O$_2$ Dissociation on M@Pt Core–Shell Particles for 3d, 4d, and 5d Transition Metals

Paul C. Jennings,§⊥ Hristiyan A. Aleksandrov,§∥ Konstantin M. Neyman,*§⊥⊥ and Roy L. Johnston*⊥⊥

†School of Chemical Engineering and ‡School of Chemistry, University of Birmingham, Birmingham, United Kingdom
§Departament de Química Física and IQT-CUB, Universitat de Barcelona, Barcelona, Spain
∥Faculty of Chemistry and Pharmacy, University of Sofia, Sofia, Bulgaria
⊥⊥Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

ABSTRACT: Density functional theory calculations are performed to investigate oxygen dissociation on 38-atom truncated octahedron platinum-based particles. This study progresses our previous work (Jennings et al. *Nanoscale*, 2014, 6, 1153), where it was shown that flexibility of the outer Pt shell played a crucial role in facilitating fast oxygen dissociation. In this study, the effect of forming M@Pt (M core, Pt shell) particles for a range of metal cores (M = 3d, 4d, and 5d transition metals) is considered, with respect to O$_2$ dissociation on the Pt(111) facets. We show that forming M@Pt particles with late transition metal cores results in favorable shell flexibility for very low O$_2$ dissociation barriers. Conversely, alloying with early transition metals results in a more rigid Pt shell because of dominant M–Pt interactions, which prevent lowering of the dissociation barriers.

INTRODUCTION

The development of hydrogen fuel cells is a promising way to reduce the dependence of the energy sector on fossil fuels. Proton exchange membrane (PEM) fuel cells are ideally suited for transport and mobile auxiliary power applications as a result of their high power density, rapid start up and high efficiency. These fuel cells are energy converting devices whereby electricity and heat are produced through an electrochemical process where the only waste product is water.

Pt-based catalysts are used in many industrial applications, catalyzing the oxygen reduction reaction (ORR) in PEM fuel cells being one of them.²–⁴ Despite widespread utilization, for low temperature fuel cells, a common problem associated with the use of a Pt electrocatalyst is the strong Pt–O binding. This strong binding aids oxygen dissociation but is responsible for slowing down ORR kinetics.⁵–⁷ Many studies have been reported modeling the overall mechanism of the ORR⁶–¹² as well as chemisorption studies of specific intermediates within the reaction.¹³–¹⁵ An example of this is the behavior of O$_2$ dissociation on Pt surfaces, which has been studied extensively. While this has predominantly focused on bulk systems,¹⁶–²³ some studies have been performed on small particles.²⁴–²⁷

The interest in interactions of oxygen species with platinum has resulted in numerous studies being performed on various extended Pt surfaces,²⁸–³⁰ as well as studies of both free³¹–³³ and supported Pt particles³⁴,³⁵ belonging to the size regime where “each atom counts.”³⁶ Particle models expose a greater number and diversity of symmetry inequivalent sites to bind oxygen, when compared to slab models. For these particle structures, the under-coordinated surface atoms provide a variety of electronic environments at which to bind O.³⁷ While size effects are of interest, particularly at the subnanometer range,³⁸ it should be noted that it is also possible to use larger particle models that are scalable with size.³⁹–⁴³

A reduction of the dependence on Pt electrocatalysts in order to improve the commercial viability of PEM fuel cells has driven much research in the field. While a number of nonplatinum based systems have been proposed for potential use as PEM electrocatalysts,⁴⁴–⁴⁶ there has been much focus on Pt-based binary⁴⁷,⁴⁸ and ternary⁴⁹–⁵¹ alloys. Studies of platinum alloyed with both early⁵²–⁵⁵ and late⁵³,⁵⁴ transition metals have been performed. In this work, a range of possible binary systems with d-metal cores (groups 3–12 and 3d–5d metals of the periodic table) have been considered forming model M@Pt particles. Emphasis is placed on studying O$_2$ dissociation with special consideration of the effect the core metal plays on altering the dissociation barrier.

