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Abstract
Type II germ cell cancers (GCC) can be subdivided into seminomas and non-seminomas.

Seminomas are similar to carcinoma in situ (CIS) cells, the common precursor of type II

GCCs, with regard to epigenetics and expression, while embryonal carcinomas (EC) are

totipotent and differentiate into teratomas, yolk-sac tumors and choriocarcinomas. GCCs

can present as seminomas with a non-seminoma component, raising the question if a CIS

gives rise to seminomas and ECs at the same time or whether seminomas can be repro-

grammed to ECs. In this study, we utilized the seminoma cell line TCam-2 that acquires an

EC-like status after xenografting into the murine flank as a model for a seminoma to EC tran-

sition and screened for factors initiating and driving this process. Analysis of expression and

DNA methylation dynamics during transition of TCam-2 revealed that many pluripotency-

and reprogramming-associated genes were upregulated while seminoma-markers were

downregulated. Changes in expression level of 53 genes inversely correlated to changes in

DNA methylation. Interestingly, after xenotransplantation 6 genes (GDF3, NODAL,
DNMT3B, DPPA3,GAL, AK3L1) were rapidly induced, followed by demethylation of their

genomic loci, suggesting that these 6 genes are poised for expression driving the repro-

gramming. We demonstrate that inhibition of BMP signaling is the initial event in reprogram-

ming, resulting in activation of the pluripotency-associated genes and NODAL signaling.

We propose that reprogramming of seminomas to ECs is a multi-step process. Initially, the

microenvironment causes inhibition of BMP signaling, leading to induction of NODAL sig-

naling. During a maturation phase, a fast acting NODAL loop stimulates its own activity and

temporarily inhibits BMP signaling. During the stabilization phase, a slow acting NODAL

loop, involving WNTs re-establishes BMP signaling and the pluripotency circuitry. In
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parallel, DNMT3B-driven de novo methylation silences seminoma-associated genes and

epigenetically fixes the EC state.

Author Summary

The understanding of germ cell cancer pathogenesis is based on a linear model, where
seminomas and non-seminomas represent distinct entities, although originating from a
common precursor lesion, the carcinoma in situ. We demonstrate that germ cell cancer
development is a microenvironment-dependent plastic process that allows latent pluripo-
tent seminomas /TCam-2 to acquire primed pluripotency and transit into an EC. For the
first time, we show that this plasticity is initiated after interference with BMP signaling
and driven by NODAL signaling, which is accompanied by considerable remodeling of the
methylome. In conclusion, our data strongly suggest that ECs might also be able to transit
into a seminoma upon interference with the drivers of reprogramming identified in this
study.

Introduction

Typical features of seminomas and embryonal carcinomas
Type II germ cell cancers (GCC) arise from a precursor lesion termed carcinoma in situ (CIS)
[1]. CIS cells are thought to be the result of a defective germ cell development and progress into
seminomatous and non-seminomatous GCCs [1] [2]. Seminomas grow as a uniform tumor
mass and are similar to CIS and PGCs with respect to gene expression. They express PGC- and
pluripotency markers like PRDM1 (BLIMP1), TFAP2C, cKIT, SOX17, NANOG and OCT3/4
[1] [3] [4] [5]. Like CIS and PGCs, seminomas display DNA hypomethlyation compared to
other GCC entities [6] [7]. Embryonal carcinomas (EC) are totipotent and differentiate into
teratomas (cells of all three germ layers), yolk-sac tumors and choriocarcinomas (extra-
embryonic tissues) [1]. Further, the DNA of ECs is highly methylated compared to CIS and
seminomas [6]. GCCs are termed seminomas, when they consist to 100% of seminoma cells
(60.6% of all GCC cases), but GCCs can also present as mixed non-seminomas with or without
a seminomatous component (38.8% of all GCC cases), raising the question, if a CIS gives rise
to seminomas and ECs at the same time or whether seminomas can be reprogrammed to ECs
or vice versa [8] [9] [10]. Generally, seminomas are highly sensitive towards irradiation as well
as cisplatin-based chemotherapy [11], while non-seminomas require a more aggressive treat-
ment strategy and are resistant to DNA damage therapies [11] [12]. Thus, a reprogramming of
a seminoma to an EC increases the risk of a poor outcome and would make it necessary to
adjust the treatment strategy during a patient’s therapy.

Pluripotency regulation in type II GCCs
Both, seminomas and EC express the pluripotency markers OCT3/4 and NANOG, but expres-
sion of the pluripotency factor SOX2 is restricted to ECs, while seminomas express SOX17
instead. Recently, SOX17 has been shown to be a key specifier of the human PGC cell fate by
acting upstream of PRDM1 [3] [5] [13] [14]. PRDM1, the transcription factor TFAP2C and
SOX17 render the PGCs and seminomas in a state of dormant pluripotency, meaning that they
express pluripotency markers, but are not able to induce differentiation into somatic tissues. In
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contrast, ECs display naïve or primed pluripotency, enabling the cells to differentiate in
response to appropriate signals into cells of all germ layers. Furthermore, ECs express several
other pluripotency and epigenetic reprogramming factors like REX1 (ZFP42), DPPA3
(STELLA), GDF3, SALL4, PRDM14, DNMT3B /L or ZIC3 [15] [16] [5]. RNAi-mediated
knock down of the pluripotency factor ZIC3 in murine and human ESCs induced SOX17, dem-
onstrating that SOX17 is normally repressed by ZIC3 [17]. Further, it is known that SOX17
antagonizes WNT signaling, which has been suggested to demarcate seminomas from ECs [18]
[19] [20].

Signaling pathways in normal and malignant germ cells
The members of the TGF-beta superfamily play an important role in regulation of prolifera-
tion, differentiation and cell death in a broad variety of cell types and processes, including dur-
ing PGC formation and GCC pathogenesis [21]. The TGF-beta signaling pathway is activated
by binding of its ligands (TGF-betas, Activin /Nodal, GDFs, AMH or BMPs) to a type II recep-
tor (ACVR2A /B, BMPR2, TGF-betaR2) that phosphorylates and activates a type I receptor
(ALK3–7: ACVR1B /C, BMPR1A /B, TGF-betaR1) [22]. In turn, type I receptors activate effec-
tor moleculs of the SMAD family, which can be subdivided into receptor-SMADS (SMAD1 /2
/3 /5 /9) and co-SMAD (SMAD4) [23]. A complex of R-SMADs and co-SMAD4 acts in the
nucleus as transcription factors and regulates target gene expression. A third SMAD class,
termed inhibitory-SMADs (SMAD6 /7) is able to counteract these processes. In general, TGF-
beta and Activin /Nodal signal via R-SMAD2 /3, while BMPs utilize the R-SMADs 1 /5 /8.

Active NODAL signaling depends on the co-receptor CRIPTO /CRYPTIC and stimulates
expression of NODAL as well as LEFTY1 /2, leading to establishment of a signaling loop that
stimulates and limits (LEFTY1 /2) itself simultaneously, to prevent an overshooting of mito-
genic NODAL signals during embryogenesis or cell differentiation [24] [25] [26] [27]. Active
endogenous NODAL signaling has been shown to regulate germ cell potency during mamma-
lian testis development, where NODAL signaling is activated by signals (including FGF9) from
somatic cells that lead to upregulation of the NODAL-co-receptor CRIPTO in germ cells [28]
[29]. Furthermore, NODAL signaling regulates entry into meiosis [28] [30] [29]. Additionally,
Spiller et al. found expression of NODAL and its cofactor CRIPTO as well as LEFTY1 in CIS
and ECs and NODAL signaling might also provide a mechanism regulating potency in GCCs
[28] [31]. In human ESCs and in murine epiblast cells, NODAL signaling has been shown to
contribute to maintenance of pluripotency and is a hallmark of the primed state of pluripo-
tency [32] [32].

