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Abstract

A variety of single-cell RNA preparation procedures have been described. So far, protocols require fresh material,
which hinders complex study designs. We describe a sample preservation method that maintains transcripts in
viable single cells, allowing one to disconnect time and place of sampling from subsequent processing steps. We
sequence single-cell transcriptomes from >1000 fresh and cryopreserved cells using 3'-end and full-length RNA
preparation methods. Our results confirm that the conservation process did not alter transcriptional profiles. This
substantially broadens the scope of applications in single-cell transcriptomics and could lead to a paradigm shift in
future study designs.
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Background
Within complex tissues, cells differ in the way their ge-
nomes are active. Despite the identical DNA sequence of
single cells, their distinct interpretation of the genetic se-
quence makes them unique and defines their phenotype
[1]. While in many complex biological systems cell-type
heterogeneity has been extensively analyzed in molecular
and functional experiments, its extent could only be esti-
mated due to the technical limitation to assess the full
spectrum of variability. With the advent of single-cell
genomics, cell-type composition can be deconvoluted
for unprecedented insights into the complexity of multi-
cellular systems. Single-cell transcriptomics studies re-
solved the neuronal heterogeneity of the retina [2], the
cortex, and the hippocampus [3, 4], but also advanced
our definition of hematopoietic cell states [5, 6]. More-
over, single-cell genomics studies shed light on cellular
relationships in dynamic processes, such as embryo de-
velopment [7] and stem cell differentiation [8]. The

assessment of hundreds to thousands of single-cell gene
expression signatures allowed tissue decomposition at
ultra-high resolution. In addition to providing insights
into the complexity of the analyzed samples, single-cell
studies provide an invaluable resource of biomarkers
that define cell types [3, 9] or differentiation states [10].
Different single-cell RNA sequencing (RNA-seq) tech-

niques allow the quantification of minute transcript
amounts from up to thousands of single cells; however,
their exclusive dependence on fresh starting material
strongly restricts study designs [11]. In particular, the
need for immediate sample processing hindered complex
study setups, such as time course studies or sampling at
locations without access to single-cell separation devices.
Seminal work on the composition of complex systems
was performed with readily accessible tissues from
model organisms and the extent to which conclusions
can be projected to human physiology is limited [2, 3, 5].
Here we evaluate a sample cryopreservation method

that allows disconnecting time and location of sampling
from subsequent single-cell processing steps. It enables
complex experimental designs and widens the scope of
accessible specimens. We demonstrated that cryopreser-
vation maintains cellular structures and integrity of RNA
molecules for single-cell separation months after archiving
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by analyzing 1486 single-cell transcriptomes from fresh or
cryopreserved cells from cell lines or primary tissues.

Results and discussion
Cell integrity and RNA quality present crucial require-
ments for successful single-cell transcriptome sequen-
cing experiments. Conventional conservation processes,
such as freezing, lead to crystallization and disruption of
cellular membranes, which impedes subsequent single-
cell preparation. To conserve intact and viable cells for
cell and tissue archiving, cryoprotectants are commonly
used; however, their compatibility with single-cell ex-
periments has not been established. We tested whether
cells preserved with the cryoprotectant dimethyl-
sulfoxide (DMSO) are suitable for single-cell genomics
workflows. We sequenced 670 fresh and 816 cryopre-
served single cells derived from cell lines and primary
tissues (Additional file 1: Figure S1 and Additional file 2:
Table S1). Single-cell transcriptome libraries were pre-
pared with the massively parallel single-cell RNA-
sequencing (MARS-Seq) protocol [5, 6]. To evaluate the
impact of cryopreservation on single-cell full-length tran-
scriptomes, we applied the Smart-seq2 protocol [12]. A
variety of statistical methods, including the most common
measures in single-cell genomics, were applied.
We used the MARS-Seq sample preparation protocol

to determine potential impacts of the cryopreservation
procedure on single-cell RNA profiles. We initially iso-
lated single cells from four cell lines HEK293 (human
embryonic kidney cells), K562 (human leukemia cells),
NIH3T3 (mouse embryo fibroblasts), and MDCK
(canine adult kidney cells) by fluorescence-activated cell
sorting (FACS). The cells were either freshly harvested
or cryopreserved in the presence of DMSO at –80 °C or
in liquid nitrogen prior to single-cell separation and li-
brary preparation. To minimize technically introduced
batch effects between conditions, all single cells were
processed simultaneously for library preparations and se-
quencing reactions. As expected, the freezing process re-
sulted in an elevated proportion of damaged cells,
indicated by the positive staining with propidium iodide.
HEK293, K562, and NIH3T3 presented 14%, 2%, and
15% of damaged cells when processed freshly, 66%, 55%,
and 20% when cryopreserved at –80 °C, respectively.
Conservation in liquid nitrogen slightly improved cell
viability showing 61%, 49%, and 17% of damaged cells,
respectively. Nevertheless, sequencing reads produced
from sorted viable cells displayed an equal distribution
over the transcripts (characteristic 3’ bias for MARS-Seq
libraries), excluding systematic errors in the library prep-
aration process (Fig. 1a).
Following gene expression quantification, we evaluated

to which extent transcriptome information is maintained
within single cells and compared transcript and gene

information content between fresh and the cryopre-
served (–80 °C and liquid nitrogen) conditions. A com-
parable number of genes was detected by cumulating
information from single cells, suggesting that the power
to detect gene transcripts in the conserved material is
not reduced (Fig. 1b and Additional file 1: Figure S2).
We further observed that libraries from fresh and cryo-
preserved cells produced a similar number of sequencing
reads (Additional file 1: Figure S3). Importantly, we
found a highly correlated linear relationship between the
number of sequencing reads and unique transcripts for
both conditions. This indicates that the capacity to cap-
ture transcript molecules and the library complexity is
not different between both conditions (linear regression
model; Fig. 1c and Additional file 1: Figure S4). In line,
equal sequencing depth identified similar numbers of
expressed genes (linear regression model; Fig. 1d and
Additional file 1: Figure S5).
We further assessed the impact of sample conserva-

tion on single-cell transcriptome profiles. Genes with
variable expression patterns are commonly utilized for
the identification of cell subtypes, thus differences be-
tween conditions could introduce technical artefacts that
complicate data interpretation. Importantly, dimension-
ality reduction representations using the most variable
genes (MVG) point to a general conservation of the
single-cell transcriptome during cryopreservation. Ex-
pression patterns from cryopreserved cells were similar
to freshly processed cells in principal component ana-
lyses (PCA) (Fig. 1e and Additional file 1: Figure S6) and
t-distributed stochastic neighbor embedding representa-
tions (t-SNE) (Fig. 1f and Additional file 1: Figure S6).
Small differences between fresh and cryopreserved
samples (Fig. 1e and Additional file 1: Figure S6) were
considerably lower than technically introduced batch
effects when two sequencing pools were compared
(Additional file 1: Figure S7a, b) and could be the result
of different sampling time points (biological variability).
The homogeneity between single cells and conditions in
t-SNE representations was stable with varying perplexity
parameter selection, underlining the robustness of the
results (Additional file 1: Figure S8). Determining the
MVG separately for fresh and cryopreserved samples
showed an average overlap of 53% (range 51–56%). Ran-
domly subsampling (100 permutations) only fresh cells
into two groups resulted in an average overlap of 38%
(range 37–41%), while MVG overlapped in 36% (range
35–37%) when fresh and cryopreserved cells were sam-
pled at the same cell numbers. Analyzing transcriptional
uniformity across cell types, variably expressed genes
distinguished between K562 and HEK293 cells, while
processing conditions mixed homogenously in dimen-
sionality reduction representations (Additional file 1:
Figure S9a, b).
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High similarities between single cells from fresh and
cryopreserved (–80 °C) cells were confirmed by direct
correlation analysis, showing highly consistent and rep-
resentative gene expression profiles of HEK293 cells
after cell conservation (Fig. 2a). As expected analyzing
homogenous cell populations, expression profiles
showed high correlation values between single cells of
the same type and condition (Pearson’s correlation test,
Fig. 2b). However, also between conditions, transcription
profiles were highly correlated (Pearson’s correlation
test, Fig. 2a, b), suggesting the freezing process to con-
serve single-cell transcriptome profiles. These results
were reproducible across the different cell types and spe-
cies (Additional file 1: Figure S10a–h). Further, we evalu-
ated the specificity of such analysis by combining the
analysis of different cell types. In accordance with the
presence of tissue-specific expression programs, HEK293
and K562 cells displayed correlating profiles of their