In previous work, we showed that when Pt is alloyed with titanium (Ti) to produce (Ti)core–(Pt)shell Ti@Pt moieties, changes in their electronic structure result in weaker Pt–O
binding, through filling of the Pt d-band,55,56 similar trends have been found for a number of other Pt-based alloy systems.57–59 In later studies, it was found that while the strong core–shell interactions could result in a favorable reduction of Pt–O binding energies, these strong Pt–M interactions also partially disfavor oxygen dissociation. Shell flexibility plays an important role in facilitating fast oxygen dissociation: on pure Pt particles, the outermost shell can distort in such a way as to reduce the O2 dissociation barrier from 0.4 eV on the (111) slab to <0.1 eV on the (111) facet of the particle.60

The previous studies on oxygen dissociation were performed on 38- and 79-atom particles. It is noted that other studies found a significant variation in adsorption energies of O on small Pt particles when nearby facets were modified by the presence of oxygen; although, this appears less pronounced for particles with about 80 or more atoms.61 In our later work, O2 dissociation studies were performed on the larger Pt116 nanoparticles, which should be in the range where properties scale with size.59,62 These studies once again revealed the importance of shell flexibility in promoting fast O2 dissociation on Pt particles. There is much evidence that the formation of Pt alloys with late transition metals results in improved ORR kinetics;63 on Pt particles.

The current study allows for the investigation of general trends across the groups of metals being investigated. This renders possible comparisons of both early and late transition metals, with the aim of discerning promising candidates for catalyzing the ORR in PEM fuel cells. While primarily focusing on the early stages of the ORR, namely, O2 dissociation, the later stages are also considered by way of studying electronic changes induced by alloying through calculating shifts in the Pt d-band center.

METHODOLOGY

Calculations are performed using the Vienna Ab-Initio Simulation Package (VASP) 5.2–72–75 All calculations are spin-polarized with valence electrons being treated explicitly, while the ionic cores are represented by the projected augmented wave (PAW) method.76,77 The Methfessel-Paxton smearing method is used with a width of 0.1 eV (extrapolated for computing final energies at zero smearing), and an energy cutoff of 415 eV for plane waves has been employed. All particles are placed in the center of large enough supercells to ensure sufficient separation between periodic images of roughly 10 Å. The Γ point is used to sample the Brillouin Zone. Atoms are relaxed according to the calculated forces, with convergence criteria for energies and forces required to be better than 1.0 × 10−4 eV/atom and 0.02 eV/Å, respectively.

Dissociation pathways are investigated using the VASP Transition State Tools (VTST) implementation of the VASP code by first generating an approximate pathway using the Nudged Elastic Band (NEB) method,80 with further refinement achieved using the Dimer method.81 Charges are calculated using the Bader method.82,83

In order to assess the (atomic or molecular) oxygen adsorption strength to the Pt surface, the binding (adsorption) energy (EΔ) is calculated, as defined in eq 1.

$$E_{Δ} = E_{Δ} - (E_{A} + E_{B})$$ (1)

$E_{Δ}$ is the energy of the particle with an oxygen atom or molecule adsorbed, E_{A} is the energy of the relaxed bare particle, and E_{B} is the energy of the free oxygen atom or molecule. Negative $E_{Δ}$ values characterize exothermic interactions. The interaction energy (E_{int}) is defined in eq 2.

$$E_{int} = E_{Δ} - (E_{A}^{Δ} + E_{B}^{Δ})$$ (2)

The single point energies of separate species A and B calculated at the geometries distorted upon adsorption are denoted by Δ; again, negative values imply favorable interactions. Distortion energies are defined according to eq 3.

$$\Delta E_{A} = E_{A}^{Δ} - E_{A}$$ (3)

Although specific distortions, brought about by adsorption of oxygen, are discussed in detail, as a more general measure, root mean squared displacements (RMSD) of atoms are calculated as defined in eq 4.

$$RMSD = \sqrt{\frac{1}{N} \sum_{i} (\bar{m}_{i}^{A} - \bar{m}_{i}^{B})^{2}}$$ (4)

N is the number of atoms under scrutiny in the metal particle, \bar{m}_{i}^{A} is the position of a given atom in the relaxed bare particle, and \bar{m}_{i}^{B} is the position of the same atom in the particle following oxygen adsorption. In all cases, RMSD values are calculated for atoms of the Pt shell, neglecting any displacement of core atoms. Prior to applying this equation, rotation and translation operators are applied to align each particle, thereby minimizing the RMSD. All RMSD values are positive, regardless of contraction or expansion of the particle, as they are averaged displacements in all directions and not associated with a displacement along a certain vector.

Pt–Xcenter values are calculated to better understand the extent of (111) facet distortions. In the studies presented previously, it was found that a reduction in the O2 dissociation barrier was dependent on the extent to which the central atom of the (111) facet was “lifted” out of the plane. The vertical distance (“lifting”) of the central atom relative to a plane is termed Pt–Xcenter. This ignores distortions in the plane and only accounts for distortions out of the plane, as shown in Figure 1.

