

Electronic tongues multivariate

calibration for the analysis of

metals
Treball Final de Grau

Ana Rosselló Busquet

March 2017

MAIN FIELD: QUÍMICA ANALÍTICA

SECONDARY FIELDS: MATEMÀTICA I INFORMÀTICA

 SANITAT I GESTIÓ AMBIENTAL

Ana
Typewriter
This work is licenced under a Creative Commons license

Ana
Typewriter

Ana
Typewriter

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

2

Table of Contents

TABLE OF CONTENTS .. 2

ABSTRACT .. 3

RESUM .. 3

INTRODUCTION ... 4

ELECTRONIC TONGUES .. 4

BASELINE ... 5

DATA COMPRESSION .. 5

ARTIFICIAL NEURAL NETWORKS .. 6

OBJECTIVES ... 10

INTEGRATION AMONG STUDY AREAS .. 10

MATERIALS AND METHODS .. 11

ELECTRONIC TONGUE DESIGN ... 11

VOLTAMMETRIC MEASUREMENTS ... 11

SOFTWARE ... 11

BASELINE ... 12

COMPRESSION .. 13

ANN .. 15

RESULTS ... 18

BASELINE ... 18

COMPRESSION .. 18

ANN .. 19

CONCLUSION .. 24

FURTHER WORK .. 24

REFERENCES .. 25

ANNEX .. 27

I. REMOVE BASELINE .. 27

a. Tested configurations ... 27

b. MATLAB Implementation.. 27
function test_baseline(sensor,E) ... 27
function [sensor_bck, baselines,slope_E,slope_B, area]= remove_baseline(sensor,E, ord,s,fct) .. 28

c. Results ... 28

II. COMPRESSION .. 28

a. Tested configurations ... 28

b. MATLAB Implementation.. 29
function [wname_over95 fc_over95 lev_over95]= test_compresion(sensor) ... 29
function [sensor_comp, fc]= compression(sensor, wname,lev) ... 29

c. Results ... 29

III. ARTIFICIAL NEURAL NETWORK .. 30

a. Tested configurations ... 30

b. MATLAB Implementation.. 30
function [net]= ANN_create_1c(hiddenLayerSize) .. 32
function ANN_test_comp_fitnet_LM_2_DIF_DIF(sensors, conc, test_sensor,test_conc) .. 33

c. Results ... 34

3

Abstract
Heavy metals are substances found in the environment that can come from both natural and anthropogenic

sources. There is an increasing interest in analytical methods with high selectivity and sensitivity to perform

environmental monitoring to detect adulterations or contamination. Electronic tongues are especially interesting

as they can respond to a large variety of substances. This report presents the developed MATLAB software used

to calculate the concentration of certain substances using data from a voltammetric electronic tongue with four

sensors to determine concentration of six metal ions using Artificial Neural Networks. Different ANN

configurations have been tested; where the parameters have been changed, such as learning algorithm,

transfer function and number of hidden layers/neurons. Furthermore, the input of the ANN has been pre-

processed. A MATLAB function has been developed to remove the baseline and another to compress the signal

with Discrete Wavelet Transforms. In order to find the best baseline removal and compression configuration

different set-ups varying the possible parameters have been tested. The results obtained in this first part of the

project are favourable as the baseline has been successfully removed and the data hve been compressed from

420 samples to 95 coefficients. The results obtained for ANN prove that more number of hidden layers or

neurons/layer does not imply a better performance. Better results are obtained with 2 hidden layers and 5-2

neurons. Even thought during the training of the ANN good values are obtained, when the network is feed with

other testing data the results are less accurate.

