M. Chung et al.

Clonal and genetic structure in two Iris species 1

1	[Dear Editor-in-Chief, revision based on Reviewer# 1 is in purple; revision by Reviewer#
2	2 is in blue]
3	Clonal and genetic structure of Iris odaesanensis and Iris rossii (Iridaceae):
4	Insights of the Baekdudaegan Mountains as a glacial refugium
5	for boreal and temperate plants
6	
7	Mi Yoon Chung · Jordi López-Pujol · You Mi Lee ·
8	Seung Hwan Oh · Myong Gi Chung
9	
10	Received: xx March 2014/ Accepted: xx xxx 2014 / Published online: xx xx 201x
11	
12	Right running head: M. Chung et al.
13	Left running head: Clonal and genetic structure in two <i>Iris</i> species
14	M. Y. Chung
15	Department of Biology Education
16	Seowon University
17	Cheongju 361-742, Republic of Korea
18	e-mail: miyoon71@seowon.ac.kr
19	
20	J. López-Pujol
21	BioC-GReB, Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
22	(current address: BioC-GReB, Botanic Institute of Barcelona (IBB-CSIC-ICUB), Barcelona08038, Spain)
23	
24	Y. M. Lee
25	Office of Director, Korea National Arboretum, Pocheon 487-821, Republic of Korea
26	
27	S. H. Oh
28	Division of Forest Biodiversity, Korea National Arboretum, Pocheon 487-821, Republic of Korea
29	
30	M. G. Chung (corresponding author)
31	Department of Biology and the Research Institute of Natural Science
32	Gyeongsang National University
33	Jinju 660-701, Republic of Korea
34	e-mail: mgchung@gnu.ac.kr

M. Chung et al.

PLSY-D-14-00116R1

1	Abstract The main Korean mountain range that stretches from north to south (the
2	Baekdudaegan) has been suggested to harbor an important glacial refugium for boreal and
3	temperate plant species. Under this scenario, we expect high levels of within-population
4	genetic variation and low or moderate degree of among-population differentiation within
5	these species. To test this hypothesis, we examined clonal diversity and levels of allozyme
6	diversity in the boreal Iris odaesanensis and in its temperate congener I. rossii. In addition,
7	we compiled data on boreal and temperate species whose distribution in the Peninsula is
8	mostly centered in the Baekdudaegan to determine if there is a common pattern. We found
9	lower clonal diversity in I. odaesanensis compared to I. rossii. Both studied species
10	maintained high levels of genetic variation as well as a moderate genetic differentiation
11	(% $P = 52.5$ and 47.5, $A = 1.70$ and 1.58, $H_e = 0.158$ and 0.150, and $F_{ST} = 0.196$ and 0.189
12	for I. odaesanensis and I. rossii, respectively), in line with what occurs for the species
13	distributed on the Baekdudaegan ($n = 14$, % $P = 46.7$, $A = 1.73$, $H_e = 0.161$, and $F_{ST} =$
14	0.190). This study strongly suggests that the Baekdudaegan may have acted as a refugium
15	for boreal and temperate species, in a similar way to the southern Appalachians in the
16	southeastern United States.

17

18 Keywords Allozymes · Congener · Conservation · Genetic diversity · Glacial refugium ·
19 Historical factor · *Iris* · Korean Peninsula.

M. Chung et al.

Clonal and genetic structure in two Iris species 3

1 Introduction

2

On the Korean Peninsula, its main mountain range, the "Baekdudaegan Mountains" (the 3 Baekdudaegan from now on) — which is sometimes regarded as the backbone of the 4 Peninsula because it runs north to south with over 1600 km long (Choi 2004; Fig. 1) — has 5 6 been proposed as harboring multiple refugia for the boreal and temperate flora (Chung et al. 7 2012, 2013a,b, 2014) on the basis of a series of population-genetics studies conducted on species native to this mountain range (see table 3 in Chung et al. 2014). Using allozymes, a 8 common pattern of high/moderate within-population and low/moderate between-population 9 genetic variation seems to be emerging for many boreal and temperate elements native to 10 this mountain system, both widespread and range-restricted. According to these authors 11 (Chung et al. 2012, 2013a,b, 2014), this pattern would be attributable to the existence of 12 large refugial areas ("macrorefugia" sensu Rull 2009) throughout the Baekdudaegan. The 13 14 varied topography of these mountains (peaking over 1500–2000 m), coupled with a northsouth orientation, the close proximity to the sea, and the fact that the Baekdudaegan 15 remained totally unglaciated (with the exception of high-elevation mountains of over 2300 16 m on its north tip; Fig. 1) would have allowed plant species to have persisted there 17 throughout the glacial/interglacial cycles, presumably maintaining large effective 18 population sizes and high rates of recurrent gene flow (Kong and Watts 1993). 19 20 Paleoecological data of the Korean Peninsula are mostly in agreement with this proposed scenario; pollen records from localities within or nearby the Baekdudaegan suggest the 21 existence of boreal and/or temperate forests during or around the Last Glacial Maximum 22 (LGM) instead of steppe or desert vegetation (Choi 1998; Chung et al. 2006), as most 23

M. Chung et al.

1	palaeovegetation reconstructions for the Peninsula do (Harrison et al. 2001; Hope et al.
2	2004; Prentice et al. 2011; but see Adams and Faure 1997; Zheng et al. 2007).
3	To gain further insights into the validity of this scenario, we chose two congeneric
4	herbs native to the Baekdudaegan, Iris odaesanensis Y. N. Lee, a boreal species, and I.
5	rossii Baker, a temperate one. Iris odaesanensis is distributed from Jilin Province in
6	northeastern China to the Korean Peninsula. In Jilin, I. odaesanensis occurs on forest
7	margins, meadows, and damp hillsides along ditches in medium-elevation mountains (ca.
8	1500 m) (Zhao et al. 2000). On the Korean Peninsula, I. odaesanensis occurs largely under
9	Quercus mongolica-dominated temperate deciduous forests at 1000-1500 m (Table 1), both
10	in the Baekdudaegan (IO-1 to IO-5, and IO-7; Fig. 1) and in one of its branches, the so-
11	called "Nakdongjeongmaek" (IO-6 and IO-8; Fig. 1). Although the species is listed as
12	endangered in the Wildlife Protection Act of Korea (Ministry of Environment 2005), it is
13	relatively common along its distributional range, with the number of shoots per
14	population-we use the term "shoot" (see definition below) instead of "individual" because
15	the species can propagate via rhizomes-usually ranging from hundreds to thousands
16	(rarely tens, such as in IO-1 and IO-2; Table 1). The congener Iris rossii has a somewhat
17	wider distribution, occurring in eastern Liaoning Province in northeastern China, in the
18	Korean Peninsula, and in Japan (Zhao et al. 2000). In China, I rossii occurs at low-
19	elevation (ca. 100 m) meadows at forest margins or on sunny hillsides (Zhao et al. 2000).
20	On the Korean Peninsula, I. rossii can occur from low hills (300–500m; Table 1) in the
21	peripheral areas of the Baekdudaegan (under pines and deciduous forests) to the medium-
22	elevation mountains of the main ridge of the Baekdudaegan, under deciduous forests (such
23	as the IR-1 population, located at 980 m; Table 1). Like I. odaesanensis, I. rossii is locally
24	abundant across the Korean Peninsula.

M. Chung et al.

Clonal and genetic structure in two *Iris* species 5

1	The life-history traits and ecology of the two Iris species show some striking
2	differences, such as stoloniferous rhizomes in I. odaesanensis (7-35 cm long) vs. short
3	ones in <i>I. rossii</i> (2–10 cm long), and mat-like shoots within populations of <i>I. odaesanensis</i>
4	vs. a few shoots within populations of <i>I. rossii</i> . Based on these differences, we expect lower
5	clonal (genotypic) diversity in I. odaesanensis compared to I. rossii. Considering that the
6	Baekdudaegan and its adjacent mountain ranges likely harbored multiple, large refugia
7	("macrorefugia") for boreal and temperate plant species during the Pleistocene, then we
8	would find high genetic diversity within populations and low differentiation among
9	populations for both species. To test these predictions, we used allozymes as suitable
10	genetic markers to identify clones and to estimate clonal diversity and levels and
11	partitioning of genetic diversity with a representative sample of populations of the two Iris
12	species.
13	
14	Materials and methods
15	
16	Study plants
17	
18	Inflorescences of <i>I. odaesanensis</i> are 9–13 cm long and bear two white flowers (3–4 cm in
19	diameter) with the outer segments with a central, yellow signal patch. Flowers are open
20	from April to May. Strongly 3-angled fruit (capsule) matures from June to July and is ovoid
21	(2.3–2.7 cm long) at maturity (Zhao et al. 2000; M. Y. Chung and M. G. Chung pers. obs.).
22	Inflorescences of <i>I. rossii</i> , barely emerging above ground, bear violet solitary flowers (3.5-
23	4.0 cm in diameter); flowers are open from April to May, and capsules mature from June to
24	August, being globose at maturity (Zhao et al. 2000; M. Y. Chung and M. G. Chung pers.

