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Abstract

There is much debate on the dietary adaptations of the robust hominin lineages during the

Pliocene-Pleistocene transition. It has been argued that the shift from C3 to C4 ecosystems

in Africa was the main factor responsible for the robust dental and facial anatomical adapta-

tions of Paranthropus taxa, which might be indicative of the consumption of fibrous, abra-

sive plant foods in open environments. However, occlusal dental microwear data fail to

provide evidence of such dietary adaptations and are not consistent with isotopic evidence

that supports greater C4 food intake for the robust clades than for the gracile australopithe-

cines. We provide evidence from buccal dental microwear data that supports softer dietary

habits than expected for P. aethiopicus and P. boisei based both on masticatory apomor-

phies and isotopic analyses. On one hand, striation densities on the buccal enamel sur-

faces of paranthropines teeth are low, resembling those of H. habilis and clearly differing

from those observed on H. ergaster, which display higher scratch densities indicative of the

consumption of a wide assortment of highly abrasive foodstuffs. Buccal dental microwear

patterns are consistent with those previously described for occlusal enamel surfaces, sug-

gesting that Paranthropus consumed much softer diets than previously presumed and thus

calling into question a strict interpretation of isotopic evidence. On the other hand, the sig-

nificantly high buccal scratch densities observed in the H. ergaster specimens are not

consistent with a highly specialized, mostly carnivorous diet; instead, they support the con-

sumption of a wide range of highly abrasive food items.

Introduction

The emergence of Paranthropus and Homo lineages in East Africa has been linked to an eco-
logical shift toward C4 grasslands between 2.4 and 1.8 million years ago (Ma) caused by a
marked global cooling and drying that resulted in contrasted year-round seasons and a variety
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Galbany J, Pérez-Pérez A (2016) Testing Dietary

Hypotheses of East African Hominines Using

Buccal Dental Microwear Data. PLoS ONE 11(11):

e0165447. doi:10.1371/journal.pone.0165447

Editor: Matthew C. Mihlbachler, New York Institute

of Technology, UNITED STATES

Received: June 1, 2016

Accepted: October 12, 2016

Published: November 16, 2016

Copyright: © 2016 Martı́nez et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available

within the paper and its Supporting Information

files.

Funding: This research was funded by the Spanish

"Ministerio de Ciencia e Innovación" (http://www.

idi.mineco.gob.es/portal/site/MICINN/), grant

numbers CGL2011-22999 and CGL2014-52611-

C2-1-P, both to APP. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0165447&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.idi.mineco.gob.es/portal/site/MICINN/
http://www.idi.mineco.gob.es/portal/site/MICINN/


of ecological scenarios with great spatial heterogeneity and ecological instability [1–6]. Remains
of both Paranthropus boisei and early Homo have been associated with both well-watered, riv-
erine habitats with gallery forest and woodlands in older localities and with extensive dry grass-
lands with episodes of lake fluctuations or, more recently, deltaic conditions. This habitat shift
is assumed to have forced hominines to adopt a more intense exploitation of savanna plant
foods, including underground storage organs (USOs). The robust australopithecines would
have relied on dental and facial morphological adaptations to cope with long-term environ-
mental challenges, whereas the generalized use of lithic tools would have offered early Homo
greater opportunities to exploit food resources in highly variable environments [7–10]. The
massive mandibular corpus, extended muscle insertion areas on the skull, large occlusal molar
surfaces, premolar molarization, and thick enamel layers in Paranthropus are consistent with
consumption of hard foodstuffs involving strong cracking, crushing, and grinding activities
[11–14]. Tooth chipping and massive occlusal wear on the postcanine dentition of Paranthro-
pus are indicative of peak bite forces and frequent chewing of small, hard food abrasives
[15,16]. However, occlusal dental microwear analyses of Paranthropus boisei teeth fail to reveal
any evidence of hard object feeding and contrast with isotopic evidence supporting a diet based
above 70% on C4 plants such as fibrous grasses, sedges, or rhizomes [17–20]. Many fallback
foods are mechanically challenging, which may explain the high occlusal wear of Paranthropus
teeth [21], while the reduced dental and facial proportions in early Homo have been interpreted
as indicative of meat exploitation as a major food source, mainly through scavenging strategies
[22–24] to offset the dearth of succulent food resources in open environments [25,26]. Numer-
ous studies have emphasized the importance of meat consumption in the large brained, small-
toothed hominines [27–29]. However, the reduction in tooth size would have potentially lim-
ited the types of foods available to Homo ergaster. In contrast, in Homo habilis, the dental
reduction that characterizes more recent humans was not fully attained [30,31].

Dental microwear patterns, both on buccal and occlusal enamel surfaces, have proved to be
highly informative of foraging strategies in extant primates [32–35]. Early analyses of occlusal
microwear patterns on A. africanus and P. robustus suggested that "the diet of Paranthropus
entailed the mastication of harder items than composed the dietary staples of Australopithecus",
similar to those of primates that eat large quantities of hard objects [36,37]. In contrast, more
recent analyses of occlusal enamel texture suggested that P. boisei might not have consumed
extremely hard or tough foods in the days prior to death [18] and that it might have consumed
foods “with similar ranges of toughness as those eaten by A. africanus” [19]. Early Homo would
not have relied on extremely hard or tough foods such as nuts, USOs or dried meat, whereasH.
ergaster would have consumed more fracture-resistant food items (USOs or tough animal tis-
sues) than H. habilis [38]. The two Homo species would have differed in fallback food con-
sumption during stress periods, consistent with the climate change towards open savannas
over time, with H. ergaster relying on stone tools for processing fallback foods [39,40].

Dietary hypotheses based on occlusal dental microwear research can be tested by buccal
dental microwear patterns analyses. Buccal dental microwear is characterized by numerous
striations with varying orientations and the lack of other wear features [35,41–44], such as pits
or inter-tooth attrition that are common on occlusal enamel surfaces. Occlusal microwear
patterns vary between shearing and grinding facets on the same tooth [45] and intra-facet vari-
ability within molar teeth has been shown to depend on varying mastication processes [46].
Occlusal dental microwear is highly affected by dental gross wear, because dentine exposure
and enamel cracking quickly wear away the Phase II molar facets upon which most occlusal
microwear research is based. In addition, forceful tooth-to-tooth contact and dental grinding
are non-dietary sources of microwear features (both pits and scratches) on occlusal surfaces
[45,47]. In contrast, buccal microwear is not affected by occlusal wear and dentine exposure
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[48] and has been shown to have a clearly distinct in vivo feature formation dynamics, and is
likely to have a longer formation span than occlusal surfaces [49–51]. Buccal microwear is the
result of the interaction of abrasive particles, such as plant phytoliths or silica dust, with the
buccal enamel surfaces of teeth during chewing [52,53], as food particles move around in the
mouth (mainly in an up-to-down and front-to-back direction) until they are swallowed.

