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Abstract

Background: Neuroblastoma is a malignant embryonal tumor occurring in young children, consisting of undifferentiated
neuroectodermal cells derived from the neural crest. Current therapies for high-risk neuroblastoma are insufficient,
resulting in high mortality rates and high incidence of relapse. With the intent to find new therapies for neuroblastomas,
we investigated the efficacy of low-doses of actinomycin D, which at low concentrations preferentially inhibit RNA
polymerase I-dependent rRNA trasncription and therefore, ribosome biogenesis.

Methods: Neuroblastoma cell lines with different p53 genetic background were employed to determine the response
on cell viability and apoptosis of low-dose of actinomycin D. Subcutaneously-implanted SK-N-JD derived
neuroblastoma tumors were used to assess the effect of low-doses of actinomycin D on tumor formation.

Results: Low-dose actinomycin D treatment causes a reduction of cell viability in neuroblastoma cell lines and that this
effect is stronger in cells that are wild-type for p53. MYCN overexpression contributes to enhance this effect, confirming
the importance of this oncogene in ribosome biogenesis. In the wild-type SK-N-JD cell line, apoptosis was the major
mechanism responsible for the reduction in viability and we demonstrate that treatment with the MDM2 inhibitor
Nutlin-3, had a similar effect to that of actinomycin D. Apoptosis was also detected in p53−/−deficient LA1-55n cells
treated with actinomycin D, however, only a small recovery of cell viability was found when apoptosis was inhibited by
a pan-caspase inhibitor, suggesting that the treatment could activate an apoptosis-independent cell death pathway in
these cells. We also determined whether actinomycin D could increase the efficacy of the histone deacetylase inhibitor,
SAHA, which is in being used in neuroblastoma clinical trials. We show that actinomycin D synergizes with SAHA in
neuroblastoma cell lines. Moreover, on subcutaneously-implanted neuroblastoma tumors derived from SK-N-JD cells,
actinomycin D led to tumor regression, an effect enhanced in combination with SAHA.

Conclusions: The results presented in this work demonstrate that actinomycin D, at low concentrations, inhibits
proliferation and induces cell death in vitro, as well as tumor regression in vivo. From this study, we propose that use
of ribosome biogenesis inhibitors should be clinically considered as a potential therapy to treat neuroblastomas.
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Background
Neuroblastoma is a malignant embryonal tumor occur-
ring in young children, consisting of undifferentiated
neuroectodermal cells derived from the neural crest [1].
It is an aggressive cancer accounting for more than 15 %
of all pediatric cancer-related deaths [2]. A main hall-
mark of neuroblastoma is the variability in clinical out-
come, partly due to the multiple cell types forming the
tumor mass. Neuroblastoma cell types vary in their
degree of differentiation, tumorigenicity and drug sensi-
tivity, having the capability to trans-differentiate into
other cell type.
The multiplicity of the genomic alterations described

for neuroblastoma indicates that the evolution of this
neoplasia involves a complex pattern of oncogene activa-
tion and tumor suppressor gene inactivation [3]. About
15 % of the neuroblastoma cases show MYCN gene
amplification, a genomic aberration used as a negative
prognosis indicator [4]. Besides MYCN amplification,
other aberrations also contribute to tumor progression.
For example, upregulation of MYCN expression by high
expression of the transcription factor E2F1, and/or acti-
vation of ALK kinase and/or loss of function of tumor
suppressor proteins NF1 and p73, act independently of
MYCN status [5–7]. Since most neuroblastoma cells are
wild-type for p53 (p53wt), induction of p53 is viewed as a
potential therapeutic approach for this tumor type [8, 9].
Accordingly, most patients with high-risk neuroblastomas,
initially respond to genotoxic chemotherapy and local
radiotherapy (10). However, no satisfactory treatment is
currently available as relapsed neuroblastomas show fre-
quent secondary mutations and represent a serious prob-
lem in neuroblastoma management [10, 11].
Inhibition of ribosome biogenesis has been proposed

recently as a new therapeutic approach in treating spe-
cific cancer types, in particular those driven by dys-
regulated c-Myc activity [12, 13]. To maintain high
proliferation rates, cancer cells need to increase their
translational capacity and are addicted to high rates of
ribosome biogenesis [13–16]. In this scenario, high
c-Myc activity in tumors influences tumor formation, not
only by transcriptionally upregulating genes essential for
cell cycle progression, but also by increasing global protein
translation. c-Myc activity participates in ribosome bio-
genesis by inducing the expression of ribosomal proteins
through RNA polymerase II, by transcriptional upregulat-
ing 45S rRNA and 5S rRNA through activation of RNA
Pol I and III respectively, as well as by modulating factors
essential for the rRNA processing, rRNA transport and
ribosome assembly [17]. Importantly, like c-Myc, the
specific form of MYC in neuroblastoma, N-Myc, also
enhances rates of ribosome biogenesis [18]. Impairment of
this response leads to the activation of a novel MDM2
checkpoint, leading to stabilization of p53, cell cycle arrest