respective single cells and highly decreased associations
across samples (Fig. 2c). These patterns were conserved
in fresh and cryopreserved cells. Consistent expression
profiles were further supported by highly correlating
mean expression values when directly comparing both
conditions (Fig. 2d and Additional file 1: Figure S10i–k).
In order to evaluate potential impacts on comparative

expression analyses involving fresh and conserved sample
types, we assessed differentially expressed genes between
both conditions. In the four-cell line, we only detected a
single significantly differentially expressed gene between
fresh and cryopreserved samples (adjusted p value < 0.01,
Additional file 2: Tables S2–5), supporting the possibility
to include conserved material in studies profiling freshly
processed samples. Finally, biological processes that one
might suspect to change due to a challenge, such as cell
cycle and apoptotic programs, remained unchanged
(Fig. 2e, f ). Moreover, cell subpopulations identified by

ea c
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Fig. 1 Comparative analyses of MARS-Seq-derived single-cell transcriptome data from fresh (red) and cryopreserved (–80 °C: blue; liquid nitrogen:
green) HEK293 cells. a Mapping distribution of sequencing reads after MARS-seq library preparation. Each line represents a single cell and transcript
sizes are scaled from 0 to 100. b Cumulative gene counts split by fresh and cryopreserved cells and analyzed using randomly sampled cells (average of
100 permutations). c, d Comparative analysis of the number of sequencing reads and detected transcripts (c) or genes (d) per cell using a linear model.
The slope of the regression line was calculated separately for fresh and cryopreserved cells. e, f Gene expression profile variances between fresh and
cryopreserved cells displayed as principal component analysis (PCA, e) or as t-distributed stochastic neighbor embedding (t-SNE) representation (f)
using the 100 most variable genes
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hierarchical clustering of the most variable gene sets (see
“Material and methods”) were equally identified in fresh
and cryopreserved samples (Fig. 2g, h). We detected a
similar proportion of fresh and conserved cells in a sub-
population with an activated cell cycle program indicated
by G2/M checkpoint genes (χ2 test, p = 0.83; Fig. 2i). Of
note, comparable compositions of cellular subtypes were
also identified processing fresh and conserved cells separ-
ately, with 37% and 34% of cells pointing to cell cycle acti-
vation, respectively (Additional file 1: Figure S11).
We extended the results studying single-cell libraries

produced using the Smart-seq2 protocol, which is a
widely used technique to sequence full-length transcripts

from single cells [12]. To this end, we produced Smart-
seq2 libraries for 48 fresh and 47 cryopreserved (–80 °C)
HEK293 and K562 cells, respectively, and sequenced to
an average depth of 7.7 million reads per single cell
(Additional file 1: Figure S1). No systematic bias in se-
quencing read distribution across the transcripts was de-
tected, supporting a conserved integrity of the RNA
following cryopreservation (Figs. 3a and 4a). Most librar-
ies showed an equal distribution of sequencing reads
from the 5’- to the 3´-end, indicating the detection of
full-length transcripts from both conditions. Of note,
while HEK293-derived libraries presented extremely con-
sistent distribution profiles between cells and conditions

d
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Fig. 2 Correlating MARS-Seq-derived single-cell transcriptomes from fresh (red) and cryopreserved (blue) HEK293 cells identify subpopulations.
a Pearson’s correlation analysis between 20 randomly selected fresh and cryopreserved cells displaying the correlation coefficient (r2). b Distribution of
Pearson’s correlation coefficients (r2) within and between processing conditions. The median coefficients are indicated. c Pearson’s correlation analysis
between 20 randomly selected fresh and cryopreserved HEK293 or K562 cells displaying the correlation coefficient (r2). d–f Linear regression model
comparing average gene expression levels of (d) expressed, (e) cell cycle (G2/M checkpoint, and (f) apoptosis genes. The coefficient of determination
(r2) is indicated. g Hierarchical clustering of single cells based on transcriptional programs (defined by Gene Ontology) and correlating gene sets [21].
Transcriptional programs and gene clusters are summarized in aspects. Displayed are the most variable aspects (rows) and their importance (row colors).
Cells are assigned to condition (fresh: red; cryopreserved: blue) and clusters. h A t-SNE representation of similarities between cells using
previous defined distances and cluster identity (as in g). Conditions are indicated (fresh: circle; cryopreserved: triangle). i Hierarchical cluster
of single cells (as in g) displaying the 25 most variable cell cycle genes (G2/M checkpoint). Expression levels of the cell cycle signature are summarized
(first panel; high: orange, low: green) and conditions (second panel; fresh: red; cryopreserved: blue) and clusters are indicated
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(Fig. 3a), K562 cells displayed higher heterogeneity
(Fig. 4a). Here, a few libraries observed in fresh and cryo-
preserved samples showed a bias towards the 3’-end,
pointing to a partial degradation of the RNA. We excluded
that the increased coverage heterogeneity observed for the
cryopreserved K562 cells (Fig. 4a) is indicative of the cryo-
preservation performance by sequencing an additional
sample with Smart-seq2. Here, the analysis of a patient-
derived orthotopic xenograft (PDOX) of a lung adenocar-
cinoma cryopreserved for six months did not show an
elevated heterogeneity between samples across the tran-
scripts (Additional file 1: Figure S12a).
Cumulating gene expression information over single

cells pointed to conserved transcriptome content in ar-
chived samples (Figs. 3b and 4b). Further, dimensionality
reduction representation of the most variable genes
could not distinguish between fresh and cryopreserved
cells (Figs. 3c, d and 4c, d) and clearly separated the ana-
lyzed tissue types (Additional file 1: Figure S12b, c).