M. Chung et al.

1	obs.). The breeding systems and pollinators for the two Iris species are unknown. Many
2	species of Iris are predominantly outcrossers and self-compatible (Kron et al. 1993;
3	Hannan and Orick 2000; Liu et al. 2011), although the species within the section
4	Oncocyclus are known to be self-incompatible (Sapir et al. 2005). Members of Iris are
5	usually pollinated by a variety of bees and flies (Uno 1982; Sutherland 1990; Liu et al.
6	2011; Watts et al. 2013). Whereas gravity (barochory) seems to be a main dispersal
7	mechanism on the terrestrial irises, hydrochory has been described for several Iris species
8	(e.g., I. pseudacorus) occurring on wetlands, floodplains, or riparian plant communities
9	(Whitehead 1971). Both species studied here can also propagate via rhizomes.
10	
11	Population sampling
12	
13	From June to July in 2009, we collected 555 leaf samples from eight populations of <i>I</i> .
14	odaesanensis (IO-1 to IO-8; Table 1 and Fig. 1), and 141 shoots from six populations of I.
15	rossii (IR-1 to IR-6; Table 1 and Fig. 1). As rhizomes of I. odaesanensis are relatively long
16	and branched, we collected leaf samples at 30 cm intervals from mat-like shoots; for <i>I</i> .
17	rossii, we collected samples from all visually identified shoots (except for closely located
18	shoots, for which we collected only one shoot) because many shoots are scattered within
19	the populations. In our study system, a "shoot" is the aerial part of a ramet, as the term
20	"ramet" also includes the rhizome connecting it with other ramets of a given genet (the
21	genetic individual). To minimize the damage to these irises, we collected only one leaf per
22	shoot.
23	

24 Enzyme electrophoresis

M. Chung et al.

PLSY-D-14-00116R1

Clonal and genetic structure in two *Iris* species 7

1

2	Leaf samples were wrapped in damp paper towels, placed in plastic bags, returned to the
3	laboratory, and then stored at 4° C until protein extraction. For extraction, leaf samples
4	were crushed using chilled mortars and pestles by adding a crushing buffer (Mitton et al.
5	1979) and enzyme extracts were absorbed onto paper wicks (Whatman 3MM
6	chromatography paper). We conducted electrophoresis on 13% starch gels, with two buffer
7	systems. We used a modification (Haufler, 1985) of the system 6 of Soltis et al. (1983) to
8	resolve alcohol dehydrogenase (Adh), diaphorase (Dia-1, Dia-2, Dia-3), fluorescent
9	esterase (Fe-1, Fe-2), malic enzyme (Me), phosphoglucoisomerase (Pgi-1, Pgi-2, Pgi-3),
10	phosphoglucomutase (Pgm-1, Pgm-2, Pgm-3), and triosephosphate isomerase (Tpi). We
11	also used the morpholine-citrate buffer system (pH 6.1) of Clayton and Tretiak (1972) to
12	resolve isocitrate dehydrogenase (Idh-1, Idh-2), malate dehydrogenase (Mdh-1, Mdh-2),
13	and 6-phosphogluconate dehydrogenase (6Pgd-1, 6Pgd-2). We followed stain recipes from
14	Soltis et al. (1983) except for diaphorase (Cheliak and Pitel 1984). We designated putative
15	loci sequentially, with the most anodally migrating isozyme designated as 1, the next 2, and
16	so on. We also designated different alleles within each locus sequentially by alphabetical
17	order. The observed enzyme banding patterns were consistent with their typical subunit
18	structure and subcellular compartmentalization in diploid plants (Weeden and Wendel
19	1989).
20	

21 Data analysis

22

To identify clones and to conduct further genetic analyses, we considered a locus to be
polymorphic when two or more alleles were observed, regardless of their frequencies. As

M. Chung et al.

PLSY-D-14-00116R1

multiple ramets (N_T) representing allozyme-based identical multilocus genotypes (MLG) 1 2 could result either from clonal propagation or distinct sexual reproduction events, it is important to discriminate these cases to correctly identify clonal ramets. Using the program 3 GenClone v. 2.0 (Arnaud-Haond and Belkhir 2007), we calculated $P_{\text{gen}}F_{\text{IS}}$, the probability 4 of identical MLG to occur by chance due to sexual reproduction by taking into account 5 6 departures from Hardy-Weinberg (H-W) equilibrium (Parks and Werth 1993; Arnaud-7 Haond et al. 2007). We averaged $P_{\text{gen}}F_{\text{IS}}$ estimates generated from one such value for each MLG in each population, and used a probability $P_{gen} < 0.05$ cut off for the discrimination of 8 ramets versus genets. Under this criterion, we prepared a second data set (N_G) in which all 9 but one clonal ramets per genet were excluded (that is, each distinct MLG was only 10 represented once). 11

Arnaud-Haond et al. (2007) and Becheler et al. (2010) recommend the use of four 12 parameters to describe clonal diversity and distribution: genotypic richness $[R = (N_G - N_G)]$ 13 $1/(N_T-1)$; Dorken and Eckert 2001], the Simpson diversity index (Pielou 1969) of clonal 14 heterogeneity (D, the probability of encountering distinct MLGs when randomly taking two 15 units in a population) and its equitability (ED, Simpson evenness; Hurlbert 1971), and the 16 Pareto index β (Arnaud-Haond et al. 2007). To characterize the genet size ($N_{\rm R}$, the number 17 of ramets belonging to each genet), we fitted a cumulative function of the Pareto 18 distribution to the data following the method described by Arnaud-Haond et al. (2007). 19 This function takes the following form: $N_{\geq X} = a X^{-\beta}$, where $N_{\geq X}$ is the number of genets 20 containing X or more ramets and a is a constant. For each population per species we 21 obtained the shape parameter β by multiplying –1 by the linear regression slope (b_P) of 22 \log_{10} (reverse cumulative frequency of $N_{>X}$) vs. $\log_{10} (X)$, and to check the quality of the 23 Pareto approximation we estimated its associated coefficient of determination (R^2) . To test 24

M. Chung et al.

PLSY	Y-D-	14-00	116R

1	whether each b_P was statistically significant under the null hypothesis ($b_P = 0$), we
2	estimated the 95% confidence intervals (CIs) around b_P using the classical least-squares
3	regression theory. The estimated b_P (and thus, β) was considered significant when its 95%
4	CIs did not overlap zero. Both R and ED influence the Pareto index β value. High R and
5	<i>ED</i> (i.e., clonal ramets all having approximately equal sizes) will result in a high β value (a
6	steep slope), whereas low R and ED (i.e., a skewed clonal distribution with very few, large
7	clonal lineages and many small ones) will result in a shallow slope (a low β value). For all
8	these calculations, we used GenClone v. 2.0 (Arnaud-Haond and Belkhir 2007). Finally, a
9	contingency χ^2 -test was conducted to determine whether distribution of clone sizes was
10	significantly different between populations of each species and between species.
11	Using the trimmed data set excluding replicate clonal ramets ($N_{\rm G}$), we estimated the
12	following genetic diversity parameters using the programs POPGENE (Yeh et al. 1999) and
13	FSTAT (Goudet 1995): percent polymorphic loci (%P), mean number of alleles per locus
14	(A), allelic richness (AR) using a rarefaction method that compensates uneven population

15 sample sizes (Hurlbert 1971; El Mousadik and Petit 1996), observed heterozygosity (H_0),

16 and Nei's (1978) unbiased gene diversity or Hardy-Weinberg (H-W) expected

heterozygosity (*H*_e). Hereafter, the subscript "s" indicates species' (or pooled samples)
values, while the subscript "p" indicates population means.

To test for recent decreases in effective population size (bottlenecks), we evaluated for individual loci the difference between the H-W H_e and the equilibrium heterozygosity (H_{eq}) expected assuming mutation–drift equilibrium. These differences were evaluated using a sign test and a Wilcoxon sign-rank test conducted across loci under an infinite allele model using the program BOTTLENECK (Cornuet and Luikart 1996). Since allelic diversity is generally lost more rapidly than H_e (Nei et al. 1975), recently bottlenecked

M. Chung et al.

Clonal and genetic structure in two Iris species 10

PLSY-D-14-00116R1

1 populations are expected to exhibit an excess of H-W equilibrium H_e relative to H_{eq}

2 (Cornuet and Luikart 1996; Luikart et al. 1998).