BMP family members transduce their signals via their downstream effectors ID1–3, thereby
regulating embryonic developmental and differentiation processes [33] [34] [35]. Bmp signals
(Bmp4 /8B) specify murine PGCs from early proximal epiblast cells by suppressing Wnt signal-
ing response genes and promoting Prdm1 /14 expression via T [36] [37] [38]. Furthermore,
Bmp signaling is important for murine PGC migration and survival, since reduced Bmp signal-
ing within the genital ridge leads to reduced numbers of PGCs and disrupted migration [39]. A
Zebrafish model carrying a mutation in an ortholog of the human BMPR1B develops a semi-
noma-like tumor [40] [41] [42]. Furthermore, BMP signaling activity distinguishes histological
subsets of paediatric germ cell tumors [43] and expression of BMP effectors ID1–3 has been
demonstrated in seminomas [44]. Thus, BMP signaling might also play an important role in
GCC pathogenesis. In the murine system, Pereira et al. found that Bmp /Smad5 signaling con-
tributes to negative regulation of Nodal, since Smad5-deficient amnion cells showed ectoptic
activation of Nodal and its feedback loops [45]. In turn, Nodal was shown to act as a Bmp
inhibitor by heterodimerizing with Bmps [46]. Thus, a reciprocal interaction between Nodal
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and Bmp signaling might be an important mechanism in germ cell development and GCC
development.

The microenvironment influences the cell fate of TCam-2 cells
In previous studies, we demonstrated that the seminoma cell line TCam-2 differentiates into a
mixed non-seminoma, when being cultivated in murine embryonic fibroblast conditioned
medium supplemented with FGF4 /Heparin or in a combination of FGF4 /TGF-B1 /EGF,
which mimics a somatic microenvironment, [47]. During this process the morphology changes
considerably from polygonal to very big, flat and round cells with a big nucleus. Furthermore, a
network-like structure is build up, the amount of multinucleated giant cells increases strongly
and the proliferation rate drops significantly. Pluripotency markers (NANOG, OCT3/4, Alka-
line Phosphatase) are downregulated, while markers for somatic differentiation are upregulated
(AFP, PAX6, HAND1, T, HOXB1). Interestingly, an EC-intermediate, indicated by upregula-
tion of SOX2 or SOX17 downregulation is not detected. Additionally, the BMP /SMAD signal-
ing is reduced, putatively leading to downregualtion of PRDM1, allowing for differentiation
into a mixed non-seminoma.

In a further study, we demonstrated that TCam-2 cells presented as pure, undifferentiated
ECs 6–8 weeks after xenografting into the murine flank or brain [47]. In these somatic micro-
environments, TCam-2 cells upregulate EC-markers SOX2, CD30, DNMT3B/L and downre-
gulate seminoma markers SOX17, cKIT and PRDM1. Furthermore, DNAmethylation levels
increased strongly [47] [48]. Using these experimental settings, development of teratomas has
never been observed. In contrast, orthotopic injection of TCam-2 into the testis leads to CIS
/seminoma-like growth within the seminiferous tubules, indicated by a CIS /seminoma-like
morphology (uniformly growing big round cells with a big nucleus, weakly eosinophilic) and
expression of typical markers like SOX17, BLIMP1, VASA, TFAP2C and cKIT. These previous
studies suggest that the microenvironment affects the cell fate of seminomatous TCam-2 cells
[48].

2102EP cells as an ECmodel
In this study, we took advantage of the xenotransplantation model to analyze the molecular
mechanisms during the reprogramming of TCam-2 to an EC in the somatic microenvironment
of the murine flank. We utilized the cell line 2102EP as an EC model, which has been widely
used in different studies, ranging from analyzing differentiation abilities, DNA methylation
and retinoic acid response to studying chemoresistance and pluripotency [49] [50] [51] [48]
[52] [53] [54] [55] [56]. 2102EP cells were derived from a patient suffering from an EC /terato-
carcinoma and show an EC-like morphology (small polygonal and flat cells). Furthermore,
2102EP cells express EC- and pluripotency markers like SOX2, CD30, DNMT3B /L, NANOG,
OCT3/4, but lack expression of PGC /semimona markers like SOX17. Similar to ECs, 2102EP
cells show cytoplasmic localization of PRDM1 [57] [48]. The DNA of ECs is hypermethylated
compared to seminomas [6]. In line to this finding, the DNA of 2102EP cells is highly methyl-
ated compared to TCam-2 cells. A common feature of GCCs, the gain of chromosome 12p can
also be found in 2102EP [53] [56]. After xenotransplantation into the murine testis, flank or
brain, 2102EP cells show a typical morphology and gene expression profile of EC cells. Impor-
tantly, 2102EP cells are nullipotent, thus they do not tend to differentiate in vivo into tera-
toma-, yolk-sac tumor- or choriocarcinoma-like cells [58] [52]. So, 2102EP cells resemble an
undifferentiated EC in vitro and in vivo, highlighting 2102EP as a valuable EC model.

In this study, we deciphered the molecular mechanisms involved in adaptation of semino-
matous TCam-2 cells to an EC-like cell fate. We demonstrate that interference with the BMP
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signaling pathway leads to upregulation of NODAL signaling as well as pluripotency- and epi-
genetic reprogramming factors, which drive the reprogramming and epigenetic remodeling of
TCam-2 cells during growth in the somatic microenvironment of the murine flank. Our data
strongly suggest that seminomas can be reprogrammed to an EC upon interaction with the
microenvironment /tumor stroma.

Results
The seminoma-like cell line TCam-2 is able to develop into an EC-like state after being xeno-
grafted into the flank or brain of nude mice [7] [48]. In this study, we analyzed the kinetics of
gene expression (Gex) and DNA methylation (5mC) during this seminoma to EC transition
(SET) to gain insight into the mechanisms driving this transition. Our previous experiments
demonstrated that 6 weeks after transplantation TCam-2 cells had adapted an EC-like state
[48]. Thus, we xenografted TCam-2 and 2102EP into the flank of nude mice and analyzed
5mC and Gex levels using microarrays after 1, 2, 4 and 6 weeks to follow early and late events
during the transition.

Dynamics of 5mC and gene expression during in vivo growth of TCam-2
Unsupervised hierarchical clustering (UHC) analysis of Gex and 5mC data revealed the differ-
ences between TCam-2 and 2102EP—after transplantation, the UHC demonstrated that up to
2 weeks after transplantation the cells still clustered to the parental TCam-2 cells. Gene expres-
sion seemed to gradually adjust to the 2102EP sample pattern, while DNA methylation seemed
to increase and reorganized to the 2102EP pattern later (Fig 1A and 1B). After 4 weeks, xeno-
grafted TCam-2 cells clustered to the 2102EP cells, indicating an adaptation to an EC-like state
with regard to Gex and 5mC (Fig 1A and 1B).

Detailed analysis of Gex and 5mC dynamics during reprogramming of
TCam-2
To gain a detailed insight into 5mC dynamics during SET, we plotted the averaged CpG-meth-
ylation at various regulatory regions (transcription start site (TSS)1500, TSS200, 5’-UTR, 1st
exon, gene body and 3’-UTR) across all genes found to be differentially methylated in TCam-2
cells in vitro, after 1, 2, 4 and 6 weeks of in vivo growth as well as in 2102EP (S1 Fig). Parental
and xenografted TCam-2 cells display 5mC levels of about 40–50% at the TSS1500, TSS200
and 1st exon. In contrast, 5mC levels at the 5’-UTR (� 40%), the gene body (� 35%) and the
3’-UTR (� 35%) are low in in vitro cultivated TCam-2 and xenografted cells for 1 week, while
5mC levels steadily increase at these regions with progressive in vivo growth to an profile
highly comparable to 2102EP cells (S1 Fig).

