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Abstract The main Korean mountain range that stretches from north to south (the 

Baekdudaegan) has been suggested to harbor an important glacial refugium for boreal and 

temperate plant species. Under this scenario, we expect high levels of within-population 

genetic variation and low or moderate degree of among-population differentiation within 

these species. To test this hypothesis, we examined clonal diversity and levels of allozyme 

diversity in the boreal Iris odaesanensis and in its temperate congener I. rossii. In addition, 

we compiled data on boreal and temperate species whose distribution in the Peninsula is 

mostly centered in the Baekdudaegan to determine if there is a common pattern. We found 

lower clonal diversity in I. odaesanensis compared to I. rossii. Both studied species 

maintained high levels of genetic variation as well as a moderate genetic differentiation 

(%P = 52.5 and 47.5, A = 1.70 and 1.58, He = 0.158 and 0.150, and FST = 0.196 and 0.189 

for I. odaesanensis and I. rossii, respectively), in line with what occurs for the species 

distributed on the Baekdudaegan (n = 14, %P = 46.7, A = 1.73, He = 0.161, and FST = 

0.190). This study strongly suggests that the Baekdudaegan may have acted as a refugium 

for boreal and temperate species, in a similar way to the southern Appalachians in the 

southeastern United States.  
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On the Korean Peninsula, its main mountain range, the “Baekdudaegan Mountains” (the 

Baekdudaegan from now on) — which is sometimes regarded as the backbone of the 

Peninsula because it runs north to south with over 1600 km long (Choi 2004; Fig. 1) — has 

been proposed as harboring multiple refugia for the boreal and temperate flora (Chung et al. 

2012, 2013a,b, 2014) on the basis of a series of population-genetics studies conducted on 

species native to this mountain range (see table 3 in Chung et al. 2014). Using allozymes, a 

common pattern of high/moderate within-population and low/moderate between-population 

genetic variation seems to be emerging for many boreal and temperate elements native to 

this mountain system, both widespread and range-restricted. According to these authors 

(Chung et al. 2012, 2013a,b, 2014), this pattern would be attributable to the existence of 

large refugial areas (“macrorefugia” sensu Rull 2009) throughout the Baekdudaegan. The 

varied topography of these mountains (peaking over 1500–2000 m), coupled with a north-

south orientation, the close proximity to the sea, and the fact that the Baekdudaegan 

remained totally unglaciated (with the exception of high-elevation mountains of over 2300 

m on its north tip; Fig. 1) would have allowed plant species to have persisted there 

throughout the glacial/interglacial cycles, presumably maintaining large effective 

population sizes and high rates of recurrent gene flow (Kong and Watts 1993). 

Paleoecological data of the Korean Peninsula are mostly in agreement with this proposed 

scenario; pollen records from localities within or nearby the Baekdudaegan suggest the 

existence of boreal and/or temperate forests during or around the Last Glacial Maximum 

(LGM) instead of steppe or desert vegetation (Choi 1998; Chung et al. 2006), as most 
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palaeovegetation reconstructions for the Peninsula do (Harrison et al. 2001; Hope et al. 

2004; Prentice et al. 2011; but see Adams and Faure 1997; Zheng et al. 2007). 
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 To gain further insights into the validity of this scenario, we chose two congeneric 

herbs native to the Baekdudaegan, Iris odaesanensis Y. N. Lee, a boreal species, and I. 

rossii Baker, a temperate one. Iris odaesanensis is distributed from Jilin Province in 

northeastern China to the Korean Peninsula. In Jilin, I. odaesanensis occurs on forest 

margins, meadows, and damp hillsides along ditches in medium-elevation mountains (ca. 

1500 m) (Zhao et al. 2000). On the Korean Peninsula, I. odaesanensis occurs largely under 

Quercus mongolica-dominated temperate deciduous forests at 1000–1500 m (Table 1), both 

in the Baekdudaegan (IO-1 to IO-5, and IO-7; Fig. 1) and in one of its branches, the so-

called “Nakdongjeongmaek” (IO-6 and IO-8; Fig. 1). Although the species is listed as 

endangered in the Wildlife Protection Act of Korea (Ministry of Environment 2005), it is 

relatively common along its distributional range, with the number of shoots per 

population—we use the term “shoot” (see definition below) instead of “individual” because 

the species can propagate via rhizomes—usually ranging from hundreds to thousands 

(rarely tens, such as in IO-1 and IO-2; Table 1). The congener Iris rossii has a somewhat 

wider distribution, occurring in eastern Liaoning Province in northeastern China, in the 

Korean Peninsula, and in Japan (Zhao et al. 2000). In China, I rossii occurs at low-

elevation (ca. 100 m) meadows at forest margins or on sunny hillsides (Zhao et al. 2000). 

On the Korean Peninsula, I. rossii can occur from low hills (300–500m; Table 1) in the 

peripheral areas of the Baekdudaegan (under pines and deciduous forests) to the medium-

elevation mountains of the main ridge of the Baekdudaegan, under deciduous forests (such 

as the IR-1 population, located at 980 m; Table 1). Like I. odaesanensis, I. rossii is locally 

abundant across the Korean Peninsula.  
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 The life-history traits and ecology of the two Iris species show some striking 

differences, such as stoloniferous rhizomes in I. odaesanensis (7–35 cm long) vs. short 

ones in I. rossii (2–10 cm long), and mat-like shoots within populations of I. odaesanensis 

vs. a few shoots within populations of I. rossii. Based on these differences, we expect lower 

clonal (genotypic) diversity in I. odaesanensis compared to I. rossii. Considering that the 

Baekdudaegan and its adjacent mountain ranges likely harbored multiple, large refugia 

(“macrorefugia”) for boreal and temperate plant species during the Pleistocene, then we 

would find high genetic diversity within populations and low differentiation among 

populations for both species. To test these predictions, we used allozymes as suitable 

genetic markers to identify clones and to estimate clonal diversity and levels and 

partitioning of genetic diversity with a representative sample of populations of the two Iris 

species.  
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Materials and methods 

 

Study plants 

 

Inflorescences of I. odaesanensis are 9–13 cm long and bear two white flowers (3–4 cm in 

diameter) with the outer segments with a central, yellow signal patch. Flowers are open 

from April to May. Strongly 3-angled fruit (capsule) matures from June to July and is ovoid 

(2.3–2.7 cm long) at maturity (Zhao et al. 2000; M. Y. Chung and M. G. Chung pers. obs.). 