and apoptosis. The severity to which the checkpoint is en-
gaged, appears to be governed by the extent to which cell
is dependent on ribosome biogenesis. Given the addiction
c-Myc induced tumors to high rates of ribosome biogen-
esis, we hypothesized that inhibition of ribosome biogen-
esis could be an selective approach for neuroblastoma
therapy [19].
Actinomycin D was the first antibiotic shown to have

anti-cancer activity, and is now most commonly used as
a treatment for a variety of pediatric tumors, such as
Wilms’ tumor, Rhabdomyosarcoma and Ewing’s sarcoma
[20–22]. Actinomycin D is a DNA intercalator, which
shows preference for GC-rich DNA sequences [23]. As
the promoter of 45S ribosomal gene is GC-rich, low
concentrations of actinomycin D preferentially inhibit
RNA Pol I-dependent trasncription, leading to a disrup-
tion of ribosome biogenesis [23]. As a consequence, a
preribosomal complex made up of ribosomal proteins
RPL5 and RPL11 and non-coding 5S rRNA is redirected
from 60S ribosome biogenesis to the binding of MDM2,
inhibiting its ubiquitin-ligase activity and promoting the
accumulation of p53, cell cycle arrest and apoptosis [24].
Interestingly, actinomycin D also induces cell death in
patients with deleted or mutated p53, suggesting the ex-
istence of a p53-independent cell death mechanisms
[25].
Here we studied the response of neuroblastoma cell

lines to low doses of actinomycin D in cell culture and
xenograft tumor models. We also tested the combin-
atory effect of actinomycin D with the p53-independent
chemotherapeutic agent suberoylanilide hydroxamic
acid, SAHA, which is now in clinical trials for neuroblas-
tomas treatment [26]. Our data highlights the thera-
peutic potential of actinomycin D and suggests that low
doses of this drug could be used in combination with
other agents to take advantage of its dependence on p53,
but avoid its non-specific effects.

Results
Actinomycin D decreases cell viability in a dose- and
time-dependent manner
To assess the impact of Pol I inhibition on neuroblast-
oma cell viability, we measured the effect of escalating
doses of actinomycin D on a representative panel of
neuroblastoma cell lines [27]. Concentrations used were
in the nM range, which have been shown to inhibit Pol I
without affecting Pol II and Pol III activity [23]. Reduc-
tion of cell viability occurred in all neuroblastoma cell
lines tested after 24 and 48 h of treatment. However, the
extent of this effect varied depending on the cell line
(Fig. 1). SK-N-JD and SH-SY5Y, two p53-proficient cell
lines, presented a complete reduction of cell viability
when tested at higher actinomycin D concentrations
(Fig. 1a, b). In contrast, LA1-55n and SK-N-AS, two cell
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lines with either absent or truncated p53, were consider-
ably less responsive to treatment (Fig. 1c, d). These dif-
ferences would suggest a sensitization to actinomycin D
depending on p53 genetic background. To confirm this
hypothesis, the expression of p53 was abrogated by
siRNA in SK-N-JD cells and we measured the response
to actinomycin D. The results confirmed that p53 de-
pleted cells show less sensitivity to actinomycin D than
the parental cells (Fig. 1e). Note that p53 depletion re-
duced the level of PARP-1 cleavage, suggesting that a
p53 apoptosis-dependent mechanism is involved on re-
duction of cell viability after actinomycin D treatment
(Fig. 1f ).
We hypothesized that overexpression of MYCN gene,

which is often amplified in neuroblastoma, could play a
role in actinomycin D response. Consistent with this, in
cells with equal p53 status, cells with MYCN-amplified
genetic background showed more sensitivity to

actinomycin D than those that do not present this gene
amplification; compare SK-N-JD with SH-SY5Y and LA1-
55n with SK-N-AS (Fig. 1). In order to rule out that the
differences in response were due to cell type, we further
analyzed the effect of N-Myc over-expression in SH-EP
Tet/21 N cells. This cell line expresses an exogenous
MYCN gene regulated by a tetracycline repressible pro-
moter [28]. In response to actinomycin D, N-Myc overex-
pressed SH-EP cells showed a marked reduction of cell
viability compared to those in which c-Myc was downreg-
ulated by tetracycline induction, suggesting that N-Myc
levels sensitize neuroblastoma to actinomycin D treatment
(Fig. 2a-c).
Taken together, the results show that low concentra-

tions of actinomycin D cause a reduction of cell viability
in neuroblastoma cell lines, this effect is stronger in cells
with p53wt genetic background and MYCN overexpres-
sion appears to enhance actinomycin D sensitivity.