Next, we distinguished CpG-island-associated DNAmethylation events from DNAmethyl-
ation at open sea context (i. e. non-CpG-island context) (Fig 2A and 2B). In TCam-2, the vast
majority of CpG-island-associated CpGs show low levels of DNAmethylation in regions 1500
and 200 bp upstream of the TSS, the 5’-UTR and the 1st exon (orange circle in S2A Fig), while
CpG-islands within the gene body and the 3’-UTR appear medium to hypermethylated (green
circle in S2A Fig). Six weeks after xenografting the CpGs in the gene body display distinct
changes in methylation (red circle in S2A Fig) and demethylation (yellow circle in S2A Fig),
while probes within the TSS200 /1500, 5’-UTR and 1st exon remain hypomethylated or become
demethylated (black circle in S2A Fig).

CpG-probes associated with the open sea show a higher methylation compared to CpG-
islands (S2B Fig). The 5mC levels of these regions are dramatically altered after six weeks in
vitro and in 2102EP (S2B Fig). Thus, during in vivo growth of TCam-2 the change of
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methylation mainly occurs in within gene bodies of CpG-islands and in the open sea, while
methylation of CpG-island-associated TSSs remains nearly unchanged.

Following xenografting of TCam-2, numbers of medium (41–80%) and highly (> 81%)
methylated CpGs showed a strong increase on all chromosomes, except chromosomes Y and
19 (S1A Data). Strongly reduced methylation on the Y chromosome can be explained by the
fact that complete arms of this chromosome are deleted TCam-2 (purple arrow in S1A Data)
[56]. On chromosome 19, however, high numbers of hypomethylated CpGs (0–40%) are main-
tained 6 weeks after xenografting (green arrow in S1A Data). Thus, chromosome 19 seems to
escape the de novo DNAmethylation process during the SET. 6 weeks after xenografting 5mC
distribution across all chromosomes is more comparable to 2102EP cells, while parental
TCam-2 and TCam-2 xenografted for 1 week show considerable differences in 5mC distribu-
tion compared to 2102EP (S3A Fig).

To define initiating events of this reprogramming, we analyzed early Gex and 5mC dynam-
ics using a volcano plot and found an (almost linear) increase in the number of genes being
deregulated in expression during in vivo growth over time (Fig 2A). Next, a violin plot was
used to visualize 5mC level distribution across all differentially methylated CpGs during SET
(Fig 2B). TCam-2 cells cultivated in vitro and for 1 week in vivo display a high number of
hypomethylated CpGs (� 30%). Interestingly, 2 weeks after xenografting the majority of CpGs
displays 5mC levels around 50%, indicative for intermediate methylation. 4–6 weeks after
xenografting, TCam-2 cells peak at approximately 60 and 70% 5mC levels respectively, indicat-
ing that the majority of CpGs are hypermethylated. These data demonstrate that 5mC levels
shift from hypomethylation at one week via intermediate methylation at two weeks gradually
towards high levels seen at 4–6 weeks. This strongly suggests that the remodeling is a gradual
and constant process.

Fig 1. Global dynamics of Gex and 5mC during reprogramming of TCam-2 cells. (A—B) Unsupervised hierarchical clustering illustrates genome-wide
changes in Gex (A) and 5mC (B) over time in indicated samples. Dendrograms indicate that during SET TCam-2 cells becomemore similar to the EC control
cells.

doi:10.1371/journal.pgen.1005415.g001
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Fig 2. Detailed analyses of Gex and 5mC dynamics during reprogramming of TCam-2 cells. (A) Histogram showing changes in Gex 1–6 weeks after
xenografting compared to TCam-2 in vitro. (B) Violin plot illustrating 5mC level distribution of all differentially methylated genes during SET. (C) Circos
diagrams illustrate inverse correlation between Gex and 5mC during SET and in comparison to 2102EP cells in the 53 5mC /Gex-group genes. Gex and 5mC
data of each analyzed gene is linked to each analyzed sample—the thicker a connection the higher the Gex /5mC level and vice versa. Thus, genes with high
5mC levels in a certain sample (thick connection) show a small connection in the illustration of Gex data. T i.v. = TCam-2 in vitro, 1w = TCam-2 in vivo 1w,
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Now, we wanted to understand whether the changes in 5mC correlate to changes in Gex. A
Pearson’s correlation of the microarray data identified 601 genes, showing inverse correlation
between 5mC and Gex (S1B Data). A BDPC methylation cluster analysis of these 601 genes
demonstrates that the transplanted cells cluster to the parental TCam-2 cell line up to 2 weeks
after transplantation. Thereafter, they cluster more to the 2102EP to become highly similar
after 6 weeks after transplantation (Fig 3B).

We reasoned that the genes from the differentially methylated group displaying the highest
change in expression during the SET might be the candidates for driving this process. Hence,
from the 601 differentially methylated genes we excluded all genes with an expression fold
change of<log21.5 versus parental TCam-2. We found 53 genes which passed this criteria and
called them 5mC /Gex-group (S1C Data). Genes that are weakly expressed /hypermethylated
in TCam-2 cultivated in vitro (Fig 2C, (upper panel: T i.v.)) and for 1 week in vivo (1w) become
demethylated and upregulated 6 weeks after xenografting (6w) and are expressed and hypo-
methylated in 2102EP cells (2102EP). Vice versa, genes hypomethylated and expressed in
TCam-2 in vitro (Fig 2C, lower panel: T i.v.) and grown in vivo for 1 week (1w) become /are
hypermethylated and downregulated in TCam-2 xenografted for 6 weeks (6w) and 2102EP
cells (2102EP), respectively. Thus, 6 weeks after xenografting, the 5mC and Gex status of these
genes is more comparable to the 2102EP profile than to parental TCam-2 or TCam-2 xeno-
grafted for 1 week (Fig 2C).

Next, we compared the genes of the 5mC /Gex-group to a set of genes deregulated in expres-
sion after 1 (143 genes) and 6 weeks (503 genes) (D and E in S1 Data). This revealed that 6
genes of the 5mC /Gex-group were upregulated after 1 week, despite the fact that 5mC-levels
had dropped only marginally (Fig 2D and S1F Data). After 6 weeks, expression of these genes
had increased further and the genomic loci became hypomethylated (Fig 2D). These 6 genes
are GDF3, NODAL, DPPA3, DNMT3B, GAL and AK3L1, which are pluripotency-associated
genes, except AK3L1, which encodes an enzyme of the adenylate kinase family (Fig 2E) [59]
[60]. After 6 weeks, the remaining 47 genes of the 5mC /Gex group were deregulated and
showed inverse correlation to 5mC (S1C Data). From them, EC-, pluripotency- and repro-
gramming-associated genes REX1 (ZFP42), DND1, JARID2 and PRDM14 were hypomethy-
lated and upregulated, while seminoma-related genes PRDM1, PROM1 and IGF1 became
hypermethylated and were downregulated [61] [62].

Furthermore, additional EC and pluripotency genes were upregulated (SOX2, LEFTY1 /2,
DNMT3L, SALL4, DPPA5, BCAT1, FZD7, LIN28, ZIC3), while seminoma-associated genes
where downregulated (SOX17, TFAP2C, cKIT, PRAME), without changing 5mC-levels (D and
E in S1 Data) [3] [17] [5].