Resum

Els metalls pesant són substàncies que es troben en el medi i poden provenir de fonts naturals o

antropogèniques. Els mètodes d'anàlisi amb alta selectivitat i sensibilitat són d'interès per dur a terme la

vigilància ambiental, detectar adulteracions o contaminació. Les llengües electròniques són interessants ja que

poden respondre a una gran varietat de substàncies. En aquest treball s'ha fet un programa en MATLAB per

calcular la concentració de certes substàncies utilitzant dades d'una llengua electrònica formada per quatre

sensors per determinar la concentració de sis ions metàl·lics usant xarxes neuronals artificials. S'han provat

diferents configuracions; on s'han variat els paràmetres de la ANN, i.e algoritme d'aprenentatge, funció de

transferència i el nombre de capes ocultes/neurones. A més, el senyal d'entrada de l'ANN ha estat pre-

processat. S' ha desenvolupat una funció MATLAB per eliminar la línia base i un altre per comprimir el senyal

amb Wavelet Discret Transform. Per tal de trobar la millor eliminació de la línia base i la configuració de

compressió s'han variat els possibles paràmetres. Els resultats obtinguts en aquesta primera part del projecte

són favorables; la línia base s'ha eliminat amb èxit i les dades s'han comprimit de 420 mostres a 95 coeficients.

Els resultats obtinguts per a ANN demostren que un major nombre de capes o neurones ocultes/capa no implica

un millor rendiment. S'obtenen millors resultats amb 2 capes ocultes i entre 5-2 neurones. Encara que

s'obtenen valors favorables durant l'entrenament de l'ANN, quan la xarxa és alimentada amb altres dades, els

resultats no són tan precisos.

4

Introduction
Heavy metals are substances found in the environment that can come from both natural and anthropogenic

sources (1). These substances are not biodegradable and tend to bioaccumulate and biomagnificate (2). Some

small concentrations of heavy metals are essential for ecosystems, however, higher concentrations can be

harmful for humans and other species (3,4). Therefore, it is essential to monitor heavy metals to guarantee

both human and environmental health.

In the last years different techniques for determination of heavy metals have been used, such as: atomic

absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy or inductively coupled

plasma mass spectrometry (5). These systems require expensive instruments, trained personal and long time of

analysis.

There is an increasing interest in analytical methods with high selectivity and sensitivity to screen products or

environmental monitoring to detect adulterations or contamination. Among these, electronic tongues are

especially interesting as they can respond to a large variety of substances. They provide analytical information

at low cost in real time with a direct and relatively simple measuring setup. On the other hand, they require

larger amounts of samples for calibration and generate large amounts of data which need non-trivial

processing.

This report presents the developed MATLAB software used to calculate the concentration of certain substances

using data from a voltammetric electronic tongue with four sensors to determine the concentration of six

different metal ions.

In this section an overview to the different concepts related to electronic tongues and the processing methods

used are provided.

Electronic tongues

According to the IUPAC definition, an electronic tongue (ET) is "a multisensor system, which consists of a

number of low-selective sensors and uses advanced mathematical procedures for signal processing based on

Pattern Recognition and/or multivariate data analysis (artificial neural networks), principal component analysis,

etc."(6)

Electronic tongues generate multidimensional information from a sensor array applied to liquid samples. This

analytical system also includes a data processing stage to extract coherent information from the complex data.

For instance, the data used in this work is a liquid sample with certain substances and electronic tongues are

used to calculate their concentration.

Different families of sensors exist: potentiometric, voltammetric and impedimetric. It is even possible to

combine responses obtained from sensor of different families. Nevertheless, this work will focus on a

voltammetric electronic tongue which is constituted by four screen-printed modified electrodes. Every electrode

provides a voltammogram, i.e., a series of currents as a function of the applied potential as illustrated in Figure

1. These different types of electrodes ensure the desired cross-response and have been used but have non-

stationary characteristics. Their selectivity and detection limits are different which makes the system more

sensitive and accurate.

The data analysis usually consists in two steps: pre-process data and relate readings with outputs. The first

step may consist of different procedures such as remove redundant information, enhance signal-to-noise ratio

reduce interference effects and/or drifts or non-linearity in the readings from the various sensors. Principal

Component Analysis (PCA) is widely used for this pre-processing step. Additionally, a recommended pre-

treatment step is to normalize the range of the different input channels to avoid any imbalance between them

(7).

5

Figure 1: Example of a voltammogram obtained from electronic tongues

On the second step different numeric analysis can be implemented (6,8):

 Qualitative models: Partial Least Squares- Discriminant Analysis (PLS-DA), Linear Discriminant Analysis

(LDA) or Support Vector Machine (SVM) and used of tri-linear approaches such as PARAFAC or Tuker

models.