Correlation analysis of gene expression profiles from
single cells supported transcriptional profiles to be
highly conserved following cryopreservation (Figs. 3e, f
and 4e, f ). Hierarchical clustering and t-SNE representa-
tion of the most variable gene sets (see “Material and
methods”) were able to identify subpopulations in
HEK293 (Fig. 3g, h) and K562 (Fig. 4g, h) samples and
did not point to proportional differences between condi-
tions (χ2 test, p = 0.46 and p = 0.86, respectively). Con-
sistent with cell populations identified using MARS-Seq,
44% of HEK293 cells presented an activated G2/M
checkpoint program (Fig. 3i), a result that could be repli-
cated using separate analysis for fresh and frozen sam-
ples (Additional file 1: Figure S13a, b). Finally, only two
genes were detected to be differentially expressed be-
tween both conditions in HEK293 cells (adjusted p value
< 0.01, Additional file 2: Table S6), further supporting
the possibility to join fresh and conserved samples in
combined studies. Of note, significantly differentially
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Fig. 3 Comparative analyses of Smart-seq2-derived single-cell transcriptomes from fresh (red) and cryopreserved (blue) HEK293 cells. a Sequencing
read distribution following RNA library preparation of full-length transcripts. Each line represents a single cell and transcript sizes are scaled from
0 to 100. b Cumulative gene counts split by fresh and cryopreserved cells and analyzed using randomly sampled cells (average of 100 permutations).
c, d Gene expression variances of single cells displayed as PCA (c) or t-SNE representation (d) using the 100 most variable genes. e Pearson’s correlation
analysis between 20 randomly selected fresh and cryopreserved cells displaying the correlation coefficient (r2). f Distribution of Pearson’s correlation
coefficients (r2) within and between processing conditions. The median coefficients are indicated. g Hierarchical clustering of single cells based on
transcriptional programs (defined by Gene Ontology) and correlating gene sets [21]. Transcriptional programs and gene clusters are summarized in
aspects. Displayed are the most variable aspects (rows) and their importance (row colors). Cells are assigned to conditions (fresh: red; cryopreserved:
blue) and clusters. h A t-SNE representation of similarities between cells using previous defined distances and cluster identities (as in g). Conditions are
indicated (fresh: circle; cryopreserved: triangle). i Hierarchical clustering (as in g) displaying the 25 most variable cell cycle genes (G2/M checkpoint).
Expression levels of the cell cycle signature are summarized (first panel; high: orange, low: green) and conditions (second panel; fresh: red;
cryopreserved: blue) and clusters are indicated
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expressed genes showed high variance within the condi-
tions, supporting the possibility that the low number
of analyzed cells led their identification and not dif-
ferences between conditions per se (Additional file 1:
Figure S13c). Interestingly, we identified a small sub-
population of K562 cells with a repressed G2/M
checkpoint program (Fig. 4i), a result that could be
replicated in separate analysis of fresh and cryopre-
served cells (Additional file 1: Figure S14a, b). Com-
paring both conditions in the K562, we detected ten
genes to be differentially expressed (adjusted p value
< 0.01, Additional file 2: Table S7), which again pre-
sented high variability within the respective conditions
(Additional file 1: Figure S14c).
Although conserving cell cultures for single-cell ana-

lysis opens up the applicability to more complex experi-
mental designs, we intended to further widen the
application spectrum to complex primary tissues. We

performed MARS-Seq experiments on fresh and cryo-
preserved human peripheral blood mononuclear cells
(PBMC), mouse colon tissue, and finally extended the
work to human tumor samples.
We prepared MARS-Seq libraries for 341 cells derived

from PBMC. While the freshly prepared sample did not
show any sign of damaged cells, 23% of cryopreserved
PBMCs stained positive with the marker reagent propi-
dium iodide. Consistent with the results obtained from
the cell line experiments, fresh and cryopreserved blood
cells produced libraries of comparable complexity. We
found a similar linear relationship between the number
of sequencing reads and unique transcript counts
(Fig. 5a) or the number of detected genes (Fig. 5b), sug-
gesting equal transcriptome capture efficiencies in for
both conditions. In line, cumulating gene information
over single cells revealed highly comparable numbers of
expressed genes in both datasets (Fig. 5c). Correlation
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Fig. 4 Comparative analyses of Smart-seq2-derived single-cell transcriptomes from fresh (red) and cryopreserved (blue) K562 cells. a Sequencing
read distribution following library preparation of full-length transcripts. Each line represents a single cell and transcript sizes are scaled from 0 to
100. b Cumulative gene counts split by fresh and cryopreserved cells and analyzed using randomly sampled cells (average of 100 permutations).
c, d Gene expression variances between single cells displayed as PCA (c) or t-SNE representation (d) using the 100 most variable genes. e Pearson’s
correlation analysis between 20 randomly selected fresh and cryopreserved cells displaying the correlation coefficient (r2). f Distribution of Pearson’s
correlation coefficients (r2) within and between processing conditions. The median coefficients are indicated. g Hierarchical clustering of single cells
based on transcriptional programs (defined by Gene Ontology) and correlating gene sets [21]. Transcriptional programs and gene clusters are
summarized in aspects. Displayed are the most variable aspects (rows) and their importance (row colors). Cells are assigned to conditions (fresh: red;
cryopreserved: blue) and clusters. h A t-SNE representation of similarities between cells using previous defined distances and cluster identities (as in
g). Conditions are indicated (fresh: circle; cryopreserved: triangle). i Hierarchical clustering (as in g) displaying the 25 most variable cell cycle genes
(G2/M checkpoint). Expression levels of the cell cycle signature are summarized (first panel; high: orange, low: green) and conditions (second panel;
fresh: red; cryopreserved: blue) and clusters are indicated
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analysis of average gene expression levels between both
conditions further supported an efficient transcriptome
conservation following cryopreservation (Fig. 5d). Di-
mensionality reduction representation of the most
variable genes across datasets clearly suggested gene ex-
pression profiles to be unaltered following cell conserva-
tion (Fig. 5e). In line, we could not detect differentially
expressed genes between fresh and cryopreserved single
cells (Additional file 2: Table S8).
Mononuclear blood cells consist of a variety of well-

defined subtypes, with marker genes indicating distinct
cell populations. Consequently, we performed sample
deconvolution to identify and assign blood subpopula-
tions. Using clustering of correlating gene sets and sig-
natures defined through the analysis of sorted blood cell
types (see “Material and methods”), we observed four
distinct cell populations, both detectable in fresh and
cryopreserved samples (Fig. 5f–h). Based on marker

genes and cell-type signatures, we assigned the four sub-
populations to represent cytotoxic T-cells (expression of
NKG7/GNLY/GZMB, red cluster, Additional file 1:
Figure S15a), memory T-cells (expression of CD3D/G/E
and CD8A/B, black cluster, Additional file 1: Figure S15b),
B-cells (expression of CD24 and CD79A/B, turquois
cluster, Additional file 1: Figure S15c), and myeloid cells
(expression of CD33, pink cluster, Additional file 1:
Figure S15d). Due to the limited number of cells ana-
lyzed, we were not able to distinguish between CD4-
positive and CD8-positive cell populations or to clearly
define natural killer cells within the cytotoxic subpopu-
lation. Surprisingly, although the B-cell, monocyte and
T-cell clusters were formed by equal proportions of
fresh and cryopreserved cells (χ2 test, p = 0.28; Fig. 5f ),
we detected a bias towards preserved T-cells in the
cytotoxic subpopulation (χ2 test, p = 0.0005; Fig. 5f ).
While this bias could represent donor blood composition