Inflorescences of I. rossii, barely emerging above ground, bear violet solitary flowers (3.5–

4.0 cm in diameter); flowers are open from April to May, and capsules mature from June to 

August, being globose at maturity (Zhao et al. 2000; M. Y. Chung and M. G. Chung pers. 
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obs.). The breeding systems and pollinators for the two Iris species are unknown. Many 

species of Iris are predominantly outcrossers and self-compatible (Kron et al. 1993; 

Hannan and Orick 2000; Liu et al. 2011), although the species within the section 

Oncocyclus are known to be self-incompatible (Sapir et al. 2005). Members of Iris are 

usually pollinated by a variety of bees and flies (Uno 1982; Sutherland 1990; Liu et al. 

2011; Watts et al. 2013). Whereas gravity (barochory) seems to be a main dispersal 

mechanism on the terrestrial irises, hydrochory has been described for several Iris species 

(e.g., I. pseudacorus) occurring on wetlands, floodplains, or riparian plant communities 

(Whitehead 1971). Both species studied here can also propagate via rhizomes. 
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Population sampling 

 

From June to July in 2009, we collected 555 leaf samples from eight populations of I. 

odaesanensis (IO-1 to IO-8; Table 1 and Fig. 1), and 141 shoots from six populations of I. 

rossii (IR-1 to IR-6; Table 1 and Fig. 1). As rhizomes of I. odaesanensis are relatively long 

and branched, we collected leaf samples at 30 cm intervals from mat-like shoots; for I. 

rossii, we collected samples from all visually identified shoots (except for closely located 

shoots, for which we collected only one shoot) because many shoots are scattered within 

the populations. In our study system, a “shoot” is the aerial part of a ramet, as the term 

“ramet” also includes the rhizome connecting it with other ramets of a given genet (the 

genetic individual).To minimize the damage to these irises, we collected only one leaf per 

shoot. 

 

Enzyme electrophoresis 
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Leaf samples were wrapped in damp paper towels, placed in plastic bags, returned to the 

laboratory, and then stored at 4° C until protein extraction. For extraction, leaf samples 

were crushed using chilled mortars and pestles by adding a crushing buffer (Mitton et al. 

1979) and enzyme extracts were absorbed onto paper wicks (Whatman 3MM 

chromatography paper). We conducted electrophoresis on 13% starch gels, with two buffer 

systems. We used a modification (Haufler, 1985) of the system 6 of Soltis et al. (1983) to 

resolve alcohol dehydrogenase (Adh), diaphorase (Dia-1, Dia-2, Dia-3), fluorescent 

esterase (Fe-1, Fe-2), malic enzyme (Me), phosphoglucoisomerase (Pgi-1, Pgi-2, Pgi-3), 

phosphoglucomutase (Pgm-1, Pgm-2, Pgm-3), and triosephosphate isomerase (Tpi). We 

also used the morpholine-citrate buffer system (pH 6.1) of Clayton and Tretiak (1972) to 

resolve isocitrate dehydrogenase (Idh-1, Idh-2), malate dehydrogenase (Mdh-1, Mdh-2), 

and 6-phosphogluconate dehydrogenase (6Pgd-1, 6Pgd-2). We followed stain recipes from 

Soltis et al. (1983) except for diaphorase (Cheliak and Pitel 1984). We designated putative 

loci sequentially, with the most anodally migrating isozyme designated as 1, the next 2, and 

so on. We also designated different alleles within each locus sequentially by alphabetical 

order. The observed enzyme banding patterns were consistent with their typical subunit 

structure and subcellular compartmentalization in diploid plants (Weeden and Wendel 

1989). 

 

Data analysis 

 

To identify clones and to conduct further genetic analyses, we considered a locus to be 

polymorphic when two or more alleles were observed, regardless of their frequencies. As 
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multiple ramets (NT) representing allozyme-based identical multilocus genotypes (MLG) 

could result either from clonal propagation or distinct sexual reproduction events, it is 

important to discriminate these cases to correctly identify clonal ramets. Using the program 

GenClone v. 2.0 (Arnaud-Haond and Belkhir 2007), we calculated Pgen FIS, the probability 

of identical MLG to occur by chance due to sexual reproduction by taking into account 

departures from Hardy-Weinberg (H-W) equilibrium (Parks and Werth 1993; Arnaud-

Haond et al. 2007). We averaged Pgen FIS estimates generated from one such value for each 

MLG in each population, and used a probability Pgen < 0.05 cut off for the discrimination of 

ramets versus genets. Under this criterion, we prepared a second data set (NG) in which all 

but one clonal ramets per genet were excluded (that is, each distinct MLG was only 

represented once). 
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Arnaud-Haond et al. (2007) and Becheler et al. (2010) recommend the use of four 

parameters to describe clonal diversity and distribution: genotypic richness [R = (NG –

1)/(NT – 1); Dorken and Eckert 2001], the Simpson diversity index (Pielou 1969) of clonal 

heterogeneity (D, the probability of encountering distinct MLGs when randomly taking two 

units in a population) and its equitability (ED, Simpson evenness; Hurlbert 1971), and the 

Pareto index β (Arnaud-Haond et al. 2007). To characterize the genet size (NR, the number 

of ramets belonging to each genet), we fitted a cumulative function of the Pareto 

distribution to the data following the method described by Arnaud-Haond et al. (2007). 