We verified selected alterations in Gex 1–2 weeks after xenografting by qRT-PCR and
immunohistochemical staining (IHC) (A and B in S4 Fig). Additionally, we confirmed demeth-
ylation of the GDF3 locus in TCam-2 4 weeks after xenografting by sodium-bisfulfite-sequenc-
ing (S4C Fig).

The heatmap of Gex data (Fig 1A) demonstrated that aside from the similarities between
xenografted TCam-2 and the 2102EP samples, there are also differences in Gex between the
analyzed cell types during SET. We normalized Gex data of all 2102EP samples (in vitro, 4w,
8w) and TCam-2 cells xenografted for 6w versus TCam-2 in vitro (S1G Data). Next, we
excluded all genes deregulated in both, the TCam-2 6w and the 2102EP samples to produce

6w = TCam-2 in vivo 6w, 2102EP = 2102EP in vitro. (D) Volcano plot of Gex and 5mC data of the 5mC /Gex-group 1 and 6 weeks after xenografting. (E) Gex
and 5mC dynamis of indicated genes during SET. Red framed black squares = Gex, blue framed black squares = 5mC of averaged data of 2102EP in vivo 4
/8 weeks.

doi:10.1371/journal.pgen.1005415.g002
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Fig 3. Meta-analysis of Gex and 5mC data of xenografted TCam-2 and GCC tissues. (A, B) Venn diagrams summarizing commonly up- (A) and
downregulated (B) genes between seminoma, TCam-2 xenografted for 1 and 6 weeks and ECs. Corresponding data is given in (E and H in S1 Data). Genes
recorded in duplicates (due to multiple probes on the array) were included only once. (C) Expression intensities of indicated genes in TCam-2 xenografted for
6 weeks and the EC group as fold change versus appropriate controls (TCam-2 in vitro /seminoma tissues). Genes were categorized (color coded) based on
[48] [18] [35]. (D) 5mC levels of indicated genes in seminomas, parental and xenografted TCam-2 as well as EC cell lines (2102EP, NEC8, 833KE, SuSa) as
found by 450k microarray analysis. (E) BDCP analysis of 5mC data of genes and samples indicated in (D).

doi:10.1371/journal.pgen.1005415.g003
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datasets containing genes exclusively expressed in TCam-2 6w, but not in 2102EP samples and
vice versa (S1G Data). We performed a STRING-based protein-protein interaction as well as a
GeneTrail-based Gene Ontology (GO) analysis of these data sets to show in which molecular
processes as well as interactive networks these genes are involved and summarized the results
in (S1G Data). Genes exclusively expressed in the TCam-2 6w samples are mainly linked to
developmental and regulatory processes as well as signaling, while genes expressed only in
2102EP samples are related to GO categories linked to cellular compartments, like cytoplasm,
nucleus, membrane and intracellular organelles.

Deciphering the mechanisms driving reprogramming of TCam-2
To further analyze the regulatory mechanisms underlying the SET, we performed a STRING-
protein-interaction-analysis of all genes upregulated after 1 week. An interaction network
between 4 of the 6 5mC /Gex-group genes (GDF3, GAL, DPPA3, DNMT3B) and SOX2 as well
as DNMT3L was predicted (S5A Fig). Further, a regulatory link between NODAL and LEFTY2
was proposed (S5A Fig). Inclusion of all genes upregulated lately after 6 weeks led to extension
of this network to many pluripotency- and reprogramming-related factors, like REX1, JARID2,
FGF2, WNT3, ZIC3 and PRDM14 (S5B Fig).

Changes of 5mC and gene expression during programming of TCam-2
reflect differences between seminomas and ECs
We asked, whether the changes in Gex reflect differences between seminomas and ECs in vivo.
We performed a meta-analysis of our data and a cDNA microarray of GCCs [15] and filtered
genes that are informative to discriminate seminomas from ECs (S1H Data). With progressive
in vivo growth, TCam-2 cells express more genes found in ECs than seminomas (Fig 3A and
3B). Among them, GDF3, NODAL, LEFTY1 /2, GAL, DPPA3, SOX2, DNMT3B /L, DPPA5,
BCAT1, FGF2, PRDM14, ZIC3 and FZD7, while seminoma markers SOX17, cKIT and PRAME
were downregulated (Fig 3C). Furthermore, a qRT-PCR analysis verified that pluripotency and
epigenetic reprogramming factors (SOX2, ZIC3, GDF3, NODAL, DPPA3, DNMT3B, GAL,
JARID2, REX1,WNT3, PRDM14) are expressed higher on average in EC cell lines (2102EP,
NCCIT, NT2/D1, 833KE, GCT27, H12) than in parental TCam-2, while expression of semi-
noma markers SOX17 and TFAP2C is considerably higher in TCam-2 (S5C Fig). In line with
previous publications, expression of pluripotency factors NANOG and OCT3/4 is high is all
cell lines analyzed [4] [59] [63]. Thus, the genes upregulated during the SET represent EC core
genes.

During reprogramming, we found decreasing 5mC-levels in 6 5mC /Gex-group genes (Fig
2E). We compared 450k array data of these genes in parental and xenografted TCam-2
/2102EP cells to seminoma tissues and three additional EC cell lines (NEC8, 833KE, SuSa [64]
[65] [66]) (Fig 3D). We found that DPPA3, AK3L1, DNMT3B and NODAL are hypermethy-
lated at analyzed loci in seminomas and parental TCam-2 compared to TCam-2 in vivo 6w
and the EC samples (Fig 3D). Parental TCam-2 and all EC cell lines show GAL hypermethyla-
tion, which is strongly reduced after xenografting of TCam-2 and 2102EP, suggesting that GAL
hypermethylation is established and maintained during in vitro cultivation of EC cells. GDF3
hypermethylation is restricted to parental TCam-2, but not seen in seminomas or EC cells (Fig
3D). The GDF3 locus became demethylated during xenografting of TCam-2 (Fig 3D). Thus,
high 5mC-levels of GDF3 in parental TCam-2 point at a cell line-specific effect, but correlate
inversely to Gex (S1D Data). A BDCP analysis demonstrates that parental TCam-2 cells cluster
closely to seminoma tissues and align to the EC samples 6 weeks after xenografting with regard
to 5mC status of analyzed genes (Fig 3E).
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BMP interference leads to induction of NODAL signaling
We interrogated our data with regard to expression of signaling pathway-related genes to fur-
ther elucidate the initial trigger of the SET. We found deregulation of genes involved in BMP,
NODAL, Retinoic acid (RA), FGF, HIPPO, STAT, IGF, NOTCH andWNT signaling (S6A
Fig).

Since BMP signaling is central for germ cell specification, we concentrated on this pathway
first. In parental TCam-2, moderate cytoplasmic and strong nuclear staining of phosphorylated
SMAD (pSMAD)1 /5 was detected by immunofluorescence staining (IF) (Fig 4A). Also,
expression of BMPR1A /R2, BMP4 /7 and SMAD4 suggested that BMP signaling is active (S1I
Data). 1 week after xenografting, a rapid and strong decrease of the BMP pathway effectors ID1
/3 is detected (S6A Fig). Additionally, BMP receptors BMPR1A /R2 show a trend of downregu-
lation (S1I Data). IHC and western blotting detected loss of SMAD1 /5 phosphorylation from
1–4 weeks after xenografting (Fig 4A and S6B Fig). Interestingly, after 6 weeks, cytoplasmic
pSMAD1 /5 is detectable again, pointing at recovery of BMP signaling (Fig 4A). Also, ID1 /3
and BMPR1A expression recovers from 2 weeks on (S6A Fig and S1I Data).