We estimated population-level F_{IS} (inbreeding) and calculated its significance level 3 (*P* values) by gene permutation tests (999 replicates) under the null hypothesis ($F_{IS} = 0$) 4 using the program SPAGeDi (Hardy and Vekemans 2002). We also calculated Wright's 5 6 (1965) F_{IS} and F_{ST} over loci following Weir and Cockerham (1984). These fixation indices 7 measure the average deviation from H-W equilibrium of individuals relative to their local populations (F_{IS} , a measure of local inbreeding) and local populations relative to the total 8 population (F_{ST} , also a measure of differentiation between local populations). The 9 significance of multi-population $F_{\rm IS}$ and $F_{\rm ST}$ estimates was determined by a permutation 10 test (999 randomizations of alleles between individuals within samples and 999 11 randomizations of genotypes between populations, respectively). These calculations were 12 performed using FSTAT (Goudet 1995). 13

14 To determine the degree of genetic divergence between populations of each taxon, we calculated Nei's (1978) unbiased genetic identity (I) between pairs of populations. In 15 addition, a UPGMA (unweighted pair-group method using arithmetic averages) phenogram 16 was generated from Nei et al. (1983) genetic distance (D_A) matrix with branch support 17 produced by 1000 bootstrapping over loci, utilizing Populations v. 1.2.30 (Langella 1999) 18 and TreeView v. 1.6 (Page 1996). To grasp the overall pattern of genetic structure at the 19 20 regional scale (i.e., isolation-by-distance effects), we conducted a linear regression analysis between all pairwise $F_{ST}/(1 - F_{ST})$ (F_{ST} was calculated following Weir and Cockerham 21 1984) and the corresponding logarithm of pairwise geographical distances (Rousset 1997). 22 Using the program Permute! (Legendre et al. 1994), we tested a linear regression model 23 using a Mantel test (by making 999 replicates) under the null hypothesis of no spatial 24

M. Chung et al.

PLSY-D-14-00116R1

genetic structure (regression slope, b = 0). To gain insight into the patterns of recent gene 1 2 flow between individual populations, we estimated migration (m) rates using the program BayesAss v. 1.3 (Wilson and Rannala 2003). We ran 3×10^{6} Markov chain Monte Carlo 3 iterations, with a burn-in of 999,999 iterations and a sampling frequency of 2000 by setting 4 delta at 0.15 (the default value). 5 6 7 **Results** 8 Identification of clones 9 10 For I. odaesanensis, 16 (Dia-1, Dia-2, Dia-3, Fe-1, Fe-2, Idh-1, Mdh-1, Mdh-2, Me, 6Pgd-11 1, 6Pgd-2, Pgi-2, Pgi-3, Pgm-2, Pgm-3, and Tpi) of the 20 putative loci were polymorphic 12 across eight populations and consistent with Mendelian inheritance. Populations IO-1 and 13 14 IO-2, composed by one MLG (uniclonal; Table 1), had two heterozygous loci each ('cd' at *Mdh-2* and '*cd*' at *Tpi* for IO-1; '*ab*' at *Dia-1* and '*bd*' at *Idh-1* for IO-2). If sexual 15 reproduction occurred within these populations, then we would expect homozygotes at 16 these loci (formed through recombination). The occurrence of a unique MLG with two 17 heterozygous loci strongly suggests that these two populations consist of single clones (that 18 is, they are likely uniclonal). Except for the two uniclonal populations, the power to 19 20 discriminate clonal genotypes from sexually produced genotypes in the other six (multiclonal) populations was about 1.0 ($P_{gen}F_{IS}$ was 0.008; Table 1). We identified a total 21 of 192 (N_G, the number of individuals excluding clonal ramets) MLG out of 510 total 22 samples $(N_{\rm T})$ across the six multiclonal populations (IO-3 to IO-8; Table 1). 23 For I. rossii, 13 (Adh, Dia-1, Dia-2, Fe-1, Fe-2, Idh-1, Me, 6Pgd-2, Pgi-2, Pgi-3, 24

M. Chung et al.

23

PLSY-D-14-00116R1

1	Pgm-1, Pgm-3, and Tpi) of the 20 putative loci were polymorphic. Accordingly, the power
2	to discriminate clonal genotypes from sexually produced genotypes was also about 1.0
3	(average $P_{\text{gen}}F_{\text{IS}}$ was 0.005; Table 1). Thus, it is safe to consider for all subsequent analyses
4	that ramets sharing identical MLG in a population were members of the same clone. We
5	identified a total of 123 ($N_{\rm G}$) distinct MLG out of 141 total samples ($N_{\rm T}$) across six
6	populations (Table 1). In three populations (IR-1, IR-3, and IR-6) all the individuals
7	showed different (unique) MLG (thus, $N_T = N_G$; Table 1).
8	
9	Clonal diversity (genotypic diversity)
10	
11	Estimates of genotypic richness (R) varied greatly among populations of I. odaesanensis,
12	ranging from 0.000 (IO-1 and IO-2) to 0.504 (IO-8), with a mean of 0.267 (Table 1).
13	Accordingly, Simpson diversity indices (D) were also very variable, ranging from 0.000
14	(IO-1 and IO-2) to 0.976 (IO-8), with a mean of 0.682 (Table 1). All values of the Simpson
15	evenness index (<i>ED</i>) were greater than 0.7, with a mean of 0.877 (Table 1). The log_{10} of the
16	cumulative distribution of ramets among genets was linearly related to the \log_{10} of $N_{\rm R}$ (the
17	genet size), thus supporting the Pareto distribution [index β (-1 × regression slope, b_P)]
18	hypothesis in all the populations ($R^2 = 0.608$ to 0.970, $P < 0.05$). Also, 95% CIs for b_P for
19	the six multiclonal populations did not overlap zero (Table 1). The values of the Pareto
20	index β were highly variable, ranging from 0.246 (IO-7) to 1.009 (IO-4) with a mean of
21	0.669 (Table 1).
22	Estimates of <i>R</i> were high for <i>I. rossii</i> populations, ranging from 0.679 (IR-2) to 1.000

indices (D) were also high, ranging from 0.968 (IR-2) to 1.000 (IR-1, IR-3, and IR-6), with

(IR-1, IR-3, and IR-6), with a mean of 0.878 (Table 1). Accordingly, Simpson diversity

M. Chung et al.

PLSY-D-14-00116R1

1	a mean of 0.989 (Table 1). When applicable, all values of the Simpson evenness index (ED)
2	were greater than 0.6, with a mean of 0.776 (Table 1). The regression slope (b_P) of the \log_{10}
3	of the cumulative distribution of ramets among genets to the \log_{10} of $N_{\rm R}$ was significantly
4	negative in all populations ($R^2 = 0.976$ to 0.999, $P < 0.05$). Also, 95% CIs for b_P did not
5	overlap zero (Table 1). The values of the Pareto index β were high with a mean of 1.825
6	(Table 1). The Mann-Whitney U-test revealed that populations of I. rossii exhibit a
7	significantly higher clonal diversity (β) than those of <i>I. odaesanensis</i> ($U = 18, P < 0.05$).
8	Except for IO-1 and IO-2 populations, the genet size (N_R) was skewed to small
9	genets in <i>I. odaesanensis</i> , and clones ranged in size from one to 39 ramets, with a large
10	majority of genets (139 out of 194) being composed by one or two ramets (Table 2). We
11	found significant differences in the distribution of clone sizes (or number of ramets per
12	genet, Table 2) among the eight populations (contingency χ^2 -test, $\chi^2 = 495.6$, d.f. = 112, <i>P</i>
13	= 0.000). For <i>I. rossii</i> , N_R was highly skewed to small genets, and clones ranged in size
14	from one to four ramets, with most of them (62 out of 75) of just one ramet (Table 2). We
15	found no significant differences in the distribution of clone sizes among the three
16	populations (contingency χ^2 -test, $\chi^2 = 4.939$, d.f. = 6, $P = 0.552$). Finally, we found no
17	significant differences in the distribution of clone sizes between the two studied species
18	(contingency χ^2 -test, $\chi^2 = 22.71$, d.f. = 16, $P = 0.122$).
19	
20	Genetic diversity in Iris odaesanensis and I. rossii

21

The two populations IO-1 and IO-2 consisted of a single genet and had to be excluded from
most statistical analyses to avoid bias (e.g., Gustafson et al. 2013). The rest of the
populations of *Iris odaesanensis* were rich in MLGs, with N_G averaging 24 and ranging

M. Chung et al.

PLSY-D-14-00116R1

from 11 to 62 (Table 1). The uniclonal nature of IO-1 and IO-2 can be easily attributed to 1 2 their very small size (with just a few tens of shoots compared to the thousands of shoots for most of the populations throughout Korea). 3 *Iris odaesanensis* maintained high levels of genetic variation in pooled samples (n =4 192, $%P_s = 80.0$, $A_s = 2.60$, and $H_{es} = 0.176$; Table 3). Lower, but still high, levels of 5 genetic variation were found within populations: average n = 32, $%P_p = 52.5$, AR = 1.57, A_p 6 7 = 1.70, and H_{ep} = 0.158 (Table 3). Comparable levels of genetic variation were found in *I*. *rossii* both at the total sample level and at the population level: n = 123, $\%P_s = 65.0$, $A_s = 65.0$ 8 1.95, and $H_{es} = 0.177$ (Table 3); average n = 21, $\%P_p = 47.5$, AR = 1.52, $A_p = 1.58$, and H_{ep} 9 = 0.150 (Table 3). Among six populations for each species, two populations (IO-7 in *I*. 10 odaesanensis and IR-5 in I. rossii) displayed significant P values for both sign and 11 Wilcoxon sign-rank test (Table 4), suggesting the occurrence of recent bottlenecks in these 12 populations. 13

14

15 Inbreeding and population genetic structure

16

Of the population-level F_{IS} estimates in the six populations of *I. odaesanensis*, three out of 17 five positive values were significant at the 0.05 level ($F_{IS} = 0.141$ to 0.198; Table 3). The 18 significantly negative estimate ($F_{IS} = -0.427$) found in IO-3 is unusual; perhaps may be 19 20 artifact due to small sample size. Multi-population-level F_{IS} was low but significantly positive ($F_{IS} = 0.084$, P = 0.001; Table 3), suggesting an overall deficit of heterozygotes 21 within populations. If we exclude IO-3, multi-population-level $F_{\rm IS}$ rose to 0.188 (P =22 0.001). All but one populations of *I. rossi* showed significantly positive F_{IS} estimates, with 23 a considerably high multi-population-level F_{IS} (0.331). Deviation from H-W expectations 24

M. Chung et al.

PLSY-D-14-00116R1

1 due to allele frequency differences between populations were significantly different from

2 zero and similar between the two species ($F_{ST} = 0.196$ in *I. odaesanensis* and $F_{ST} = 0.189$

3 in *I. rossii*, for both cases P = 0.001).