Fig. 1 Effect of actinomycin D on cell viability. a–d Cell lines were treated with the indicated doses of actinomycin D and cell viability was measured
after 24 h and 48 h of treatment. IC50 was calculated at 48 h of treatment using the CalcuSyn software (Biosoft Inc.). e-f SK-N-JD cells were transfected
with non-targeting siRNA (siNT) or p53 siRNA for 48 h and treated with the indicated doses of actinomycin D. e Cell viability was measured 24 h and
48 h after treatment. f Expression of the indicated proteins was determined by Western blot analysis 24 h after treatment with 10 nM of actinomycin D
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Actinomycin D induces cell death by apoptosis-dependent
and independent mechanisms
Previous studies demonstrate that low doses of actino-
mycin D stabilize p53 by inhibiting MDM2 [24]. Accu-
mulation of p53 due to MDM2 inhibition leads to cell
cycle arrest and/or apoptosis [29]. Focusing on the p53wt

SK-N-JD and p53-deficient LA1-55n cell lines, we
investigated the mechanism by which actinomycin D re-
presses cell viability. Apoptosis, assessed by PARP-1
cleavage, was observed after actinomycin D treatment in
the p53wt SK-N-JD cell line (Fig. 3a). The activation of

apoptosis correlated with an increase in p53 levels and
its transcriptional targets MDM2 and p21, as well as a
decrease in N-Myc and E2F1 levels (Fig. 3a). Inhibition
of apoptosis by the presence of the pan-caspase inhibitor
QVD-Oph, rescued the reduction of cell viability in-
duced by actinomycin D at 16 h and partially at 24 h,
implying a key role of caspases in this process (Fig. 3b).
Protein analysis showed that inhibition of caspase
activity blocked N-Myc and E2F1 degradation, strongly
implying that both proteins could be, directly or indir-
ectly, downstream targets of caspases (Fig. 3c). Note that
N-Myc RNA decreased after actinomycin D treatment
and 45S rRNA levels, as a measure of pol I activity, were
almost undetectable (Fig. 3d).
PARP-1 cleavage was not detected following actinomy-

cin D treatment of p53-deficient LA1-55n cells (Fig. 3e).
However, a small, but significant, recovery of cell viabil-
ity was found when QVD-Oph was added to actinomy-
cin D treated cells, suggesting that apoptosis could also
be induced in this cell line (Fig. 3f ). The involvement of
apoptosis was confirmed by flow cytometry analysis.
Treatment with actinomycin D induced an increase in
cell death, manifested by accumulation of sub-G1 cell
debris population and a significant increase in G2 popu-
lation. The presence of the pan-caspase inhibitor, QVD-
Oph totally abrogated the increase of the number of cells
in the sub-G1 cell debris population, completely abolishing
this response in the SK-N-JD cell line (Additional file 1:
Figure S1). Moreover, in contrast to p53wt SK-N-JD cells,
E2F1 and N-Myc protein levels rose after actinomycin D
treatment of p53-deficient LA1-55n cells, with no further
effect of QVD-Oph treatment (Fig. 3g). At this time, N-
Myc and E2F1 mRNA levels also increased suggesting that
the action of actinomycin D occurs at mRNA level,
either through increased transcription or mRNA
stability (Fig. 3h).
Autophagy has been described as a mechanism of cell

death in several settings including neuroblastoma [27].
Autophagy was analyzed by LC3-I conversion to LC3-II,
the LC3-lipidated form bound to autophagosomes [30].
Increased conversion of LC3-I to LC3-II was observed
in LA1-55n cells but not in SK-N-JD, suggesting that
autophagy could play a role in viability loss in cells with
a p53−/− genetic background (Fig. 3c, g). Overall, these
results suggest that apoptosis is the major cell death
mechanism triggered by actinomycin D treatment in
p53wt cell lines and, to a less extent, in p53-deficient cell
lines.

Activation of p53 is responsible for the effects of
actinomycin D in p53wt SK-N-JD neuroblastoma cell line
To further analyze the contribution of p53 on neuroblast-
oma cell death, we investigated the effect of Nutlin-3 on
cell viability. Nutlin-3 specifically activates p53 expression

Fig. 2 Role of N-Myc on the response to actinomycin D. a-c SH-EP
Tet/21n cells were treated in absence (MYCN+) or in presence (MYCN−)
of tetracycline with increasing doses of actinomycin D, and cell viability
was measured after 24 and 48 h of treatment. IC50 was calculated at
48 h of treatment using the CalcuSyn software (Biosoft Inc.). c N-Myc
protein expression was determined by Western blot analysis, 24 h after
tetracycline addition
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by inhibiting the MDM2-p53 interaction. Escalating doses
of Nutlin-3 strongly reduced viability in p53wt SK-N-JD
cells at 24 and 48 hrs after treatment and, while no effect

was found in the cell line lacking functional p53, LA1-55n
(Fig. 4a). Similarly, as observed above for actinomycin D,
the activation of apoptosis in SK-N-JD cells, correlated