This function takes the following form: N≥X = a X–β, where N≥X is the number of genets 20 

containing X or more ramets and a is a constant. For each population per species we 21 

obtained the shape parameter β by multiplying –1 by the linear regression slope (bP) of 22 

log10 (reverse cumulative frequency of N≥X) vs. log10 (X), and to check the quality of the 

Pareto approximation we estimated its associated coefficient of determination (R2). To test 

23 

24 
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whether each bP was statistically significant under the null hypothesis (bP = 0), we 

estimated the 95% confidence intervals (CIs) around bP using the classical least-squares 

regression theory. The estimated bP (and thus, β) was considered significant when its 95% 

CIs did not overlap zero. Both R and ED influence the Pareto index β value. High R and 

ED (i.e., clonal ramets all having approximately equal sizes) will result in a high β value (a 

steep slope), whereas low R and ED (i.e., a skewed clonal distribution with very few, large 

clonal lineages and many small ones) will result in a shallow slope (a low β value). For all 

these calculations, we used GenClone v. 2.0 (Arnaud-Haond and Belkhir 2007). Finally, a 

contingency χ2-test was conducted to determine whether distribution of clone sizes was 

significantly different between populations of each species and between species. 
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 Using the trimmed data set excluding replicate clonal ramets (NG), we estimated the 

following genetic diversity parameters using the programs POPGENE (Yeh et al. 1999) and 

FSTAT (Goudet 1995): percent polymorphic loci (%P), mean number of alleles per locus 

(A), allelic richness (AR) using a rarefaction method that compensates uneven population 

sample sizes (Hurlbert 1971; El Mousadik and Petit 1996), observed heterozygosity (Ho), 

and Nei’s (1978) unbiased gene diversity or Hardy-Weinberg (H-W) expected 

heterozygosity (He). Hereafter, the subscript “s” indicates species’ (or pooled samples) 

values, while the subscript “p” indicates population means. 

 To test for recent decreases in effective population size (bottlenecks), we evaluated 

for individual loci the difference between the H-W He and the equilibrium heterozygosity 

(Heq) expected assuming mutation–drift equilibrium. These differences were evaluated 

using a sign test and a Wilcoxon sign-rank test conducted across loci under an infinite allele 

model using the program BOTTLENECK (Cornuet and Luikart 1996). Since allelic 

diversity is generally lost more rapidly than He (Nei et al. 1975), recently bottlenecked 
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populations are expected to exhibit an excess of H-W equilibrium He relative to Heq 

(Cornuet and Luikart 1996; Luikart et al. 1998). 
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 We estimated population-level FIS (inbreeding) and calculated its significance level 

(P values) by gene permutation tests (999 replicates) under the null hypothesis (FIS = 0) 

using the program SPAGeDi (Hardy and Vekemans 2002). We also calculated Wright’s 

(1965) FIS and FST over loci following Weir and Cockerham (1984). These fixation indices 

measure the average deviation from H-W equilibrium of individuals relative to their local 

populations (FIS, a measure of local inbreeding) and local populations relative to the total 

population (FST, also a measure of differentiation between local populations). The 

significance of multi-population FIS and FST estimates was determined by a permutation 

test (999 randomizations of alleles between individuals within samples and 999 

randomizations of genotypes between populations, respectively). These calculations were 

performed using FSTAT (Goudet 1995). 

 To determine the degree of genetic divergence between populations of each taxon, 

we calculated Nei’s (1978) unbiased genetic identity (I) between pairs of populations. In 

addition, a UPGMA (unweighted pair-group method using arithmetic averages) phenogram 

was generated from Nei et al. (1983) genetic distance (DA) matrix with branch support 

produced by 1000 bootstrapping over loci, utilizing Populations v. 1.2.30 (Langella 1999) 

and TreeView v. 1.6 (Page 1996). To grasp the overall pattern of genetic structure at the 

regional scale (i.e., isolation-by-distance effects), we conducted a linear regression analysis 

between all pairwise FST/(1 – FST) (FST was calculated following Weir and Cockerham 

1984) and the corresponding logarithm of pairwise geographical distances (Rousset 1997). 

Using the program Permute! (Legendre et al. 1994), we tested a linear regression model 

using a Mantel test (by making 999 replicates) under the null hypothesis of no spatial 
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genetic structure (regression slope, b = 0). To gain insight into the patterns of recent gene 

flow between individual populations, we estimated migration (m) rates using the program 

1 

2 

BayesAss v. 1.3 (Wilson and Rannala 2003). We ran 3 × 106 Markov chain Monte Carlo 

iterations, with a burn-in of 999,999 iterations and a sampling frequency of 2000 by setting 

delta at 0.15 (the default value). 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

 

Results 

 

Identification of clones 

 

For I. odaesanensis, 16 (Dia-1, Dia-2, Dia-3, Fe-1, Fe-2, Idh-1, Mdh-1, Mdh-2, Me, 6Pgd-

1, 6Pgd-2, Pgi-2, Pgi-3, Pgm-2, Pgm-3, and Tpi) of the 20 putative loci were polymorphic 

across eight populations and consistent with Mendelian inheritance. Populations IO-1 and 

IO-2, composed by one MLG (uniclonal; Table 1), had two heterozygous loci each (‘cd’ at 

Mdh-2 and ‘cd’ at Tpi for IO-1; ‘ab’ at Dia-1 and ‘bd’ at Idh-1 for IO-2). If sexual 

reproduction occurred within these populations, then we would expect homozygotes at 

these loci (formed through recombination). The occurrence of a unique MLG with two 

heterozygous loci strongly suggests that these two populations consist of single clones (that 

is, they are likely uniclonal). Except for the two uniclonal populations, the power to 

discriminate clonal genotypes from sexually produced genotypes in the other six 

(multiclonal) populations was about 1.0 (Pgen FIS was 0.008; Table 1). We identified a total 

of 192 (NG, the number of individuals excluding clonal ramets) MLG out of 510 total 

samples (NT) across the six multiclonal populations (IO-3 to IO-8; Table 1). 
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24  For I. rossii, 13 (Adh, Dia-1, Dia-2, Fe-1, Fe-2, Idh-1, Me, 6Pgd-2, Pgi-2, Pgi-3, 
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Pgm-1, Pgm-3, and Tpi) of the 20 putative loci were polymorphic. Accordingly, the power 

to discriminate clonal genotypes from sexually produced genotypes was also about 1.0 

(average Pgen FIS was 0.005; Table 1). Thus, it is safe to consider for all subsequent analyses 

that ramets sharing identical MLG in a population were members of the same clone. We 

identified a total of 123 (NG) distinct MLG out of 141 total samples (NT) across six 

populations (Table 1). In three populations (IR-1, IR-3, and IR-6) all the individuals 

showed different (unique) MLG (thus, NT = NG; Table 1). 
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Clonal diversity (genotypic diversity) 

 

Estimates of genotypic richness (R) varied greatly among populations of I. odaesanensis, 

ranging from 0.000 (IO-1 and IO-2) to 0.504 (IO-8), with a mean of 0.267 (Table 1). 