Nei's (1978) unbiased genetic identity (I) between populations of I. odaesanensis and 4 between populations of *I. rossi* were high [mean $I = 0.943 \pm 0.030$ (SD) and mean I = 0.9585 6 \pm 0.031 (SD), respectively]. These means are comparable to that expected for conspecific 7 plant populations (mean $I = 0.950 \pm 0.059$, n = 1572; van der Bank et al., 2001). The 8 UPGMA phenogram (Fig. 2) revealed no clear genetic patterns between populations of each species in relation to their geographic location. There was no significant positive 9 linear relationship between pairwise $F_{ST}/(1 - F_{ST})$ and logarithm of pairwise linear 10 geographic distances for both *I. odaesanensis* (r = 0.092, P = 0.777) and *I. rossii* (r = -11 0.096, P = 0.724).12

BayesAss results indicated a similar intensity of recent gene flow between species 13 14 (Table 5). For I. odaesanensis, only two out of 30 cases (from IO-4 to IO-7 and from IO-7 to IO-3, Table 5) indicated evidence of recent gene flow between populations [all the other 15 *m* values fell within the confidence intervals (CI) expected in instances where there is no 16 information in the data (95% CI: 1.58×10^{-6} , 0.160; Table 5]. Similarly, there were three 17 cases for *I. rossii* on the basis of this criterion (Table 5). On average, *m* rates between 18 populations of *I. odaesanensis* (n = 30, mean *m* rate = 0.0213) did not significantly differed 19 20 from those between populations of *I. rossii* (n = 30, mean *m* rate = 0.0420; t = -1.181, twosided P-value = 0.242). 21

22

23 Discussion

24

M. Chung et al.

PLSY-D-14-00116R1

- 1 Clonal diversity, inference of seedling recruitment strategy, and inbreeding
- 2

As predicted, our results for clonal diversity are consistent with the life-history traits and 3 ecology of the two Iris species. Levels of clonal diversity found in I. odaesanensis 4 populations were considerably lower—with the only exception of ED (Table 2)—than 5 6 those for *I. rossii*. The Pareto index β is, nevertheless, the best suited for summarizing 7 clonal diversity and for making comparisons among different studies (Arnaud-Haond et al. 2007; Ohsako 2010). The mean value of β (0.668) for *I. odaesanensis* is lower than the 8 mean obtained for 15 populations belonging to 11 terrestrial and marine plant species 9 compiled by Ohsako (2010; $\beta = 0.930$). In contrast, the mean value of β (1.825) for *I. rossii* 10 is considerably higher than the Ohsako's (2010) average. Unlike I. odaesanensis, the high 11 value of β found for *I. rossii* indicates that their populations have a tendency to be formed 12 by several small clones with no large ones (Table 2). 13

14 The architecture and the extent of clonal growth in plant populations have crucial effects on their genetic diversity and demographic structure (Eriksson 1989). The studies of 15 Eriksson (1989, 1993) have demonstrated how genetic diversity is modulated depending on 16 the seedling recruitment strategy of clonal plants. Under the "initial seedling recruitment" 17 (ISR) strategy, no recruitment occurs after the establishment of the initial cohort, which 18 could result in a decrease of genetic diversity over time, and ultimately populations would 19 20 be composed of a small number of large, old, and even-aged clones. At the other extreme, in the "repeated seedling recruitment" (RSR) strategy, a steady recruitment of genets occurs 21 and populations will contain clones of variable age and size, largely maintaining local 22 genetic variability (Eriksson 1989). Because of this linkage between seedling recruitment 23 strategy and clonal structure, it is possible to infer the mode of recruitment of a given 24

M. Chung et al.

PLSY-D-14-00116R1

1	species (Parker and Hamrick 1992; Kudoh et al. 1999). Except for IO-1 and IO-2 of <i>I</i> .
2	odaesanensis, the skewed distribution of ramet numbers per genet (with a clear
3	predominance of small clones; Table 2) suggests RSR as the main recruitment strategy
4	operating within the multiclonal populations of the two Iris species. Obviously, the IO-1
5	and IO-2 populations fit better the ISR model.
6	In I. odaesanensis, we found a low but significant deficit of heterozygotes in three
7	populations, with a multi-population-level F_{IS} of 0.084, suggesting a predominantly
8	outcrossing breeding system for this species. For I. rossii, the higher value of multi-
9	population-level F_{IS} (0.331) suggests, instead, a mixed mating system. Factors such as
10	biparental inbreeding (mating with relatives), Wahlund effect (population subdivision) or
11	geitonogamous selfing between clonal ramets (if the species are self-compatible) might
12	account for the observed heterozygote deficiency at several populations of both species.
13	
14	Genetic diversity in Iris odaesanensis and I. rossii: the role of the Baekdudaegan as glacial
15	refugium for boreal and temperate species
16	
17	As predicted, populations of I. odaesanensis and I. rossii maintain substantial levels of
18	genetic variation. Within-population genetic estimates are higher than those averaged for

19 populations of short-lived herbaceous perennials, plants with a narrow distribution, plants

20 with outcrossing-animal breeding system, rare plants in the southeastern United States,

endemic plants, and all plants (Table 6). Also, as predicted, populations of *I. odaesanensis*

and *I. rossii* exhibit a moderate degree of among-population genetic differentiation,

comparable to those averaged for plant species with the traits mentioned above (Table 6).

24 The mean migration rates (m) for I. odaesanensis (0.0213) and I. rossii (0.0420) are

M. Chung et al.

PLSY-D-14-00116R1

comparable or higher to the average for other plant species occurring in northeastern Asia
(*m* = 0.0209 averaged from 15 entries; M. Y. Chung et al. unpubl. data), which indicates
that gene flow between populations is also occurring at a moderate scale at present (and
perhaps during glacial times).

It is worth noting that levels of genetic diversity found in *I. odaesanensis* and *I. rossii* 5 6 both at the population and the species levels are similar to those reported for the congeneric 7 *I. cristata*, a widespread species of unglaciated regions of the southeastern United States primarily distributed in the southern Appalachians (Table 6). However, the considerably 8 low degree of among-population differentiation exhibited by *I. cristata* ($F_{ST} = 0.018$) might 9 be ascribed to exclusion of two variable loci (6Pgd and Mdh) for the calculation of this 10 parameter, due to difficulty of interpretation of the banding patterns for these loci (Hannan 11 and Orick 2000). A complete lack of allozyme variation in 18 isozyme loci was found for 12 the range-restricted *I. lacustris* which occurs on LGM-glaciated habitats of Great Lakes 13 14 shorelines (Hannan and Orick 2000). Assuming that they have similar breeding systems, any contrasting difference in the genetic diversity patterns between these two North 15 American Iris species would be attributable to population history (that is, long-term 16 population stability due to survival in the Appalachian glacial refugium for *I. cristata* vs. a 17 dynamics of population extinction and recolonization for *I. lacustris*) in addition to the 18 marked difference in geographic range. 19

The high levels of genetic diversity and the moderate levels of genetic differentiation among populations of *I. odaesanensis* and *I. rossii* are in agreement with Chung et al. (2012, 2013a,b, 2014) hypothesis that the Baekdudaegan mountain range harbored important refugial areas for boreal and temperate vegetation during the LGM. If we compile all the species studied with allozymes whose distribution in Korea is mostly centered in the