Fig. 3 Role of actinomycin D on apoptosis. a and e Cell lines were treated with 10 nM of actinomycin D and protein expression was determined
by Western Blot analysis at the given times. b and f Cell lines were treated with 10 nM of actinomycin D in presence or absence of 20 μM of
Oph-QVD and cell viability was measured at indicated times. c and g Cell lines were treated with actinomycin D 10 nM in presence or absence of
Oph-QVD 20 μM. After 24 h of treatment, the indicated protein expression levels were determined by Western blot analysis. d and h Cell lines
were treated with 10 nM of actinomycin D and levels of the indicated RNAs were measured 24 h after treatment
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with the stabilization of p53 and its transcriptional targets
MDM2 and p21, as well as a decrease in N-Myc and E2F1
levels (Fig. 4b). The inhibition of apoptosis by QVD-Oph
treatment completely rescued the effect of Nutlin-3 on cell
viability as well as E2F1 and N-Myc protein expression
(Fig. 4c, d). Neither apoptosis nor changes of MDM2 and
N-Myc expression levels were observed Nutlin-3-resistent
cells LA1-55n cells (Fig. 4e). Results support that the
activation of p53, per se, is responsible for the effects of
actinomycin D found on SK-N-JD proliferation.

Actinomycin D synergizes with SAHA to decrease cell
viability
Preclinical and phase I/II clinical trials have provided
the basis to appraise histone deacetylase inhibitors as
treatment for cancer therapy, including neuroblastoma
[26, 31]. Considering this, we examined the effect of
SAHA in combination with actinomycin D on

neuroblastoma cell viability. Treatment with increasing
doses of SAHA, in combination with actinomycin D at
low concentrations, led to a more pronounced decrease
in cell viability compared with treatment with SAHA
alone both, in SK-N-JD and LA1-55n, neuroblastoma
cells lines (Fig. 5a, b). Synergy was also tested by the
combination index isobologram method (35). Simultan-
eous exposure to increasing doses of SAHA and actino-
mycin D showed a CI lower than 1 which implies a
synergistic inhibitory effect of the drugs on neuroblast-
oma cell lines viability (Fig. 5c-e). The effect of the drug
combination on apoptosis was also determined by
PARP-1 cleavage. Treatment with both drugs augmented
PARP-1 cleavage suggesting an increase in cell death by
apoptosis (Fig. 5f ). Interestingly, the increase of PARP-1
cleavage did not correlate with an increase of the p53
levels, or its target genes p21 and MDM2 suggesting that
the synergism occurs independently of p53-induced
apoptosis. These results demonstrate that actinomycin D
synergizes with SAHA, with the latter apparently activat-
ing apoptosis in a p53-independent manner.
The p53 family member, p73, has an important role in

apoptosis in settings where p53 is absent [32–34]. To in-
vestigate whether p73 could be involved in the response
to actinomycin D, alone or in combination with SAHA
in 53-deficient cells, levels of p73 were measured in
LA1-55n cell lines. Actinomycin D treatment alone in-
creased p73 expression, which was abrogated after
SAHA treatment suggesting that p73 expression could
be responsible for apoptosis in 53-deficient cells, but not
for the SAHA synergism on cell death (Fig. 5g). Since
actinomycin D acts preferentially by intercalating into
GpC rich double-stranded DNA, we also investigated
the activation of DNA double strand break response
after such treatments. Phosphorylation of H2A.X at
serine 139 was not detected at low doses of actinomycin
D discarding this possibility. However in contrast, high
levels of γ- H2AX were found in all SAHA treatment
conditions, as has been recently reported [35]. This
effect was observed after 16 h of treatment (Additional
file 2: Figure S2).

Actinomycin D alone or combined with SAHA causes
regression of SK-N-JD derived tumors
The in vitro observations of the ability of actinomycin D
to induce cell death and cell cycle arrest was evaluated
in vivo by testing its effect on subcutaneously-implanted
SK-N-JD derived neuroblastoma tumors. SK-N-JD cells
were subcutaneously transplanted into athymic nude
mice and tumor pieces of similar size were engrafted in
both flanks of recipient mice. Mice bearing the tumor
were treated for 15 days with either actinomycin D,
SAHA, the combination of actinomycin D and SAHA,
or placebo. Treatment with actinomycin D alone or in