It has been shown that post-depositional, taphonomic processes do not add new microwear
features; instead, they obliterate and erase them, significantly damaging enamel surfaces, as
shown by experimental analyses [54,55], which makes post-mortem damage clearly distinguish-
able from ante-mortem diet-related microwear patterns [35,56,57]. The presence of pits on the
buccal surfaces and of microwear features on inter-proximal wear facets is a clear indicator of
post-mortem damage [35,58].

Buccal microwear patterns in humans have been shown to be age-dependent in archeologi-
cal collections [43] and in Middle and Upper Pleistocene fossil specimens, especially in juvenile
individuals with definitive, fully functional dentition [59]. However, the intra-population vari-
ability of buccal microwear patterns has been shown to be smaller than the inter-population
variability in adult individuals of hunter-gatherer populations from different ecological areas
[41,53]. Buccal microwear patterns analysis is a replicable procedure [60] and has been shown
to be highly dependent on ecological constraints and dietary preferences in both extant and
fossil primates [33] and in fossil hominins [41,43,61,62]. Consequently, buccal microwear
research is informative of diet composition and on the amount of abrasives incorporated to
foodstuffs during food processing [41,62–64].

In the present research, scratch densities and average lengths by orientation categories on
well-preserved teeth of P. boisei,H. habilis (early Homo), and H. ergaster specimens are studied.
Their buccal microwear patterns are compared to those of extant primate samples from both
closed forests and open woodlands and to those of the previously studied hominins Australo-
pithecus anamensis [65] and Australopithecus afarensis [66] specimens. The main goals are to
test the contradictory interpretations derived from anatomical traits, occlusal microwear pat-
terns and texture data, and isotopic evidence for the robust australopithecines from East Africa
and to determine the significance of a carnivorous diet in the Homo clade.

Materials and Methods

Samples studied

A total of 446 postcanine teeth were analyzed (Table 1), belonging to 167 fossil specimens of
Paranthropus aethiopicus (N = 44), Paranthropus boisei (N = 56), Homo habilis (early Homo)
(N = 49) and Homo ergaster (N = 18) from East African sites dating from 2.5 to 1.4 Ma, includ-
ing Omo and Hadar in Ethiopia, Koobi Fora, West Turkana, Lake Baringo, and Lainyamok in
Kenya, and Olduvai Gorge and Peninj in Tanzania. All necessary permits were obtained for the
described study from the Tanzania Commission for Science and Technology (COSTECH), the
Kenyan National Commission for Science, Technology and Innovation (NACOSTI), and the
Nairobi National Museum, which complied with all relevant regulations. The studied samples
included the same specimens for which occlusal dental microwear and texture patterns have
been previously studied [10,19,38,67,68]. Dental molds were made from the original fossil
specimens curated at the National Museums of Ethiopia (Addis-Ababa), Kenya (Nairobi) and
Tanzania (Dar es Salaam and Arusha). Taxonomic attributions of hominin specimens were
obtained from the literature [69–75]. However, there is no full consensus concerning the
taxonomic attribution of some early Homo specimens to H. habilis, Homo rudolfensis, or H.
ergaster taxa [68,70,76–78]. In the present study, a broad H. habilis group was considered for
all East African early Homo specimens dating between 1.7 and 1.4 Ma. No specimens from the
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Shungura and Koobi Fora formations, ascribed to the Homo rudolfensis clade [76,78–80],
showed well-preservedbuccal enamel surfaces, as was also the case for the occlusal surfaces
[10,38]; therefore, the H. rudolfensis taxon was not considered. Due to the unresolved contro-
versy concerning the H. habilis hypodigm from Olduvai [68], the Olduvai sample was consid-
ered as a single species [69]. The well-preservedH. habilis sample (N = 10) included seven
specimens from Olduvai (OH 13, OH 16, OH 21, OH 27, OH 41, OH 62, and OH 69), one
from Hadar (AL 666–1) and two from Omo (L 984 and 75s-69-14a) that have been considered
as early Homo specimens [80,81]. The H. ergaster group included well-preserved specimens
from Koobi Fora (ER 820, ER 992, ER 807, and ER 806), Olduvai (OH 23), and Nachukui (WT
15000). Three additional well-preserved remains from Koobi Fora (ER 1814, ER 3734, and ER
6128) have an uncertainHomo attribution [76,78,82,83] and were not included in the analysis.
The paranthropine samples, dating from between 2.6 and 1.3 Ma [14,73], overlap both tempo-
rally and spatially with the early Homo group. The well-preserved specimens of this group
included P. aethiopicus from West Turkana (WT 16005 and WT 17000) and Omo (L238-35,
L338X-35, L62-17, and L860-2) and P. boisei from Koobi Fora (ER 1509, ER 1804, and ER
5431), Olduvai (OH 5 and OH 66), Nachukui (WT 17400 and WT 18600), Ileret (ER 729),
Omo (L 7a-125), and Peninj (W64-160). The buccal microwear patterns of A. anamensis [65]
(N = 5) and A. afarensis [66] (N = 26), as well as Cercopithecoidea [32,35] (N = 80) and Homi-
noidea primates [33] (N = 48), were used for comparative purposes (Table 1). Finally, a sample
of Theropithecus gelada (N = 7, Natural History Museum, New York) from Ethiopia was also
analysed, since its buccal microwear pattern was not yet available and this species has been pro-
posed as a model for interpreting the diet of Paranthropus [84].

Dietary habits greatly vary among the comparative primate samples studied. Geladas (Ther-
opithecus gelada) are found in the high grassland of the deep gorges of the central Ethiopian
plateau. They are the only primates that are primarily graminivores and grazers (grass blades
make up to 90% of their diet). When both blades and seeds are available, geladas prefer the

Table 1. The studied hominin fossil specimens by species. Hominin samples and comparative primate samples studied, indicating the number of spec-

imens and teeth analyzed and the final well-preserved dental sample (exhibiting buccal enamel microwear features).