M. Chung et al.

PLSY-D-14-00116R1

Baekdudaegan (Table 6), then a common pattern consisting of high within-population and 1 2 low among-population genetic variability is envisaged, with a very few exceptions. Only two species from this list have values of H_{ep} below 0.100, and only one is clearly 3 genetically depauperate (Leontice microrhyncha; Table 6), although it should be taken into 4 account that this species is autogamous (Chang et al. 2004). A series of features of the 5 6 Baekdudaegan should have enhanced its role as a Quaternary refugium, with its topography 7 playing a central role. First, the north-south orientation of the Baekdudaegan favored latitudinal migrations of plants to track the climate shifts (Hewitt 2000); second, its 8 relatively wide altitudinal gradient-of up to 2000 m-allowed altitudinal migrations to 9 track warm interglacials/cold glacials (Hewitt 2000; Nieto Feliner 2011); third, its marked 10 ruggedness (with numerous valleys, ravines, canyons and gorges) would have provided 11 many sheltered habitats from the cold winds (Birks and Willis 2008; Kaltenrieder et al. 12 2009). The more or less continuous supply of moisture even during the LGM (due to the 13 14 orographic rain and also to the close proximity to the East Sea/Sea of Japan), and the fact that the Baekdudaegan remained nearly totally unglaciated even during the coldest episodes 15 of the Pleistocene were also key factors for the species persistence along the Quaternary. 16 The Baekdudaegan may constitute a sort of 'eastern counterpart' of the southern 17 Appalachians on the basis of its role as Quaternary refugium for boreal and temperate 18 plants. The southern Appalachians have been considered as a prime refugial area for the 19 20 flora of North America, capable to sustain a rich assemblage of boreal and temperate forests even during the coldest periods of the Pleistocene (Delcourt and Delcourt 1981; 21 Graham 1999; Williams et al. 2000; Soltis et al. 2006; Prentice et al. 2011). This mountain 22 range approximately runs north to south in an analogous way to the Baekdudaegan, with a 23 similar floristic richness [ca. 1,400 taxa (Highlands Biological Station 2013) versus over 24

M. Chung et al.

1	1,500 for the Baekdudaegan (Lim 2003)], length (ca. 1,500 km), and average elevation. As
2	for the Baekdudaegan, the Appalachians are also a "hotspot" of genetic diversity, with
3	several examples of high levels of genetic diversity in the Appalachians compared to more
4	northern conspecific or congeneric populations (e.g., Broyles 1998; Hannan and Orick,
5	2000). Moreover, the meta-analysis of Godt and Hamrick (2001), although not exclusively
6	circumscribed to the Appalachians, constitutes another proof of the role of these North
7	American mountains as a refuge of genetic diversity.
8	
9	Acknowledgments We thank Beom Jin Shim and Myeong Soon Park for laboratory
10	assistances; Dr. Yeon Bong Gu for helping us in locating populations of Iris odaesanensis.
11	This research was supported in part by the National Institute of Biological Resources,
12	Republic of Korea to M.G. C. and Basic Science Program through the National Research
13	Foundation of Korea (NRF-2013R1A1A3010892) funded by the Ministry of Education,

M. Chung et al.

PLSY-D-14-00116R1

1 **References**

2	Adams JM, Faure H (1997) Review and atlas of palaeovegetation: preliminary land
3	ecosystem maps of the world since the Last Glacial Maximum. Oak Ridge National
4	Laboratory, Oak Ridge, Tennessee <u>http://www.esd.ornl.gov/projects/qen/adams1.html</u> .
5	Accessed 23 June 2013
6	Arnaud-Haond S, Belkhir K (2007) GENCLONE: A computer program to analyze
7	genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol
8	Notes 7:15–17
9	Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to
10	address clonality in population studies. Mol Ecol 16:5115-5139
11	Becheler R, Diekmann O, Hily C, Moalic Y, Arnaud-Haond S (2010) The concept of
12	population in clonal organisms: mosaics of temporally colonized patches are forming
13	highly diverse meadows of Zostera marina in Brittany. Mol Ecol 19:2394–2407
14	Birks HJB, Willis KJ (2008) Alpines, trees, and refugia in Europe. Plant Ecol Divers
15	1:147–160
16	Broyles SB (1998) Postglacial migration and the loss of allozyme variation in northern
17	populations of Asclepias exaltata (Asclepiadaceae). Am J Bot 85:1091-1097
18	Chang C-S, Kim H, Park T-Y (2003) Patterns of allozyme diversity in several selected rare
19	species in Korea and implications for conservation. Biodivers Conserv 12:529-544
20	Chang C-S, Kim H, Park T-Y, Maunder M (2004) Low levels of genetic variation
21	among southern peripheral populations of the threatened herb, Leontice
22	microrhyncha (Berberidaceae) in Korea. Biol Conserv 119:387-396

M. Chung et al.

1	Cheliak WM, Pitel JP (1984) Technique for starch gel electrophoresis of enzyme from
2	forest tree species. Information Report PI-X-42. Petawawa National Forestry
3	Institute, Agriculture Canada, Canadian Forestry Service, Chalk River
4	Choi K-R (1998) The post-glacial vegetation history of the lowland in Korean Peninsula.
5	Korean J Ecol 21:169–174
6	Choi Y-K (2004) Baekdudaegan, the central axis of the Korean Peninsula – the path toward
7	management strategies regarding to its concepts. In: Hong SK, Lee JA, Ihm B-S,
8	Farina A, Son Y., Kim E-S, Choe JC (eds) Ecological issues in a changing world –
9	Status, response and strategy. Kluwer Academic Publishers, Dordrecht, pp 355-384
10	Chung C-H, Lim HS, Yoon HI (2006) Vegetation and climate changes during the
11	Late Pleistocene to Holocene inferred from pollen record in Jinju area, South Korea.
12	Geosci J 10:423–431
13	Chung JM, Park KW, Park C-S, Lee S-H, Chung MG, Chung MY (2009)
14	Contrasting levels of genetic diversity between the historically rare orchid
15	Cypripedium japonicum and the historically common orchid Cypripedium
16	macranthos in South Korea. Bot J Linn Soc 160:119-129
17	Chung MG, Epperson BK (1999) Spatial genetic structure of clonal and sexual
18	reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution
19	53:1068–1078
20	Chung MG, Chung MY, Epperson BK (2001) Conservation genetics of an
21	endangered herb, Hanabusaya asiatica (Campanulaceae). Plant Biol 3:42-49
22	Chung MG, Oh GS, Chung JM (1999) Allozyme variation in Korean populations of Taxus
23	cuspidata (Taxaceae). Scand J For Res 14:103–110
24	Chung MY, Chung JM, López-Pujol J, Park SJ, Chung MG (2013a) Genetic diversity in

M. Chung et al.

1	three species of Forsythia (Oleaceae) endemic to Korea: Implications for
2	population history, taxonomy, and conservation. Biochem Syst Ecol 47:80-92
3	Chung MY, Chung MG, López-Pujol J, Ren M-X, Zhang Z-Y, Park SJ (2014) Were the
4	main mountain ranges in the Korean Peninsula a glacial refugium for plants? Insights
5	from the congeneric pair Lilium cernuum – Lilium amabile. Biochem Syst Ecol
6	53:36-45
7	Chung MY, López-Pujol J, Maki M, Kim K-J, Chung JM, Sun B-Y, Chung MG (2012)
8	Genetic diversity in the common terrestrial orchid Oreorchis patens and its are
9	congener Oreorchis coreana: inference of species evolutionary history and
10	implications for conservation. J Hered 103:692-702
11	Chung MY, Moon M-O, López-Pujol J, Chung JM, Chung MG (2013b) Genetic diversity
12	in the two endangered endemic species Kirengesshoma koreana (Hydrangeaceae)
13	and Parasenecio pseudotaimingasa (Asteraceae) from Korea: Insights into
14	population history and implications for conservation. Biochem Syst Ecol 51:60-69
15	Clayton JW, Tretiak DN (1972) Amine citrate buffers for pH control in starch gel
16	electrophoresis. J Fish Res Board Can 29:1169–1172
17	Cornuet JM, Luikart G. (1996) Description and power analysis of two tests for detecting
18	recent population bottlenecks from allele frequency data. Genetics 144:2001–2014
19	Delcourt HR, Delcourt PA (1991) Quaternary ecology: a paleoecological perspective.
20	Chapman & Hall, New York
21	Dorken ME, Eckert CG. (2001) Severely reduced sexual reproduction in northern
22	populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339-350
23	El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic
24	richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic

M. Chung et al.

1	to Morocco. Theor Appl Genet 92:832–839
2	Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231-
3	238.
4	Eriksson O (1993) Dynamics of genets in clonal plants. Trends Ecol Evol 8:313-316
5	Godt MJW, Hamrick JL (1998a) Allozyme diversity in the endangered pitcher plant
6	Sarracenia rubra ssp. alabamensis (Sarraceniaceae) and its close relative S. rubra
7	ssp. <i>rubra</i> . Am J Bot 85:802–810
8	Godt M JW, Hamrick JL (1998b) Allozyme diversity in the grasses. In: Cheplick GP (ed)
9	Population biology in grasses. Cambridge University Press, Cambridge, pp 11-29
10	Godt MJW, Hamrick JL (2001) Genetic diversity in rare southeastern plants. Nat Areas J
11	21:61–70.
12	Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. J
13	Hered 86:485–486
14	Graham A (1999) Late Cretaceous and Cenozoic history of North American vegetation,
15	north of Mexico. Oxford University Press, New York
16	Gustafson DJ, Guiunta AP, Echt CS (2013) Extensive clonbal growth and biased sex ratios
17	of an endangered dioecious shrub, Lindera melissifolia (Walt) Blume (Lauraceae). J
18	Torrey Bot Soc 140:133–144
19	Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg
20	MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic
21	resources. Sinauer Associates, Sunderland, Massachusetts, pp 43-63
22	Hannan GL, Orick MW (2000) Isozyme diversity in Iris cristata and the threatened glacial
23	endemic I. lacustris (Iridaceae). Am J Bot 87:293-301
24	Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze

