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Sensitization of retinoids and corticoids to epigenetic drugs in
MYC-activated lung cancers by antitumor reprogramming
OA Romero1,5, S Verdura1,5, M Torres-Diz1, A Gomez2, S Moran2, E Condom3, M Esteller2, A Villanueva4 and M Sanchez-Cespedes1

Components of the SWI/SNF chromatin remodeling complex, including BRG1 (also SMARCA4), are inactivated in cancer. Among
other functions, SWI/SNF orchestrates the response to retinoid acid (RA) and glucocorticoids (GC) involving downregulation of MYC.
The epigenetic drugs SAHA and azacytidine, as well as RA and GC, are currently being used to treat some malignancies but their
therapeutic potential in lung cancer is not well established. Here we aimed to determine the possible therapeutic effects of
azacytidine and SAHA (A/S) alone or in combination with GC plus RA (GC/RA) in lung cancers with either BRG1 inactivation or MYC
amplification. In vitro, responses to GC/RA treatment were more effective in MYC-amplified cells. These effects were mediated by
BRG1 and involved a reprogramming towards prodifferentiation gene expression signatures and downregulation of MYC. In MYC-
amplified cells, administration of GC/RA enhanced the cell growth inhibitory effects of A/S which, in turn, accentuated the
prodifferentiation features promoted by GC/RA. Finally, these treatments improved overall survival of mice orthotopically implanted
with MYC-amplified, but not BRG1-mutant, cells and reduced tumor cell viability and proliferation. We propose that the combination
of epigenetic treatments with retinoids and corticoids of MYC-driven lung tumors constitute a strategy for therapeutic intervention
in this otherwise incurable disease.
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INTRODUCTION
The widespread occurrence of alterations at genes encoding
different components of the SWI/SNF complex reveals an
important new feature that sustains cancer development and
offers novel potential strategies for cancer therapeutics.1,2 We
discovered that in lung cancer the SWI/SNF component, BRG1
(also called SMARCA4), is genetically inactivated in about 30% of
non-small cell lung cancers and occurs in a background of wild-
type MYC (C, L or N).3–5 More recently, we noted tumor-specific
inactivation of the MYC-associated factor X gene, MAX, in about
10% of small cell lung cancers, where it is present in tumors that
are wild type for MYC and BRG1.6 Altogether, the genetic
observations coupled with functional studies5–8 indicate the
existence of an important network, involving SWI/SNF and MAX/
MYC that is critical to lung cancer development.
The SWI/SNF chromatin-remodeling complex modifies the

structure of the chromatin by the ATP-dependent disruption of
DNA–histone interactions at the nucleosomes to activate or
repress gene expression.9,10 In healthy adults and during
embryonic development, the complex is involved in the control
of cell differentiation and in tissue specification.11–13 The effect of
the SWI/SNF complex on some of these processes is, at least in
part, related to its involvement in regulating hormone-responsive
promoters. Components of the SWI/SNF complex bind to various
nuclear receptors, such as those of estrogen, progesterone,
androgen, glucocorticoids (GCs) and retinoic acid (RA), thereby

adapting the gene expression programs to the demands of the
cell environmental requirements.14–18

RA and GC are well-known modulators of cell differentiation,
embryonic development and morphogenesis19 and are used
therapeutically to treat some types of cancers. GC are part of the
curative treatment of acute lymphoblastic leukemia while RA is
the therapeutic agent for some neuroblastomas and acute
promyelocytic leukemia, which both carry the promyelocytic
leukemia–RA receptor alpha gene fusion.20–22 GC are also used as
a comedication to reduce side effects in cancer treatment.23

However, most solid tumors, including lung cancers, are refractory
to GC- and RA-based therapies. Underlying some cases of
refractoriness to GC and RA is a dysfunctional SWI/SNF complex,
for example, owing to alterations at BRG1.5,24

On the other hand, compounds that modulate the structure of the
chromatin and promote gene transcription by increasing DNA
accessibility are currently used to treat cancer. These include histone
deacetylase (HDAC) inhibitors, in hematological malignancies and
cutaneous T-cell lymphomas, and inhibitors of DNA methylation such
as azacytidine for myelodysplasic syndrome.25 These drugs have
been tested in non-small cell lung cancer (NSCLC) patients in two
studies, in which they showed no major responses.26,27 However, in a
phase I/II trial, the combination of the two inhibitors produced a
median survival of the entire cohort that was significantly longer
than those of the existing therapeutic options.28

Using lung cancer as a model, we aimed to determine the
possible therapeutic effects of HDACs and DNA methylation
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inhibitors alone or in combination with retinoids and corticoids
and whether the status of the BRG1 and MYC genes predicts
sensitivity to these treatments.