Fig. 4 Effect of nutlin-3. a and b Cell lines were treated with the
indicated doses of nutlin-3 and cell viability was measured after 24 h
and 48 h of the treatment. c and f Cell lines were treated with 10 μM
of nutlin-3 and expression of the indicated proteins was determined
by Western Blot analysis after the given treatment times d SK-N-JD cells
were treated with 10 μM of nutlin-3, in presence or absence of 20 μM
of Oph-QVD. Cell viability was measured at the indicated times.
e SK-N-JD cells were treated (+) or not (−) with 10 μM of nutlin-3 in
the presence (+) or absence (−) of 20 μM of Oph-QVD. Expression of
the indicated proteins was determined by Western Blot analysis 24 h
after treatment
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combination with SAHA, resulted in a delay in tumor
growth (Fig. 6a, b). After 14 days of treatment, actino-
mycin D reduced tumor volume ~ 80 % compared with
the vehicle, while SAHA decreased tumor volume by a
30 % (Fig. 6c). The combination of actinomycin D with
SAHA reduced tumor volume by 90 % (Fig. 6c). Most
significantly, the combination resulted in complete re-
gression of tumors in 7 out of 12 mice. Chronic admin-
istration of all drugs was tolerable, with an average
weight loss above 12 % at the end of the experiment.

45S rRNA levels were lowered in actinomycin D condi-
tions implying a direct effect of this drug on the tumor
(Fig. 6d). Hematoxylin and eosin (H&E) staining of
tumor sections revealed an undifferentiated phenotype,
depicted by a fibrous stroma (Fig. 6e). No significant
changes on proliferative parameters such as Ki67 or mi-
totic index were observed; however higher p53 levels
were observed in some of the sections of actinomycin D
treated tumors (Fig. 6e, f ). Overall these results show
that actinomycin D, alone or in combination with

Fig. 5 Effect of the combination of Actinomycin D with SAHA in vitro. a and b Cells were treated for 48 h with the indicated concentrations of
SAHA in presence or absence of actinomycin D at 0.25 nM (SK-N-JD) or 2.5 nM (LA1-55n) and cell viability was measured. c and d Isobolograms
representing actinomycin D and SAHA interaction analyzed by the Chou-Talalay median effect method. The additivity line is the one uniting each
drug concentration needed to inhibit cell growth by 50 % (IC50), 75 % (IC75) or 90 % (IC90). The colored shapes under this line denote synergism.
e Graphic representation of IC values at IC50, IC75 and IC90. f Cells were treated (+) or not (−) with actinomycin D in the presence (+) or absence (−)
of SAHA for 48 h. Concentrations used were 0.3 nM actinomycin D and 0.7 μM SAHA in SK-N-JD cells, and 1 nM actinomycin D and 1 μM SAHA in
LA1-55n cells. Protein expression was determined by Western blot analysis. g LA1-55n cells were treated (+) or not (−) with 0.1 nM of
actinomycin D in the presence (+) or in the absence (−) of 1 μM SAHA. The indicated proteins expression was determined after 24 h
after treatment by Western blot analysis
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SAHA, leads to tumor regression in our mouse mode,
strongly suggesting a potent role for this drug in treat-
ment of human neuroblastoma.

Discussion
Current therapies for high-risk neuroblastoma are insuf-
ficient, resulting in high mortality rates and high inci-
dence of relapse [36]. With the intent to find new
therapeutic approaches for this cancer, we investigated
the utility of actinomycin D as an inhibitor of ribosome
biogenesis in the treatment of neuroblastoma tumors.
The results presented in this work demonstrate that acti-
nomycin D, at low concentrations, inhibits proliferation

and induces cell death in vitro, as well as tumor regres-
sion in vivo. From this study, we propose that use of
ribosome biogenesis inhibitors should be clinically con-
sidered as a potential therapy to treat neuroblastomas.
Although all the neuroblastoma cell types were sensi-

tive to actinomycin D, the extent of the response was
different depending on their p53 genetic status. This
agrees with the finding that actinomycin D, at low con-
centrations, has been described as a potent activator of
the p53 pathway. In this regard, we show that actinomy-
cin D treatment has similar features to the MDM2
inhibition by Nutlin-3 in p53-functional SK-N-JD. The
results presented here agree with those of others