Accordingly, Simpson diversity indices (D) were also very variable, ranging from 0.000 

(IO-1 and IO-2) to 0.976 (IO-8), with a mean of 0.682 (Table 1). All values of the Simpson 

evenness index (ED) were greater than 0.7, with a mean of 0.877 (Table 1). The log10 of the 

cumulative distribution of ramets among genets was linearly related to the log10 of NR (the 

genet size), thus supporting the Pareto distribution [index β (–1 × regression slope, bP)] 

hypothesis in all the populations (R2 = 0.608 to 0.970, P < 0.05). Also, 95% CIs for bP for 

the six multiclonal populations did not overlap zero (Table 1). The values of the Pareto 

index β were highly variable, ranging from 0.246 (IO-7) to 1.009 (IO-4) with a mean of 

0.669 (Table 1).  

 Estimates of R were high for I. rossii populations, ranging from 0.679 (IR-2) to 1.000 

(IR-1, IR-3, and IR-6), with a mean of 0.878 (Table 1). Accordingly, Simpson diversity 

indices (D) were also high, ranging from 0.968 (IR-2) to 1.000 (IR-1, IR-3, and IR-6), with 
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a mean of 0.989 (Table 1). When applicable, all values of the Simpson evenness index (ED) 

were greater than 0.6, with a mean of 0.776 (Table 1). The regression slope (bP) of the log10 

of the cumulative distribution of ramets among genets to the log10 of NR was significantly 

negative in all populations (R2 = 0.976 to 0.999, P < 0.05). Also, 95% CIs for bP did not 

overlap zero (Table 1). The values of the Pareto index β were high with a mean of 1.825 

(Table 1). The Mann-Whitney U-test revealed that populations of I. rossii exhibit a 

significantly higher clonal diversity (β) than those of I. odaesanensis (U = 18, P < 0.05). 
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 Except for IO-1 and IO-2 populations, the genet size (NR) was skewed to small 

genets in I. odaesanensis, and clones ranged in size from one to 39 ramets, with a large 

majority of genets (139 out of 194) being composed by one or two ramets (Table 2). We 

found significant differences in the distribution of clone sizes (or number of ramets per 

genet, Table 2) among the eight populations (contingency χ2-test, χ2 = 495.6, d.f. = 112, P 

= 0.000). For I. rossii, NR was highly skewed to small genets, and clones ranged in size 

from one to four ramets, with most of them (62 out of 75) of just one ramet (Table 2). We 

found no significant differences in the distribution of clone sizes among the three 

populations (contingency χ2-test, χ2 = 4.939, d.f. = 6, P = 0.552). Finally, we found no 

significant differences in the distribution of clone sizes between the two studied species 

(contingency χ2-test, χ2 = 22.71, d.f. = 16, P = 0.122). 

 

Genetic diversity in Iris odaesanensis and I. rossii 

 

The two populations IO-1 and IO-2 consisted of a single genet and had to be excluded from 

most statistical analyses to avoid bias (e.g., Gustafson et al. 2013). The rest of the 

populations of Iris odaesanensis were rich in MLGs, with NG averaging 24 and ranging 
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from 11 to 62 (Table 1). The uniclonal nature of IO-1 and IO-2 can be easily attributed to 

their very small size (with just a few tens of shoots compared to the thousands of shoots for 

most of the populations throughout Korea). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

 Iris odaesanensis maintained high levels of genetic variation in pooled samples (n = 

192, %Ps = 80.0, As = 2.60, and Hes = 0.176; Table 3). Lower, but still high, levels of 

genetic variation were found within populations: average n = 32, %Pp = 52.5, AR = 1.57, Ap 

= 1.70, and Hep = 0.158 (Table 3). Comparable levels of genetic variation were found in I. 

rossii both at the total sample level and at the population level: n = 123, %Ps = 65.0, As = 

1.95, and Hes = 0.177 (Table 3); average n = 21, %Pp = 47.5, AR = 1.52, Ap = 1.58, and Hep 

= 0.150 (Table 3). Among six populations for each species, two populations (IO-7 in I. 

odaesanensis and IR-5 in I. rossii) displayed significant P values for both sign and 

Wilcoxon sign-rank test (Table 4), suggesting the occurrence of recent bottlenecks in these 

populations. 

 

Inbreeding and population genetic structure 

 

Of the population-level FIS estimates in the six populations of I. odaesanensis, three out of  

five positive values were significant at the 0.05 level (FIS = 0.141 to 0.198; Table 3). The 

significantly negative estimate (FIS = –0.427) found in IO-3 is unusual; perhaps may be 

artifact due to small sample size. Multi-population-level FIS was low but significantly 

positive (FIS = 0.084, P = 0.001; Table 3), suggesting an overall deficit of heterozygotes 

within populations. If we exclude IO-3, multi-population-level FIS rose to 0.188 (P = 

0.001). All but one populations of I. rossi showed significantly positive FIS estimates, with 

a considerably high multi-population-level FIS (0.331). Deviation from H-W expectations 
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due to allele frequency differences between populations were significantly different from 

zero and similar between the two species (FST = 0.196 in I. odaesanensis and FST = 0.189 

in I. rossii, for both cases P = 0.001). 
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Nei’s (1978) unbiased genetic identity (I) between populations of I. odaesanensis and 

between populations of I. rossi were high [mean I = 0.943 ± 0.030 (SD) and mean I = 0.958 

± 0.031 (SD), respectively]. These means are comparable to that expected for conspecific 

plant populations (mean I = 0.950 ± 0.059, n = 1572; van der Bank et al., 2001). The 

UPGMA phenogram (Fig. 2) revealed no clear genetic patterns between populations of 

each species in relation to their geographic location. There was no significant positive 9 

linear relationship between pairwise FST/(1 – FST) and logarithm of pairwise linear 10 

geographic distances for both I. odaesanensis (r = 0.092, P = 0.777) and I. rossii (r = –