RESULTS
GCs and retinoids sensitize HDAC and DNA methylation inhibitors
to reduce cell growth in AmpMYC/wtBRG1 lung cancer cells
We had previously shown that BRG1 is required to respond to GC
and RA.5 Here we further investigated the requirement for BRG1 to
achieve responses to combined GC and RA (hereafter GC/RA) in
lung cancer. We also wondered whether the DNA methylation
inhibitor, azacytidine, or the HDAC inhibitor, SAHA, could be a

substitute for the activity of BRG1 in cells with inactivated BRG1.
First, we observed that, as compared with the single administra-
tion, the simultaneous treatment of azacytidine and SAHA
enhanced the effects in decreasing cell growth in various lung
cancer cells (Supplementary Figure S1a). An isobologram analysis
of drug interactions in two of the cell lines determined that this
effect was synergic (Figure 1a). This agrees with previous
observations showing that combining A/S resulted in clinical
responses in NSCLC patients, as opposed to the lack of effect
of each drug when administered individually.26–28 Furthermore,
GC/RA enhanced the growth-inhibitory effect of azacytidine and
SAHA combined (hereafter A/S) in the H460 cell line
(Supplementary Figure S1b). Altogether, the published data and
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Figure 1. GC/RA and A/S reduce growth of MYC-amplified cancer cells and the effects are enhanced with the dual combination.
(a) Isobolograms at IC50 of the indicated cells. The solid line joins the IC50 for azacytidine and SAHA as single agents and shows the point at
which additivity would occur. Data points, represented by dots located below the line with the 95% confidence limits as error bars, indicate
synergy. (b) Phase-contrast images of the indicated cells untreated (fetal bovine serum (FBS)) or treated with GC/RA (1 μM each) or GC/RA plus
A/S (0.2 μM each) for 5 days. The appearance of the H82 cells change from tight cell aggregation to large floating spheroids upon treatment
with GC/RA. Scale bar, 200 μm. (c) Western blotting depicting the levels of MYC in the indicated cells and treatments. β-ACTIN, protein-loading
control. The black arrow points to the specific bands corresponding to the MYC protein in the H82 cells. The upper band is non-specific.
(d) Cell viability of the indicated cell lines, measured using MTT assays, after treatment with increasing concentrations of A/S with (+) or
without (− ) GC/RA (2.5 μM each) for 5 days. This concentration was chosen because it was higher than the mean IC50 for GC/RA in the
AmpMYC/wtBRG1 cells. Lines show the number of viable cells relative to the untreated cells. Information about the histopathology of each
cell lines is also indicated. (e) Distribution and mean of the IC50 for the A/S with (+) and without (− ) GC/RA (2.5 μM each) for the indicated
group of cells (Supplementary Table S1). **Po0.01, two-tailed Student’s t-test.
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our preliminary observations prompted us to explore this further.
We used tumor-derived cell lines that have proved to be effective
systems for establishing the link between specific tumor
genotypes and the response to molecularly targeted drugs.29

Previously, we had shown that genetic inactivation of BRG1 is
mutually exclusive with amplification of the MYC genes, which is
consistent with a biological connection between these two cancer
proteins.3 Taking this into account, we selected nine lung cancer
cell lines that were either mutant for BRG1 and wild type for MYC
(hereafter MutBRG1/wtMYC) or wild type for BRG1 and amplified
at any of the MYC-family genes (hereafter AmpMYC/wtBRG1)
(Supplementary Table S1).
The treatment with GC/RA triggered phenotypic modifications

and slightly reduced the levels of MYC in the AmpMYC/wtBRG1
cells, and these effects were also strongly enhanced by addition
of A/S (Figures 1b and c; Supplementary Figure S2). The
downregulation of MYC in cells carrying MYC, MYCN and MYCL
amplification is possible because, in these cell lines, the
amplicon contains the 5′-untranslated region with the P1 and
P2 promoters (http://www.sanger.ac.uk/), responsible for the
MYC-negative autoregulatory mechanism.30,31 In marked contrast,
the MutBRG1/wtMYC cells, with the single exception of the A549
cells, underwent only subtle or no changes in morphology or in
the levels of MYC after treatment with GC/RA, regardless of
whether A/S was coadministered (Supplementary Figure S2).