Fig. 6 Effect of the combination of Actinomycin D with SAHA in vivo. a Tumor size observed in mice after 14 days of each treatment. b Tumor
volume increase over time, expressed as fold increase over the initial tumor volume. Error bars show ± SEM of at least 10 tumor replicates on
eight different mice for each treatment. c Final volume of each of the tumors analyzed. d RNA levels of 45S rRNA was measured after 14 days of
each treatment. Values represent the average ± SEM of three different tumors for each treatment. e Hematoxylin and eosin (H&E), Ki67 and p53
stainings were obtained after 14 days of indicated treatment. f Graphic representation of the p53 staining values
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showing that sensitivity to Nutlin-3 was highly predictive
in the absence of p53 mutation [37]. It is known that
actinomycin D disrupts ribosome biogenesis, redirecting
the pre-ribosomal complex RPL11/RPL5/5SrRNA from
assembly into nascent 60S ribosomes to the binding and
inhibition HDM2, resulting in p53 stabilization [24]. In
this context, we found that actinomycin D increases on
p53 protein levels and induces the accumulation of the
p53 target genes p21 and MDM2. Interestingly, the
increase of MDM2 levels at 24 h correlated inversely
with the reduction of p53, suggesting the activation of a
feed-back loop, as has been previously reported [29].
Apoptosis was the major mechanisms responsible for
cell death in the p53wt SK-N-JD neuroblastoma cells and
contributes to N-Myc and E2F1 protein degradation.
The fact that actinomycin D was also able to repress

cell growth in p53-deficient LA1-55n cells implies the
involvement of p53-independent mechanism. Although
it was not detected by PARP-1 cleavage analysis, we have
shown by flow cytometry analysis that apoptosis was in-
duced after actinomycin D treatment. Apoptotic func-
tion of actinomycin D in p53-deficient cells could be a
consequence of the activation of p73, a homologue of
p53. It is known that p73 binds to the N-terminal hydro-
phobic pocket of MDM2 and MDM2 inhibits p73
transcriptional activity [33, 38]. Actinomycin D could pre-
vent p73-MDM2 interaction, resulting in p73-dependent
apoptosis, in an analogous manner as it has been reported
in p53-null neuronal cells after Nutlin-3 treatment [33, 34].
Moreover, the minor effect of pan-caspase inhibitor QVD-
Oph on restoring cell viability after actinomycin D treat-
ment indicates that apoptotic-independent mechanisms
are mainly responsible for the effect of actinomycin D in
these cells. In this regards, a strong G2-M cell cycle arrest
was detected after actinomycin D treatment, similar to
that previously reported [39]. Furthermore, our data
indicate that actinomycin D activates autophagy. While
autophagy is mainly considered a cell survival mechanism,
its activation can induce neuroblastoma cell death under
certain conditions [27, 40]. Taken together our results
argue for an important p53-independent cell death
component induced by actinomycin D in p53 deficient-
neuroblastomas, similar to what has been found in
chronic lymphocytic leukemia [25].
About 15 % of the neuroblastoma present MYCN

amplification, an indicator of bad prognosis [4]. MYCN,
like other members of the MYC family, has been
described as a driver of anabolic cellular processes, in-
cluding ribosome biogenesis. I would be expected that
MYCN overexpressing tumors would have elevated rates
of ribosome biogenesis, and their malignancy dependent
on this process as has been described in c-Myc-driven
tumors model of B-cell lymphoma [19]. In agreement
with this, our results show that higher N-Myc levels

sensitize neuroblastoma to actinomycin D. In a wild-
type p53 genetic background, the stronger effect of acti-
nomycin D in MYCN amplified context should result in
the activation of RPL5/RPL11/5S rRNA-MDM2-p53
checkpoint. Our data agrees with previous findings that
report a direct correlation between MYCN status and
the response to the MDM2-p53 antagonist, Nutlin-3
[41]. Similar to the use of DNA damaging agents, which
target cancer cells with high replicative rates, drugs that
disrupt ribosome biogenesis, such as actinomycin D
could be exploited to induce selective apoptosis in tu-
mors characterized by high rates of ribosome biogenesis,
such as Myc driven tumors.
Actinomycin D has been used clinically for over 50 years

for the treatment of children and adult cancer. As part of
a multimodal therapy, actinomycin D is a key component
in the treatment of Wilms tumor, Ewing’s sarcoma and
rhabdomyosarcoma [42]. Administration of actinomycin
D to the patients over this time has generated consider-
able pharmacokinetic and pharmacodynamic data. This
information should be useful for setting up clinical trials
for this drug in neuroblastomas. Although actinomycin D
is relatively well tolerated, hematological toxicities are
observed in some of the children [42]. New drug com-
binations may provide a way to lower the effective che-
motherapy doses in existing treatment protocols. In this
study we show that, in addition to its tumor suppressive
activity as a single agent, actinomycin D synergizes with
the histone deacetylase inhibitor, SAHA in vitro on neuro-
blastoma cells.
SAHA was the first histone deacetylase inhibitorm