Samples studied Specimens Teeth N

Paranthropus aethiopicus 44 46 7

Paranthropus boisei 56 158 10

Homo habilis (Early Homo) 49 153 10

Homo ergaster 18 89 6

TOTAL hominines 167 446 33

Theropithecus gelada 7

Comparative samples (31 hominins, 166 primates)

Australopithecus anamensis 5

Australopithecus afarensis 26

Mandrillus sphinx 4

Papio anubis 27

Chlorocebus pygerythrus 15

Cercopithecus mitis 10

Cercocebus torquatus 3

Colobus sp. 21

Gorilla gorilla gorilla 31

Gorilla beringei graueri 7

Pan troglodytes troglodytes 10

doi:10.1371/journal.pone.0165447.t001
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seeds, though they also eat flowers, rhizomes and roots when available [85]. Mandrills (Man-
drillus sphinx) live in tropical rainforests and in gallery forests adjacent to savannas, as well as
rocky forests, riparian forests, cultivated areas and flooded forests and streambeds. Forest-
dwelling mandrills mostly feed (over 70% year-round) on mechanically protected plant foods
such as hard-shell fruits or seeds from the ground [86,87], but will also eat leaves, lianas, bark,
stems, and fibers; it also consumes mushrooms and soil [88]. The olive baboon (Papio anubis)
is usually classified as savanna-dwelling, living in the wide plains of the grasslands, especially
those near open woodland, but it also inhabits rainforests and deserts. The diet typically
includes a large variety of plants, and invertebrates and small mammals, as well as birds. The
olive baboons eat leaves, grass, roots, bark, flowers, fruit, lichens, tubers, seeds, and mush-
rooms, as well as corms and rhizomes that are especially important in times of drought. [89].
The main habitat of the vervet monkeys (Chlorocebus pygerythrus) is savanna woodlands. Its
feeding habits consist of eating mostly fruits, vegetables, and small mammals, insects, and
birds, making it an omnivore. The vervets needs to live around a source of water, especially
during the dry season, and is able to adapt to many environments consuming a great variety of
foods [90]. The blue monkey (Cercopithecus mitis) is found in evergreen forests, and lives
largely in the forest canopy, coming to the ground infrequently. It is very dependent on humid,
shady areas with plenty of water. They are primarily frugivores, with 50% of their diet consist-
ing of fruit, with leaves or insects as their main source of protein, with the rest of the diet being
made up of seeds, flowers, and fungi. They eat a variety of plants, but concentrate on a few spe-
cies [91]. The collared mangabeys (Cercocebus torquatus) are found in coastal, swamp, man-
grove, and valley forests. It has a diet based of fruits (60%) and seeds (20%), but also eats leaves,
foliage, flowers, invertebrates, mushrooms, dung, and gum [92]. They have thick enamel to
process hard-object foods as a fallback feeding strategy, such as bark or seeds, when preferred
foods (fruits) are unavailable [93]. The Colobus monkeys (Colobus sp.) are arboreal [94], tradi-
tionally classified as a genuine leaf-eaters [95], but are considered to have a heterogeneous diet,
including fruit, flowers, and twigs [96]. Their habitats include primary and secondary forests,
riverine forests, and wooded grasslands. Their ruminant-like digestive systems [97] have
enabled these leaf-eaters to occupy niches that are inaccessible to other primates [98]. Finally,
within the hominoidea primates, the western lowland gorillas (Gorilla gorilla gorilla) live in pri-
mary and secondary rain forests and lowland swamps in central Africa. They eat a combination
of fruits and foliage depending on the time of year. When ripe fruit is available, they tend to eat
more fruit as opposed to foliage. When ripe fruit is in scarce supply, they eat leaves, herbs, and
bark. Gorillas choose fruit that is high in sugar for energy, as well as fiber, and in the dry season
they still continue to eat other kinds of fruits, and they may also eat insects from time to time
[99]. The Grauer’s gorilla (Gorilla beringei graueri) is endemic to the mountainous and lowland
forests of eastern Democratic Republic of Congo. They prefer fruits, but when scarce they
increase the consumption of leaves, pith, and barks [100]. The common chimpanzee (Pan trog-
lodytes) lives in a variety of habitats, including dry savanna, evergreen rainforest, swamp forest,
and dry woodland-savanna mosaic. It is an omnivorous that prefers fruit above all other food
items and even seeks out and eats them when they are not abundant. It also eats leaves and leaf
buds, as well as seeds, blossoms, stems, pith, bark and resin. Insects and meat make up a small
proportion of their diet [100,101].

Sample selection and processing

Taphonomy may severely limit available samples [18]. The fossil teeth analyzed showed con-
siderable post-mortem damage (Fig 1) that included chipping, surface erosion, etching, and
weathering patterns, similar to that previously described for Olduvai and Hadar specimens
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[102]. The damage was initially attributed to the consumption of acidic foods [103,104] but
was later thought more likely to be related to post-mortem wear affecting the entire tooth
dental crown, including the inter-proximal wear facets [54,58]. Post-mortem damage was also
observedon the occlusal surfaces of the same specimens [40]. The East African fossil specimens
unearthed at ancient paleo-lakes and fluvial areas [4,105–107] were probably damaged by pro-
longed surface exposure or by water transport [38]. Such circumstances are likely to be respon-
sible for most of the post-mortem abrasions observed, and such abrasions were also present in
some unworn, not-fully functional teeth [102]. The well-preserved (Fig 2) samples consisted of
66 teeth (14.8% of the 446 teeth studied) belonging to 36 hominin specimens. This low preser-
vation rate is similar to those described for buccal enamel surfaces in A. anamensis and A. afar-
ensis specimens from Hadar [65,66], as well as to those observed for occlusal surfaces in the
same specimens [19,38].

The methods for sample selection followed standard procedures in buccal microwear
research [41–43,62]. A single tooth, showing a well-preservedbuccal enamel patch, was chosen
to represent each individual. The lower M1, either left or right, was preferentially selectedwhen
available because it is the first tooth to erupt. Otherwise,P4, M2, P3, or M3 were selected (in

Fig 1. SEM images of post-mortem damaged teeth that were not included in the buccal microwear analyses. (a) LP4 OH-65 with patina layers

covering the microwear features. (b) LM1 KNM-ER-1171 with perykimata—growth lines—and enamel prisms caused by chemical erosion. (c) RP4 OH-5

with post-mortem physical abrasion caused by rolling over sediments. Scale line is 200 μm.

doi:10.1371/journal.pone.0165447.g001

Fig 2. Well-preserved buccal microwear surfaces in which buccal striations could be measured. (a) LP4 OH-69 Homo habilis. (b) RM1

KNM-WT-15000 Homo ergaster. (c) LM1 Peninj Paranthropus boisei. Scale line is 200 μm.

doi:10.1371/journal.pone.0165447.g002
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that order) in preference to the upper dentition. Consequently, the final studied sample
included 33 specimens from the 66 well-preserved teeth belonging to the four hominine species
studied: 7 Paranthropus aethiopicus, 10 Paranthropus boisei, 10 Homo habilis, and 6 Homo
ergaster, as well as 3 undeterminedHomo sp. specimens from Koobi Fora (Table 2).

Dental casts and scanning electronic microscopy observations

Dental crown molds were made with President MicroSystem Regular Body (Coltène™) polyvi-
nyl siloxane following standard procedures [108–110]. Positive casts were made with epoxy
resin or polyurethane (Epotek 301 Epoxy Technologies, Inc. Billerica,MA) following the

Table 2. Dental sample showing well-preserved buccal microwear patterns. Specimens numbers and paleontological information (hominin species,

stratigraphic site complex and unit) are provided for all the teeth showing well-preserved buccal microwear patterns.