Next we calculated the half maximal inhibitory concentration
(IC50) for A/S with or without coadministration of GC/RA to assess
the effects of these treatments on cell growth. The values of IC50
for the A/S treatment were lower in AmpMYC/wtBRG1 cells,
although the differences did not reach statistical significance
(Figures 1d and e). The combination with GC/RA significantly
reduced the IC50 of each treatment in the AmpMYC/wtBRG1 cells
(Figures 1d and e).

Depletion of BRG1 in AmpMYC/wtBRG1 cells impairs responses
to treatments with GC/RA and the combination with azacytidine
and SAHA
Next we depleted BRG1 in AmpMYC/wtBRG1 cells using two
different shBRG1 (shBRG1#1 and shBRG1#4), previously validated
by our group5–6 (Figure 2a; Supplementary Figure S3a). In
accordance with our previous results,5 the depletion of BRG1
markedly reduced the ability of the cells to undergo changes in
morphology following treatment with GC/RA and GC/RA com-
bined with A/S (Figure 2b; Supplementary Figure S3b). The
depletion of BRG1 also decreased the capability of the cells to
decrease cell growth in response to GC/RA combined with A/S
(Figures 2c and d; Supplementary Figure S3c). Overall, these
observations imply that the response to GC/RA is strongly
dependent on the presence of BRG1.
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Figure 2. Depletion of BRG1 using shBRG1 reverted the growth inhibition effects in response to GC/RA and to GC/RA/A/S of MYC-amplified
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The ability to activate the expression of prodifferentiation genes
underlies the sensitivity to GC/RA-based treatments in AmpMYC/
wtBRG1 lung cancer cells
To explore in depth the molecular features that underlie the
sensitivity and refractoriness to the GC/RA-based treatment, we
compared the gene expression and DNA methylation profiles of
various cancer cells before and after treatments with GC/RA or
with A/S plus GC/RA (hereafter GC/RA/A/S). We also determined
the changes in gene expression and DNA methylation before and
after depleting the BRG1 expression.
Unsupervised hierarchical clustering of the 10 000 most

dynamic probes segregated cell lines on the basis of cell identity
and histopathology (Supplementary Figure S4a). This was
expected because gene expression patterns in lung cancer are
strongly influenced by the histopathology, which mirrors the cell

of origin.32–33 Administration of GC/RA triggered more than
twofold changes in the expression of hundreds of genes in all but
the DMS114 and H1299 cells, which were barely affected by the
treatment (Figure 3a; Supplementary Tables S2–S6). In all the cell
lines, the changes in gene expression triggered by GC/RA were
enhanced after the addition of A/S (Figures 4a and b). Notably,
most of the genes that were upregulated after these treatments
were expressed at low levels in the untreated cells, suggesting a
switch of the mechanism of activation of silenced genes
(Figure 3b).
Analysis of gene functionalities showed that GC/RA upregulated

genes involved in cell differentiation and development, especially
in AmpMYC/wtBRG1 cells. For example, the H82 cells showed an
increase of neural- and retina-related genes, implying a neuroen-
docrine origin for the SCLC and its similarity to cells from the
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retina (Figure 3c; Supplementary Figure S4b).19,34 Likewise, the
treatment with GC/RA in the H460 cells upregulated genes
involved in developmental processes and in the negative control
of cell proliferation. These included lung-specific transcripts (for
example, F3, HEY1) (http://biogps.org) and HOX-related genes,
which are the targets of RA (Figure 3c; Supplementary
Figure S4b).19,35 Consistent with the reduction in levels of MYC,
the expression profile of upregulated genes after GC/RA and GC/
RA/A/S treatments in H82 and H460 cells was inversely associated
with the profile of mice embryonic lungs overexpressing Nmyc
and Cmyc (Figure 3d; Supplementary Figure S5). As expected, the
depletion of BRG1 in these cells attenuated the increase in gene
expression triggered by GC/RA and GC/RA/A/S (Figure 3c;
Supplementary Figure S6).
Regarding the MutBRG1/wtMYC cells, the administration of GC/RA