To test the role of BMP signaling for initiation of SET-reprogramming, TCam-2 cells were
treated with the BMP inhibitor NOGGIN for 8 days [67]. After application of NOGGIN, by
western blotting and qRT-PCR analysis, we observed a reduction of pSMAD1 /5 levels (S6C
Fig) and downregulation of ID1 /3 (Fig 4B), indicating inhibition of the BMP-pathway. Fur-
ther, upregulation of 4 of the 5mC /Gex-group genes (NODAL, GDF3, GAL, DNMT3B) as well
as the EC markers CRIPTO, CRYPTIC, LEFTY1, SALL4, LIN28, JARID2, PRDM14, DNMT3L
and SOX2 was detected, while SOX17 was downregulated after 8 days (Fig 4B). Additionally,
BMP- andWNT signaling-associated molecules BMP4,WNT3 andWNT5B as well as pluripo-
teny-related gene ZIC3 were upregulated 8 days after NOGGIN treatment (Fig 4C). Upregula-
tion of GDF3, NODAL, LIN28, SOX2 and DPPA3 was shown by western blotting (Fig 4D). To
confirm the results, we treated TCam-2 cells with the BMP inhibitor LDN193189. Again, we
observed a reduction in SMAD1 /5-phosphorylation, downregulation of ID1 /3 as well as
NODAL, SOX2, LIN28 and DNMT3B /L upregulation (D and E in S6 Fig). These findings sug-
gest that BMP inhibition is an initial event in the reprogramming of seminomas to ECs. Inhibi-
tion of BMP signaling leads to derepression of NODAL signaling as well as upregulation of
pluripotency- and reprogramming-associated factors.

To analyze if activation of NODAL signaling alone is sufficient to induce deregulation of
pluripotency- and SET-associated genes, we treated TCam-2 cells with recombinant NODAL.
Expression of endogenous NODAL and corresponding signaling keyplayers or pluripotency-
and reprogramming-associated factors did not change, although increasing SMAD2 /3-phos-
phorylation verified an efficient treatment (F and G in S6 Fig). This suggests that inhibition of
BMP signaling is a prerequisite for the establishment of NODAL signaling.

Next, we screened GCC tissues for expression of BMP and NODAL signaling keyplayers by
re-analyzing cDNA microarray data and performing IHC as well as western blots (Fig 5A–5C)
[15]. For IHC, only TFAP2C positive and SOX2 negative CIS and semiomas as well as SOX2
positive ECs were analyzed (S7A Fig). In CIS, seminomas and ECs, expression of BMP8B,
BMPR1A /2, SMAD1 /4 and ID1 /2 was detected, while ID3 expression was restricted to ECs
(Fig 5A). In line with this expression profile, ID1 was detectable in the vast majority of CIS,
seminomas and ECs by IHC of GCC tissue microarrays (GCC-TMA), showing that in these
GCC entities BMP signaling is active (Fig 5B and S7A Fig).

NODAL signaling induces its downstream effectors CRIPTO /CRYPTIC and LEFTY1 /2.
Furthermore, NODAL signaling activity is maintained by ZIC3. We detected considerably
higher levels of these NODAL signaling keyplayers in ECs compared to CIS /seminomas
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Fig 4. Inhibition of BMP signaling is crucial for initiation of reprogramming. (A) IF /IHC staining of pSMAD 1 /5 in parental and xenografted TCam-2 at
indicated time points. Scale bar: 100 μm. (B, C) qRT-PCR analysis of indicated genes after NOGGIN treatment of TCam-2 cells for 1–8 days. (D) Western
blotting of indicated proteins 8 days after NOGGIN treatment of TCam-2 cells.

doi:10.1371/journal.pgen.1005415.g004
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Fig 5. BMP, NODAL andWNT signaling in GCC tissues and cell lines. (A) cDNAmicroarray expression
data of BMP, NODAL andWNT signaling-associated genes in GCC tissues. SOX2 and SOX17were used to
determine zero level of expression intensity (black line). (B) Pie diagrams summarizing ID1 IHC data of
GCC-TMAs. Stainings were classified as ID1 positive (+), negative (-), mixed with much more positive than
negative cells (+ >-) and mixed with much more negative than positive cells (+ <-). (C) ZIC3 protein levels in
indicated GCC cell lines and tissues. (D) Pie diagrams summarizing beta-CATENIN IHC data of GCC-TMAs.
Beta-CATENIN staining was classified as membraneous (m), cytoplasmic (c) and nuclear (n). (E) IF /IHC
staining of beta-CATENIN in in parental and xenografted TCam-2 cells (1, 2 and 6 weeks). Scale bar:
100 μm.

doi:10.1371/journal.pgen.1005415.g005
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(Fig 5A). Additionally, a western blot analysis demonstrates the EC cell lines 2102EP and
NT2/D1 display high levels of ZIC3 while TCam-2 cells, choriocarcinoma-like JAR cells and
human adult fibroblasts show low levels (S7B Fig). Furthermore, expression of ZIC3 is higher
in EC tissues than in seminomas, CIS or normal testis tissue (Fig 5C and S7C Fig). Taken
together, in vivo ZIC3mRNA and ZIC3 protein levels correlate to SOX2 as well as NODAL
expression (ECs) and correlate inversely to SOX17 (CIS, semiomas) (S7C Fig).

NODAL and ACTIVIN signaling are closely related to each other and key components of
ACTIVIN signaling are heterogeneously expressed in GCCs [68] [69]. Additionally, CRIPTO
is able to inhibit ACTIVIN signaling [70]. Thus, during SET activation of NODAL signaling
might also influence ACTIVIN signaling. We screened for expression of ACTIVIN signaling
keyplayers in TCam-2 in vitro and in vivo, but could not detect any changes in expression of
the ACTIVIN /INHIBINS, the ACTIVIN receptors (ACVRs), TGFBR3, MAN1 or the ACTI-
VIN inhibitor Follistatin (FST) (S1J Data) [68] [69]. Thus, ACTIVIN signaling seems not to
contribute to reprogramming of TCam-2 cells.

In vitro, TCam-2 cells display negligible expression of WNT molecules and only expression
of WNT receptors FZD3 /6 was detected (S1K Data). In contrast, in 2102EP cellsWNT3/5B
and FZD7 /9 are expressed. During SET,WNT3/5B and FZD7 /9 are induced, while FZD3 /6
tend to be downregulated (S7A Fig and S1K Data). Thus, TCam-2 cells change expression of
WNT signaling associated genes to a profile comparable to 2102EP. Accordingly,WNT3 /5B
and FZD7 expression is higher in EC tissues than in CIS /seminomas (Fig 5A). Using IHC, we
demonstrate that CIS display only membraneous staining of the canonical WNT effector beta-
CATENIN, while seminomas and ECs presented in two states, i. e. showing membraneous
staining or positive at both, the membrane and the cytoplasm (Fig 5D and S6A Fig). 72% of
seminomas stained positive at the membrane only, while 97% of ECs displayed both, strong
membraneous and cytoplasmic beta-CATENIN, verifying results of Korkola et al. [71] (Fig 5D
and S7A Fig). In line with these data, IF /IHC demonstrates that in parental TCam-2 beta-
CATENIN is localized to the membrane, while increasing cytoplasmic staining is detectable
1–6 weeks after xenografting (Fig 5E). In conclusion, similar to EC tissues, beta-CATENIN
accumulates in the cytoplasm of TCam-2 cells following xenografting.