a b c d
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Fig. 5 Correlating single-cell transcriptome data from fresh (red) and cryopreserved (blue) samples determines cell subtypes in PBMC. a, b Comparative
analysis of the number of sequencing reads and detected transcripts (a) or genes (b) per cell using a linear model. The slope of the regression line was
calculated separately for fresh and cryopreserved cells. c Cumulative gene counts split by fresh and cryopreserved cells and analyzed using randomly
sampled cells (average of 100 permutations). d Linear regression model comparing average gene expression levels of expressed genes. The coefficient
of determination (r2) is indicated. e Gene expression variances displayed as t-SNE representation using the 100 most variable genes. f Hierarchical
clustering of single cells based on transcriptional programs (see “Material and methods”) and correlating gene sets [21]. Transcriptional
programs and gene clusters are summarized in aspects. Displayed are the most variable aspects (rows) and their importance (row colors).
Cells are assigned to condition (fresh: red; cryopreserved: blue) and clusters. g A t-SNE representation of similarities between cells using
distances and cluster identities (as in f). Conditions are indicated (fresh: circle; cryopreserved: triangle). Cell types were annotated based on
marker gene expression (BC B-cells, CytoTC cytotoxic T-cells, MemTC memory T-cells, Myd myeloid cells). h Hierarchical clustering of single
cells (as in f). Displayed are the expression levels of the 25 most variable genes implicated in cluster formation. Cells are assigned to conditions (first
panel: fresh: red; cryopreserved: blue) and clusters
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variation at the sampling time points, we cannot finally
exclude that it points to a technical artefact introduced by
the preservation process and further tests are required
with a focus on specific blood cell populations. Neverthe-
less, all main cell-type clusters could be detected at equal
proportions using fresh and cryopreserved samples
(Fig. 5f), suggesting that cryopreserved blood could be a
suitable resource for single-cell transcriptomics analysis.
A fresh mouse colon sample was split and one part

was cryopreserved for one week before single-cell separ-
ation. As observed previously, cryopreservation resulted
in an increased proportion of damages cell, detecting
30% in fresh and 68–71% in conserved samples. This
proportion was similar comparing samples cryopre-
served as minced tissue (68%) or as a single-cell solution
(71%). Due to the donor-matched design, fresh and cryo-
preserved cells could not be processed in the same

library and sequencing pools, resulting in confounding
batch effects when directly comparing both conditions.
However, highly similar library complexity and an un-
altered power to detect gene signatures and cell types
further supported the value of cryopreserved tissue in
single-cell studies. Specifically, both conditions resulted
in libraries with comparable complexity as determined
by the linear relationship between the number of se-
quencing reads and detected transcripts or genes
(Fig. 6a, b). We were able to detect similar numbers
of genes by cumulating information over single cells
(Fig. 6c). Average gene expression levels were highly
correlated (Fig. 6d). Due to the introduced batch effects,
we could detect patterns in the transcriptional profile of
the most variable genes (Fig. 6e); however, these did not
bias the annotation to cell subpopulation after hierarchical
clustering and t-SNE representation (Fig. 6f, g). We were

a b c d
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Fig. 6 Single-cell transcriptome data from fresh (red) and cryopreserved (blue) mouse colon cells. a, b Comparative analysis of the number of
sequencing reads and detected transcripts (a) or genes (b) using a linear model. The slope of the regression line was calculated separately for
fresh and cryopreserved cells. c Cumulative gene counts split by fresh and cryopreserved cells and analyzed using randomly sampled cells
(average of 100 permutations). d Linear regression model comparing average gene expression levels of expressed genes. The coefficient of
determination (r2) is indicated. e Gene expression variances displayed as t-SNE representation using the 100 most variable genes. f Hierarchical
clustering of single cells based on transcriptional programs (defined by Gene Ontology) and correlating gene sets [21]. Transcriptional programs
and gene clusters are summarized in aspects. Displayed are the most variable aspects (rows) and their importance (row colors). Cells are assigned
to condition (fresh: red; cryopreserved: blue) and clusters. g A t-SNE representation of similarities between cells using distances and cluster
identities (as in f). Conditions are indicated (fresh: circle; cryopreserved: triangle). Cell types were annotated based on marker gene expression [9]
(TA transit amplifying, ECpr enterocytes precursors, EC enterocytes, SC secretory cells). h Hierarchical clustering of single cells (as in f). Displayed
are the expression levels of the 25 most variable genes implicated in cluster formation. Cells are assigned to condition (first panel: fresh: red;
cryopreserved: blue) and clusters
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able to identify transit amplifying (TA) cells, secretory
enteroendocrine cells, and differentiated enterocytes in
both conditions (Fig. 6g, h); the major cell types present in
the colon mucosa. The single-cell transcriptome data en-
abled us to assign colon cell types to cell clusters using
marker genes [9], such as Reg4 (secretory cells), Apoa1
(enterocytes), or ribosomal proteins (TA cells) (Fig. 6h).
Importantly, all cell types were identified in equal propor-
tions by fresh and cryopreserved cells, excluding a system-
atic bias introduced by the conservation process (χ2 test,
p = 0.95; Fig. 6g, h). We conclude that the conservation
process did not alter the transcriptional profile of single
colon mucosa cells and that both, single-cell sequencing
of fresh and conserved tissues, is equally suitable to ex-
tract biologically relevant information, such as cell-type-
specific programs.
Finally, we applied our method to a PDOX in mouse.

It is of note that digestion of the tumor sample to
single-cell solution prior to cryopreservation resulted in
an increased proportion of damaged cells (56% damaged

cells), compared to the sample conserved as minced ma-
terial (26% damaged cells). The cryopreserved ovarian
clear cell carcinoma orthoxenograft (passage #2) was
processed simultaneously with a matched freshly
resected PDOX (passage #3). Therefore, the tumor was
cryopreserved for three months and simultaneously sub-
cultured in a mouse to obtain a fresh matched specimen.
Consistent with prior observations, single transcriptome
profiles of fresh or conserved tumor cells did not differ
in their library complexity (Fig. 7a, b), transcriptional
profiles (Fig. 7c), or gene expression levels (Fig. 7d). No
significantly differentially expressed genes could be de-
tected (Additional file 2: Table S9). Single cells from
both conditions were able to detect a large tumor cell
subpopulations (Fig. 7e, f ) with an elevated expression
level of ribosomal protein-coding genes (Fig. 7g) and a
minor population with an activated G2/M checkpoint
profile (Fig. 7h), further highlighting tissue conservation
to be possible for various experimental designs, includ-
ing tumor samples. We observed a proportional bias

a b c d

e f g h

Fig. 7 Comparative analyses of single-cell transcriptome data from fresh (red) and cryopreserved (blue) patient-derived orthotopic ovarian tumor
xenograft cells. a, b Comparative analysis of the number of sequencing reads and detected transcripts (a) or genes (b) using a linear model. The
slope of the regression line was calculated separately for fresh and cryopreserved cells. c Gene expression variances displayed as t-SNE representation
using the 100 most variable genes. d Linear regression model comparing average gene expression levels of expressed genes. The coefficient
of determination (r2) is indicated. e Hierarchical clustering of single cells based on transcriptional programs (defined by Gene Ontology) and
correlating gene sets [21]. Transcriptional programs and gene clusters are summarized in aspects. Displayed are the most variable aspects
(rows) and their importance (row colors). Cells are assigned to condition (fresh: red; cryopreserved: blue) and clusters. f A t-SNE representation
of similarities between cells using distances and cluster identities (as in e). Conditions are indicated (fresh: circle; cryopreserved: triangle).
g, h Hierarchical clustering of single cells (as in e). Displayed are the expression levels of the 25 most variable ribosomal genes (g) and
genes implicated in cell cycle (G2/M checkpoint, h). Gene set expression levels are summarized (first panel: high: orange; low: green) and
cells are assigned to condition (second panel: fresh: red; cryopreserved: blue) and clusters
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between the conditions within the putative tumor sub-
populations when clustering cells using variable gene
sets (χ2 test, p = 0.0002, Fig. 7g). Although we cannot fi-
nally exclude the preservation having caused the propor-
tional shift, variant clonal heterogeneity presents a
highly frequent feature of serial passaging of PDOX sam-
ples [13]. Interestingly, these differences were absent
when analyzing the most variable genes separately (χ2

test, p = 0.87, Additional file 1: Figure S16), suggesting
that gene set-based hierarchical clustering might be too
restrictive to sensitively assign subclonal structures in
heterogeneous cancer samples.