and GC/RA/A/S in the DMS114 and H1299 cells did not trigger
gene expression profiles compatible with cell differentiation
functionalities. It is of particular note that in the A549 cells the
response to GC/RA involved changes in the expression of
hundreds of genes, including transcripts related to cell differentia-
tion (Figure 3a; Supplementary Figure S5b). This is consistent with
the aforementioned changes in morphology that this cell line
undergoes upon treatment with GC/RA, indicating some respon-
siveness to these compounds (Figure 1a; Supplementary
Figure S2). As these cells are derived from a well-differentiated
lung adenocarcinoma, the structure of the chromatin of these cells
in most RA- and GC-responsive promoters may already be
accessible and may not require SWI/SNF activity.
To determine whether these gene expression changes were

associated with modifications in DNA methylation, we performed
genome-wide DNA methylation profiling.36,37 We identified 4855
CpGs with the most variable methylation levels that were plotted
in an unsupervised manner (Figure 4a). Similar to the gene
expression profiles, methylation profiles also discriminated cell

identity. The GC/RA treatment did not change global methylation
or the levels of CpG methylation at the promoters of genes
upregulated and downregulated after GC/RA treatment. In
contrast, the coadministration of A/S reduced overall methylation
by 15–20% in all cell lines of CpGs in gene promoters and bodies,
presumably by the action of azacytidine (Figure 4b). The reduction
of CpG methylation, by A/S, in gene promoters was more
pronounced in the group of upregulated genes, associating
demethylation with the re-expression of these genes (Figure 4c).

MYC amplification predicts sensitivity to GC/RA, alone or in
combination with other drugs, in in vivo models
We investigated the ability of GC/RA, A/S and GC/RA/A/S in
suppressing tumor growth in vivo. To this end, the A549, H82,
H460 and H1299 cell lines were grown orthotopically in the lung
parenchyma of nude mice.5,38 The animals, implanted with the cell
lines, were randomly assigned to the four treatment groups of 8–
10 mice as follows: group 1, vehicle control; group 2, treated with
GC/RA; group 3 treated with A/S; and group 4 treated with GC/RA/
A/S. Cisplatin-based treatments were administered in group 5,
treated with cisplatin alone; and in group 6, treated with cisplatin
plus GC/RA. Although all the treatments were well tolerated by the
mice, the administration of GC/RA reduced the weight of the
animals, recovering after 2–3 days without treatment.
First, we examined the ability of the different treatments to

affect overall survival. Compared with the control group, treat-
ment with GC/RA increased overall survival of the animals
implanted with the AmpMYC/wtBRG1 cells, H82 and H460,
although in the latter type only when cotreated with cisplatin
(Figure 5; Supplementary Figure S7a). None of the treatments
significantly improved overall survival in animals implanted with
the MutBRG1/wtMYC cells. Histopathological examination revealed
significantly higher rates of necrosis in tumors from animals
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treated with GC/RA only in mice implanted with AmpMYC/wtBRG1
cells (Figures 6a and b; Supplementary Figure S7b). Likewise, we
analyzed the levels of induced cleavage at poly-(ADP-ribose)
polymerase 1 (PARP1) and caspase 3, as surrogate markers for
apoptosis, and the levels of Ki67, as a surrogate marker for cell
proliferation. A significant increase in apoptosis and a reduction in
cell proliferation were evident after treatment with GC/RA
specifically in tumors exhibiting MYC amplification (Figures 6c–e).

DISCUSSION
RA and GC have important roles in normal lung development. In
mouse models, a deficiency of RA induces squamous metaplasia
and the addition of RA can effect regression of premalignant
lesions.39,40 It is also well established the importance of GCs in
perinatal lung development.41,42 However, these compounds have
therapeutic effects on some childhood and hematological
malignancies20–22 but not in lung cancer or most solid
tumors.42,43

There is a physical interaction between components of the SWI/
SNF complex and the RA and GC receptors and there is evidence
of nucleosome-disrupting activity of the complex to allow
transcription mediated by RA and GC receptors.15,17,21 Here we
report that inactivation of BRG1 confers refractoriness to the
enhanced growth-inhibitory effects triggered by GC/RA during A/S
treatment in vitro, whereas amplification at any of the MYC genes
predicts sensitivity. The sensitization to A/S treatment triggered by