0.096, P = 0.724). 
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 BayesAss results indicated a similar intensity of recent gene flow between species 

(Table 5). For I. odaesanensis, only two out of 30 cases (from IO-4 to IO-7 and from IO-7 

to IO-3, Table 5) indicated evidence of recent gene flow between populations [all the other 

m values fell within the confidence intervals (CI) expected in instances where there is no 

information in the data (95% CI: 1.58 × 10–6, 0.160; Table 5]. Similarly, there were three 

cases for I. rossii on the basis of this criterion (Table 5). On average, m rates between 

populations of I. odaesanensis (n = 30, mean m rate = 0.0213) did not significantly differed 

17 
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19 

from those between populations of I. rossii (n = 30, mean m rate = 0.0420; t = –1.181, two-

sided P-value = 0.242). 
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Discussion 
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Clonal diversity, inference of seedling recruitment strategy, and inbreeding 1 
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As predicted, our results for clonal diversity are consistent with the life-history traits and 

ecology of the two Iris species. Levels of clonal diversity found in I. odaesanensis 

populations were considerably lower—with the only exception of ED (Table 2)—than 

those for I. rossii. The Pareto index β is, nevertheless, the best suited for summarizing 

clonal diversity and for making comparisons among different studies (Arnaud-Haond et al. 

2007; Ohsako 2010). The mean value of β (0.668) for I. odaesanensis is lower than the 

mean obtained for 15 populations belonging to 11 terrestrial and marine plant species 

compiled by Ohsako (2010; β = 0.930). In contrast, the mean value of β (1.825) for I. rossii 

is considerably higher than the Ohsako’s (2010) average. Unlike I. odaesanensis, the high 

value of β found for I. rossii indicates that their populations have a tendency to be formed 

by several small clones with no large ones (Table 2).  

 The architecture and the extent of clonal growth in plant populations have crucial 

effects on their genetic diversity and demographic structure (Eriksson 1989). The studies of 

Eriksson (1989, 1993) have demonstrated how genetic diversity is modulated depending on 

the seedling recruitment strategy of clonal plants. Under the “initial seedling recruitment” 

(ISR) strategy, no recruitment occurs after the establishment of the initial cohort, which 

could result in a decrease of genetic diversity over time, and ultimately populations would 

be composed of a small number of large, old, and even-aged clones. At the other extreme, 

in the “repeated seedling recruitment” (RSR) strategy, a steady recruitment of genets occurs 

and populations will contain clones of variable age and size, largely maintaining local 

genetic variability (Eriksson 1989). Because of this linkage between seedling recruitment 

strategy and clonal structure, it is possible to infer the mode of recruitment of a given 
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species (Parker and Hamrick 1992; Kudoh et al. 1999). Except for IO-1 and IO-2 of I. 

odaesanensis, the skewed distribution of ramet numbers per genet (with a clear 

predominance of small clones; Table 2) suggests RSR as the main recruitment strategy 

operating within the multiclonal populations of the two Iris species. Obviously, the IO-1 

and IO-2 populations fit better the ISR model. 
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 In I. odaesanensis, we found a low but significant deficit of heterozygotes in three 

populations, with a multi-population-level FIS of 0.084, suggesting a predominantly 

outcrossing breeding system for this species. For I. rossii, the higher value of multi-

population-level FIS (0.331) suggests, instead, a mixed mating system. Factors such as 

biparental inbreeding (mating with relatives), Wahlund effect (population subdivision) or 

geitonogamous selfing between clonal ramets (if the species are self-compatible) might 

account for the observed heterozygote deficiency at several populations of both species. 

 

Genetic diversity in Iris odaesanensis and I. rossii: the role of the Baekdudaegan as glacial 

refugium for boreal and temperate species 

 

As predicted, populations of I. odaesanensis and I. rossii maintain substantial levels of 

genetic variation. Within-population genetic estimates are higher than those averaged for 

populations of short-lived herbaceous perennials, plants with a narrow distribution, plants 

with outcrossing-animal breeding system, rare plants in the southeastern United States, 

endemic plants, and all plants (Table 6). Also, as predicted, populations of I. odaesanensis 

and I. rossii exhibit a moderate degree of among-population genetic differentiation, 

comparable to those averaged for plant species with the traits mentioned above (Table 6). 

The mean migration rates (m) for I. odaesanensis (0.0213) and I. rossii (0.0420) are 
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comparable or higher to the average for other plant species occurring in northeastern Asia 

(m = 0.0209 averaged from 15 entries; M. Y. Chung et al. unpubl. data), which indicates 

that gene flow between populations is also occurring at a moderate scale at present (and 

perhaps during glacial times). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

 It is worth noting that levels of genetic diversity found in I. odaesanensis and I. rossii 

both at the population and the species levels are similar to those reported for the congeneric 

I. cristata, a widespread species of unglaciated regions of the southeastern United States 

primarily distributed in the southern Appalachians (Table 6). However, the considerably 

low degree of among-population differentiation exhibited by I. cristata (FST = 0.018) might 

be ascribed to exclusion of two variable loci (6Pgd and Mdh) for the calculation of this 

parameter, due to difficulty of interpretation of the banding patterns for these loci (Hannan 

and Orick 2000). A complete lack of allozyme variation in 18 isozyme loci was found for 

the range-restricted I. lacustris which occurs on LGM-glaciated habitats of Great Lakes 

shorelines (Hannan and Orick 2000). Assuming that they have similar breeding systems, 

any contrasting difference in the genetic diversity patterns between these two North 

American Iris species would be attributable to population history (that is, long-term 

population stability due to survival in the Appalachian glacial refugium for I. cristata vs. a 

dynamics of population extinction and recolonization for I. lacustris) in addition to the 

marked difference in geographic range. 