The d-band center is a useful characteristic for relating changes in electronic properties of the particle to differences in, for example, O2 binding energies. The d-band center (ϵ_{d}) is calculated, as in eq 5,

$$\epsilon_{d} = \frac{\int \rho dE}{\int \rho dE}$$ (5)

where ρ is the d-band density of states, E is the d-band energy, and dE is the number of d-states.

RESULTS AND DISCUSSION

Geometric Analysis. The investigation of 38-atom M@Pt core–shell truncated octahedral (TO) particles is performed,
with analysis of the data presented in Table 1. It should be noted that the 38-atom particle size corresponds to a magic number for the TO structure, constituting a complete 6-atom core and a 32-atom shell. From our previous studies, it is apparent that weaker core–shell interactions facilitate the surface flexibility that is beneficial for fast O\textsubscript{2} dissociation. When considering a wider range of M@Pt d-metal core–shell particles, it is likely to be beneficial for M atoms of the core to have a similar electronegativity to Pt. Pt has an electronegativity of 2.28 on the Pauling scale (Table 1) compared to 1.54 for Ti in Ti@Pt particles investigated previously.60 With Pt and Ti having such different electronegativities, it is to be expected that there will be quite strong core–shell interactions with a large charge transfer, which is indeed the case.60

Figure 2a shows that in general, moving from early to late d-metals is coupled with an increase in electronegativity, while moving from 3d to 5d metals results in less well-defined trends. This suggests that late d-metals are likely to result in the desirable weaker core–shell interactions. Studies have shown that alloys formed between platinum and early transition metals are particularly stable, a result of the strong Pt–M interactions.5

To test this, binding energies were calculated for Pt–M dimers. From Figure 2b it is also possible to see a strong correlation between the metal group and the Pt–M binding energy. It is evident that late d-metals have significantly reduced binding energies compared to early metals. Furthermore, there appears to be little period dependence.

Most of the d-metals investigated in this study could form particles with a TO structure,87,91 however, it is noted that, for a large mismatch in the Pt/M atomic radii, the TO structure may be destabilized. In this study, the TO structure is used as a model in order to compare the reactivity of different metal cores toward O\textsubscript{2} dissociation, even though the TO is not always the lowest energy structure. When performing geometry optimizations on the bare 38-atom particles, all M@Pt compositions minimize to the TO structure, apart from the Co@Pt system, which is found to distort away from the TO toward the octahedral–icosahedral (Oh-Ih) structure.92 Indeed, previous studies have revealed that the TO structure is not favorable for the Co@Pt particle.93

The RMSD for the Pt shell was calculated by comparing the Pt shell of the pure Pt\textsubscript{38} particle with the Pt shell of the M@Pt core–shell particle, the results of which are shown in Table 1 and plotted in Figure 2c. The RMSD values give an indication of how changing the metal core affects the Pt shell, large values indicate significant distortion of the Pt shell, while small values indicate that changing the core has little effect on the Pt shell. Large RMSD values are generally calculated for the particles with early d-metal cores, while there is a general reduction of the RMSD for late d-metals. Furthermore, moving from 3d to 5d leads to a reduction in the RMSD. This shows that the Pt shells of particles formed with late d-metal cores, particularly for those located close to Pt in the periodic table, are more structurally similar to that of the Pt\textsubscript{38} particle. Structural similarities between the Pt\textsubscript{38} and M@Pt particles could potentially be an important consideration, indicating a preference toward favorable distortion of the (111) terrace upon adsorption of O\textsubscript{2}.

The RMSD will not only be influenced by E\textsubscript{b}[M], but also by the atomic radius of the alloyed element. It is likely that deviation from the approximate atomic radii of Pt (1.36 Å) will result in strain because of the size mismatch between the core and the shell. The atomic radii of the various elements are shown in Table 1, where it is seen that progression from early to late transition metals leads to the well-known general decrease in atomic radii. Concomitantly, moving from 3d to 5d metals, results in a general expansion of the atomic radii. Strain also has an effect on the binding energy of adsorbates, where an increase in the Pt–Pt bond length will result in stronger