GC/RA also involved a reduction in MYC levels and global
transcriptional changes, compatible with reprogramming towards
cell differentiation. Downregulation of MYC following GC or RA
treatment is well established,44,45 but here we report that this
effect is enhanced by A/S and is more effective in MYC-activated
cells. A MYC-negative autoregulatory mechanism that is mediated
by the SWI/SNF complex would explain the refractoriness of most
BRG1-mutant cells.5,46 Taking all the above into account, we
believe that the sensitization to A/S by GC/RA requires the
nucleosome-disrupting activity of the SWI/SNF complex
containing BRG1.
Here we have focused on the genetic status of the MYC genes

and of BRG1 and have eluded the comparison among histo-
pathologies. BRG1 mutations are significantly more common in
NSCLC, whereas amplification of the MYC genes, especially NMYC
and LMYC, predominates in SCLC.3 We have included an SCLC cell
line, the DMS114, with inactivation at BRG1 and a NSCLC cell line,
the H460, with MYC amplification. The DMS114 cells were
refractory and the H460 cells were sensitive to the treatments,
supporting that the genetic background is the main determinant
of the response to these treatments. In spite of these observations,
we believe that additional studies are needed to determine the
influence of the lung cancer histopathologies in the response to
these compounds.
Malignancies currently treated with GC or RA often have

genetically activated MYC. Such is the case for neuroblastomas,
with NMYC amplification, and Burkitt lymphoma, which is

H82

S
ur

vi
va

l
S

ur
vi

va
l

DaysDays Days

S
ur

vi
va

l
S

ur
vi

va
l

DaysDays

G1 n=7
G4 n=7

P=NS

S
ur

vi
va

l

0 10 20 30

0 10 20 30
Days

0 10 20 30

0

50

100
S

ur
vi

va
l

0

50

100

G1 n=7
G2 n=7

P=NS

0 10 20 30
0

50

100

0

50

100

G1 n=7
G5 n=7

P=NS

G1 n=7
G6 n=8

P=0.0350

H460

0 20 40 60 80 100
0

50

100

G1 n=8
G2 n=8

P=NS

A549

0 20 40 60 80 100
0

50

100

G1 n=8
G4 n=8

P=NS

0 10 20 30 40
0

50

100

G1 n=6
G2 n=6

P=0.0036

0 10 20 30 40
0

50

100

G1 n=6
G4 n=8

P=0.0163

0 10 20 30 40
0

50

100

G1 n=5
G2 n=5

P=NS

H1299

0 10 20 30 40
0

50

100

G1 n=5
G4 n=7

P=NS

Group
treatment

OS
(Days)

G1-vehicle 19.5 ± 3

G2-GC/RA 31.5 ± 7

G3-A/S 21.5 ± 5

G4-GC/RA/A/S 27± 8.5

Group
treatment

OS
(days)

G1-vehicle 

G2-GC/RA

93.5 ± 20

86 ± 10

G3-A/S 87 ± 18

G4-GC/RA/A/S 80± 19

G5-Cis 82.5 ± 15

G6-Cis/GC/RA 87.5 ± 11

Group
treatment

OS
(days)

G1-vehicle 18 ± 4

G2-GC/RA 24 ± 4

G3-A/S 16.5 ± 2

G4-GC/RA/A/S 16± 4

G5-Cis 21± 4

G6-Cis/GC/RA 23.5 ± 3

Group
treatment

OS
(days)

G1-vehicle 22 ± 4

G2-GC/RA 23 ± 6

G3-A/S 28 ± 7.5

G4-GC/RA/A/S 26± 5

S
ur

vi
va

l
S

ur
vi

va
l

0 20 40 60 80 100
0

50

100

G1 n=8
G5 n=8

P=NS

0 20 40 60 80 100
0

50

100

G1 n=8
G6 n=8

P=NS

Increased OS
[HR] =12.3, 95% 
[CI] = 2.27 to 66.8

Increased OS
[HR] =6.11, 95% 
[CI] = 1.39 to 26.78

Increased OS
[HR] =4.12, 95% 
[CI] = 1.1 to 15.4
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associated with translocations involving MYC.20–22 Furthermore,
the BET bromodomain inhibitor JQ1, which triggers the down-
regulation of MYC, has antiproliferative effects in those multiple
myeloma cells and neuroblastomas that carry MYC translocations
and MYCN amplification, respectively.47 Taking into account that
activated oncogenes are an Achilles heel for most cancer cells, a
treatment that triggers MYC downregulation may be expected to
be more efficient in cancers with genetically activated MYC.48