Species Complex Unit Specimen Tooth

P. aethiopicus Omo C L 62–17 RM2

F L 157–35 M2

F L 238–35 M2

E L 338x-35 P3

F L 860–2 RM2

West Turkana Middle D KNM-WT 16005 LM1

Lokalalei KNM-WT 17000 LM2

P. boisei Nachukui Kaitio KNM-WT 17400 RP4

Natoo Mb KNM-WT 18600 LP3

Koobi Fora KBS KNM-ER 1509 LM2

Upper KBS KNM-ER 1804 RM1

Tulu Bor Mb KNM-ER 5431 RM1

Ileret Okote KNM-ER 729 RP4

Omo Shungura G L 7a-125 RP4

Olduvai Bed I OH 5 RM1

Upper Bed I OH 66 LP4

Peninj Humbu F NMT-W64-160 LM1

Homo habilis Hadar BKT-3 AL 666–1 LM2

Olduvai Bed II OH 13 LM1

Lemuta Mb. OH 16 RM2

Surface OH 21 LM1

Bed I OH 27 RM1

Bed II OH 41 LM1

Bed II OH 62 RM2

Bed II OH 69 LP4

Omo Shungura G L 984 RM1

Shungura G 75s-69-14a LP3

Homo ergaster Koobi Fora Okote Mb. KNM-ER 806 LM1

Okote Mb. KNM-ER 820 LM1

Okote Mb. KNM-ER 992 RM1

KBS KNM-ER 807 RM3

Nachukui Natoo Mb. KNM-WT 15000 RM1

Olduvai Bed IV OH 23 LP4

Homo sp. Koobi Fora Upper KBS KNM-ER 1814 LM1

Upper Burgi KNM-ER 3734 LM2

KBS KNM-ER 6128 RP4

doi:10.1371/journal.pone.0165447.t002
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manufacturer's indications. All casts were mounted on aluminum stubs and sputter-coated
with a 40 Å gold layer. Prior to scanning electronicmicroscopy (SEM) examinations, all repli-
cas were observedunder a binocular light microscope at 10–30× magnification. The replicas
that exhibited clear post-mortem damage [102], such as multiple parallel scratches, enamel
chipping or enamel prisms exposure, both at low magnification or under SEM observation
[18], were discarded to prevent non-dietary related factors from affecting the buccal microwear
pattern analysis.

Well-preserved buccal enamel surfaces were digitized under SEM at the Centres Científicos i
Tecnològics (CCiT) of the Universitat de Barcelona, at 100× magnification, 18–25 mm working
distance (WD), and 15 kV acceleration voltage [111,112]. Slight variations in WD did not affect
the measurements of the microwear features because all analyzed images were cropped to
exactly cover 0.56 mm2 (748.33 × 748.33 μm) of enamel surface, the standard dimensions used
in SEM buccal microwear studies [41–43,62], and all image measurements were scaled prior to
analysis. During scanning, the buccal enamel surface of each tooth crown was placed perpen-
dicular to the electron beam, with the occlusal crown rim facing upwards in all SEM images.
The digital images were taken in the middle third of the crown, avoiding both the occlusal and
cervical thirds [42]. A high-pass (50-pixel) filter and the automatic grey levels adjustment com-
mand in Photoshop 7.0 (Adobe™) were applied to all cropped digital grey-scale images to
reduce shadows and enhance image contrast.

Analysis of buccal microwear patterns

In the selectedmicrographs, the length (in μm) and orientation angle (with respect to the hori-
zontal occlusal plane) of all observed scratches within the studied enamel patch (including
those cropped by the observation area) were measured using a semi-automatic procedure
with SigmaScan Pro 5.0 (SPSS™) software. All scratches measuring less than 10 μm in length
(approximately 4 times the average width) were not considered [42]. Following standard proce-
dures in buccal microwear research [41,42,43,62], measures of the density of scratches (N) and
their average length (X) were obtained for all the observed striations by four 45°-degree orien-
tation categories −vertical (V), horizontal (H), mesio-occlusal to disto-cervical (MD), and
disto-occlusal to mesio-cervical (DM)−, as well as for the total number of striations observed
(T) (see Methods section). Consequently, a total of 10 variables were derived for each tooth
studied (NV, XV, NH, XH, NMD, XMD, NDM, XDM, NT, XT) (S1 Table), so that the inter-
population differences could be referred to specific striation densities and lengths by orienta-
tions categories. While all the studied variables exhibited normal distributions (Kolmogorov-
Smirnov tests, P> 0.05) for all the hominin groups considered (Early Homo, H. ergaster, P.
aethiopicus, P. boisei), rank-transformed variables were used for the inter-group comparison
analyses because sample sizes were small and differed greatly among groups, as well as bevause.

Inter-observer error is a major concern in microwear research both for the occlusal [62] and
buccal [63] enamel surfaces. Therefore, a single observer (LMM) measured all the micrographs
of the fossil hominins studied, as well as of the Theropithecus specimens used for comparison.
However, the primate comparative samples [33,113] and the A. anamensis and A. afarensis
specimens [65,66] were measured by different researchers (JG and FE, respectively). Nonethe-
less, the inter-observer error analyses among all the researchers involved in this study have not
shown significant differences in the buccal microwear patterns measured [60].

Comparisons of buccal microwear patterns among the hominin groups studied were made
with a multiple analyses of variance (MANOVA) and post-hoc pairwise comparisons with Bon-
ferroni correction of P-values. The variability in the dispersion of buccal microwear patterns
among these hominin groups and among the hominines and the comparative samples are
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illustrated with Linear Discriminant Analysis (LDA) plots of the first two discriminant func-
tions obtained (DF1 vs. DF2), using the species as the independent variable to determine if
species with similar microwear patterns show similar diets or share similar environmental con-
ditions. A Cluster Analysis (CA) of the group centroids was derived from the diagonal matric
of Fisher's distances among the groups obtained in the CVA. All the statistical analyses and
group comparisons were made using PAST v. 3.10 statistical package [114] and XLSTAT v.
2015 (Addinsoft).

Results

Average total striation density (NT) is smaller in Paranthropus aethiopicus (N = 7, NT = 94.9)
and P. boisei (N = 10, NT = 105.9) than in H. habilis (N = 10, NT = 122.3) and H. ergaster
(N = 6, NT = 181.8). Both Paranthropus taxa show larger average striation lengths (XT) than
the Homo taxa (Table 3, Fig 3), although there were no significant differences in striation
density or length (rank-transformed data) between the four groups (MANOVA Wilks'
lambda = 0.401; F = 0.994; P = 0.486). The four hominines studied showed fewer average
striation densities than A. anamensis, and only H. ergaster showed more scratches than A.
afarensis.