approved by the US Food and Drug Administration, and
phase II clinical trials in children with relapsed solid
tumors including neuroblastoma are currently ongoing
[26, 31, 43]. Histone deacetylase inhibitors have been
shown to induce G1-phase cell cycle arrest, associated
with the upregulation of p21 Waf1/Cip1, independently of
p53 [44, 45]. These changes result in reduced prolifera-
tion, induction of apoptosis and differentiation [46]. Al-
though a number of clinical trials have been undertaken
with SAHA, the efficacy of this drug as a single agent is
low in neuroblastoma. The multiplicity of the genomic
alterations found in neuroblastoma suggest that target-
ing multiple biological pathways are likely to be more
effective than drugs that target a single pathway. Ac-
cordingly the use of SAHA, in combination with retinoic
acid, results in improved anti-tumorigenic activity com-
pared to either drug alone [47, 48]. The fact that p53
wild-type cells are more sensitive to actinomycin D, and
that SAHA acts independently of p53, suggests this
combination may be excellent for the treatment of
neuroblastoma. Note that although most of the neuro-
blastomas present p53 wild-type, about 2 % of the cases
have p53 mutations at diagnosis and around 15 % in the
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relapsed tumor [49]. According to this, the combinatory
treatment of SAHA and actinomycin D could be very ef-
ficient in the treatment of p53-mutated relapsed tumors.
Inhibition of ribosome biogenesis, and specifically in-

hibition of RNA pol I, is a promising therapeutic option
for cancer. Efforts are currently directed to develop new
drugs in this direction. The small molecule CX-5461, an
inhibitor of rDNA transcription, has been shown to se-
lectively kill B-lymphoma cells in vivo while maintaining
the viability of the wild type population [19]. Recently,
several novel DNA intercalating agents have been iden-
tify by drug screen that repress RNA pol I activity by
inducing the degradation of the RPA194 subunit of Pol I
[50]. The results obtained here with actinomycin D
suggest these novel therapeutic agents have potential
against neuroblastoma.

Conclusions
In summary, our data demonstrate that actinomycin D,
at low concentrations, inhibits proliferation and induces
cell death in neuroblastoma cell lines, as well as tumor
regression in xenograft tumor models. We provide
experimental evidence showing that apoptosis is the
major cell death mechanism triggered by actinomycin D
treatment in p53wt cell lines and, to a less extent, in
p53-deficient cell lines. Important, we show that higher
N-Myc levels, an indicator of bad prognosis, sensitize
neuroblastoma to actinomycin D. Our data highlights
the therapeutic potential of actinomycin D and suggests
that low doses of this drug could be used in combination
with other agents to take advantage of its dependence
on p53, but avoid its non-specific effects.

Methods
Cell culture and chemicals
SH-SY5Y cell line was purchased from American Type
Culture Collection. LA1-55n, SK-N-JD and SK-N-AS were
kindly supplied by Dr. Jaume Mora (Children’s Hospital
Sant Joan de Déu, Barcelona) and SH-EPTet/21 N by
Dr. Manfred Schwab (Deutsches Krebsforschungszentrum,
Heidelberg). Cell lines were cultured in RPMI 1640 media
and supplemented with 10 % fetal bovine serum, 100 U/ml
penicillin, 100 μg/ml streptomycin and 2 mM L-glutamine
(GIBCO, Life Technologies). Conditional silencing of
N-Myc expression in SH-EPTet/21 N cells line was
achieved by adding 1 μg/ml of tetracycline (Sigma-Aldrich)
to growth media. Others chemicals used were actinomycin
D (BioVision), nutlin-3 (Santa Cruz Biotechnology),
SAHA (Cayman Chemical), and the pan-caspase
inhibitor quinolyl-valyl-O-methylaspartyl-[−2,6-difluor-
ophenoxy] [51] 7-methyl ketone (QVD-Oph, R&D
Systems).

Cell viability assays
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was carried
out on cells seeded 24 hours prior to treatment on 96-well
plates according to manufacturer’s instructions (Promega).
Ratio of cell viability was calculated comparing the sam-
ple’s optical density to untreated controls at same time
point. Cell number was calculated comparing the sample’s
optical density to a standard curve. Assays were per-
formed in triplicates.

Quantitative real-time PCR
RNA was isolated using TRIzol (Life Technologies) ac-
cording to manufacturer’s instructions. RNA was reverse
transcribed using MMLV reverse transcriptase (Life
Technologies) for 30 minutes at 37 °C. Real-time quantita-
tive RT-PCR (qPCR) was performed using LightCycler
480 SYBR Green I Master kit (Roche) and the following
primer sets (Sigma): MYCN forward 5′-TCCACCAG
CAGCACAACTATG-3′ reverse 5′-GTCTAGCAAGTC
CGAGCGTGT-3′; E2F1 forward 5′-ATGTTTTCCTGTG
CCCTGAG-3′ and reverse 5′-ATCTGTGGTGAGGGAT
GAGG-3′; 45S rRNA forward 5′-CCCGTGGTGTGA
AACCTTC-3′ and reverse 5′-GACGAGACAGCAAAC
GGGAC-3′; β-actin forward 5′-CGTCTTCCCCTCC
ATCG-3′ and reverse 5′-CTCGTTAATGTCACGCAC-3′.
Calculation of relative mRNA was done using Light Cycler
96 software (Roche). Assays were performed in triplicates.