Although it is understandable why BRG1-mutant cells are resistant
to GC/RA-based treatments, the mechanism underlying the
responsiveness of MYC-activated cancer cells to these treatment
has yet to be identified. Supra-physiological levels of GC and/or RA
may be required to compete with MYC to bind to the SWI/SNF
complex, causing it to switch its activities from cell growth to cell

differentiation (Figure 6f). The case of the A549 cells, which carry
inactivated BRG1 but undergo changes in cell morphology and
whose levels of MYC are reduced when treated with GC/RA, is
intriguing and needs further investigation.
Until now, little has been known about the effects of a

combination of corticoids and/or retinoids with epigenetic drugs
in lung cancer patients. HDAC inhibitors have been used in
combination with ATRA to treat certain types of leukemia21,25 and
with corticoids in multiple myeloma and peripheral T-cell
lymphoma patients.48,49 Studies combining retinoids and HDAC
inhibitors in a xenograft model of neuroblastoma revealed
synergistic effects and increased survival.50 We were unable to
extrapolate to mouse models the enhanced effects on reduced
cell growth after combining A/S and GC/RA. Additional in vivo
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experiments assaying a range of drug concentrations and
administration schedules are warranted. Assessing the possible
benefits of combining GC/RA with other chemotherapeutic agents
or vitamins/hormones would also be worthwhile.
Our current data indicate that treatments based on epigenetic

drugs combined with GC/RA may provide an opportunity for
treating lung cancer patients bearing tumors with MYC activation.
A complete understanding of this genotype–therapeutic relation-
ship should help clinicians select the patient cohorts most likely to
respond to epigenetic drugs.

MATERIALS AND METHODS
Cell culture
All the cell lines were obtained from the American Type Culture Collection
(ATCC, Rockville, MD, USA), except the HCC33 that came from the Leibniz
Institute DSMZ-German Collection of Microorganisms and Cell Cultures
(DSMZ, Braunschweig, Germany). Cells were grown under recommended
conditions and maintained at 37 °C in a humidified atmosphere of 5%
CO2/95% air. All cell lines were routinely evaluated for mycoplasma
contamination. The cell lines were authenticated by genotyping for TP53
and other known mutations.6 Genomic DNA and total RNA were extracted
by standard protocols. The study was approved by the relevant
institutional review boards and ethics committees.

IC50 and isobologram analysis
For the purpose of IC50 calculations, the combinations of each GC/RA and
A/S were considered as a single drug. In brief, cells were treated with the
various combinations for 96 h. Estimates of IC50 were derived from the
dose–response curves. The isobologram analysis provides a graphical
presentation of the nature of interaction of two drugs. First, in a two-
coordinate plot with one coordinate representing concentration of
azacytidine and the other representing concentration of SAHA, the line
of additivity is constructed by connecting their respective IC50, when used
as single agents. Second, the concentrations of the two drugs used in
combination to provide the same effect (IC50) are placed in the same plot.
Synergy, additivity or antagonism is indicated when this point is located
below, on or above the line, respectively.

Antibodies and western blottings
The following primary antibodies were used for western blottings:
polyclonal anti-BRG1, H88 (1:1000; Santa Cruz Biotechnology, Santa Cruz,
CA, USA); anti-C-MYC, N-262 (1:500; Santa Cruz Biotechnology); anti-N-MYC,
B8.4.B (1/500, Santa Cruz Biotechnology); anti-TUBULIN, T6199 mouse
(1/10000, Sigma-Aldrich, St Louis, MO, USA); anti-Beta-ACTIN, 13854
(1/20000 Sigma-Aldrich); anti-Ki67, SP6 (1/100, Thermo Scientic, Waltham,
MA, USA); anti-Caspase-3, 3G2 (1/2000, Cell Signalling); and anti-PARP,
C2–10 (1/5000, BD Pharmingen, San Diego, CA, USA). For western blottings,
whole-cell lysates were collected in a buffer containing 2% sodium dodecyl
sulfate 50 mM Tris-HCl (pH 7.4), 10% glycerol and protease inhibitor cocktail
(Roche Applied Science, Roche, Basel, Switzerland). Protein concentrations
were determined using a Bio-Rad DC Protein Assay Kit (Life Science
Research, Hercules, CA, USA). Equal amounts of lysates (20 μg) were
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and transferred to a polyvinylidene difluoride membrane that was blocked
with 5% nonfat dry milk. Membranes were incubated with the primary
antibody overnight at 4 °C, then washed before incubation with species-
appropriate horseradish peroxidase-conjugated secondary antibodies for
1 h at room temperature.