| Table 1. Electronegativity (χ)84,85 of the Metals M in M@Pt Core, Pt–M Dimer Binding Energy (E\textsubscript{b}[M]) in eV, Calculated Atomic Radii of M in Å, and RMSD Values in Å of the Pt Shell Associated with All Systems Investigated |
|-----------------|-----------------|-----------------|
| M@Pt | χ | E\textsubscript{b}[M] | atomic radii | RMSD | M@Pt | χ | E\textsubscript{b}[M] | atomic radii | RMSD | M@Pt | χ | E\textsubscript{b}[M] | atomic radii | RMSD |
| Sc | 1.36 | −4.22 | 1.70 | 0.09 | Y | 1.22 | −4.28 | 1.90 | 0.18 | La | 1.10 | −3.94 | 2.07 | 0.24 |
| Ti | 1.54 | −4.18 | 1.60 | 0.15 | Zr | 1.33 | −4.40 | 1.75 | 0.14 | Lu | 1.27 | −3.34 | 1.87 | 0.14 |
| V | 1.63 | −4.30 | 1.53 | 0.24 | Nb | 1.60 | −4.34 | 1.64 | 0.19 | Hf | 1.30 | −5.61 | 1.75 | 0.14 |
| Cr | 1.66 | −4.49 | 1.39 | 0.13 | Mo | 2.16 | −4.31 | 1.54 | 0.15 | Ta | 1.50 | −4.82 | 1.70 | 0.19 |
| Mn | 1.55 | −4.67 | 1.39 | 0.14 | Tc | 1.90 | −4.18 | 1.47 | 0.13 | W | 2.36 | −4.73 | 1.62 | 0.21 |
| Fe | 1.83 | −3.85 | 1.32 | 0.15 | Ru | 2.20 | −3.45 | 1.46 | 0.10 | Re | 1.90 | −4.53 | 1.51 | 0.12 |
| Co | 1.88 | −2.98 | 1.26 | 0.15 | Rh | 2.28 | −2.87 | 1.42 | 0.06 | Os | 2.20 | −3.75 | 1.44 | 0.11 |
| Ni | 1.91 | −2.36 | 1.24 | 0.14 | Pd | 2.20 | −2.24 | 1.39 | 0.06 | Ir | 2.20 | −3.00 | 1.41 | 0.05 |
| Cu | 1.90 | −1.77 | 1.32 | 0.16 | Ag | 1.93 | −1.49 | 1.45 | 0.07 | Pt | 2.28 | −2.38 | 1.36 | 0.00 |
| Zn | 1.65 | −1.13 | 1.22 | 0.14 | Cd | 1.69 | −0.98 | 1.44 | 0.08 | Au | 2.54 | −1.49 | 1.36 | 0.06 |

“TO structure lost completely during local relaxation.”
binding, and a decrease will lead to a weakening of adsorbate binding.94−97 Discussions on the relationship between the electronegativity and the Pt−M binding energy and Pt−M binding energy and the RMSD are given in the Supporting Information, Figure S1.

O\textsubscript{2} Chemisorption Studies. Sites 6 (3-fold hcp hollow) and 7 (3-fold fcc hollow) on the 38-atom M@Pt TO particles are investigated (Figure 3). Geometric representations of the particles are provided in the Supporting Information, Figures S2–S7. More detailed discussions of distortions induced upon adsorption of O\textsubscript{2} are presented in the following. When O\textsubscript{2} is adsorbed at site 6, for 3d metals, it is found that there is noticeable distortion of the (111) facet for the Sc@Pt particle, while there is little distortion of the (111) facet for metals M of groups 4−8. Co was not investigated because during the relaxation of the bare particle, the structure dramatically distorted from the TO. For M of groups 10−12, similar distortions of the (111) facet to those of the pure Pt particle are observed. For the same groups, when O\textsubscript{2} is adsorbed on site 7, there is spontaneous dissociation of the O\textsubscript{2} molecule. The O\textsubscript{2} dissociation barrier on the Pt\textsubscript{38} particle for site 7 is very slightly smaller than that for site 6.60 It could therefore be expected that the dissociation barriers at sites 7 on the M@Pt particles are also slightly lower than those for site 6. It follows that, where the Pt−M binding energies are reduced compared to those for

Figure 2. (a) Plot of electronegativity values χ across the range of studied d-metals.84,85 (b) Pt−M dimer binding energies $\Delta E_b[M]$, relative to Pt\textsubscript{2}, calculated for the range of studied d-metals. (c) RMSD values calculated for the Pt shell of the 38-atom M@Pt particles for the range of studied d-metals.
Pt–Pt, the activation barrier at site 7 indicates spontaneous dissociation.