Conclusions
Using the here-established cryopreservation method,
single-cell transcriptome profiles from cells and tissues
did not differ from freshly processed material. The
method constitutes a straightforward and powerful tool
to broaden the scope of single-cell genomics study de-
signs. Importantly, cryopreservation can be readily im-
plemented into standard single-cell genomics workflows,
without modifications of established protocols. Follow-
ing the evaluation of the applicability in 3’-tag (MARS-
Seq) and full-length (Smart-seq2) transcriptome sequen-
cing techniques, other single-cell RNA-seq methods are
likely to result in similar outcomes [2, 8, 14]. Although
recent work described the value of nuclear RNA analysis
[4, 15], the content from viable cells results in more
complex transcriptomes, allowing accurate cell pheno-
typing. It is of note that a certain degree of cell damage
introduced by the cryopreservation procedure has to be
taken into account when working with low-input mater-
ial. Furthermore, different downstream applications, in-
cluding genome or epigenome sequencing, might also
benefit from this method. Cryopreservation was previ-
ously described to conserve open chromatin structures
in ATAC sequencing experiments [16], pointing to a
wide application spectrum of cryopreserved material.
In conclusion, the conservation process we present

here does not modify transcriptional profiles of single
cells taken from cell culture or tissues. Cells cryopre-
served by our method are equally well suited as fresh
cells to extract relevant biological information, such as
cell-type-specific programs. This substantially broadens
the scope of applications in single-cell transcriptomics
and could constitute a paradigm shift for single-cell
study designs.

Methods
Cell line sample preparation
Human cell lines HEK293 (human embryonic kidney
cells) and K562 (human leukemia cells) were acquired
from the German Collection of Microorganisms and Cell
Cultures (DSMZ). NIH3T3 (mouse embryo fibroblasts)

and MDCK (canine adult kidney cells) were kindly pro-
vided by Dr. Manel Esteller (IDIBELL, Spain). HEK293,
NIH3T3, and MDCK were maintained in DMEM (10%
fetal bovine serum (FBS); 1% Penicillin/Streptomycin) at
37 °C (5% CO2). K562 suspension cells were cultured in
RPMI (10% FBS; 1% Penicillin/Streptomycin) at 37 °C
(5% CO2). For cryopreservation, cells were trypsinized,
pelleted, and resuspended in freezing solution (10%
DMSO; 10% heat-inactivated FBS; 80% DMEM). Subse-
quently, cells were frozen with gradually decreasing
temperatures (1 °C/min) to –80 °C (cryopreserved).
Cryopreserved cells lines were stored for one week at –
80 °C or liquid nitrogen before further processing. For
single-cell analysis, cryopreserved cells were rapidly
thawed in a water bath with continuous agitation and
placed into 25 mL of cold 1× HBSS. Fresh cells were
trypsinized, pelleted, and resuspended in 1× HBSS. Be-
fore sorting, cells from both conditions were filtered
(70 μm nylon mesh) and propidium iodide staining iden-
tified dead/damaged cells. Cells were FACS sorted into
MARS-Seq or Smart-seq2 plates using FACS Aria Fusion
(Becton Dickinson). To avoid batch effects, fresh and
cryopreserved single cells were sorted into the same
plates and distributed over both sequencing pools.

Peripheral blood sample preparation
Whole blood was collected from a healthy donor into
EDTA tubes (Becton, Dickinson & Co). Separation of
PBMC was performed with Ficoll-Paque PREMIUM (GE
Healthcare) according to the manufacturer’s instructions.
Briefly, for density gradient separation, 4 mL of blood
was added to 3 mL of Ficoll-Paque PREMIUM and cen-
trifuged at 400 × g for 30 min at 18 °C without brake.
PBMC layer was recuperated and washed twice with
PBS at 400 × g for 15 min at 18 °C. PBMC were resus-
pended in freezing solution (10% DMSO, 90% non-
inactivated FBS) and frozen by gradually decreasing
temperature (1 °C/min) to –80 °C (cryopreserved). After
storage for one week at –80 °C, the cryopreserved sam-
ple was rapidly thawed in a water bath in continuous
agitation and placed into 25 mL of cold 1× HBSS. Cells
were washed once in ice-cold 1× HBSS and resuspended
in DMEM before sorting. To avoid batch effects, freshly
isolated PBMC were sorted in parallel with the cryopre-
served material and distributed over the same sequen-
cing pools. Therefore, blood from the same donor was
isolated as described above and directly resuspended in
DMEM. Dead and damaged cells were identified by pro-
pidium iodide staining.

Primary colon sample preparation
Female athymic nu/nu mice (Harlan) aged four to six
weeks were housed in individually ventilated cages on a
12-h light-dark cycle at 21–23 °C and 40–60% humidity.
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Mice were allowed free access to an irradiated diet and
sterilized water. Primary mouse colon was dissected
from an athymic nu/nu mouse and placed on ice. The
sample was divided and half of the colon was immedi-
ately prepared for single-cell separation, while the other
half was minced on ice, placed into freezing solution
(10% DMSO, 90% non-inactivated FBS) and frozen by
gradually decreasing temperature (1 °C/min) to –80 °C
(cryopreserved). After storage for one week at –80 °C,
the sample was rapidly thawed in a water bath in con-
tinuous agitation and placed into 25 mL of cold 1×
HBSS. For single-cell separation the fresh and con-
served samples were minced on ice and enzymatically
digested in 5 mL 1× HBSS and 83 μL collagenase IV
(10,000 U/mL) for 10 min at 37 °C. Single cells were
separated by passing the sample through a 0.9-mm
needle and filtration (70 μm nylon mesh). Cells were
washed once in ice-cold 1× HBSS and resuspended in
DMEM before sorting. Dead and damaged cells were
identified by propidium iodide staining. For practical
reasons (tissue derived from one single mouse), fresh
and cryopreserved single cells could not be sorted
into the same plate.