Discussion
In this study, we analyzed the epigenetic and molecular mechanisms underlying the seminoma
to EC reprogramming process. After transplantation, expression of 6 genes was rapidly
induced, with 5mC levels unchanged initially. Thus, in seminomas these genes seem to be
poised for expression. Early induction of DNMT3B initiates a wave of de novo DNA methyla-
tion causing a gradual remodeling of the methylome two weeks after xenografting, leading to a
genome-wide high 5mC levels similar to an EC. During SET, remodeling of the methylome
affects mainly gene bodies (but not regulatory regions, like TSS) in the CpG-island and non-
CpG-island context and follows deregulation in Gex, suggesting that DNAmethylation rather
reinforces than initiates the EC-like state of TCam-2.

The role of BMP- and NODAL signaling during reprogramming of TCam-
2
A strong downregulation of the BMP signaling downstream effectors ID1 and ID3 during the
SET prompted us to investigate BMP signaling in more detail. We show that inhibition of BMP
signaling leads to induction of NODAL signaling and pluripotency- as well as epigenetic repro-
gramming factors comparable to the reprogramming of TCam-2 in vivo. Previously, we were
able to show that during in vitro differentiation of TCam-2 cells into a mixed non-seminoma
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the activity of BMP signaling-related SMAD1 /5 /8 molecules was reduced [47]. This further
demonstrates that high BMP signaling activity is associated with a CIS /seminoma-like charac-
ter, while low levels are linked to a non-seminomatous cell fate. Hence, we propose that inhibi-
tion of BMP signaling is the initial event triggering SET-reprogramming. In contrast to the
results reported here, upregulation of the EC-marker SOX2 was not observed during the in
vitro differentiation [47]. We speculate that the particular experimental settings in vitro (sup-
plementation with FGF4, TGF-B1, EGF) resulted in a persistent suppression of SOX2, leading
to continuation of SOX17 expression. However, with downregulation of PGC- (PRDM1,
TFAP2C, cKIT) and pluripotency (NANOG, OCT3/4, LIN28) marker genes, persisting SOX17
expression together with activation of the Hippo pathway resulted in differentiation into a
mixed non-seminoma with predominant choriocarcinoma-like components [47].

Spiller et al. found expression of NODAL and its cofactor CRIPTO as well as LEFTY1 in CIS
and ECs [39]. The authors utilized qRT-PCR to analyze expression of NODAL signaling key-
players in testis containing up to 90% CIS cells and non-seminomas, while seminomas were
not included [28]. We detected low expression levels of NODAL signaling factors in CIS
/seminomas and high levels in ECs (Fig 5A) [16]. In our study, the cDNA microarray analysis
of GCC tissues was performed on RNA isolated from pure micro-dissected CIS cells, without
any normal testicular tubules or invasive tumors, pure classical seminomas and ECs [35]. In
our case, RNA expression levels and protein detection via IHC of various markers in GCC tis-
sues is also observed in our SET model system. Hence, we argue that the discrepancies with
Spiller et al. might be of technical nature, i. e. residual somatic components, which eventually
skews analyses by having active NODAL signaling.

Spiller et al. state further that active NODAL signaling provides a mechanism regulating
potency in GCCs [28] [31]. In human ESCs and in murine epiblast cells, NODAL signaling has
been shown to contribute to maintenance of pluripotency and is a hallmark of the primed state
of pluripotency [32]. Thus, activation of NODAL signaling might trigger the shift from latent
pluripotency (observed in seminomas) to primed pluripotency displayed by ECs.

During vertebrate development, expression of the pluripotency-related factor ZIC3 is
repressed by BMP signaling and can be restored by NOGGIN-mediated inhibition of BMP sig-
naling [72] [73] (Fig 4C). ZIC3, which is necessary for maintenance of NODAL signaling is
highly expressed in ECs /xenografted TCam-2 and low in seminomas /TCam-2 in vitro (Fig 5A
and S7B and S7C Fig; S1H Data) [17] [74]. The STRING analyses suggested that ZIC3 interacts
with NODAL and LEFTY1 /2 (S5B Fig) and ZIC3 is activated by NANOG, OCT3/4 and SOX2
[17]. So, during SET, inhibition of BMP signaling leads to derepression of SOX2, restoring the
classical pluripotency circuitry found in ECs and ESCs, subsequently leading to upregulation of
ZIC3, which in turn helps to maintain NODAL signaling [17] [74].

A crosstalk between BMP- and NODAL signaling controls initiation and
progression of the transition
What is the crossregulation between BMP- and NODAL signaling? Pereira et al. found that in
mice Bmp /Smad5 signaling represses Nodal, since amnion cells deficient for Smad5 showed
ectoptic activation of Nodal and its feedback loops [45]. In turn, NODAL inhibits BMP by het-
erodimerizing with BMPs [46]. Thus in our case, signals form the tumor stroma inhibit BMP,
which leads to derepression of NODAL. Upregulation of NODAL leads to establishment of an
autoregulatory loop, including LEFTY1 /2, CRIPTO /CRYPTIC and ZIC3. This results in a cell
intrinsic repression BMP signaling.

Why does BMP signaling recover during the reprogramming of TCam-2? As described
above, Nodal activates its autoregulatory loop, which has been denominated the fast acting

BMP Inhibition Initiates Reprogramming of TCam-2 to an EC-like State

PLOS Genetics | DOI:10.1371/journal.pgen.1005415 July 30, 2015 15 / 26



loop [24]. In addition, over time, the so called slow feedback loop activates Bmp4, which re-
establishes BMP signaling and results in upregulation of Wnt3 and Fgf4 /Fgf8 [45] [75]. This is
in agreement with the data from our transplantation studies, where we detected increased
WNT3 /5B, BMP4 /BMP7 and FGF2 /19 expression from 2–6 weeks after xenografting (S6A
Fig; I and K in S1 Data). Additionally, 8 days after NOGGIN-treatment of TCam-2 cells BMP4,
WNT3 andWNT5B were upregulated (Fig 4C), while ID1 /3 levels recovered like during in
vivo growth (Fig 4B and S6A Fig).

SOX2 and SOX17 in regulation of pluripotency andWNT signaling
During SET and after NOGGIN treatment, we detected downregulation of SOX17 and upregu-
lation of SOX2. In fact, SOX17 expression is restricted to CIS and seminomas, while SOX2 is
highly expressed in ECs [2]. SOX17 has been identified as a key factor for specification of
human PGCs and regulator of PRDM1 [14]. Thus, downregulation of SOX17 during the SET
indicates loss of a PGC-like character. In mice, Sox2 complexes with Oct3/4 and binds to a
canonical motif, thereby driving the expression of pluripotency genes [76]. Overexpression of
Sox17 is able to replace Sox2 in the complex with Oct3/4, leading to a change in target site
selection to a compressed binding motif [76]. So, we speculate that during SET the strong
increase in SOX2 protein levels force partnering with OCT3/4, which leads to a switch to pro-
moters encoding for the canonical motif found in pluripotency genes. Further, it is known that
SOX17 antagonizes WNT signaling activity, which has been suggested to be low in seminomas
and high in ECs [18] [19] [20]. So, downregulation of SOX17 could explain the de-repression
ofWNT3 /5B during SET. The upregulated WNT3 results in cytoplasmic beta-CATENIN
accumulation, but nuclear exclusion of beta-CATENIN suggests that the canonical WNT-
pathway is not activated [77] [78] [79]. Thus, WNT3 /WNT5B most likely act in a non-canoni-
cal manner during SET [79].