Cell treatments and short hairpin RNAs (shRNAs)
For GC and RA treatment, we used synthetic GC dexamethasone and
all-trans RA, respectively; chemicals were obtained from the following
sources: ATRA (Sigma Chemical Co., Zwijndrecht, The Netherlands);
dexamethasone (Sigma Chemical); and azacitidine (Sigma Chemical),
SAHA, suberoyl+anilide+hydroxamic acid (Cayman Chemical Company,
Ann Arbor, MI, USA).
shRNAs against BRG1 were purchased from SIGMA-MISSION (LentiEx-

press Technology, Sigma-Aldrich) as a glycerol stock of five pLKO plasmids
carrying BRG1-specific shRNA sequences. These shRNAs had previously
been shown to deplete BRG1 expression efficiently and specifically

(depleted BRG1 but not BRM expression).5 A scramble shRNA (Sigma
MISSION shRNA non-mammalian control SHC002) was used as a control.
The lentiviruses were generated within the 293T packaging cells, as
previously described.6

Cell viability assays (3-(4,5)-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT)
For cell viability assays, cell lines were incubated in 96-well plates. Prior to
harvest, cells were treated for 24–72 h with the indicated concentrations of
each compound or combinations. For the assays, 10 μl of a solution of
5 mg/ml MTT (Sigma Chemical Co.) was added. After incubation for 3 h at
37 °C, the medium was discarded, the formazan crystals that had formed
were dissolved in 100 μl DMSO and absorbance was measured at 596 nm.
Results are presented as the median of at least two independent
experiments performed in triplicate for each cell line and for each
condition.

Global gene expression and methylation microarray analysis
The cells used for microarray gene expression and methylation analysis
were the MYC-amplified and BRG1 wild-type H82, H460 and the BRG1
mutant and MYC wild-type H1299, A549 and DMS114 cells. In all, 100 ng
of RNA was used for the gene expression microarray analysis. Each of
the cells were subjected to different treatments. Treatment with GC/RA
(1 μM each) or with GC/RA/A/S (0.2 μM each) for 5 days. Untreated
cells (fetal bovine serum) were included as a control. RNA integrity
numbers were in the range of 9.0–10.0 when assayed by Lab-chip
Technology in an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).
For labeling, we used a commercial ‘One-Color Microarray-Based Gene
Expression Analysis’ version 5.5 kit and followed the manufacturer’s
instructions (Agilent manual G4140-90050 (Agilent), February 2007).
Hybridization was performed on the Human Gene Expression v2
microarray 8x60K (Agilent microarray design ID 014850, P/N G4112F,
Agilent). For scanning, we used a G2505B DNA microarray scanner. Images
were quantified using the Agilent Feature Extraction Software (v.9.5,
Agilent). Data were read, preprocessed and analyzed using limma package
in the R/Bioconductor environment. For hierarchical clustering of samples,
we used the most 10 000 dynamic probes. To generate the lists of
upregulated and downregulated transcripts for each condition, we
chose transcripts induced or repressed by a factor of at least two
for each treatment relative to their matched cell line untreated and
statistical significance (P-adjusted value o0.05). The genes are listed in
Supplementary Tables S2–S5.
For DNA methylation microarrays, all DNA samples were assessed for

integrity, quantity and purity by electrophoresis in a 1.3% agarose gel,
PicoGreen quantification (Thermo Scientific, Willmngton, DE, USA) and
NanoDrop measurement (Thermo Scientific). We performed bisulfite
conversion of 500 ng of genomic DNA using an EZ DNA Methylation Kit
(Zymo Research, Orange, CA, USA). Bisulfite-converted DNA (200 ng) was
used for hybridization on the HumanMethylation450 BeadChip (Illumina,
San Diego, CA, USA). Raw fluorescence intensity values were normalized
with the Illumina Genome Studio software (V2011.1) using ‘control
normalization’ with background correction. Normalized intensities were
then used to calculate DNA methylation levels (beta values). Likewise, data
points with statistically low power (as reported by detection values of
P40.01) were designated as NA and excluded from the analysis.
Genotyping probes present on the chip and DNA methylation probes
overlapping with known single-nucleotide polymorphisms were also
removed. Probes were considered to be in a promoter CpG island if they
were located within a CpG island (UCSC database) and o2000 bp away
from a transcription start site (outside chromosome X). We only considered
CpG sites with a ⩾ 70% change in CpG methylation level between primary
and metastases sites, and the differential CpG methylation primary and
metastasis had to occur in the three tumor types studied. Samples were
clustered in an unsupervised manner by using the 10 000 most variable
values for CpG methylation according to the s.d. for the CpG sites located
in promoter regions by hierarchical clustering using the complete method
for agglomerating the Manhattan distances.