Considering distortion of the M@Pt particles, it is apparent that upon adsorption of O2, 4d M@Pt particles exhibit similar behavior to those of 3d metals, although now group 9 can be investigated, with Rh@Pt locally minimizing to the TO structure. One interesting difference between 3d and 4d metals is that, while the Y@Pt particle distorts from the TO structure, with the core atoms occupying surface sites to form a Y–O bond, the Zr@Pt alloy exhibits 111 facet distortions very similar to those of the Pt18 particle. The distortion of the Y@Pt particle is likely the result of two effects. First, Y has an atomic radii of 1.90 Å, compared to 1.36 Å for Pt, suggesting that the Pt surface will experience tensile strain. Indeed, a relatively large RMSD of 0.18 Å is calculated for Y@Pt (Table 1). Second, early transition metals, such as Y, form very strong M–O bonds. It is likely that the increased atomic radius of Y coupled with tensile strain on the Pt shell means that the core atoms are more accessible for oxygen (both O and O2) to interact with, allowing for stronger M–O interactions than with the Pt shell.

The behavior of the Zr@Pt particle is in stark contrast to the Ti@Pt particle. From Table 1 it can be seen that there is a strong Pt–Zr dimer binding of ~4.40 eV, which is in fact stronger than that of the Pt–Ti binding of ~4.18 eV. The other early d-metal particles exhibit similar properties to those in group 4, where there is little distortion of the (111) facet upon adsorption of O2. The (111) facets of the Rh@Pt particles are found to distort rather strongly, as is the case with groups 10–12. Once again, spontaneous O2 dissociation is noticeable on site 7 for group 9–12 metals, as well as Zr. Some distortions are observed for earlier metals, although these seem to be related to instabilities in the TO structures, with some tending toward, for example, icosahedral structures. However, these distortions are not the favorable (111) facet distortions that are of interest in this study.

Similar trends to those observed for 3d and 4d metals are also inherent for 5d metals. Distortions of the central atom of the (111) facet are notable for the later d-metals (groups 9–12), while there is little distortion for earlier d-metals. The La@Pt particle distorts upon O2 binding in a similar fashion to Y@Pt, where the core atoms are pulled to surface sites forming a La–O bond. For 5d metals, it is also found that the Hg@Pt particle distorts away from the TO when O2 is adsorbed on site 6. Spontaneous O2 dissociation occurs on site 7 for Ir@Pt, Au@Pt, and Hg@Pt, although this was not the case for Pt18.

From the study of O2 adsorption on the 38-atom M@Pt particles, several trends become apparent. The late d-metals from groups 9–12 appear to be the most promising candidates for fast O2 dissociation. In all cases where weaker Pt–M binding is found, compared to that of Pt–Pt, distortions of the (111) facet are observed, though, it is also found that the Rh and Ir systems, with stronger Pt–M binding by ≤0.62 eV compared to Pt–Pt binding, as well as exhibit surface distortion by O2. However, particles with Pt–M binding energies ≥1.07 eV do not exhibit this behavior. Thus, the structural flexibility of the particle changes with Pt–M binding energies somewhere between 0.6 and 1.1 eV greater than that for Pt–Pt binding. All structures can be found in the Supporting Information, Figures S2–S7.

The binding energies for O2 adsorption on sites 6 and 7 are presented in Table 2. In general, later d-metal systems, for which Pt shell distortions are observed, bind O2 stronger than earlier d-metal systems, where distortions to the (111) facet are not noticeable. This is likely because of two effects: First, the distorted (111) facet will provide a more favorable surface for O2 to bind. Second, d-band characteristics will affect O2 binding energy. As the Pt d-band is filled, the corresponding upshift in the d-center will result in weakening of the O2 binding.28 Pt alloyed with later d-metals does not yield a downshift in the d-center and will more likely result in an upshift. This upshift in the Pt d-center will probably also contribute to the increased O2 binding energies for later M@Pt particles.

Charge density difference plots for O2 adsorption on sites 6 and 7 are included in the Supporting Information, Figures S8–

Table 2. O2 Binding Energy Values in eV (Eb) for Adsorption on Sites 6 and 7 on the Range of M@Pt Particles