The linear discriminant analysis (LDA) of the four hominin groups studied (P. aethiopicus,
P. boisei,H. habilis, H. ergaster) was able to correctly classify 51.5% of all cases, although that
ability diminishes to only 24.2% after jack-knife cross-validation. The first two discriminant
functions (Fig 4) explain 93.8% of the total variance (55.9% DF1 and 37.9 DF2). DF1 shows
negative loadings for NMD (−35.8), NH (−21.7) and NV (−7.3) and positive loadings for XH
(11.7), XDM (10.0), XMD (6.9), and XV (3.4), as well as for NDM (5.4), which behaves differ-
ently in this respect than NMD. DF2 shows negative loadings with all the density variables
(mainly with NDM, −17.4), as well as with XMD (−4.0), and shows positive loadings with all
the length variables (mainly with XV, 25.8, and XDM, 22.6). Despite the four groups greatly
overlap, Homo ergaster specimens show negative values for DF1 that reflect their higher

Table 3. Average values of the 15 microwear variables analyzed for each taxonomic group considered. N: Sample Size; the Total Number of Stria-

tions (N), Average Length of All Striations (X), and Standard Deviations of the Length (S) are Indicated by Orientation: Horizontal (H), Vertical (V), Mesio-dis-

tal (MD), Disto-mesial (DM), and All Striations (T).

Species N NH XH NV XV NMD XMD NDM XDM NT XT

A. anamensis 5 36.8 90.4 68.0 110.5 77.4 86.5 26.6 87.3 208.8 97.4

A. afarensis 26 41.8 111.9 28.3 124.2 39.4 109.3 47.4 93.9 150.7 111.6

P. aethiopicus 7 25.7 105.8 17.6 135.1 17.7 80.7 33.9 101.2 94.9 110.5

P. boisei 10 24.0 96.4 21.8 139.4 32.6 76.7 27.5 99.1 105.9 97.1

H. habilis 10 24.6 106.6 21.6 108.2 23.2 81.5 52.9 76.4 122.3 92.6

H. ergaster 6 51.7 81.4 28.8 111.2 66.5 72.3 34.8 66.4 181.8 82.0

P. troglodytes 10 52.8 92.3 40.4 126.9 38.8 79.0 39.9 94.3 171.9 98.3

G. gorilla gorilla 31 40.1 83.1 53.3 128.9 44.3 83.6 47.0 91.0 184.7 100.8

G. beringei graueri 7 34.3 87.3 44.3 162.6 33.7 82.1 45.3 85.7 157.6 109.6

Cercocebus torquatus 3 52.7 73.4 45.7 109.0 66.7 68.1 84.3 81.6 249.3 82.1

Cercopithecus mitis 10 34.8 83.9 108.8 99.8 60.6 74.4 39.8 76.0 244.0 87.4

Chlorocebus pygerythrus 15 34.7 73.2 81.0 112.1 56.4 75.2 38.5 80.9 210.6 90.3

Colobus sp. 21 42.5 79.4 35.6 112.2 37.0 74.9 30.6 85.3 145.7 89.4

P. anubis 27 21.4 90.8 85.8 118.3 49.8 88.8 20.4 86.2 177.5 103.7

Mandrillus sphinx 4 46.0 77.7 60.3 116.8 54.5 86.2 53.0 78.4 213.8 92.4

Theropithecus gelada 7 21.4 61.9 79.0 116.3 44.1 79.6 32.1 75.6 176.7 91.7

doi:10.1371/journal.pone.0165447.t003
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striation densities compared to the other taxa. A post-hoc classification of the ungrouped
Homo sp. specimens (ER-1814, ER-3734 and ER-6128) within the LDA showed that their buc-
cal microwear pattern is most similar to that of H. habilis, with a 100% post hoc classification
probability in all three cases.

The second discriminant analysis, including all the comparative samples, expands the micro-
wear pattern diversity observed in the LDA of hominines alone. The multiple MANOVA test
within the LDA clearly shows significant among-group differences (Wilks' lambda = 0.133,
F = 3.3454, P<0.0001; S2 Table), and the post hoc pairwise comparisons using Fisher's distance
(dF) between groups show significant differences betweenH. ergaster and the two Paranthropus

Fig 3. Box plots of microwear total striation density and average striation length by species. The whiskers show the minimum and maximum

values (excluding outliers). The box includes the 25–75 percentiles. Both the median values (lines within the boxes) and means (yellow dots) are shown

for the total striation density (NT) and length (XT) by species (sample sizes are indicated in brackets). For the outliers the specimen reference numbers

are shown.

doi:10.1371/journal.pone.0165447.g003
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taxa (P. aethiopicus dF = 2.755, P = 0.007; P. boisei dF = 2.272, P = 0.025), but not betweenH.
habilis and the paranthropines (P. aethiopicus dF = 1.067, P = 0.388; P. boisei (dF = 1.794,
P = 0.081). Significant differenceswere also found betweenH. habilis and H. ergaster (dF =
2.775, P = 0.006), though not betweenP. aethiopicus and P. boisei (dF = 0.431, P = 0.902). The
four hominines could be significantly discriminated fromA. afarensis, whileH. ergaster was the
only group that did not significantly differed fromA. anamensis (dF = 1.533, P = 0.149). The uni-
variate among-groups comparisons (ANOVAs) were significant (P<0.03) for all the variables
studied except XDM (F = 1.016, P = 0.441; S3 Table). The scatterplot of DF1 vs. DF2 (Fig 5)

Fig 4. Plot of DF1 on DF2 derived from the Linear Discriminant Analysis of the buccal microwear variables of the hominin groups studied. Plot

of the first two discriminant functions (DF1 x axis, DF2 y axis), derived from the microwear variables (ranked data) for the hominines samples studied

(Paranthropus aethiopicus brown, Paranthropus boisei beige, Homo habilis cyan, Homo ergaster red), that explain 93,8% of the total variance (55.9%

and 37.9%, respectively). The ellipses show one standard deviation of the sample means (68% confidence interval of the sample). The blue lines

represent the loadings of the microwear variables on the discriminant functions. The analysis was made with PAS v. 3.

doi:10.1371/journal.pone.0165447.g004
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explains 73,66% of the total variance (57,25% and 16,41%, respectively; S4 Table), and 46,73%
of the 199 specimenswere correctly classified, a value that diminished to 31.16% after jack-
knife cross-validation. DF1 was highly correlated with NV (r = 0.922) and NMD (r = 0.494),
whereas DF2 was correlated with NDM (r = 0.706), NH (r = 0.663), XH (r = −0.359), and XMD
(r = −0.214) (S5 Table). Only 46.73% of all cases were correctly classified (S6 Table) and this fig-
ure decreased to 31.16% after jack-knife cross-validation (S7 Table). The hominin taxon with
the highest posterior classification probability before validation is H. habilis (60,0%), followed
by P. boisei (50,0%),H. ergaster (16.7%), and P. aethiopicus (14.3%). In fact, the two paranthro-
pines greatly overlap in the LDA (Fig 5), and 64.3% are correctly classified into a robust taxon.
The Homo habilis specimens overlap with the paranthropines for both DF1 and DF2, whereas