M. Chung et al.

1	spatial genetic structure at the individual or population level. Mol Ecol Notes 2:618-
2	620
3	Harrison SP, Yu G, Takahara H, Prentice IC (2001) Diversity of temperate plants in east
4	Asia. Nature 413:129–130
5	Haufler CH (1985) Enzyme variability and modes of evolution in <i>Bommeria</i> (Pteridaceae).
6	Syst Bot 10:92–104
7	Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907-913
8	Highlands Biological Station (2013) Biodiversity of the Southern Appalachians.
9	http://highlandsbiological.org/nature-center/biodiversity-of-the-southern-
10	appalachians/. Accessed 5 December 2013
11	Hope G, Kershaw AP, van der Kaars S et al (2004) History of vegetation and habitat change
12	in the Austral-Asian region. Quatern Int 118–119:103–126
13	Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative
14	parameters. Ecology 52: 77–586
15	Jeong JH, Kim EH, Guo W, Yoo KO, Jo DK, Kim ZS (2010) Genetic diversity and
16	structure of the endangered species Megaleranthis saniculifolia in Korea as revealed
17	by allozyme and ISSR markers. Plant Syst Evol 289:67–76
18	Kaltenrieder P, Belis CA, Hofstetter S, Ammann B, Ravazzi C, Tinner W (2009)
19	Environmental and climatic conditions at a potential Glacial refugial site of tree
20	species near the Southern Alpine glaciers. New insights from multiproxy sedimentary
21	studies at Lago della Costa (Euganean Hills, Northeastern Italy). Quatern Sci Rev
22	28:2647–2662
23	Kim ZS, Lee SW, Lim JH, Hwang JW, Kwon KW (1994) Genetic diversity and structure of
24	natural populations of Pinus koraiensis (Sieb. et Zucc.) in Korea. For Genet 1:41-49

M. Chung et al.

1	Kim ZS, Hwang JW, Lee SW, Yang C, Gorovoy PG (2005) Genetic variation of Korean
2	pine (Pinus koraiensis Sieb. et Zucc.) at allozyme and RAPD markers in Korea,
3	China and Russia. Silvae Genet 54:235–246
4	Kong W-S, Watts D (1993) The plant geography of Korea with an emphasis on the alpine
5	zones. Kluwer Academic Publishers, Dordrecht
6	Kron P, Stewart S, Back A (1993) Self-compatibility, autonomous self-pollination, and
7	insect-mediated pollination in the clonal species Iris versicolor. Can J Bot 71:1503-
8	1509
9	Kudoh H, Shibaike H, Takasu H, Whigham DF, Kawano S (1999) Genet structure and
10	determinants of clonal structure in a temperate deciduous woodland herb, Uvularia
11	perfoliata. J Ecol 87:244–257
12	Langella O (1999) Populations 1.2.30 [computer program].
13	http://bioinformatics.org/~tryphon/populations/. Accessed 5 March 2013
14	Legendre P, Lapointe F-J, Casgrain P (1994) Modeling brain evolution from behavior: a
15	permutational regression approach. Evolution 48:1487-1499
16	Lim D-O (2003) Vascular plants of mountain ridge from Cheonwangbong-Hyangjeokbong
17	section in the Baekdudaegan. Korean J Environ Ecol 16:359-386 (In Korean with
18	English abstract)
19	Liu Z-C, Jiao Z-J, Dong X-S, Dai J-X (2011) Floral syndrome and breeding system of Iris
20	tectorum. Acta Hortic Sin 38:1333–1340 (in Chinese with English abstract)
21	Luikart G,Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency
22	distributions provides a test for recent population bottlenecks. J Hered 89:238-247
23	Ministry of Environment (2005) Wildlife protection act. Ministry of Environment,
24	Gwacheon (in Korean)

M. Chung et al.

1	Mitton JB, Linhart YB, Sturgeon KB, Hamrick JL (1979) Allozyme polymorphisms
2	detected in mature needle tissue of ponderosa pine. J Hered 70:86-89
3	Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci
4	USA 70:3321–3323
5	Nei M (1978) Estimation of average heterozygosity and genetic distance from a small
6	number of individuals. Genetics 89:583-590
7	Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in
8	populations. Evolution 29:1–10
9	Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from
10	molecular data. II. Gene frequency data. J Mol Evol 19:153-170
11	Nieto Feliner G (2011) Southern European glacial refugia: A tale of tales. Taxon 60:365-
12	372
13	Ohsako T (2010) Clonal and spatial genetic structure within populations of a coastal plant,
14	Carex kobomugi (Cyperaceae). Am J Bot 97:458–470
15	Page RDM (1996) TreeView: an application to display phylogenetic trees on personal
16	computers. Comput Appl Biosci 12:357–358
17	Parker KC, Hamrick JL (1992) Genetic diversity and clonal structure in a columnar cactus,
18	Lophocereus schottii. Am J Bot 79:86–96
19	Parks JC, Werth CR (1993) A study of spatial features of clones in a population of bracken
20	fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537-544
21	Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New
22	York
23	Prentice IC, Harrison SP, Bartlein PJ (2011) Global vegetation and terrestrial carbon cycle
24	changes after the last ice age. New Phytol 189:988-998

M. Chung et al.

PLSY-	D-1	4-0	011	6R1

1	Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics
2	under isolation by distance. Genetics 145:1219–1228

- 3 Rull V (2009) Microrefugia. J Biogeogr 36:481–484
- Sapir Y, Shmida A, Ne'eman G (2005) Pollination of *Oncocyclus* irises (*Iris*: Iridaceae) by
 night-sheltering male bees. Plant Biol 7:417–424
- 5 night-sheltering male bees. Plant Biol 7:417–424
- 6 Simonich MT, Morgan MD (1994) Allozymic uniformity in *Iris lacustris* (dwarf lake iris)
 7 in Wisconsin. Can J Bot 72:1720–1722

8 Soltis DE, Haufler CH, Darrow DC, Gastony GJ (1983) Starch gel electrophoresis of ferns:

9 a compilation of grinding buffers, gel and electrode buffers, and staining schedules.

10 Am Fern J 73:9–27

11 Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative

12 phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

13 Stone JL, Crystal PA, Devlin EE, LeB Downer RH, Cameron DS (2012) Highest genetic

- diversity at the northern range limit of the rare orchid *Isotria medeoloides*. Heredity
 109:215–221
- Sutherland WJ (1990) Biological flora of the British Isles: *Iris pseudacorus* L. J Ecol
 78:833–848
- 18 Uno GE (1982) The influence of pollinators on the breeding system of *Iris douglasiana*.

19 Am Midl Nat 108:149–158

20 van der Bank H, van der Bank M, van Wyk B-E (2001) A review of the use of allozyme

- electrophoresis in plant systematic. Biochem Syst Ecol 29:469–483
- Wang Z-F, Hamrick JL, Godt MJW (2004) High genetic diversity in *Sarracenia leucophylla* (Sarraceniaceae), a carnivorous wetland herb. J Hered 95:234–243
- 24 Watts S, Sapir Y, Segal B, Dafni, A (2013) The endangered Iris atropurpurea (Iridaceae) in

M. Chung et al.

PLSY-D-14-00116R1

1	Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators.
2	Ann Bot 111:395–407
3	Weeden NF, Wendel JF (1989) Genetics of plant isozymes. In: Soltis DE, Soltis PS (eds)
4	Isozymes in plant biology. Dioscorides Press, Portland, Oregon, pp 46-72
5	Weir BS, CC Cockerham (1984) Estimating F-statistics for the analysis of population
6	structure. Evolution 38:1358–1370
7	Whitehead FH (1971) Comparative autecology as a guide to plant distribution. In: Duffey
8	EO, Watt AS (eds) The scientific management of animal and plant communities for
9	conservation: Proceedings of the 11th Symposium of the British Ecological Society,
10	1970 July 7-9. Blackwell Scientific Publications, Norwich, pp 167–176
11	Williams JW, Web T III, Richard PH, Newby P (2000) Late Quaternary biomes of Canada
12	and the eastern United States. J Biogeogr 27:585-607
13	Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using
14	multilocus genotypes. Genetics 163:1177–1191
15	Wright S (1965) The interpretation of population structure by F -statistics with special
16	regard to systems of mating. Evolution 19:395-420
17	Yeh FC, Yang RC, Boyle TBJ (1999) POPGENE version 1.32, Microsoft Window-based
18	free ware for population genetic analysis. http://www.ualberta.ca/~fyeh/index.htm.
19	Accessed 14 March 2013
20	Zhao Y, Noltie HJ, Mathew B (2000) Iridaceae. In: Wu ZY, Raven PH, Hong DY (eds)
21	Flora of China, vol. 24 (Flagellariaceae through Marantaceae). Science Press, Beijing
22	and Missouri Botanical Garden Press, St. Louis, pp 297-313
23	Zheng YQ, QianZC, He HR, Liu HP, Zeng XM, Yu G (2007) Simulations of water resource
24	environmental changes in China during the last 20,000 years by a regional climate

