFt and CD30þ cALCL)

was analyzed. Linear models and empirical Bayes methods

were employed for assessing differential expression in microarray

experiments, and multiple testing adjust was performed (false

discovery rate) (Smyth, 2004). MicroRNAs with false discovery rate

adjusted P-value of o5% and additionally a fold change exceeding

1.2 in absolute value were selected as the relevant ones. All statistical

analyses were performed with the Bioconductor project in the R

statistical environment (version 3.0.2) (Gentleman et al., 2004).

Validation of microRNA expression was performed by quantitative

real-time reverse-transcriptase–PCR. For further details see Supple-

mentary Methods online.

Pathway enrichment analysis

MicroRNA pathway enrichment analysis was obtained from DIANA

miRPath version 2.0 that uses DIANA-microT-CDS algorithm and/or

experimentally validated microRNA interactions derived from

DIANA-TarBase version 6.0 (Vlachos et al., 2012).

Microarray-based DNA methylation analysis

Genome-wide DNA methylation analysis was performed in a subset

of 11 samples (including 4 MFt, 4 CD30þ cALCL, and 3 ID) using

the Infinium Human Methylation 450 BeadChip from Illumina (San

Diego, CA) as previously described (Sandoval et al., 2011; Bibikova

et al., 2011). The 450K DNA methylation array by Illumina is an

established, highly reproducible method for DNA methylation

detection and has been validated in three independent laboratories.

The 450K DNA methylation array includes 485,764 cytosine

positions of the human genome. From these cytosine sites, 4,168

are associated with noncoding RNA transcripts (1%), including 3,440

microRNAs that correspond to 834 unique microRNAs (Sandoval

et al., 2011). Only the CpGs associated with the subset of CTCL

differentially expressed microRNAs were selected. We ended up with

230 CpGs. The intensities of the images were extracted and

normalized using Genome Studio (2011.1) Methylation module
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(1.9.0) software from Illumina. For determining differentially

methylated microRNAs, nonparametric Wilcoxon tests were

applied. Probes with multiple test corrected P-value of o0.1 and D-

value threshold of 0.2 in absolute value were used for selecting the

relevant CpGs. All statistical analyses were performed with the

Bioconductor project (version 2.3) in the R statistical environment

(version 2.8.1). Validation was performed by pyrosequencing analysis

following the manufacturer’s instructions. For further details see

Supplementary Material online.

Cell lines and treatments for functional analysis

Three representative human cancer CTCL cell lines (American Type

Culture Collection, Manassas, VA) were used to evaluate the DNA

methylation of miR-10b, miR-193b, and miR-141: Myla (Mycosis

fungoide), HuT-78 (the Sézary syndrome), and HH (non-MF aggressive

CTCL). To restore the expression of DNA-methylated microRNAs, the

cell lines were treated with the DNA demethylating agent 5-aza-20-

deoxycytidine (A3656, Sigma, St Louis, MO) at 3mM for 72 hours.
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d’Investigació Clı́nica from l’Institut Mar d’Investigació Mèdica
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