Fig 5. Plot of DF1 on DF2 derived from the Linear Discriminant Analysis Analysis of the hominines studied along with all the comparative

samples. Plot of the first two discriminant functions (DF1 x axis, DF2 y axis), derived from the microwear variables (ranked data) for all the

specimens studied and the comparative collections, that explain 73,66% of the total variance (57,25% and 16,41%, respectively). The circles

represent the 95% confidence intervals of the group centroids assuming equality of covariance matrices (the size of the circle depend on the sample

sizes). The red lines indicate the correlations between the variables considered and the two functions shown. The analysis was made with XLSTAT

v. 2015.

doi:10.1371/journal.pone.0165447.g005
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H. ergaster shows a distinct distribution along both DF1 and DF2, overlapping with the homi-
noidea primates and with Colobus. As has already been shown [43], A. anamensis specimens
more closely resemble the cercopithecoidea primates, especiallyPapio anubis and Theropithecus
gelada, in having high striation densities, mainly the vertical ones (NV), with the exception of
Colobus that has a smaller striation density that overlaps for DF1 with the hominoids, likely due
to its mainly folivorous diet compared to the other cercopithecoidea taxa studied that consume
greater amounts of hard foods, especially, seeds [32,33]. The largest numbers of vertical stria-
tions (NV) are observed in Cercopithecus (108.8), followed by Papio (85.8), Chlorocebus (81.0),
Theropithecus (79.0),Mandrillus (60.3), and Cercocebus (45.7), with A. anamensis showing a NV
value (68.0) well within the range of these cercopithecoidea samples. Despite the diet of C.mitis
is mainly composed of fruits, this species showed the highest density of vertical striations (NV)
and one of the highest total striation densities (NT = 244.0) observed, along with C. torquatus
(NT = 249.3), which suggests that they might have also relied on harder items, perhaps as fall-
back foods. The hominoidea primates considered show significantly lesser NV values (53.3G.
gorilla gorilla, 44.3G. beringei graueri, and 40.4 P. troglodytes) that overlap with that of Cercoce-
bus (45.7). Colobus (35.6) shows a NV values similar to that of A. afarensis (28.3), while the
other hominins studied show significantly smaller values (28.8H. ergaster, 21.8 P. boisei, 21.6 H.
habilis, and 17.6 P. aethiopicus). Within the cercopithecoidea, the highest values of NDM are
observed in Cercocebus (84.3) and Mandrillus (53.0), and the lowest is seen in Papio (20.4).
However, the cercopithecoidea and hominoidea greatly overlap for DF2 (Fig 5). Theropithecus
has been proposed as a model for interpreting the diet of Paranthropus [84]. However, its overall
average striation density (NT = 176.7) is much higher than those of both P. aethiopicus (94.9)
and P. boisei (105.9) −in fact these are the smallest average striation densities observed in all the
samples studied−, and both hominins significantly differ from the primate taxon (dF = 4.434,
P<0.0001 for P. aethiopicus; dF = 4.249, P = 0.000 for P. boisei), despite the fact that their habi-
tats might not have differed greatly from those occupied by contemporaneous Theropithecus.

Finally, a hierarchical cluster analysis (CA) was obtained (Fig 6) for all the taxonomic
groups considered using Fisher's measure of distance (dissimilarities) derived from the CVA
(S8 Table). The dendrogram shows that H. ergaster clusters with Colobus, and the two taxa
group with the chimpanzees and gorillas, whereasH. habilis clusters with both Paranthropus
taxa. A significant separation (S9 Table) can be observedbetweenA. anamensis, which groups
with Papio, and then with the rest of cercopithecoidea primates studied (except Colobus), and
A. afarensis that clusters within the hominoidea taxa that also includes Colobus.

Discussion

Phytoliths require some 6,000 mega-Pascal (MPa; 6,000 mega-Pascal = 6,000 Newton/mm2) of
force per unit area to deform [115]. It has been suggested that enamel can be scratched at about
half that force (3,700 MPa) [116]. Based on this estimate, it has been argued that the forces
applied to food on the buccal side of a tooth may not be sufficient to scratch enamel [18], indi-
cating that it is "merely a matter of believe" that as food matter is masticated the abrasive parti-
cles scratch the buccal enamel surfaces (page 290 in [18]). However, more recent estimates
suggests that the critical loads required to fracture enamel in humans exceed 500 Newtons (N),
whereas the loads required to produce individual microwear traces are in the order of milli-
Newtons (mN), less than 1 N per unit area (<1 MPa) [117] −much less that previously sug-
gested 3,700 MPa. Whatever the case, our experimental analyses on modern human volunteers
have clearly shown that striations on buccal enamel surfaces are in fact formed as a result of
food chewing [49], despite the buccal side of the tooth is not involved in tooth-to-tooth contact
during food processing. Experimental analyses have shown not only that buccal enamel
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scratching is possible, but also that despite scratch formation rates on buccal surfaces are faster
than expected, buccal microwear patterns can be used as long-term proxy for inferring dietary
habits [50,51]. Furthermore, buccal microwear patterns have been shown to significantly dis-
criminate among dietary habits of living hunter-gatherer pygmy populations from western
central Africa with varying degrees of hunting and gathering practices, as well as from agricul-
tural populations [63]. Despite these evidences, buccal microwear incidence has also been sug-
gested to be "most likely related to differences in the frequency of terrestrial feeding events"
in relation to the "opportunity to ingest exogenous grit" [18]. However, the volunteers in our
experimental buccal microwear analyses [49,63] are not likely to be consumers of grit and dust.
In addition, complex behaviors, such as the possibility that hominins could have cleaned dirty
food before consuming it, with or without stone tools, should not be disregarded. An occlusal-
limited view of attritional processes disregards the fact that the energy of a particle depends not
only on the forces applied on occlusal surfaces, either involving no particle movement (causing
pits) or slight and angular displacement (causing scratches). It also depends on the mechanical
energy attributable to particles, especially their speed, while moving between the cheek and the
buccal enamel surfaces of teeth during food chewing. As has been acknowledged, the precise
causes of microwear formation are difficult to "pin down" and involve mechanics that are more
complex than imagined [118]. More specific research on enamel etching, analyzing both forces
and particle speed, are yet required.

Fig 6. Phenetic dendrogram of similarities among group centroids of all the samples considered. The dissimilarities among groups were

measured using Fisher’s distance derived from the Linear Discriminant Analysis of all the microwear variables (ranked data) for all groups considered.

The diagonal dissimilarity matrix was used to derive a hierarchical cluster analysis using an unweighted average agglomeration method in XLSTAT v.

2015.

doi:10.1371/journal.pone.0165447.g006
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In addition, attempts to associate buccal microwear patterns of fossil hominins to post-
depositional, taphonomic processes should also be valid for occlusal enamel surfaces. There is
no reason to disregard well-preserved,ante-mortem microwear signals, either on buccal or
occlusal dental surfaces, since those microwear features have been observedon live modern
humans, as well as primates. It is germane to note that taphonomic processes affect both buccal
and occlusal enamel surfaces and that post-mortem damage can be properly dealt with in both
cases [18,102].