 The high levels of genetic diversity and the moderate levels of genetic differentiation 

among populations of I. odaesanensis and I. rossii are in agreement with Chung et al. (2012, 

2013a,b, 2014) hypothesis that the Baekdudaegan mountain range harbored important 

refugial areas for boreal and temperate vegetation during the LGM. If we compile all the 

species studied with allozymes whose distribution in Korea is mostly centered in the 
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Baekdudaegan (Table 6), then a common pattern consisting of high within-population and 

low among-population genetic variability is envisaged, with a very few exceptions. Only 

two species from this list have values of Hep below 0.100, and only one is clearly 

genetically depauperate (Leontice microrhyncha; Table 6), although it should be taken into 

account that this species is autogamous (Chang et al. 2004). A series of features of the 

Baekdudaegan should have enhanced its role as a Quaternary refugium, with its topography 

playing a central role. First, the north-south orientation of the Baekdudaegan favored 

latitudinal migrations of plants to track the climate shifts (Hewitt 2000); second, its 

relatively wide altitudinal gradient—of up to 2000 m—allowed altitudinal migrations to 

track warm interglacials/cold glacials (Hewitt 2000; Nieto Feliner 2011); third, its marked 

ruggedness (with numerous valleys, ravines, canyons and gorges) would have provided 

many sheltered habitats from the cold winds (Birks and Willis 2008; Kaltenrieder et al. 

2009). The more or less continuous supply of moisture even during the LGM (due to the 

orographic rain and also to the close proximity to the East Sea/Sea of Japan), and the fact 

that the Baekdudaegan remained nearly totally unglaciated even during the coldest episodes 

of the Pleistocene were also key factors for the species persistence along the Quaternary. 
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 The Baekdudaegan may constitute a sort of ‘eastern counterpart’ of the southern 

Appalachians on the basis of its role as Quaternary refugium for boreal and temperate 

plants. The southern Appalachians have been considered as a prime refugial area for the 

flora of North America, capable to sustain a rich assemblage of boreal and temperate 

forests even during the coldest periods of the Pleistocene (Delcourt and Delcourt 1981; 

Graham 1999; Williams et al. 2000; Soltis et al. 2006; Prentice et al. 2011). This mountain 

range approximately runs north to south in an analogous way to the Baekdudaegan, with a 

similar floristic richness [ca. 1,400 taxa (Highlands Biological Station 2013) versus over 
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1,500 for the Baekdudaegan (Lim 2003)], length (ca. 1,500 km), and average elevation. As 

for the Baekdudaegan, the Appalachians are also a “hotspot” of genetic diversity, with 

several examples of high levels of genetic diversity in the Appalachians compared to more 

northern conspecific or congeneric populations (e.g., Broyles 1998; Hannan and Orick, 

2000). Moreover, the meta-analysis of Godt and Hamrick (2001), although not exclusively 

circumscribed to the Appalachians, constitutes another proof of the role of these North 

American mountains as a refuge of genetic diversity. 
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Table 1 Summary of clonal diversity measures observed in eight populations of Iris 

odaesanensis and six populations of I. rossii 

1 

2 

Species Area Altitude                 

Population  (m2)  (m) NT NG Pgen FIS R D ED β (95% CIs for bP
a) R2 

Iris odaesanensis          

 IO-1     2 × 5 540 29 1 0.923  0.000 0.000 na na na 

 IO-2     1 × 3 1180 16 1 0.887  0.000 0.000 na na na 

 IO-3   10 × 20 1012 65 11 0.010  0.156 0.853 0.890 0.383 (–0.691, –0.076) 0.608 

 IO-4   10 × 20 1280 66 32 0.004  0.477 0.945 0.927 1.009 (–1.623, –0.395) 0.839 

 IO-5   20 × 20 1480 93  37  0.001  0.391 0.932 0.855 0.516 (–0.606, –0.426) 0.970 

 IO-6    5 × 20 980 75 31 0.011  0.405 0.961 0.942 0.974 (–1.437, –0.510) 0.853 

 IO-7   20 × 20 1390 89 19 0.007  0.205 0.791 0.717 0.246 (–0.341, –0.151) 0.870 

 IO-8   30 × 70 401 122 62 0.017  0.504 0.976 0.932 0.887 (–1.185, –0.588) 0.898 

           

 Average   69 24 0.008b 0.267 0.682 0.877 0.669  

           

Iris rossii           

 IR-1   20 × 20  980 23 23 na 1.000 1.000 na na na 

 IR-2   20 × 20 480 29 20 0.005 0.679 0.968 0.932 1.418 (–2.214, –0.623) 0.976 

 IR-3   30 × 30 319 9 9 na 1.000 1.000 na na na 

 IR-4   20 × 20 385 31 27 0.010  0.867 0.989 0.649 2.128 (–2.319, –1.937) 0.999 

 IR-5   50 × 20 380 33 28 0.002  0.844 0.989 0.747 1.930 (–3.053, –0.816) 0.998 

 IR-6   20 × 20 390 16 16 na 1.000 1.000 na na na 

           

 Average     24 20 0.005 0.878 0.989 0.776 1.825  

NT, the total number of ramets sampled; NG, the number of genets; Pgen FIS, probability of 

the identical multilocus genotypes (MLG) occurring by chance due to sexual reproduction 

by taking into account departures from Hardy-Weinberg (H-W) equilibrium; R, genotypic 

richness; D, Simpson diversity index of clonal heterogeneity; ED, Simpson evenness index; 

β, the Pareto index describing the Pareto distribution (β = –1 × bP); bP, the linear regression 

slope between log10 (reverse cumulative frequency of the number of genets containing X or 

more ramets, N≥X) on log10 (number of replicates, X); 95% CIs, 95% confidence intervals; 

3 

4 

5 

6 

7 

8 

9 
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R2, square of correlation coefficient of each bP.; and na, not applicable 1 

2 

3 

a All bP indicated significance with P < 0.05 

b Mean from six populations (from IO-3 to IO-8) 
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Table 2 Distribution of clones found in eight populations of Iris odaesanensis and three 

populations of I. rossii. The other three populations of I. rossii (IR-1, IR-3, and IR-6) are 

not included here because they show NT = NG 

1 

2 

3 

Species/population  Number of ramets per genet (NR) 