Orthotopic tumor engraftment
To analyze matched fresh and cryopreserved viable
tumor samples, we generated an ovarian and lung ortho-
topic tumor model, referred to as Orthoxenograft® or
PDOX. Therefore, we implanted a primary clear cell
ovarian carcinoma and a lung adenocarcinoma metasta-
sis into the ovaries and brain of athymic nu/nu mice
(matched organ of origin), respectively. Briefly, the pri-
mary tumor specimens were obtained at the University
Hospital of Bellvitge or the Vall d’Hebron University
Hospital (Barcelona, Spain). The selected ovarian carcin-
oma patient had not received cisplatin-based chemother-
apy. Non-necrotic tissue pieces (~2–3 mm3) from a
resected clear cell ovarian carcinoma and a lung adeno-
carcinoma metastasis were selected and placed into
DMEM, supplemented with 10% FBS and 1% penicillin/
streptomycin at room temperature. Under isofluorane-
induced anesthesia, animals were subjected to a lateral
laparotomy, their ovaries or brain exposed, and tumor
pieces anchored to the ovary surface with prolene 7.0 su-
tures [17, 18]. Tumor growth was monitored two to
three times per week. When the tumor grew, it was har-
vested and cut into small fragments. Subsequently, it
was transplanted into a new animal or cryopreserved at
–80 °C as a viable tumor (as described above). After
107 days, the ovarian tumor was newly resected from
the mouse and processed together with the matched
cryopreserved sample (maintained at –80 °C) for single-
cell separation and sorting. The lung adenocarcinoma
metastasis was cryopreserved for 192 days before further

processing. The morphology of the primary tumor and
the engrafted tumor was compared by H&E staining in
paraffin-embedded sections. For cell separation, the
cryopreserved sample was rapidly thawed in a water bath
in continuous agitation and placed into 25 mL of cold
1× HBSS. For single-cell isolation, the fresh and con-
served samples were enzymatically digested in 5 mL 1×
HBSS and 83 μL collagenase IV (10,000 U/mL) for
15 min at 37 °C. Single cells were separated by passing
the sample through a 0.9-mm needle and filtration
(70 μm nylon mesh). Cells were washed once in ice-cold
1× HBSS and resuspended in DMEM before sorting. In
order to enrich human cells during the sorting procedure,
tumor cells were stained for 1 h at 4 °C with α-EpCam
(CD326, eBioscience, 1:100). Propidium iodide staining
identified dead/damaged cells. To avoid batch effects,
fresh and cryopreserved single cells were sorted into the
same plates and distributed over both sequencing pools.

Library preparation and sequencing
To construct single-cell libraries from polyA-tailed
RNA, we applied MARS-Seq [5, 6]. Briefly, single cells
were FACS-sorted into 384-well plates, containing lysis
buffer (0.2% Triton (Sigma-Aldrich); RNase inhibitor
(Invitrogen)) and reverse-transcription (RT) primers.
The RT primers contained the single-cell barcodes and
unique molecular identifiers (UMIs) for subsequent de-
multiplexing and correction for amplification biases, re-
spectively. Single-cell lysates were denatured and imme-
diately placed on ice. The RT reaction mix, containing
SuperScript III reverse transcriptase (Invitrogen), was
added to each sample. In the RT reaction, spike-in artifi-
cial transcripts (ERCC, Ambion) were included at a dilu-
tion of 1:16 × 106 per cell. After RT, the complementary
DNA (cDNA) was pooled using an automated pipeline
(epMotion, Eppendorf). Unbound primers were elimi-
nated by incubating the cDNA with exonuclease I
(NEB). A second pooling was performed through
cleanup with SPRI magnetic beads (Beckman Coulter).
Subsequently, pooled cDNAs were converted into
double-stranded DNA with the Second Strand Synthesis
enzyme (NEB), followed by clean up and linear amplifi-
cation by T7 in vitro transcription overnight. Afterwards,
the DNA template was removed by Turbo DNase I
(Ambion) and the RNA was purified with SPRI beads.
Amplified RNA was chemically fragmented with Zn2+
(Ambion), then purified with SPRI beads. The fragmen-
ted RNA was ligated with ligation primers containing a
pool barcode and partial Illumina Read1 sequencing
adapter using T4 RNA ligase I (NEB). Ligated products
were reversed transcribed using the Affinity Script RT
enzyme (Agilent Technologies) and a primer comple-
mentary to the ligated adapter, partial Read1. The cDNA
was purified with SPRI beads. Libraries were completed
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through a polymerase chain reaction (PCR) step using
the KAPA Hifi Hotstart ReadyMix (Kapa Biosystems)
and a forward primer that contains Illumina P5-Read1
sequence and the reverse primer containing the P7-
Read2 sequence. The final library was purified with SPRI
beads to remove excess primers. Library concentration
and molecular size were determined with High Sensitivity
DNA Chip (Agilent Technologies). The libraries consisted
of 192 single-cell pools. Multiplexed pools (2) were run in
one Illumina HiSeq 2500 Rapid two lane flow cell follow-
ing the manufacturer’s protocol. Primary data analysis was
carried out with the standard Illumina pipeline. We pro-
duced 52 nt of transcript sequence reads for the cell lines,
the PBMC, and the mouse colon tissue and 83 nt for the
tumor xenograft sample.
Full-length single-cell RNA-seq libraries were prepared

using the Smart-seq2 protocol [12] with minor modifica-
tions. Briefly, freshly harvested or cryopreserved (1 week
at –80 °C) single cells were sorted into 96-well plates
containing the lysis buffer. Reverse transcription was
performed using SuperScrpit II (Invitrogen) in the pres-
ence of oligo-dT30VN, template-switching oligonucleo-
tides and betaine. The cDNA was amplified using the
KAPA Hifi Hotstart ReadyMix (Kappa Biosystems),
ISPCR primer, and 20 cycles of amplification. Follow-
ing purification with Agencourt Ampure XP beads
(Beckmann Coulter), product size distribution and
quantity were assessed on a Bioanalyzer using a High
Sensitvity DNA Kit (Agilent Technologies). A total of
200 ng of the amplified cDNA was fragmented using
Nextera® XT (Illumina) and amplified with indexed
Nextera® PCR primers. Products were purified twice
with Agencourt Ampure XP beads and quantified
again using a Bioanalyzer High Sensitvity DNA Kit.
Sequencing of Nextera® libraries from 95 cells was
carried out using two sequencing lanes on a HSeq2000
(Illumina).

Data processing
The MARS-Seq technique takes advantage of two-level
indexing that allows the multiplexed sequencing of 192
cells per pool and multiple pools per sequencing lane.
Sequencing was carried out as paired-end reads, wherein
the first read contains the transcript sequence and the
second read the cell barcode and UMIs. Quality check of
the generated reads was performed with the FastQC
quality control suite. Samples that reached the quality
standards were then processed to deconvolute the reads
to single-cell level by de-multiplexing according to the
cell and pool barcodes. Reads were filtered to remove
polyT sequences. Sequencing reads from human, mouse,
or canine cells were mapped with the RNA pipeline of
the GEMTools 1.7.0 suite [19] using default parameters
(6% of mismatches, minimum of 80% matched bases,

and minimum quality threshold of 26) and the gen-
ome references for human (Gencode release 24, as-
sembly GRCh38.p5), mouse (Gencode release M8,
assembly GRCm38.p4), and dog (Ensembl v84, assembly
CanFam3.1). The analysis of spike-in control RNA content
allowed us to identify empty wells and barcodes with more
than 15% of reads mapping to spike-in artificial transcripts
were discarded. In addition, cells with less than 60% of
reads mapping on the reference genome or more than 2 ×
106 total reads were discarded. Gene quantification was
performed using UMI corrected transcript information to
correct for amplification biases, collapsing read counts for
reads mapping on a gene with the same UMI (allowing an
edit distance up to two nucleotides in UMI comparisons).
Only unambiguously mapped reads were considered.
Genes not expressed in at least 5% of the cells were dis-
carded. Thresholds were set to reduce technical noise, but
to conserve the sensitivity to identify low frequency outlier
cell populations and to capture differences between fresh
and cryopreserved cells.