Model of the mechanisms and events driving reprogramming of TCam-2
to an EC-like state
Based on our findings, we propose a model in which the SET-reprogramming of xenografted
TCam-2 is divided in three stages (initiation, maturation, stabilization) (Fig 6A) [80] [81]. The
reprogramming is initiated by exogenous inhibition of BMP signaling causing rapid activation
of NODAL. NODAL signaling establishes a fast acting autoregulatory loop (Fig 6B), leading to
stimulation (CRIPTO /CRYPTIC) and limitation (LEFTY1 /2) of NODAL signaling and cell
intrinsic suppression of BMP signaling. During this time, markers of pluripotency and repro-
gramming become upregulated and induction of DNMT3B initiates epigenetic remodeling.
This phase we name the maturation phase. Thereafter, the slow acting NODAL feedback loop
re-establishes BMP signaling to a level lower than in parental TCam-2, resulting in a balance
between BMP and NODAL signaling and reinforcement of the acquired EC-like cell fate (the
stabilization phase).

Summary of this study
In summary, we demonstrated that in seminomas a set of 6 genes is rapidly induced after trans-
plantation. These factors induce epigenetic remodelling of the genome and establish expression
of the pluripotency network, leading to reprogramming into an EC. Further analysis revealed
that interference with BMP is sufficient to induce these genes. We propose that BMP inhibition
initiates the SET. The inhibition of BMP signaling, so we speculate, is initiated by factors like
NOGGIN, which are expressed abundantly by the somatic microenvironment. So, upon trans-
plantation into the flank, TCam-2 cells become exposed to BMP-inhibitors leading to initiation
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of SET. Corollary to this, a CIS or seminoma, which is exposed to BMP inhibitors by penetrat-
ing the testis confines during progressive growth, could be reprogrammed to an EC. Our data
strongly suggest that GCC development is a plastic process that allows seminomas to progress
into EC and maybe vice versa, depending on the signals from the tumor stroma. Therefore,
seminoma patients might also develop an EC component during invasive tumor growth. ECs
grow more aggressive than seminomas and need alternative treatment strategies, which
requires adjustment of the therapy concept. The question remains, whether ECs might transit
into a seminoma upon interference with the DNAmethylation machinery or reprogramming
key molecules identified in this study.

Material and Methods

Ethics statement
The ethics committee of the Rheinische Friedrich-Wilhelms-Universität Bonn approved the
analyses of formalin fixed, paraffin-embedded type II GCC tissues in context of this study. No
personal patient data will be collected or stored. Written permission to use the tissue for scien-
tific purposes was obtained from the patients and was approved by the, Ethik-Kommission für
klinische Versuche amMenschen und epidemiologische Forschung mit personenbezogenen

Fig 6. Model of the dynamics andmolecular mechanisms during the SET. (A) Model summarizing the dynamics and events driving acquisition of
pluripotency and epigenetic reprogramming of TCam-2 cells to an EC-like cell fate. (B) Models of the fast and slow acting NODAL feedback loop. Arrows
indicate 'activation', T-shaped arrows indicate 'inhibition'.

doi:10.1371/journal.pgen.1005415.g006
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Daten der Medizinischen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn’
(The ethics committee for clinical trials on humans and epidemiological research with patient-
related data of the medical faculty of the Rheinischen-Friedrich-Wilhelms-University Bonn).

All animal experiments were conducted according to the German law of animal protection
and in agreement with the approval of the local institutional animal care committees (Lande-
samt für Natur, Umwelt und Verbraucherschutz, North Rhine-Westphalia (approval ID: AZ-
84-02.04.2013-A430). The experiments were conducted in accordance with the International
Guiding Principles for Biomedical Research Involving Animals as announced by the Society
for the Study of Reproduction.

Cell culture
GCC cell lines utilized in this study were cultivated as described previously [7]. Briefly, TCam-
2 and NCCIT cells were grown in RPMI. The cell lines 2102EP, NT2/D1, 833KE, H12, GCT27,
JEG-3 and JAR were grown in DMEM. Both media were supplemented with 10% fetal calf
serum (FCS) (PAA, Pasching, Austria), 1% Penicillin /streptomycin (P /S) (PAN, Aidenbach,
Germany), 200 mM L-Glutamine (PAN, Aidenbach, Germany). MPAF and ARZ were grown
in DMEM (10% FCS, 1% P /S, 200 mM L-Glutamine, 1x non-essential amino acids (PAA,
Pasching, Austria), 100 nM ß-Mercaptoethanol (Sigma-Aldrich, Taufkirchen, Germany).
TCam-2 [82] cells were kindly provided by Dr. Janet Shipley (Institute of Cancer Research, Sut-
ton, United Kingdom). 2102EP [83], NT2/D1 [84] and NCCIT [85] cells were provided by
Prof. Dr. Leendert Looijenga (Erasmus MC, Daniel den Hoed Cancer Center, Josephine Nef-
kens Institute, Rotterdam, Netherlands). 833KE [86] cells were provided by PD Dr. Beate
Köberle (KIT, Karlsruhe, Germany). H12.1 [87] and GCT27 [88] were kindly provided by Dr.
Peter Andrews (University of Sheffield, United Kingdom) and obtained from Dr. Thomas
Müller (Department of Internal Medicine IV, Oncology and Hematology, Martin-Luther-Uni-
versity of Halle Wittenberg, Halle, Germany). JAR (HTB-144) and JEG-3 (HTB-36) cells were
purchased from ATCC. MPAF and ARZ were provided by Dr. Michael Peitz (Life & Brain
Center, University of Bonn, Germany).

Tissue microarrays
Tissue microarrays were assembled and prepared in house after approval by the internal review
board. Further information is given in [7].

Treatment of TCam-2 cells with NOGGIN, LDN193189 and NODAL
TCam-2 cells were seeded 24h before treatment (1 x 105 cells /9,5 cm2). 500 ng /ml NOGGIN
(diluted in 10 mMHAc) (Abcam, Cambridge, UK), 500 ng /ml LDN193189 (diluted in H2O)
(Sigma-Aldrich, Taufkirchen, Germany) and 500 ng /ml recombinant NODAL (diluted in
4 mMHCl, 0.1% BSA) (R&D Systems, Wiesbaden, Germany) were added in 2 ml fresh culture
medium every second day.

DNA, RNA and protein isolation
DNA, RNA and proteins were isolated as described previously [47] [89]. DNA was isolated by
phenol /chloroform /isoamylalcohol, RNA by TRIzol and proteins by RIPA buffer. DNA and
RNA concentrations as well as 260 /280 nm, 260 /230 nm purity ratios were determined by
NanoDrop measurement (Peqlab, Erlangen, Germany).
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Western blot
Western blots analyses were performed as described previously [47] [7]. Briefly, the Mini-
PROTEAN Electrophoresis Cell and Trans-Blot Turbo system were used (BioRad, Munich,
Germany). Gels were blotted onto PVDF membranes. Chemiluminescent signals were detected
using ChemiDoc MP Imaging System (BioRad) and band intensities were calculated by Image
Lab software (BioRad). Beta-ACTIN was used as housekeeper and for normalization. See S1
Table for antibody details.

Quantitative RT-PCR
Quantitative RT-PCR (qRT-PCR) was performed as described previously [7]. For first strand
synthesis, the RevertAid First Strand cDNA Synthesis Kit manual (Fermentas, St. Leon-Rot,
Germany) was used. For PCR, the Maxima SYBR Green qPCR Master Mix (Fermentas,
St. Leon-Rot, Germany) was used. PCR was performed using the ViiA 7 Real Time PCR System
(Applied Biosystems, distributed by Life Technologies, Carlsbad, CA, USA). At the end of each
PCR run, a melting point analysis was performed. GAPDH was used as housekeeping gene and
for data normalization. Variation of GAPDH expression between different experimental setups
is very low (S1L Data). See S2 Table for primer sequences.