Orthotopic xenograft models
Athymic mice male nu/nu aged 4–5 weeks were maintained in a sterile
environment. All animal specimens used for the experiments were
male. None of the mice samples were excluded before analysis. All
animal experiments were approved by the IDIBELL Ethical Committee
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(no. AAALAC-3880) and performed in accordance with guidelines stated in
The International Guiding Principles for Biomedical Research involving
Animals, developed by the Council for International Organizations of
Medical Sciences.
The different lung cancer cell lines (2 × 106) were first grown

subcutaneously and then implanted orthotopically into the lung. Once
the tumor had grown to 600–800 mm3, it was cut into 3× 3 mm2 pieces
and maintained in Dulbecco’s modified Eagle’s medium supplemented
medium with 10% fetal bovine serum and penicillin/streptomycin. Those
fragments with macroscopically low or absent levels of necrotic areas were
selected for orthotopic implantation No randomization of animals was
performed, but animals were age matched, and littermates were used
whenever possible.
Animals were treated by intraperitoneal injection with all-trans RA

plus dexamethasone (GC) (2.5 mg/kg/day each), azacitidine plus SAHA
(2.5 mg/kg/day each) and cisplatin (cis) (4.5 mg/kg/day) in different
combination of the various treatments or corresponding vehicle only.
The treatments were initiated from 8 to 10 days after tumor implantation.
Each treatment was administrated weekly for 3 weeks (Supplementary
Table S7).
Animals were killed when they displayed serious respiratory difficulty,

which was subsequently confirmed to be associated with lung tumor
burden. For histological analysis of lung tumors, lungs were fixed and
embedded in paraffin. Necrosis was morphologically assessed after
staining with hematoxilin and eosin, using standard protocols, and
examined by light microscopy in a blinded manner. For Ki67 immunohis-
tochemical staining, 4 μM thick sections from the tumors were transferred
to silanized glass slides. After deparaffinization and quenching endogen-
ous peroxidase, the slides were boiled in citrate buffer for 15 min. After
antibody incubation, immunodetection was performed with the secondary
anti-rabbit-conjugated horseradish peroxidase (Dako, Glostrup, Denmark)
with diaminobenzidine chromogen as the substrate (Invitrogen, Carlsbad,
CA, USA). Sections were counterstained with hematoxylin and evaluated
with the Leica DM1000 microscope (Leica, Wetzlar, Germany). Criteria for
evaluating Ki67 immunostaining was the percentage of positively stained
nuclei relative to total nuclei.

Statistical analysis
Numerical values are reported as average± s.d. unless stated otherwise.
Data are derived from multiple independent experiments from distinct
mice or cell culture plates, unless stated otherwise. No statistical method
was used to predetermine sample size, but sample size was based on
preliminary data and previous publications as well as observed effect sizes.
We assessed data for normal distribution and similar variance between

groups using GraphPad Prism 6.0 (San Diego, CA, USA), if applicable. Some
data sets had a statistical difference in the variation between groups. Data
were analyzed using a one-way analysis of variance or a two-tailed
Student’s unpaired-samples t-test, as appropriate. Differences were
considered statistically significant for values of Po0.05.
Kaplan–Meier estimates of the survival distribution for each group were

computed. Survival analysis was performed in Graphpad Prism, survival
curves being compared by the log-rank (Mantel–Cox) test. In order to test
the equality of the survival distributions for different groups, the log rank
was calculated. We considered groups to have significantly different
survival distributions if the test result yielded a value of Po0.05.

Accession code
Microarray gene expression and methylation data are available in the Gene
Expression Omnibus (GEO) under accession code GSE66245.
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