Data analysis
To estimate systematic biases introduced by the conser-
vation technique, single cells from both conditions were
compared using commonly used data pre-processing
strategies and different metrics to assess similarities be-
tween cells. Statistical analyses shown in this manuscript
were carried out using R, version 3.3.0. Functions re-
ferred to below belong to the R stats package when not
indicated otherwise.

Heterogeneity analysis
Fresh and cryopreserved datasets were independently fil-
tered for low-quality cells, removing cells with a rela-
tively low number of detected genes (Additional file 2:
Table S1). The absolute threshold was variable and
depended on the experiment and sequencing protocol
(Additional file 1: Figure S1b, e). The thresholds were
set based on the distribution of the number of non-zero
count genes per cell (minimum number of genes de-
tected), removing cells having more than 2 median abso-
lute deviations (MAD) below the median of the
minimum number of genes. In addition to filter for
genes detected in > 5% of cells, genes in the lower quar-
tile of average gene expressions were discarded.
Count data from fresh and cryopreserved cells was

initially analyzed separately and then genes of both
datasets were merged resulting in a joint gene-cell
matrix for each experiment. To detect genes differen-
tially expressed and to perform heterogeneity analysis,
gene expression levels were modeled as a mixture of
negative binomial and Poisson distributions, using scde
package [20]. This method allows gene expression infer-
ences from amplified and drop-out events. To fit cell
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models, modeling parameters were adapted to the data-
set size and to the use of UMI (MARS-Seq) or read
(Smart-seq2) counts. The quality of models was evalu-
ated with the correlation value to the expected magni-
tude, which was positive for all cells. Further, the
probability distribution of drop-out events for each sam-
ple appeared highly and negatively correlated to the ex-
pression magnitude, showing the value 1 associated to
zero magnitudes. Gene expression variances were nor-
malized to the expected variance based on the models to
determine the MVG. Variability introduced during the
experimental phase due to the library preparation in dis-
tinct pools has been taken into account, normalizing for
technical aspects during PAGODA [21] data processing.
PCA and t-SNE representation were performed using
the top 100 genes from the MVG list (Figs. 1e, f, 3c, d,
4c, d, 5e, 6e, and 7c; Additional file 1: Figures S6–9,
S12). Both methods classify in an unsupervised manner
by grouping most similar cells into clusters, while the t-
SNE algorithm also captures non-linear relationships.
Further, MVG were calculated separately for fresh and
cryopreserved HEK293, NIH3T3, and MDCK cells to as-
sess the overlap of genes. To be able to compare this
value, we randomly subsampled only fresh cells using
100 permutations and determined the distribution of
overlapping genes. Random resampling has been per-
formed without replacement (using the sample function),
dividing each fresh sample into two complementary sets
of cells. For each paired group, we computed the number
of overlapping genes and evaluated their distribution and
average overlap. The same strategy was repeated compar-
ing the fresh and cryopreserved groups sampled with
equal cell numbers as the only-fresh groups.

Subpopulation analysis
We looked at the variance explained by the first princi-
pal component of Gene Ontology, de novo, or custom
gene sets to define clusters of gene sets (aspects) using
PAGODA [21]. The same package allows the identifica-
tion of principal aspects of heterogeneity, identifying the
most overdispersed gene sets. In order to reduce redun-
dancy, gene sets showing correlating expression patterns
were integrated into aspects using a distance thresh-
old of 0.9. Subsequently, cells were clustered based
on a weighted correlation of genes that drive the as-
pects and the heatmaps highlight the most variable
aspects (Figs. 2g, 3g, 4g, 5f, 6f, and 7e; Additional file 1:
Figure S11a, d). Further, correlation from the hierarchical
clustering were used to visualize cells in two dimensions
through a t-SNE plot, allowing to define clusters (Figs. 2h,
3h, 4h, 5g, 6g, and 7f; Additional file 1: Figure S11b, e).
Cell states or types following Pagoda cluster identification
were assigned using the most variable genes (Figs. 2i, 3i,
4i, 5h, 6h, and 7g, h). Pagoda defines these genes using a

weighted PCA to take into account drop-out events and
other technical bias. The displayed genes represent signa-
tures (e.g. G2/M checkpoint) or variable genes in de novo
assigned gene sets. To cluster blood cell subpopulations
and to assign phenotypes, we integrated cell-type-specific
sets derived from the GSEA database [22], Björklund
et al. [23] and Palmer et al. [24]. Mouse colon cell
types were identified using marker genes defined in
Grün et al. [9]. Cell subpopulations in the ovarian
tumor xenograft were characterized using Gene Ontology
enrichment analysis and G2/M checkpoint genes.
Apoptosis (Hallmark_Apoptosis; M5902) and G2/M
(Hallmark_G2/M_CHECKPOINT; M5901) gene sets were
derived from the GSEA database [22].

Differential gene expression analysis
We compared transcriptional profiles between fresh and
cryopreserved cells using scde [20]. Most datasets re-
vealed that the relative contribution of each gene be-
tween the two groups of cells was highly comparable
(Additional file 2: Tables S2–S9). A low number of genes
were identified to be differentially expressed in the Smart-
seq2 datasets (Additional file 1: Figures S13c, S14c). Here,
the sample size was very small (n = 24) and the variance
could be explained by sampling bias.

Expression correlation analysis
Differences between gene expression profiles were inves-
tigated by correlating relative and absolute gene counts
of the entire gene set (Figs. 2d–f, 5d, 6d, and 7d;
Additional file 1: Figure S10i–k). Linear regression models
pointed to a strong linear correlation (r2 ~ 0.9) between
the means of the two groups that were computed consid-
ering log-average gene counts. For cell-wise comparisons
(Figs. 2a, c, 3e, and 4e; Additional file 1: Figure S10a–d),
gene expression levels of the 500 most expressed genes
were scaled based on UMI counts to correct for differ-
ences in library sizes between cells and normalized by
quantile normalization with the qnorm function. Pearson’s
correlation matrices were calculated for 202 randomly se-
lected cells per experiment/condition with the cor func-
tion and represented using the corrplot library.

Cumulative gene counts
The cumulative number of genes detected over multiple
cells was assessed by calculating the mean of total genes
retrieved after 100 permutations of an increasing num-
ber of randomly sampled cells (sample function). Cells
in the lower quartile of library sizes were discarded and
the remaining cells were downsampled to the lowest
library size with the downsample.counts function from
the metaseqR package. Results are represented as cumu-
lative gene counts (Figs. 1b, 3b, 4b, 5c, and 6c; Additional
file 1: Figure S2a–d).
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Additional files