Immunohistochemistry and immunofluorescence staining
Immunohistochemistry (IHC) was performed as published previously [47] [7]. Tumor tissues
were dissected, fixed in 4% formalin overnight and processed in paraffin wax. Signal detection
was performed semiautomatically in the Autostainer 480 S (Medac, Hamburg, Germany).
Nuclei were stained by hematoxylin. Immunofluorescence staining (IF) was performed as pub-
lished [15] [47]. Nuclei were counterstained by Hoechst 33342. See S1 Table for antibody
details and dilution ratios.

Sodium bisulfite sequencing
Sodium bisulfite sequencing was performed as described previously [89]. Briefly, 500 ng of
DNA were sodium bisulfite converted using the ‘EZ DNA-Methylation Gold kit’ (Zymo
Research, Freiburg, Germany). See S2 Table for primer details.

Xenotransplantation of GCC cell lines
Xenotransplantation was performed as described previously [48]. 1 x 107 cells in 500 μl of 4°C
cold Matrigel (BD, Heidelberg, Germany) were injected into the flank of CD1 nude mice.

Illumina HT-12v4 expression array and Infinium 450Kmethylation array
RNA quality was checked for degradation via gel electrophoresis in a BioAnalyzer 2100 (Agi-
lent Technologies, Waldbronn, Germany) using RNA 6000 nano lab chips. DNA was sodium-
bisulfite converted using the EZ DNAMethylation kit (Zymo Research, Freiburg, Germany).
Samples were processed on Illuminas' (San Diego, California, USA) human, HT-12v4’ and
human, Infinium Methylation 450k Bead Chips’.

A subset quantile normalization approach developed by N. Touleimat & J. Tost was applied
[90]. This approach includes signal correction for the adjustment of the color balance and
background level correction as well as the Infinium I/Infinium II shift correction between sam-
ple normalization. Technical quality parameters such as hybridization, extension, bisulfite con-
version and specificity were evaluated using the, Genome Studio’ software. Beta-value signal
distributions were inspected by density plots. Data was analyzed using, Bioconductor R’ (www.
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bioconductor.org). To increase performance in terms of detection and true positive rate of
highly methylated and unmethylated CpG-sites, beta-values were transformed to M-values
[91]. Differentially methylated loci were identified using a t-test. p-values were corrected for
multiple testing using the Benjamini-Hochberg correction. The expression values were quantile
normalized using the, limma’-software-package (‘Linear Models for Microarray Data’, www.
bioconductor.org). For inverse correlation analysis of methylation and gene expression data,
methylation at CpGs and gene expression transcripts were mapped to the same gene identifiers.
Inverse correlation was calculated using the Pearson correlation coefficient and p-values for
association were corrected for multiple testing using the Benjamini-Hochberg correction.
Microarray data sets are publically available via GEO (ncbi.nlm.nih.gov/geo/) (GSE60698,
GSE60787).

Affymetrix cDNAmicroarray analysis of GCC tissues
The whole procedure has already been published [15]. The array was reanalyzed in context of
this study. Normalized gene expression intensities of averaged seminomas were substracted
from averaged intensities of EC tissues (Seminoma group) and normalized gene expression
intensities of averaged ECs were substracted from averaged intensities of seminoma tissues (EC
group).

BDPC, STRING and GeneTrail analysis, Circos and Venn diagrams
BDPC analysis and STRING protein-protein-interaction prediction were performed online
using default settings (services.ibc.uni-stuttgart.de/BDPC) (string-db.org) [92] [93]. Gene-
Trail-based GO analysis was also performed online using default settings (genetrail.bioinf.uni-
sb.de) [94]. Circos diagrams were generated using ‘Circos Table Viewer’ (mkweb.bcgsc.ca/
tableviewer) [95] and Venn diagrams were generated using ‘Venny’ (bioinfogp.cnb.csic.es/
tools/venny).

Supporting Information
S1 Fig. 5mC distribution across the genome of transiting TCam-2. Averaged 5mC levels of
all differentially methylated genes at indicated regulatory genomic regions during SET.
(TIF)

S2 Fig. Dynamics of 5mC in CpG-island- and open-sea-context. (A, B) 5mC levels of CpGs
in CpG-island- (A) and open sea-context (B) across different genomic regions. TCam-2 in vivo
6w and 2102EP data was normalized to TCam-2 in vitro (blue lines).
(TIF)

S3 Fig. 5mC dynamics across chromosomes and BDPC analysis of 5mC data. (A) Numbers
of differentially methylated CpGs (0–40%, 41–80%,> 81%) between in vitro cultivated and
xenografted TCam-2 compared to 2102EP cells. (B) BDPC analysis of xenografted TCam-2
/2102EP demonstrates that xenografted TCam-2 (4w, 6w) cluster more closely to 2102EP sam-
ples during SET regarding 5mC.
(TIF)

S4 Fig. Validation of selected deregulations in Gex and 5mC. (A) qRT-PCR analysis of indi-
cated genes during xenografting of TCam-2 (1–6 weeks). (B) IHC of indicated genes in TCam-
2 cells xenografted for 1–2 weeks. (C) Sodium bisulfite sequencing of the GDF3 promotor in
parental TCam-2 /2102EP and TCam-2 /2102EP xenografted for 4 weeks. Empty circles
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represent unmethylated CpGs and filled circles methylated CpGs.
(TIF)

S5 Fig. Interactive network prediction and verification of Gex data in EC cell lines. (A, B)
STRING-based interaction prediction of genes commonly upregulated in TCam-2 1 (A) and 6
(B) weeks after xenografting. (C) qRT-PCR analysis of indicated seminoma and EC markers in
parental TCam-2 and EC cell lines (2101EP, NCCIT, NT2/D1, 833KE, H12).
(TIF)

S6 Fig. Signaling pathways that drive reprogramming of TCam-2 cells into an EC. (A)
cDNA microarray expression data of indicated signaling pathway-associated genes during SET
and in 2102EP control cells. (B) Western blot analysis of SOX2 and pSMAD1 /5 expression in
in vitro cultivated and xenografted TCam-2 cells (4 weeks). (C, D) Western blot analysis of
SMAD1 /5-phosphorylation in TCam-2 treated with NOGGIN (C) and LDN193189 (D) or
corresponding solvents. (E) qRT-PCR analysis of indicated genes in TCam-2 cells treated with
the BMP inhibitor LDN193189 for 48–96 h. (F) Western blot analysis of SMAD2
/3-phosphorylation 72 h after treatment of TCam-2 cells with recombinant NODAL or the sol-
vent. (G) qRT-PCR analysis of indicated genes in TCam-2 cells treated for 24 and 72 h with
recombinant NODAL.
(TIF)

S7 Fig. GCC-TMA-IHCs and western blot analysis of ZIC3 expression. (A) Examples of
ID1, TFAP2C, SOX2 and beta-CATENIN IHC in CIS, seminoma and EC tissues. Scale bars:
100 μm. (B) Western blot analysis of ZIC3 and SOX2 expression in indicated GCC cell lines
and human fibroblasts. (C) XY-diagrams illustrating the correlation /reciprocal correlation of
ZIC3 to SOX2, SOX17 and NODAL in GCC tissues.
(TIF)

S1 Data. Summarized cDNA expression and DNAmethylation results.
(XLSX)

S1 Table. Antibodies used in this study.
(XLSX)

S2 Table. Oligonucleotides used in this study.
(XLSX)
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