M. Chung et al.

1

PLSY-D-14-00116R1

Clonal and genetic structure in two Iris species 30

model. Glob Planet Chang 55:284-300

M. Chung et al.

PLSY-D-14-00116R1

1 Table 1 Summary of clonal diversity measures observed in eight populations of *Iris*

Species	Area	Altitude								
Population	(m ²)	(m)	N_{T}	$N_{\rm G}$	$P_{\rm gen}F_{\rm IS}$	R	D	ED	β (95% CIs for $b_{\rm P}^{\rm a}$)	R^2
Iris odaesane	nsis									
IO-1	2×5	540	29	1	0.923	0.000	0.000	na	na	na
IO-2	1×3	1180	16	1	0.887	0.000	0.000	na	na	na
IO-3	10 imes 20	1012	65	11	0.010	0.156	0.853	0.890	0.383 (-0.691, -0.076)	0.608
IO-4	10×20	1280	66	32	0.004	0.477	0.945	0.927	1.009 (-1.623, -0.395)	0.839
IO-5	20×20	1480	93	37	0.001	0.391	0.932	0.855	0.516 (-0.606, -0.426)	0.970
IO-6	5×20	980	75	31	0.011	0.405	0.961	0.942	0.974 (-1.437, -0.510)	0.853
IO-7	20×20	1390	89	19	0.007	0.205	0.791	0.717	0.246 (-0.341, -0.151)	0.870
IO-8	30×70	401	122	62	0.017	0.504	0.976	0.932	0.887 (-1.185, -0.588)	0.898
Average			69	24	0.008 ^b	0.267	0.682	0.877	0.669	
Iris rossii										
IR-1	20×20	980	23	23	na	1.000	1.000	na	na	na
IR-2	20×20	480	29	20	0.005	0.679	0.968	0.932	1.418 (-2.214, -0.623)	0.976
IR-3	30×30	319	9	9	na	1.000	1.000	na	na	na
IR-4	20×20	385	31	27	0.010	0.867	0.989	0.649	2.128 (-2.319, -1.937)	0.999
IR-5	50×20	380	33	28	0.002	0.844	0.989	0.747	1.930 (-3.053, -0.816)	0.998
IR-6	20×20	390	16	16	na	1.000	1.000	na	na	na
Average			24	20	0.005	0.878	0 980	0 776	1 825	

2 odaesanensis and six populations of I. rossii

3 $N_{\rm T}$, the total number of ramets sampled; $N_{\rm G}$, the number of genets; $P_{\rm gen} F_{\rm IS}$, probability of 4 the identical multilocus genotypes (MLG) occurring by chance due to sexual reproduction 5 by taking into account departures from Hardy-Weinberg (H-W) equilibrium; R, genotypic 6 richness; D, Simpson diversity index of clonal heterogeneity; ED, Simpson evenness index; 7 β , the Pareto index describing the Pareto distribution ($\beta = -1 \times b_P$); b_P , the linear regression 8 slope between \log_{10} (reverse cumulative frequency of the number of genets containing X or 9 more ramets, $N_{\geq X}$) on \log_{10} (number of replicates, X); 95% CIs, 95% confidence intervals; M. Chung et al.

Clonal and genetic structure in two *Iris* species 32

- 1 R^2 , square of correlation coefficient of each b_{P} ; and na, not applicable
- 2 ^a All b_P indicated significance with P < 0.05
- ^b Mean from six populations (from IO-3 to IO-8)

M. Chung et al.

Clonal and genetic structure in two Iris species 33

PLSY-D-14-00116R1

- 1 **Table 2** Distribution of clones found in eight populations of *Iris odaesanensis* and three
- 2 populations of *I. rossii*. The other three populations of *I. rossii* (IR-1, IR-3, and IR-6) are
- 3 not included here because they show $N_{\rm T} = N_{\rm G}$

Species/population	Number	of ram	iets pei	r genet	t ($N_{\rm R}$)												
	1	2	3	4	5	6	7	8	9	11	12	14	15	16	19	29	39	$N_{\rm G}$
Iris odaesanensis																		
IO-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
IO-2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
IO-3	3	2	0	1	1	0	0	0	1	1	0	1	1	0	0	0	0	11
IO-4	20	1	5	4	0	1	1	0	0	0	0	0	0	0	0	0	0	32
IO-5	22	8	1	1	2	0	0	1	0	1	0	0	0	0	1	0	0	37
IO-6	14	7	2	4	2	1	0	0	1	0	0	0	0	0	0	0	0	31
IO-7	8	2	1	3	2	1	1	0	0	0	0	0	0	0	0	0	1	19
IO-8	40	12	1	2	2	3	1	0	0	0	1	0	0	0	0	0	0	62
Average	18	5	2	3	2	1	1	0	0	0	0	0	0	0	0	0	0	32
Total	107	32	10	15	9	6	3	1	2	2	1	1	1	1	1	1	1	194
Iris rossii																		
IR-2	14	4	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	20
IR-4	24	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	27
IR-5	24	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	28
Average	21	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25
Total	62	9	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	75

4

M. Chung et al.

PLSY-D-14-00116R1

- 1 **Table 3** Levels of genetic diversity in six populations of *Iris odaesanensis* and in six
- 2 populations of *I. rossii* in South Korea. Note that the two uniclonal populations IO-1 and
- 3 IO-2 are excluded from data analysis

Species/		0/D	4 D	4			F	
population	N _G	%0P	AK	A	H_0 (SE)	$H_{\rm e}(\rm SE)$	TIS	
Iris odaesanensis								
IO-3	11	40.0	1.50	1.50	0.264 (0.078)	0.166 (0.052)	-0.427^{a}	
IO-4	32	55.0	1.58	1.75	0.127 (0.047)	0.147 (0.047)	0.141 ^a	
IO-5	37	60.0	1.59	1.70	0.157 (0.040)	0.167 (0.040)	0.061	
IO-6	31	45.0	1.55	1.70	0.107 (0.042)	0.133 (0.046)	0.198 ^a	
IO-7	19	50.0	1.67	1.70	0.203 (0.052)	0.215 (0.055)	0.057	
IO-8	62	65.0	1.55	1.85	0.102 (0.028)	0.120 (0.038)	0.145 ^a	
Average	32	52.5	1.57	1.70	0.160 (0.026)	0.158 (0.013)	0.084^{b}	
Pooled samples	192	80.0		2.60		0.176 (0.025)		
Iris rossii								
IR-1	23	50.0	1.48	1.55	0.141 (0.045)	0.143 (0.039)	0.015	
IR-2	20	45.0	1.48	1.55	0.100 (0.032)	0.127 (0.042)	0.211 ^a	
IR-3	9	45.0	1.65	1.65	0.100 (0.031)	0.178 (0.049)	0.438 ^a	
IR-4	27	50.0	1.45	1.55	0.102 (0.036)	0.132 (0.042)	0.226 ^a	
IR-5	28	50.0	1.56	1.60	0.075 (0.021)	0.184 (0.047)	0.592 ^a	
IR-6	16	45.0	1.48	1.60	0.078 (0.029)	0.137 (0.047)	0.427 ^a	
Average	21	47.5	1.52	1.58	0.099 (0.010)	0.150 (0.010)	0.331 ^b	
Pooled samples	123	65.0		1.95		0.177 (0.026)		

4 %*P* percentage of polymorphic loci, *AR* mean allelic richness (adjusted for a sample size of

5 11 and nine individuals for *I. odaesanensis* and *I. rossii*, respectively), *A* mean number of

6 alleles per locus, H_0 observed heterozygosity, H_e H-W expected heterozygosity or genetic

7 diversity, SE standard error, F_{1s} fixation index within populations

^a Significance (P < 0.05) based on permutation (999 replicates) under the null hypothesis of

9 $F_{\rm IS} = 0$

M. Chung et al.

Clonal and genetic structure in two Iris species 35

PLSY-D-14-00116R1

^b Significant (at the 0.05 level) Weir and Cockerham (1984) estimate of F_{IS} over populations

M. Chung et al.

PLSY-D-14-00116R1

- 1 Table 4 Results of statistical tests for evidence of recent population bottlenecks in Iris
- 2 *odaesanensis* and *I. rossii*

Species/population	Sign test	Wilcoxon sign-rank test
Iris odaesanensis		
IO-3	0.258	0.125
IO-4	0.159	0.711
IO-5	0.321	0.285
IO-6	0.162	0.715
IO-7	0.011	0.007
IO-8	0.102	0.966
Iris rossii		
IR-1	0.497	0.385
IR-2	0.369	0.787
IR-3	0.193	0.990
IR-4	0.536	0.539
IR-5	0.040	0.053
IR-6	0.515	0.715

3 Tests were not conducted in two uniclonal populations of *I. odaesanensis* (IO-1 and IO-2).

4 Numbers reported are *P* values of sign and Wilcoxon sign-rank tests conducted using the

5 program BOTTLENECK, and significant *P* values (at the 0.05 level) are boldfaced

M. Chung et al.

Clonal and genetic structure in two Iris species 37

- 1 **Table 5** Mean value of the posterior distribution of the recent migration rates (m) of each
- 2 Iris odaesanensis and I. rossii population pairs estimated from allozyme data using the
- 3 BayesAss program. Note that values on the diagonal in bold underlined are the proportions
- 4 of individuals derived from source populations. Values higher than 0.160 (the 95% CI
- 5 upper limit) are presented in bold.