Additional file 1: Figures S1–16. Figure S1. Single cell transcriptome
sequencing of 670 fresh and 816 cryopreserved cells using the MARS-Seq
(a-c) and the Smart-seq2 (d, e) library preparation protocols. Samples in-
cluded two human (HEK293 and K562), one mouse (NIH3T3) and one ca-
nine (MDCK) cell line, peripheral blood mononuclear cells (PBMC), a
primary mouse colon sample and orthotopic tumor xenografts (patient-
derived orthotopic xenograft, PDOX). Analyses were split by replicate
experiments and conditions. Displayed are the total number of reads per
cell (a,d), the total number of detected genes per cell (b,e) and the
number of detected transcripts (UMI counts) per cell (c). The results are
displayed as boxplot indicating median values (black bar) per experiment
and condition. Figure S2. (a-d) Cumulative gene counts split by fresh
(red) or cryopreserved (blue) cells and analyzed using randomly sampled
cells (average of 100 permutations). Displayed are results for K562
(experiment 1, a), HEK293 (experiment 1, b), NIH3T3 (c) and MDCK (d) cell
lines. Figure S3. Distribution of sequencing reads numbers per single cell
split by conditions (fresh (red); cryopreserved -80ºC: blue; cryopreserved
liquid nitrogen: green). Displayed are the distributions for all MARS-Seq
experiments (a-h) indicating the median number of reads per single cell
(horizontal lines). Experiment types are indicated. Figure S4. MARS-Seq
library complexity assessment of fresh (red) or cryopreserved (blue) cells
using the number of uniquely detected transcripts. (a-d) Comparative
analysis of the number of sequencing reads and detected transcripts
using a linear model. The slope of the regression line was calculated
separately for fresh and cryopreserved cells. Displayed are results for K562
(experiment 1, a), HEK293 (experiment 1, b), NIH3T3 (c) and MDCK (d) cell
lines. Figure S5. MARS-Seq library complexity assessment of fresh (red)
or cryopreserved (blue) cells using the total number of detected genes.
(a-d) Comparative analysis of the number of sequencing reads and
detected transcripts using a linear model. The slope of the regression line
was calculated separately for fresh and cryopreserved cells. Displayed are
results for K562 (experiment 1, a), HEK293 (experiment 1, b), NIH3T3 (c)
and MDCK (d) cell lines. Figure S6. Comparative analyses of single cell
transcriptome variance from fresh (red) and cryopreserved (blue) cell
lines. Gene expression variances between cells are displayed as principal
component analysis (PCA, upper panel a-d) or t-distributed stochastic
neighbor embedding (t-SNE, lower panel e-h) using the 100 most
variable genes. The displayed experiments include K562 (experiment 1;
a,e), HEK293 (experiment 1; b,f), NIH3T3 (c,g) and MDCK (d,h). Figure S7.
Joint analyses of single cells from fresh (red), cryopreserved at -80ºC
(blue) and cryopreserved in liquid nitrogen (green) HEK293 cells from
experiment 1 (circles) and 2 (triangles). Gene expression variances
between cells are displayed as principal component analysis (PCA, a) or
t-distributed stochastic neighbor embedding (t-SNE, b) using the 100
most variable genes. Figure S8. Comparative analyses of single cells from
fresh (red) and cryopreserved (blue) cell lines. Gene expression variances
between cells are displayed as t-distributed stochastic neighbor embedding
(t-SNE) using the 100 most variable genes and the indicated perplexity
parameter values. The displayed experiments include K562 (experiment 1),
HEK293 (experiment 1 and 2), NIH3T3 and MDCK. Figure S10. Correlation
analysis of gene expression levels split by conditions (fresh (red);
cryopreserved -80ºC: blue; cryopreserved liquid nitrogen: green). (a-d)
Pearson’s correlation analysis between 20 randomly selected fresh and
cryopreserved cells displaying the correlation coefficient (r2). (e-h) Distribu-
tion of Pearson’s correlation coefficients (r2) within and between processing
conditions. The median coefficients are indicated. (i-k) Linear regression
model comparing average gene expression levels of expressed genes. The
coefficient of determination (r2) is displayed. Cell lines and
experiments are indicated within the figures. Figure S11. Cell subtype ana-
lysis of HEK293 (experiment 1) cells split by fresh (a-c) and cryopreserved (d-
f) cells. (a,d) Hierarchical clustering of single cells based on transcriptional
programs (defined by gene ontology) and correlating genes [21]. Transcrip-
tional programs and gene clusters are summarized in aspects
(orange: overrepresented; green: underrepresented). Displayed are the most
variable aspects (rows) and their importance (row colors). Cells are assigned
to condition (fresh: red; cryopreserved: blue) and clusters. (b, e) A t-
distributed stochastic neighbor embedding (t-SNE) representation of similar-
ities between cells using previous defined distances and cluster identity (as

in a, d). (c, f) Hierarchical cluster of single cells (as in a,d) displaying the 25
most variable cell cycle genes (G2/M checkpoint). Expression levels of the
cell cycle signature are summarized (1st panel; orange: high, green: low)
and clusters are indicated. Figure S12. Analyses of Smart-seq2-derived sin-
gle cell transcriptomes from a cryopreserved patient-derived xenograft
(PDOX) tumor. (a) Displayed are the sequencing read distribution following
RNA library preparation of full-length transcripts. Each line represents a sin-
gle cell and transcript sizes are scaled from (0-100). (b,c) Comparative
analyses of single cells from fresh (circles) and cryopreserved (trian-
gles) samples. The displayed
experiments include single cells from HEK293 cells (blue), K562 cells
(orange) and the PDOX (green) sample. Gene expression variances
between cells are displayed as principal component analysis (PCA, b)
and t-distributed stochastic neighbor embedding (t-SNE, c) using the
100 most variable genes. Figure S13. Cell subtype analysis of HEK293
cells analyzed by Smart-seq2 split by fresh (a) and 5 cryopreserved (b)
cells. (a,b) Hierarchical clustering of single cells based on transcriptional
programs (defined by gene ontology) and correlating genes [21] displaying
the 25 most variable cell cycle genes (G2/M checkpoint). Expression levels
of the cell cycle signature are summarized (1st panel; orange: high, green:
low) and clusters are indicated. (c) Significantly differentially expressed genes
between fresh and cryopreserved HEK293 cells (p < 0.01). Figure S14. Cell
subtype analysis of K562 cells analyzed by Smart-seq2 split by fresh (a) and
cryopreserved (b) cells. (a,b) Hierarchical clustering of single cells based on
transcriptional programs (defined by gene ontology) and correlating genes
[21] displaying the 25 most variable cell cycle genes (G2/M checkpoint).
Expression levels of the cell cycle signature are summarized (1st panel;
orange: high, green: low) and clusters are indicated. (c) Significantly
differentially expressed genes between fresh and cryopreserved K562
cells (p < 0.01). Figure S15. Cell subtype analysis of fresh (red) and
cryopreserved (blue) peripheral blood mononuclear cells analyzed by
MARS-Seq. (a-d ) Hierarchical clustering of single cells based on
transcriptional programs (defined by gene ontology) and correlating
genes [21] (as defined in Fig. 5f) displaying the 25 most variable genes
within the signatures for cytotoxic T-cells (a), memory T-cells (b), B-cells (c)
and myeloid cells (d). Expression levels of all signature genes are summarized
(1st panel; orange: high, green: low) and conditions (2nd panel: fresh: red;
cryopreserved: blue) and clusters are indicated. The lower plots summarize
the signature expression levels for each cell (dots) and cluster (box). Inferred
cell types are indicated (BC: Bcells, CytoTC: cytotoxic T-cells, MemTC: memory
T-cells, Myd: myeloid cells). Figure S16. Hierarchical clustering of single cells
from an ovarian tumor PDOX based on the most variable genes. Cells are
assigned to conditions (2nd panel; fresh: red; cryopreserved: blue) and clusters
(3rd panel). Displayed are the 25 most variable genes implicated in cluster
formation. Expression levels of the genes are summarized (1st panel; orange:
high, green: low). (PDF 6319 kb)

Additional file 2: Tables S1–9. Table S1. Overview table of
experiments. Table S2. Differential gene expression between fresh and
cryopreserved K562 cells. (MARS-Seq; top 40 genes). Table S3. Differential
gene expression between fresh and cryopreserved HEK293 cells. (MARS-
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