Occlusal enamel microwear SEM or texture data are available for most African hominin
species [18,19,38,67,119,120], whereas buccal microwear data for the same specimens is yet
scarce [65,66]. Consistent dietary interpretations of both occlusal and buccal enamel surfaces
analyses have been obtained for Australopithecus anamensis specimens [65,120], whereas con-
trasting results have been shown for Australopithecus afarensis fossil specimens [66,119]. The
occlusal microwear pattern of A. afarensis have suggested that Gorilla and/or Theropithecus
constitute the best modern analogues for dietary preference of this species, and that there is no
occlusal microwear evidence of the mastication of hard, brittle items [118]. The buccal micro-
wear pattern of A. afarensis has shown resemblances in striation densities, although not in stri-
ation lengths, to those of Gorilla and Pan, which are clearly distinct from those of cercopitecoid
primates from more open environments [66]. In the present study, A. afarensis specimens
show a distinct buccal microwear pattern that significantly differs from those of most of the
cercopitecoids species studied (except Colobus), including Theropithecus that was not available
in our previous analyses. The buccal microwear patterns of A. afarensis and Theropithecus sig-
nificantly differ (dF = 4.712, P<0.0001), which suggests that the diet of A. afarensis was not
heavily dependent on grasses or seeds. It would have rather consumed greater amounts of less
abrasive foods, such as fruits and foliage, since its buccal microwear pattern more closely
resemble that of the hominoids that those observed in the cercopitecoids. By contrast,Australo-
pithecus anamensis, characterized by a high density of vertical scratches, greatly overlaps with
Theropithecus in the CVA and the two taxa do not significantly differ (dF = 1.192, P = 0.307).
Our analysis supports that the diet of A. anamensis would have significantly relied on seeds
and grasses from open woodlands, in addition to fruits from more closed environments, as we
have previously suggested [65].

Fossil specimens of P. aethiopicus have shown high carbon isotope ratios (δC13) suggestive
of a significant consumption of C4 or/and CAM plant foods (� 50%)—clearly higher (with
specimenWT-17000 being an outlier) than those shown by A. anamensis, which would have
preferred C3-rich diets with low percentages of C4 plants [121–123]. Nevertheless, P. aethiopi-
cus shows the lowest overall density of buccal scratches, with WT-17000 showing the highest
striation density compared to the other six specimens of the same taxon (see raw data in S1
Table). Paranthropus boisei specimens have also shown high C4 isotopic signals, ranging from
75% to 80% [20,121]. However, their buccal microwear patterns do not support an abrasive
diet based on hard, tough, or fibrous C4 plant foods, a result concordant with that obtained on
occlusal surfaces [19]. In contrast, the significance of CAM plants such as the succulent xero-
phytes, which would be less abrasive but result in greater C4 signals, is difficult to disentangle.
The significant C4 signal of P. boisei could also be due to secondaryC4-based diet from animal
foods [124] or to consumption of aquatic resources [125], which is supported by the δO18 val-
ues [17]. The buccal microwear patterns of P. aethiopicus and P. boisei do not support the
hypothesis of consumption of highly abrasive or tough foodstuffs, in contrast to the assump-
tion that their distinct cranio-dental adaptations are indicative of highly abrasive food intake,
mostly USOs [126]. The robust facial and dental anatomy of Paranthropus might reflect the
occlusal biomechanics of food processing (such as peak loads, repeated loadings, and tooth-
food-tooth contact while chewing) as the cause of enamel fracture rather than the chewing of
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abrasive foods. The preparation and ingestion of large, fracture-inducing food objects such as
nuts and seeds might result in distinct, high-density occlusal microwear signals [127,128]. In
contrast, buccal microwear patterns might depend more on the particle movements during the
chewing cycle rather than on food cutting, cracking, or grindingwith dental occlusal surfaces.
Low cheek-to-tooth loadings and the kinetics of abrasive particles in the mouth, along with the
amount of chewed abrasives, sufficiently explain scratch formation on buccal enamel surfaces
[49]. Thus, buccal microwear is more indicative of food properties than occlusal microwear,
which is also dependent on the mechanics of the chewing cycle. Biomechanically challenging
USOs (underground storage organs) such as corms, seeds, or bulbs could lead to isotopic sig-
nals that would match the low microwear feature densities observed in Paranthropus boisei
[129]. Moreover, C4 resources capable of causing high densities of microwear features remain
to be found in East Africa [130].

A durophage-ecotone trophic model [124] for the robust australopithecines would be con-
sistent with the buccal microwear patterns, morphological adaptations, and isotopic indicators.
If P. boisei did not consume highly abrasive diets, its robust dental morphology and thick
enamel could have developed as adaptations to consumption of hard-shelled invertebrate prey
such as crabs, similar to those present in animals such as marsh mongoose (Atilax) or Cape
clawless otter (Aonyx) that live in riverine or lake environments [37,131]. A durophage-eco-
tone model for the robust australopithecines was suggested to provide a clear mechanism,
based on habitat and trophic preferences, to explain the long-term coexistence of Paranthropus
and early Homo [124]. A durophage dietary hypothesis for the paranthropines would also be
consistent with the observedmicrowear results, the morphological adaptations [111], and the
isotopic indicators [132]). However, it has been questioned whether P. boisei’s dental traits
would have evolved as an adaptation to a diet specializedon freshwater crabs. Grine et al. [18]
argued that otters would not serve as a model for hard-object feeding in P. robustus due to its
thin enamel. Moreover, there are concerns about the viability of a diet specialized in freshwater
resources. Ancient hominin species lived near freshwater springs, rivers, lakes or estuaries
[133–137], which has led several authors to speculate that access to freshwater from endorheic
lakes of the East African Rift System (EARS) would have been vital for hominin survival and
expansion during the Pliocene [134,138–140]. However, many of these lakes would have been
saline during the Pliocene [140,141]. It may seem unlikely that P. boisei would have been a
crab-specialist in a highly dispersed resource landscape if the productivity of the freshwater
lakes would not have been sufficient to maintain the large populations of crabs needed to feed a
highly specialized crab-consuming hominin [133]. However, consumption of fresh water crabs
might have been a sporadic, or even a fallback resource for the paranthropines.