Iris odaesanensis						
	From					
То	IO-3	IO-4	IO-5	IO-6	IO-7	IO-8
IO-3	0.6926	0.0129	0.0130	0.0122	0.2569	0.0123
IO-4	0.0023	<u>0.9826</u>	0.0033	0.0029	0.0026	0.0061
IO-5	0.0020	0.0026	0.9882	0.0024	0.0022	0.0025
IO-6	0.0023	0.0027	0.0027	<u>0.9857</u>	0.0023	0.0043
IO-7	0.0072	0.2106	0.0155	0.0140	<u>0.7380</u>	0.0147
IO-8	0.0017	0.0135	0.0063	0.0023	0.0023	<u>0.9740</u>

Iris rossii						
	From					
То	IR-1	IR-2	IR-3	IR-4	IR-5	IR-6
IR-1	<u>0.6800</u>	0.0061	0.0067	0.2928	0.0071	0.0072
IR-2	0.0080	<u>0.6819</u>	0.2408	0.0389	0.0154	0.0150
IR-3	0.0170	0.0145	<u>0.7516</u>	0.1754	0.0194	0.0222
IR-4	0.0026	0.0028	0.0026	<u>0.9858</u>	0.0028	0.0035
IR-5	0.0053	0.0052	0.0056	0.1463	<u>0.8306</u>	0.0071
IR-6	0.0090	0.0080	0.0093	0.1469	0.0166	<u>0.8104</u>

M. Chung et al.

Clonal and genetic structure in two Iris species 38

PLSY-D-14-00116R1

- 1 **Table 6** Comparisons of allozyme-based genetic diversity and genetic differentiation $[F_{ST}]$
- 2 or Nei's (1973) G_{ST}] between *Iris odaesanensis*, species occurring mainly on the
- 3 Baekdudaegan^a (Fig. 1), and species having similar life history traits. This table was
- 4 modified from table 3 of Chung et al. (2014)

		Ecol. affinity ^b /							F _{ST} or	
Species	Family	Range ^c	%P _s	%P _p	$A_{\rm s}$	$A_{\rm p}$	$H_{\rm es}$	$H_{\rm ep}$	$G_{\rm ST}$	Ref. ^d
Species occurring mainly in the B	aekdudaegan									
Adenophora grandiflora	Campanulaceae	B/KE	62.5	59.4	2.88	2.56	0.266	0.259	0.027	1
Bupleurum euphorbioides	Apiaceae	B/NEC, K	58.8	46.1	2.24	1.64	0.151	na	0.297	2
Cypripedium macranthos	Orchidaceae	B/C, J, K, R	71.4	46.7	1.79	1.47	0.291	0.185	0.077	3
Forsythia ovata	Oleaceae	T/KE	71.4	48.6	2.07	1.63	0.220	0.200	0.144	4
Hanabusaya asiatica	Campanulaceae	T/KE	76.9	67.7	2.77	2.06	0.217	0.182	0.132	5
Iris odaesanensis	Iridaceae	B/NEC, K	80.0	52.5	2.60	1.70	0.176	0.158	0.196	6
Iris rossii	Iridaceae	T/NEC, J, K	65.0	47.5	1.95	1.58	0.177	0.150	0.189	6
Leontice microryncha	Berberidaceae	B/NEC, K	35.7	10.1	1.50	1.10	0.120	0.022	0.627	7
Lilium cernuum	Liliaceae	B/NEC, K, RFE	71.4	49.1	2.29	1.71	0.178	0.159	0.119	8
Megaleranthis saniculifolia	Ranunculaceae	T/KE	78.6	31.6	2.57	1.40	0.151	0.083	0.450	9
Oreorchis patens	Orchidaceae	B/C, J, K, RFE	76.5	62.8	2.53	1.96	0.258	0.236	0.075	10
Parasenecio pseudotaimingasa	Asteraceae	T/KE	66.7	40.2	1.92	1.61	0.157	0.120	0.215	11
Pinus koraiensis	Pinaceae	B/NEC, J, K, RFE	na	45.8	na	2.00	na	0.181	0.059	12, 13
Taxus cuspidata	Taxaceae	B/NEC, J, K, RFE	52.0	45.0	2.09	1.78	0.200	0.192	0.059	14
Average			66.7	46.7	2.25	1.73	0.197	0.161	0.190	
Iris species in the eastern Unite	ed States									
Iris cristata	Iridaceae	T/SEUS	73.3	51.4	3.00	1.87	0.231	0.199	0.018	15
Iris lacustris	Iridaceae	B/NAE, CA	0.00	0.00	1.00	1.00	0.000	0.000	na	15,16
Plants with a narrow distribution	on		45.1	30.6	1.83	1.45	0.137	0.105	na	17
Short-lived herbaceous perenni	als		41.3	28.0	1.70	1.40	0.116	0.096	0.233	18
Plants with outcrossing-animal breed		51.1	35.9	1.99	1.54	0.167	0.124	0.197	18	
Rare plants in the southeastern	United States		46.7	33.3	1.87	1.53	0.123	0.100	0.187	19
Endemics			40.0	26.3	1.80	1.39	0.096	0.063	0.248	18
All plants			52.2	35.1	1.99	1.53	0.153	0.116	0.225	20

5 %*P*, percentage of polymorphic loci; *A*, mean number of alleles per locus; H_e , H-W

M. Chung et al.

- 1 expected heterozygosity or genetic diversity; F_{ST} (G_{ST}), measures of among-population
- 2 differentiation; and –, not available. The subscript 's' indicates species' (or pooled
- 3 samples) values, while the subscript 'p' indicates population means
- ^a Only species with most of their populations in Korea (more than half) occur in the
- 5 Baekdudaegan (on its main ridge or in the peripheral areas to the main ridge)
- 6 ^b Ecological affinity: B, boreal; T, temperate
- ^c Range: C, China; CA, Canada; J, Japan; K, Korea; KE, Korean endemic; NAE, North
- 8 American endemic; NEC, northeastern China; R, Russia; RFE, Russian Far East; SEUS,
- 9 southeastern United States
- ^d Source references: 1, Chung and Epperson (1999); 2, Chang et al. (2003); 3, Chung et al.
- 11 (2009); 4, Chung et al. (2013a); 5, Chung et al. (2001); 6, present study; 7, Chang et al.
- 12 (2004); 8, Chung et al. (2014); 9, Jeong et al. (2010); 10, Chung et al. (2012); 11, Chung et
- 13 al. (2013b); 12, Kim et al. (1994); 13, Kim et al. (2005); 14, Chung et al. (1999); 15,
- 14 Hannan and Orick (2000); 16, Simonich and Morgan (1994); 17, Godt and Hamrick
- 15 (1998a) and updated in Wang et al. (2004); 18, Hamrick and Godt (1990); 19, Godt and
- 16 Hamrick (2001); 20, Godt and Hamrick (1998b)

M. Chung et al.

Clonal and genetic structure in two Iris species 40

PLSY-D-14-00116R1

1 Figure legends

2

3	Fig. 1 Locations of sampled populations of Iris odaesanensis (IO-1 to IO-8) and I. rossii
4	(IR-1 to IR-6) in South Korea. Dotted line indicates the location and shape of the main
5	mountain range of the country, the Baekdudaegan, which runs north to south along the
6	Korean Peninsula, and solid line represents the so-called "Nakdongjeongmaek", one of the
7	13 mountainous branches of the Baekdudaegan. White triangles indicate the Pleistocene-
8	glaciated high mountains in the Korean Peninsula (Kong and Watts, 1993): Mountains
9	Baekdu (2744 m), Kwanmo (2541 m), Seolryeong (2442 m), Nampodae (2435 m), and
10	Bukpodae (2289 m)
11	
12	Fig. 2 UPGMA phenogram based on Nei et al.'s (1983) genetic distances (D_A) between

13 populations of *Iris odaesanensis* (IO-3 to IO-8) and *I. rossii* (IR-1 to IR-6) in South Korea.

14 Numbers above branches represent bootstrap support for 1,000 replicates, and values

15 greater than 50% are shown above the branches

M. Chung et al.

Clonal and genetic structure in two Iris species 41

PLSY-D-14-00116R1

1

6

Fig. 1

M. Chung et al.

Clonal and genetic structure in two Iris species 42

PLSY-D-14-00116R1

1