<table>
<thead>
<tr>
<th>3d-M@Pt</th>
<th>site 6</th>
<th>site 7</th>
<th>4d-M@Pt</th>
<th>site 6</th>
<th>site 7</th>
<th>5d-M@Pt</th>
<th>site 6</th>
<th>site 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc</td>
<td>−1.22</td>
<td>−0.79</td>
<td>Y</td>
<td>a</td>
<td>a</td>
<td>La</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Ti</td>
<td>−0.77</td>
<td>−0.40</td>
<td>Zr</td>
<td>−1.11</td>
<td>−2.46</td>
<td>Hf</td>
<td>−0.95</td>
<td>−0.43</td>
</tr>
<tr>
<td>V</td>
<td>−0.89</td>
<td>−0.77</td>
<td>Nb</td>
<td>−0.79</td>
<td>−0.67</td>
<td>Ta</td>
<td>−0.77</td>
<td>−0.66</td>
</tr>
<tr>
<td>Cr</td>
<td>−0.96</td>
<td>−0.64</td>
<td>Mo</td>
<td>−2.01</td>
<td>−2.14</td>
<td>W</td>
<td>−1.91</td>
<td>−0.91</td>
</tr>
<tr>
<td>Mn</td>
<td>−2.06</td>
<td>−1.69</td>
<td>Tc</td>
<td>−1.69</td>
<td>−3.03</td>
<td>Re</td>
<td>−3.75</td>
<td>−3.09</td>
</tr>
<tr>
<td>Fe</td>
<td>−0.91</td>
<td>−0.48</td>
<td>Ru</td>
<td>−1.34</td>
<td>−1.40</td>
<td>Os</td>
<td>−1.54</td>
<td>−1.10</td>
</tr>
<tr>
<td>Co</td>
<td>b</td>
<td>b</td>
<td>Rh</td>
<td>−1.26</td>
<td>−2.21</td>
<td>Ir</td>
<td>−1.24</td>
<td>−2.22</td>
</tr>
<tr>
<td>Ni</td>
<td>−1.99</td>
<td>−4.00</td>
<td>Pd</td>
<td>−1.26</td>
<td>−2.34</td>
<td>Pt</td>
<td>−1.80</td>
<td>−1.76</td>
</tr>
<tr>
<td>Cu</td>
<td>−1.18</td>
<td>−2.56</td>
<td>Ag</td>
<td>−1.18</td>
<td>−2.20</td>
<td>Au</td>
<td>−1.36</td>
<td>−2.34</td>
</tr>
<tr>
<td>Zn</td>
<td>−1.52</td>
<td>−2.55</td>
<td>Cd</td>
<td>−1.55</td>
<td>−2.26</td>
<td>Hg</td>
<td>−5.16</td>
<td>−2.48</td>
</tr>
</tbody>
</table>

Structure strongly distorted such that oxygen is bound to the core atoms. TO structure completely lost during local relaxation prior to O2 adsorption.
S13. These are generated by subtracting the charge (electron) densities of M@Pt and O2 (or O + O) fragments from that of the total M@Pt–O2 system. The charge densities of the M@Pt and O2 fragments are calculated with the positions of atoms optimized for the total system. The plots show little difference for particles with cores of early and late transition metals.

Distortion Studies. The calculated values for RMSD and Pt–Xcenter, characterizing particle distortion upon O2 adsorption are listed in Table 3. The RMSD values in Table 3 are calculated for the Pt shell, following adsorption of O2 differing from those listed in Table 1, calculated for the Pt shell of the particle prior to adsorption of O2. Several systems exhibit very large RMSD values of ~0.5 Å and above, these large values are the result of structural rearrangements away from the TO structure lost during local relaxation prior to O2 adsorption. In Table 3, negative Pt–Xcenter values show that the central atom has moved away from the particle core. Conversely, a positive Pt–Xcenter value shows that the central atom has moved away from the particle core. Distortions of the (111) facet resulting in a positive Pt–Xcenter value are of interest for faster O2 dissociation. Generally, when O2 is adsorbed on M@Pt particles with early d-metals, there is a contraction in Pt–Xcenter. For the M@Pt particles with late d-metals, there is generally an expansion of Pt–Xcenter, comparable to Pt3. Clusters with strong core–shell Pt–M binding show a contraction of the Pt shell upon adsorption of O2, whereas an expansion of the Pt shell takes place for M@Pt systems with weaker core–shell interactions; this trend is shown in Figure 4.

![Figure 4](https://example.com/figure4.jpg)

Figure 4. Plot of the Pt–M binding energy (E binding) and Pt–Xcenter on the range of M@Pt particles, the R^2 of the data is 0.58.

Figure 5 shows the relationship between Pt–Xcenter and the binding energy of O2 to the studied M@Pt particles. For site 6, there is no clear trend, suggesting that distortions of the (111) facet do not lead to significantly stronger O2 adsorption. For site 7 there is a more obvious trend. In this case, the M@Pt particles that result in spontaneous O2 dissociation exhibit significantly stronger O2–M@Pt binding. However, the values of Pt–Xcenter for those particles where distortions of the (111) facet are observed, do not vary significantly for O2 adsorbed at site 6 or 7. While there is generally little difference in binding energies between sites 6 and 7 for the early d-metals, there are significant differences for the later d-metals, where stronger binding is found at site 7. For completeness, the relationship between RMSD and the O2 adsorption energies is shown in the Supporting Information, Figure S14.