Western blot
Protein extraction, separation and detection were achieved
as described previously [52]. Antibodies used were: anti-
PARP-1, anti-p53, anti-MDM2 and anti-p21 from
Santa Cruz Biotechnologies; anti-N-Myc (Calbiochem),
anti-LC3 (MBL International), anti-E2F1, anti-β − actin
and γ-H2A.X (Cell Signaling Technology) and p73
(Abcam). The assays were repeated a minimum of
three times.

siRNAs and transfection
The following siRNAs were used: non-silencing siNT
(GCAUCAGUGUCACGUAAUA) and p53 siRNA (GCA
TCTTATCCGAGTGGAA). Cells were transfected using
lipofectamine 2000 according to the manufacturer
instructions.

Assessment of synergism
Synergism was calculated according to the Chou-Talalay
median effect analysis and determined by the combin-
ation index (CI) [53]. Briefly, SK-N-JD and LA1-55n cell
lines were treated with SAHA or actinomycin D indi-
vidually at serial dilutions, or both simultaneously at
fixed molar drug ratios of 1:500 (SK-N-JD) or 1:300
(LA1-55n) for 48 hours cells. The initial concentrations
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were 2.5 μM for SAHA and 1nM (SK-N-JD) or 20 nM
(LA1-55n) for actinomycin D. Cell viability was then de-
termined by MTS assay as previously described. The
drug doses and their effect values were then used to de-
termine whether the interaction was synergic (CI < 1),
additive (CI = 1), or antagonic (CI > 1) using the Calcu-
Syn software v. 2.1 (Biosoft Inc.).

Cell cycle analysis
Floating and adherent cells were collected after treat-
ment, washed twice with cold PBS, fixed with ice cold
70 % ethanol, and centrifuged. Cells were then washed
and resuspended in 1 ml of phosphate-buffered saline
containing propidium iodide 5 μM and RNase A 100 μg/
mL (Life Technologies). 104 cells were then analyzed by
flow cytometry (Beckman Coulter, Indianapolis, IN), and
cell cycle distribution was determined by DNA content.

In vivo treatment of Xenograft model
Six-week old female athymic mice (Harlan Laboratories)
were used to propagate subcutaneously-implanted neu-
roblastoma tumors derived from SK-N-JD cells. Once
tumours reached 15 mm at the largest axis, the donor
mice were euthanized and equal-size pieces of the
tumors were engrafted in both flanks of recipient mice.
When tumors were palpable, the mice were divided into
4 cohorts of 8 mice each to receive, by intra-peritoneal
injections, one of the following treatments: (a) vehicle
control (PEG400 50 % in saline solution), (b) vorinostat
(100 mg/kg per dose), (c) actinomycin D (60 μg/kg per
dose), (d) vorinostat plus actinomycin D. Injections were
given daily during a 1-week period, after which the dose
for each treatment were halved and given for another
week. Tumor measurements were obtained once every
other day and converted to tumor volume using the
equation Volume = (3,1416/6 × length × width2).
Weights were measured daily. The mice were humanely
killed at the end of the experiment. The in vivo ex-
perimental protocol was approved by the Committee of
Animal Experimentation of the Catalonian Government.

Histology and immunohistochemistry
Tumors were fixed in 10 % neutral formaldehyde,
processed, and embedded in paraffin. Endogenous per-
oxidase activity was quenched by incubation of sections
in 0.1 % hydrogen peroxide, and antigen retrieval was
achieved using heat-activated 10 mM sodium citrate
buffer (pH 6). Sections were incubated for 16 minutes
at room temperature using antibodies against Ki67
(Ventana Medical Systems) and p53 (DAKO). All slides
were counterstained with hematoxylin, dehydrated, and
mounted.

Statistical analysis
Results are expressed as means ± SEM of three separate
experiments. Statistical significance of was determined
by one-way Anova + Tukey test ( *p < 0.05, **p < 0.01 and
***p < 0.001).

Additional files

Additional file 1: Figure S1. Cell cycle distribution after actinomycin D
treatment. Indicated cell lines were treated with 10 nM of actinomycin D
in the presence or in the absence of 20 μM of Oph-QVD for 24 h or 48 h.
Cell cycle distribution was detected by the propidium iodide staining
method and indicated in the histograms. (DOCX 866 kb)

Additional file 2: Figure S2. Time course of H2A.X phosphorylation
after SAHA and Actinomycin D treatment. LA1-55n cells were treated (+)
or not (-) with 0.1 nM of actinomycin D (ActD) in the presence (+) or in
the absence (-) of 1 μ M SAHA. Indicated protein expression was
determined by Western blot analysis at the indicated times after the
treatment. (DOCX 710 kb)
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