  1 2 3 4 5 6 7 8 9 11 12 14 15 16 19 29 39  NG 

Iris odaesanensis                  

 IO-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

 IO-2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

 IO-3 3 2 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 11 

 IO-4 20 1 5 4 0 1 1 0 0 0 0 0 0 0 0 0 0 32 

 IO-5 22 8 1 1 2 0 0 1 0 1 0 0 0 0 1 0 0 37 

 IO-6 14 7 2 4 2 1 0 0 1 0 0 0 0 0 0 0 0 31 

 IO-7 8 2 1 3 2 1 1 0 0 0 0 0 0 0 0 0 1 19 

 IO-8 40 12 1 2 2 3 1 0 0 0 1 0 0 0 0 0 0 62 

Average  18 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 32 

Total 107 32 10 15 9 6 3 1 2 2 1 1 1 1 1 1 1 194 

                   

Iris rossii                   

 IR-2 14 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 20 

 IR-4 24 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 

 IR-5 24 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 

Average  21 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 

Total 62 9 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 75 

 4 

This is an Accepted Manuscript of an article published in Plant Systematics and Evolution on 2 November 2014, available online: 
http://dx.doi.org/10.1007/s00606-014-1168-8



M. Chung et al.                                  Clonal and genetic structure in two Iris species 
 
PLSY-D-14-00116R1 

34

Table 3 Levels of genetic diversity in six populations of Iris odaesanensis and in six 

populations of I. rossii in South Korea. Note that the two uniclonal populations IO-1 and 

IO-2 are excluded from data analysis 

1 

2 

3 

Species/ 

population  
NG %P AR A Ho (SE) He (SE) FIS  

Iris odaesanensis        

 IO-3 11 40.0  1.50 1.50  0.264 (0.078) 0.166 (0.052) –0.427a 

 IO-4 32 55.0  1.58 1.75  0.127 (0.047) 0.147 (0.047) 0.141a 

 IO-5 37 60.0  1.59 1.70  0.157 (0.040) 0.167 (0.040) 0.061 

 IO-6 31 45.0  1.55 1.70  0.107 (0.042) 0.133 (0.046) 0.198a 

 IO-7 19 50.0  1.67 1.70  0.203 (0.052) 0.215 (0.055) 0.057 

 IO-8 62 65.0  1.55 1.85  0.102 (0.028) 0.120 (0.038) 0.145a 

 Average 32 52.5  1.57 1.70  0.160 (0.026) 0.158 (0.013) 0.084b 

 Pooled samples 192 80.0   2.60   0.176 (0.025)  

        

Iris rossii        

 IR-1 23 50.0  1.48 1.55  0.141 (0.045) 0.143 (0.039) 0.015 

 IR-2 20 45.0  1.48 1.55  0.100 (0.032) 0.127 (0.042) 0.211a  

 IR-3 9 45.0  1.65 1.65  0.100 (0.031) 0.178 (0.049) 0.438a  

 IR-4 27 50.0  1.45 1.55  0.102 (0.036) 0.132 (0.042) 0.226a 

 IR-5 28 50.0  1.56 1.60  0.075 (0.021) 0.184 (0.047) 0.592a 

 IR-6 16 45.0  1.48 1.60  0.078 (0.029) 0.137 (0.047) 0.427a 

 Average 21 47.5  1.52  1.58  0.099 (0.010) 0.150 (0.010) 0.331b 

 Pooled samples 123 65.0    1.95    0.177 (0.026)   

%P percentage of polymorphic loci, AR mean allelic richness (adjusted for a sample size of 

11 and nine individuals for I. odaesanensis and I. rossii, respectively), A mean number of 

alleles per locus, Ho observed heterozygosity, He H-W expected heterozygosity or genetic 

diversity, SE standard error, FIS fixation index within populations 

4 

5 

6 

7 

8 

9 

a Significance (P < 0.05) based on permutation (999 replicates) under the null hypothesis of 

FIS = 0  
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b  Significant (at the 0.05 level) Weir and Cockerham (1984) estimate of FIS over populations1 
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Table 4 Results of statistical tests for evidence of recent population bottlenecks in Iris 

odaesanensis and I. rossii  

1 

2 

Species/population Sign test Wilcoxon sign-rank test 

Iris odaesanensis   

 IO-3 0.258  0.125  
 IO-4 0.159  0.711  
 IO-5 0.321  0.285  
 IO-6 0.162  0.715  
 IO-7 0.011  0.007  
 IO-8 0.102  0.966  
   

Iris rossii   
 IR-1 0.497 0.385  
 IR-2 0.369 0.787  
 IR-3 0.193 0.990  
 IR-4 0.536 0.539 
 IR-5 0.040  0.053 
 IR-6 0.515 0.715 

Tests were not conducted in two uniclonal populations of I. odaesanensis (IO-1 and IO-2). 3 

Numbers reported are P values of sign and Wilcoxon sign-rank tests conducted using the 4 

program BOTTLENECK, and significant P values (at the 0.05 level) are boldfaced 5 
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Table 5 Mean value of the posterior distribution of the recent migration rates (m) of each 

Iris odaesanensis and I. rossii population pairs estimated from allozyme data using the 

BayesAss program. Note that values on the diagonal in bold underlined are the proportions 

of individuals derived from source populations. Values higher than 0.160 (the 95% CI 

upper limit) are presented in bold. 

1 

2 

3 

4 

5 

Iris odaesanensis           

 From      

To IO-3 IO-4 IO-5 IO-6 IO-7 IO-8 

IO-3 0.6926  0.0129  0.0130  0.0122  0.2569  0.0123  
IO-4 0.0023  0.9826  0.0033  0.0029  0.0026  0.0061  
IO-5 0.0020  0.0026  0.9882  0.0024  0.0022  0.0025  
IO-6 0.0023  0.0027  0.0027  0.9857  0.0023  0.0043  
IO-7 0.0072  0.2106  0.0155  0.0140  0.7380  0.0147  
IO-8 0.0017  0.0135  0.0063  0.0023  0.0023  0.9740  

       

Iris rossii             

 From      

To IR-1 IR-2 IR-3 IR-4 IR-5 IR-6 

IR-1 0.6800  0.0061  0.0067  0.2928  0.0071  0.0072  

IR-2 0.0080  0.6819  0.2408  0.0389  0.0154  0.0150  
IR-3 0.0170  0.0145  0.7516  0.1754  0.0194  0.0222  
IR-4 0.0026  0.0028  0.0026  0.9858  0.0028  0.0035  
IR-5 0.0053  0.0052  0.0056  0.1463  0.8306  0.0071  
IR-6 0.0090  0.0080  0.0093  0.1469  0.0166  0.8104  
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Table 6 Comparisons of allozyme-based genetic diversity and genetic differentiation [FST 

or Nei’s (1973) GST] between Iris odaesanensis, species occurring mainly on the 

Baekdudaegana (Fig. 1), and species having similar life history traits. This table was 

modified from table 3 of Chung et al. (2014) 