Density of States Analysis. Calculated d-band center values of Pt in M@Pt particles may give an indication of ORR kinetics. It is expected that a downshift in Pt d-center (away from the Fermi energy) will result in weakening of molecular (e.g., OH, O2) interactions with the Pt shell. Conversely, an upshift in the d-center (toward the Fermi energy) will likely

<table>
<thead>
<tr>
<th>RMSD</th>
<th>Pt–Xcenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>site 6</td>
<td>site 7</td>
</tr>
<tr>
<td>3d-M@Pt</td>
<td>0.18</td>
</tr>
<tr>
<td>Ti</td>
<td>0.03</td>
</tr>
<tr>
<td>V</td>
<td>0.05</td>
</tr>
<tr>
<td>Cr</td>
<td>0.05</td>
</tr>
<tr>
<td>Mn</td>
<td>0.06</td>
</tr>
<tr>
<td>Fe</td>
<td>0.03</td>
</tr>
<tr>
<td>Co</td>
<td>0.54</td>
</tr>
<tr>
<td>Ni</td>
<td>0.21</td>
</tr>
<tr>
<td>Zn</td>
<td>0.30</td>
</tr>
</tbody>
</table>

4d-M@Pt	0.61	0.49	2.48	0.00	0.00
Y	0.17	0.43	2.38	0.36	0.00
Zr	0.04	0.08	2.27	−0.10	−0.08
Mo	0.14	0.26	2.25	0.01	−0.10
Tc	0.06	0.55	2.27	0.07	0.00
Ru	0.04	0.24	2.31	−0.01	0.03
Rh	0.05	0.28	2.36	0.20	0.12
Pd	0.24	0.31	2.37	0.98	1.13
Ag	0.08	0.29	2.37	0.32	1.08
Cd	0.22	0.31	2.40	0.89	1.09

All values are in Å; a negative Pt–Xcenter value corresponds to particle contraction, whereas a positive value shows particle expansion. Structure strongly distorted such that no meaningful value could be calculated.
It is known that stronger Pt−O interactions lead to lower dissociation barriers of O₂, which is in conflict with the need for reduced Pt−O binding to allow for desorption of oxygen containing species and formation, for example of H₂O from OH + H.

In Figure 6, the d-center position of the Pt shell for varying compositions is plotted relative to that of the outer shell in the pure Pt₃₈ particle. In general, when Pt is alloyed with early d-metals, significant downshifts in the d-center are observed. For the later d-metals (around group 10) the shifts in the d-center become less negative (or in some cases positive with an upshift). The d-band center shifts are the result of electronic and geometric effects. For the early d-metals, it is likely that electronic effects dominate the changes in Pt d-band characteristics, where significant charge transfer is observed between the M core and the Pt shell. For the later d-metals, where there is less charge transfer, it is likely that geometric effects have an increased importance in determining changes in the Pt d-center.

It is expected that group 9 metals (Co, Rh, Ir) in M@Pt could be a promising compromise between the ability to dissociate O₂ and later desorb the resulting products. These metals exhibit a slight downshift in the Pt d-band center, by 0.1 eV, in line with results found elsewhere. Furthermore, alloying Pt with group 9 metals simultaneously allows for favorable distortions of the (111) facet. These metals form slightly stronger Pt−M bonds than Pt−Pt. It most likely facilitates the greater shift in Pt d-band center but the bonding is not strong enough to inhibit distortion of the (111) facet.

Potential M@Pt Candidates for Replacement of Pure Pt in Catalysts for O₂ Dissociation and Oxygen Reduction. Investigation of O₂ dissociation has been performed on a number of promising M@Pt candidates, showing favorable (111) distortions during the chemisorption studies. As discussed in previous sections, Pt-based alloys formed with late transition metals provide the most promising candidates. Thus, our focus was placed on M@Pt particles with metals of groups 9−12. Although, alloys formed from group 9 metals were of particular interest for the O₂ dissociation studies, the Co@Pt system is not investigated as already explained, because the TO structure is not its local minimum. Small O₂ dissociation barriers relating to other promising M@Pt combinations are as follows (in eV): 0.06 for Cu, 0.07 for Rh, 0.04 for Pd, 0.01 for Cd, and 0.27 for Ir. This compares with a barrier of 0.04 eV for the pure Pt₃₈ TO particle. Graphical representations of the initial, transition, and final states (IS, TS, and FS, respectively) are collected in the Supporting Information, Figures S15−S20.