Early Homo specimens have shown isotopic signals mainly indicative of C3 plant consump-
tion (45−65%) with an increase in C4 resource consumption of more than 20% over time
[122], which is consistent with the observed increase in buccal microwear striation densities
from H. habilis to H. ergaster. On one hand, early Homo specimens show low scratch densities
suggestive of chewing soft foods, consistent with meat consumption as a major dietary source
and increased brain volume [28,142]. On the other hand, H. ergaster specimens show higher
and more variable striation densities, suggestive of consumption of a wider range of hard and/
or tough items than early Homo and consistent with an ecological diversification of the Homo
clade [143]. Although more research is needed to clarify the question of the synchrony of two,
or even three,Homo species, the distinct buccal microwear signals observed in early Homo and
H. ergaster specimens suggest a clear temporal trend in food exploitation strategies that might
be related to increasing dependence on mechanically demanding USOs [129]. An efficient
exploitation of a wide range of high-quality fallback foods might have required complex behav-
ioral adaptations, including the use of tools for food processing [39]. The evolved Acheulian
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lithic industry linked to H. ergaster might have provided the opportunity and flexibility
required to differentially exploit a variety of fallback resources, although it might have not sig-
nificantly reduced the amount of abrasive particles in foodstuffs. Climatic fluctuations in East
Africa approximately 1.8 Ma and the aridity peak coincident with the emergence of H. ergaster
[3] might explain its highly abrasive buccal microwear signal, which is indicative of a more
abrasive diet in this taxon than in early Homo—a finding that is in line with an omnivorous
diet including plant foods with silica particles [40] that are abundant in East African open and
arid environments [144]. This does not rule out the hypothesis of meat as an important food
source, but dependence on plant foods would have been at least of similar importance as that
described for modern hunter-gatherer populations from arid environments [129,145]. Despite
the occlusal crown relief suggesting that H. habilis would have heavily relied on fallback
resources [146], the buccal microwear patterns suggest that early Homo might have ingested
fewer abrasives than H. ergaster, which may have depended on harder and tougher fallback
foods. Differences in the exploitation of ecological niches by the two species may explain the
buccal microwear differences observed:wooded, gallery forest with softer foods rich in sugars
by H. habilis and open savannas with abrasive food items by H. ergaster, irrespective of the
amount of meat they consumed.

Finally, differences in temporal scales of dietary proxies [147] might be relevant to explain
the lack of concordance of dietary interpretations, especially between isotope data, indicative of
dietary practices during the time of dental crown development, and occlusal microwear and
texture data, largely affected by the "last-supper" effect. Carbon and oxygen isotopes are incor-
porated into the teeth during the formation and mineralization of the enamel (from a few
months to two years). The dietary signal is therefore averaged over that time period and for the
time that enamel becomes fully mineralized. Thus, the enamel might not reflect the animal's
diet right before death. In contrast, the rate of formation of microwear features on occlusal sur-
faces is so fast that microwear patterns and texture measures might be reflecting the diet con-
sumed only a few days before death, which has been referred to as the "Last Supper Effect".
Despite microwear traces of diet might be somewhat ephemeral on occlusal surfaces, one can
decipher the actual dietary habits of an individual at a given point [18]. However, buccal micro-
wear patterns might be informative of a longer span of dietary-related activities. The rates of
newly formed features per week may increase from about 3% in normal ad-libitum diets to 9%
when dried meat or fish are consumed, or to 22% when stone-ground flower is consumed. In
the short span of about 5 weeks of this experimental design, there was no loss of microwear fea-
tures. However, in the long-term experiments, no significant increase through time () was
observed in the striation densities, and the average net long-term turn over rate on buccal
enamel surfaces was −0.009 scratches/week. This suggests a stasis in microwear patterns
depending on dietary habits or ecological factors [49]. Although buccal microwear patterns
might average a longer period of dietary habits than occlusal microwear patterns, they are
more likely to show concordant results than if compared to carbon isotopic stages if the diets
of infant and adults hominins differed.

Conclusions

Patterns of buccal dental microwear striation densities and lengths are consistent with enamel
microwear complexity and anisotropy on occlusal dental surfaces previously described for East
African Lower Pleistocene Paranthropus specimens. Our results do not support the dietary
interpretations based on 13C stable isotopic ratios that suggest a significant consumption of C4
plant foods in open environments. Quite the contrary, the buccal microwear patterns suggest
that the dietary habits of both P. aethiopicus and P. boisei, unlike early Homo and H. ergaster,
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did not involve chewing significant amounts of abrasive foods. Alternatively, consumption of
non-abrasive, though brittle, C4-rich resources would be consistent with both occlusal and buc-
cal microwear patterns, isotopic data, and anatomical adaptations in the paranthropine clade.
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102. Martı́nez LM, Pérez-Pérez A. Post-mortem wear as indicator of taphonomic processes affecting

enamel surfaces of Hominin teeth from Laetoli and Olduvai (Tanzania): implications to dietary inter-

pretations. Anthropologie. 2004; 42: 37–42.

103. Puech P-F, Albertini H, Serratrice C. Tooth microwear and dietary patterns in early hominids from

Laetoli, Hadar and Olduvai. J Hum Evol. 1983; 12: 721–729.

104. Puech P-F. Acidic-food choice in Homo habilis at Olduvai. Curr Anthropol. 1984; 25: 349–350.

105. Brown FH, Feibel CS. Stratigraphy, depositional environments and paleogeography of the Koobi

Fora formation. In: Harris JM, editor. Koobi Fora research project the fossil ungulates: geology, fossil

artiodactyls, and palaeoenvironments. Vol 3. Clarendon: Oxford; 1991. pp. 1–30.

106. Peters CR, Blumenschine RJ. Landscape perspectives on possible land use patterns for early Pleis-

tocene hominids in the Olduvai Basin, Tanzania. J Hum Evol. 1995; 29: 321–362.

107. Copeland S. Vegetation and plant food reconstruction of lowermost Bed II, Olduvai Gorge, using

modern analogs. J Hum Evol. 2007; 53: 146–175. doi: 10.1016/j.jhevol.2007.03.002 PMID:

17499840

108. Teaford MF, Oyen OJ. Live primates and dental replication: new problems and new techniques. Am J

Phys Anthropol. 1989; 80: 73–81. doi: 10.1002/ajpa.1330800109 PMID: 2679119

109. Ungar PS. Dental microwear of European Miocene catarrhines: evidence for diets and tooth use. J

Hum Evol. 1996; 31: 335–366.

Buccal Dental Microwear of East African Hominines

PLOS ONE | DOI:10.1371/journal.pone.0165447 November 16, 2016 23 / 25

http://dx.doi.org/10.1002/ajpa.21634
http://www.ncbi.nlm.nih.gov/pubmed/22101774
http://dx.doi.org/10.1016/j.jhevol.2015.06.001
http://www.ncbi.nlm.nih.gov/pubmed/26202093
http://dx.doi.org/10.1016/j.jhevol.2007.03.002
http://www.ncbi.nlm.nih.gov/pubmed/17499840
http://dx.doi.org/10.1002/ajpa.1330800109
http://www.ncbi.nlm.nih.gov/pubmed/2679119


110. Ungar PS, Spencer MA. Incisor microwear, diet, and tooth use in three Amerindian populations. Am J

Phys Anthropol. 1999; 109: 387–396. doi: 10.1002/(SICI)1096-8644(199907)109:3<387::AID-

AJPA7>3.0.CO;2-F PMID: 10407466
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