1 

2 

3 

4 

    Ecol. affinityb/             
FST 

or  
  

Species Family Rangec %Ps %Pp As Ap Hes Hep GST Ref.d 

Species occurring mainly in the Baekdudaegan          

  Adenophora grandiflora Campanulaceae B/KE 62.5 59.4 2.88 2.56 0.266 0.259 0.027  1 

  Bupleurum euphorbioides Apiaceae B/NEC, K 58.8 46.1 2.24 1.64 0.151 na 0.297  2 

  Cypripedium macranthos Orchidaceae B/C, J, K, R  71.4 46.7 1.79 1.47 0.291 0.185 0.077  3 

  Forsythia ovata Oleaceae T/KE 71.4 48.6 2.07 1.63 0.220  0.200  0.144  4 

  Hanabusaya asiatica Campanulaceae T/KE 76.9 67.7 2.77 2.06 0.217 0.182 0.132  5 

  Iris odaesanensis Iridaceae B/NEC, K 80.0  52.5 2.60  1.70  0.176 0.158 0.196  6 

  Iris rossii Iridaceae T/NEC, J, K 65.0  47.5 1.95  1.58  0.177 0.150 0.189  6 

  Leontice microryncha Berberidaceae B/NEC, K 35.7 10.1 1.50  1.10  0.120  0.022 0.627  7 

  Lilium cernuum Liliaceae B/NEC, K, RFE 71.4 49.1 2.29  1.71  0.178  0.159 0.119  8 

  Megaleranthis saniculifolia Ranunculaceae T/KE 78.6 31.6 2.57 1.40  0.151 0.083 0.450   9 

  Oreorchis patens Orchidaceae B/C, J, K, RFE 76.5 62.8 2.53 1.96 0.258 0.236 0.075 10 

  Parasenecio pseudotaimingasa Asteraceae T/KE 66.7 40.2 1.92 1.61 0.157 0.120  0.215 11 

  Pinus koraiensis Pinaceae B/NEC, J, K, RFE na 45.8 na 2.00  na 0.181  0.059 12, 13 

  Taxus cuspidata Taxaceae B/NEC, J, K, RFE 52.0  45.0  2.09 1.78 0.200  0.l92 0.059 14 

  Average    66.7  46.7  2.25  1.73  0.197  0.161  0.190   

Iris species in the eastern United States          

  Iris cristata Iridaceae T/SEUS 73.3  51.4  3.00  1.87  0.231  0.199  0.018  15 

  Iris lacustris Iridaceae B/NAE, CA 0.00  0.00  1.00  1.00  0.000  0.000  na 15,16 

Plants with a narrow distribution  45.1 30.6 1.83 1.45 0.137 0.105 na 17 

Short-lived herbaceous perennials  41.3 28.0  1.70  1.40  0.116 0.096 0.233 18 

Plants with outcrossing-animal breeding system  51.1 35.9 1.99 1.54 0.167 0.124 0.197 18 

Rare plants in the southeastern United States  46.7 33.3 1.87 1.53 0.123 0.100  0.187 19 

Endemics   40.0  26.3 1.80  1.39 0.096 0.063 0.248 18 

All plants     52.2 35.1 1.99 1.53 0.153 0.116 0.225 20 

%P, percentage of polymorphic loci; A, mean number of alleles per locus; He, H-W 5 
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expected heterozygosity or genetic diversity; FST (GST), measures of among-population 

differentiation; and –, not available. The subscript ‘s’ indicates species’ (or pooled 

samples) values, while the subscript ‘p’ indicates population means 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

a Only species with most of their populations in Korea (more than half) occur in the 

Baekdudaegan (on its main ridge or in the peripheral areas to the main ridge) 

b Ecological affinity: B, boreal; T, temperate  

c Range: C, China; CA, Canada; J, Japan; K, Korea; KE, Korean endemic; NAE, North 

American endemic; NEC, northeastern China; R, Russia; RFE, Russian Far East; SEUS, 

southeastern United States 

d Source references: 1, Chung and Epperson (1999); 2, Chang et al. (2003); 3, Chung et al. 

(2009); 4, Chung et al. (2013a); 5, Chung et al. (2001); 6, present study; 7, Chang et al. 

(2004); 8, Chung et al. (2014); 9, Jeong et al. (2010); 10, Chung et al. (2012); 11, Chung et 

al. (2013b); 12, Kim et al. (1994); 13, Kim et al. (2005); 14, Chung et al. (1999); 15, 

Hannan and Orick (2000); 16, Simonich and Morgan (1994); 17, Godt and Hamrick 

(1998a) and updated in Wang et al. (2004); 18, Hamrick and Godt (1990); 19, Godt and 

Hamrick (2001); 20, Godt and Hamrick (1998b) 
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Fig. 1 Locations of sampled populations of Iris odaesanensis (IO-1 to IO-8) and I. rossii 

(IR-1 to IR-6) in South Korea. Dotted line indicates the location and shape of the main 

mountain range of the country, the Baekdudaegan, which runs north to south along the 

Korean Peninsula, and solid line represents the so-called “Nakdongjeongmaek”, one of the 

13 mountainous branches of the Baekdudaegan. White triangles indicate the Pleistocene-

glaciated high mountains in the Korean Peninsula (Kong and Watts, 1993): Mountains 

Baekdu (2744 m), Kwanmo (2541 m), Seolryeong (2442 m), Nampodae (2435 m), and 

Bukpodae (2289 m) 

 

Fig. 2 UPGMA phenogram based on Nei et al.’s (1983) genetic distances (DA) between 

populations of Iris odaesanensis (IO-3 to IO-8) and I. rossii (IR-1 to IR-6) in South Korea. 

Numbers above branches represent bootstrap support for 1,000 replicates, and values 

greater than 50% are shown above the branches  
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Fig. 1 
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Fig. 2 
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