Pt−Cu alloys have been demonstrated to exhibit favorable ORR reaction kinetics. In the initial stages of O₂ chemisorption, there was significant distortion of the (111) facet. The O₂ dissociation barrier on site 6 is 0.06 eV, while spontaneous O₂ dissociation was found at site 7 assisted by geometry relaxation. This is in line with the O₂ dissociation barrier at position 6 on Pt₃₈, which is 0.04 eV. It is therefore corroborated that the Cu@Pt particle displays favorable properties for O₂ dissociation as the pure Pt system does. However, from the investigations of Pt d-band center, there is very little difference between the pure Pt and Cu@Pt particles. This implies that the Cu@Pt particle is also likely to overbind oxygen species, inhibiting the later stages of the ORR. Copper is significantly cheaper than platinum, at a cost of around £5.00.
It has been shown that favorable distortions of the (111) facet of small metal particles, to facilitate O₂ dissociation are not confined to the pure Pt particles. Late d-metals with relatively weak Pt–M interactions also exhibit this behavior. Furthermore, the weakened core–shell interactions in the M@Pt particles facilitate O₂ dissociation to give very low dissociation barriers of <0.1 eV. Note, however, that we did not explicitly address stability of the bimetallic Pt–M particles in the presence of O₂ atmosphere, which may be another crucial limitation of applications of these systems as ORR catalysts. Of the systems studied, each has distinct advantages and disadvantages for ORR associated with it, meaning the most promising system will have to be a compromise between the different characteristics being investigated. The best candidates should have large flexibility of the surface (111) facets, which ensures fast O₂ dissociation and downshift of the d-band center, allowing easier desorption of oxygen containing species in the next steps of the ORR process.

CONCLUSIONS

Group 9 metals appear to provide the most promising compromise, whereby there is a slight downshift in the Pt d-band center for the M@Pt particles compared to the pure Pt particles. Furthermore, there are favorable distortions of the (111) facet induced by the binding of O₂, which subsequently results in very low O₂ dissociation barriers. This suggests that, while the initial stages of the ORR (O₂ dissociation) will not be hindered by a rigid (111) facet, the kinetics of the later stages will be improved compared to the pure Pt particle. Furthermore, the Pt–M binding energy is slightly greater than the Pt–Pt binding energy, suggesting that these bimetallic particles with group 9 metals may have improved stability over the alloys formed with other late transition metals.

It is worth noting that an O₂ dissociation barrier of ~0.4 eV, such as that for Pt (111) slab, is already relatively low and should allow for high reactivity. The current work has not only focused on reducing this small barrier further, but also on improving selectivity toward the dissociative four electron pathway of the ORR.

ACKNOWLEDGMENTS

This research was funded through the RCUK doctoral training centre in hydrogen, fuel cells, and their applications (EP/G037116/1). Financial support was also provided by the EU (FP7-NMP.2012.1.1-1 Project ChipCAT, ref. No. 310191), the Generalitat de Catalunya (2014SGR97, XRQT), and the Spanish MICINN (CTQ2012-34969). The authors thank COST Actions CM1104 and MP0903. Much of the initial work was performed under the HPC-EUROPA2 Project (Project No.: 228398) with the support of the European Union – Capacities Area - Research Infrastructures. The computations described in this paper were performed in part using The University of Birmingham’s BlueBEAR HPC service, which was purchased through HEFCE SRIF-3 funds and via our membership of the U.K.’s HPC Materials Chemistry Consortium, which is funded by EPSRC (EP/F067496). This work made use of the facilities of HECToR, the U.K.’s national high-performance computing service, which is provided by UoE HPCx Ltd. at the University of Edinburgh, Cray Inc., and NAG Ltd., and funded by the Office of Science and Technology through EPSRC’s High End Computing Programme. H.A.A. thanks the Spanish Ministerio de Educación for a postdoctoral grant (SB2010-0172), Bulgarian Science Fund (Grant DCVP 02/1), and FP7 project BeyondEverest for support.

AUTHOR INFORMATION

Corresponding Authors
*E-mail: konstantin.neym@icrc.ac.at.
*E-mail: r.i.johnston@bham.ac.uk.

Present Address
Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde, Denmark (P.C.J.).

Notes
The authors declare no competing financial interest.
REFERENCES

(22) Viíes, F.; Lykhach, Y.; Staudt, T.; Lorenz, M. P. A.; Papp, C.; Steinrück, H.-P.; Libuda, J.; Neyman, K. M.; Görling, A. Methane...