 Quantitative models: Multiple Linear Regression (MLR), Principal Components Regression (PCR), Multi-

way PLS and Artificial Neural Networks (ANN).

More details on data processing models can be found in (8).

This work will be focused on different compression strategies using wavelets and removing baseline of the

signals as a first step. In the second step ANN will be applied to estimate the concentration of each substance.

Baseline

The measurements obtained with the electrodes contain a significant baseline; caused by different reasons such

as capacitive currents and impurities This baseline is significant and not constant through the measurements

and therefore is critical to remove it correctly. Removing the baseline or an estimation of it from the spectrum

leads to a more interpretable signal allowing to determine peaks and its amplitude more accurately(9).

Therefore this substation of the baseline is done before compressing the signal.

To remove it, the approach presented in (9) is used. According to this method, the baseline is fitted to a low-

order polynomial where the polynomial coefficients are estimated by minimising a non-quadratic criteria. The

authors have designed four cost functions that avoid the peaks to be too influent on the estimation:

symmetric/asymmetric Huber function and symmetric/asymmetric truncated quadratic. In addition to the cost

function the hyperparameters have to also be set to perform the removal of the baseline: threshold and

polynomial order.

Data Compression

Each voltammogram is made of hundred of measurements leading to a great amount of data (samples x

measurements x sensor). These can easily be processed by PCA or PLS, however this is not the case for ANN

(7). In order to reduce this amount of data compression is used. Additionally, compression also extracts

significant features, eliminates irrelevant content, such as noise giving measured signals a clear shape or profile

(10,11).

Different data compression strategies like PCA (12), Fourier analysis (13,14), Hadamard transform or Discrete

Wavelet Transforms (DWT) (15) can be used. In this project DWT will be used and the different possibilities in

this type of compression will be studied. DWT is based on decomposing the signal into different wavelet

functions, scaled and translated versions of a base function (mother wavelet). DWT is better at describing non-

stationary signals than Fourier transform (16) and the authors in (17) concluded that DWT-ANN option

performed better than down sampling and PCA-ANN. This is due to the fact that wavelet transform was

developed for the analysis of non-stationary signals and as PCA is a linear projection method that fails to

preserve the structure of a non-linear data set.

6

Artificial Neural Networks

Artificial Neural Networks (ANNs) are broadly used in chemical data-mining, because ANNs are powerful

modelling tools for deriving the meaning from complex or imprecise data (18). ANN is a parallel distributed

network of connected processing units and are used as powerful non-linear modellers applicable for quantitative

applications (7) such as the one studied here. The first studies describing ANN were performed by the authors

in (19,20) and the initial idea was based on the human brain functioning. These networks basic unit is called a

neuron, which is mathematically represented in Figure 2. Inspired in neural physiology, each neuron is

constituted of a summing function which integrates the contributions of different inputs (the experimental

values or neurons in a previous layer) and an activation or transfer function (ɸ(v)) that controls the propagation

of the neuron signal to the next layer. Furthermore these inter-neuron connections are called synapses which

have associated synaptic weights (wi).

Figure 2 Mathematical Model of a Nonlinear Neuron (21)

The most common transfer functions, depicted in Figure 3, are as follows:

 Threshold or Heaviside Function: used to model all-or-none property. A neuron whose activation

function is a function like this is called a perceptron or a McCulloch-Pitts model (19).

 Linear Function: used as an approximation to a non-linear amplifier.

 Sigmoid or hyperbolic tangent Function: This is the most common form of activation function used in

artificial neural networks.

However MATLAB toolbox offers other transfer functions that have also been used by researchers and will be

discussed later on in this section. In the program developed here the transfer functions tested are: logarithmic

sigmoid, symmetric sigmoid, positive saturating linear and linear transfer function.

Figure 3: Basic activation functions used in ANN studies (22).

7

To form a ANN associated neurons are used. Neighbour neurons form a layer and further layers can be

concatenated, each taking its input from the previous layer outputs. If the network only consists of input and

output neurons it is called a single-layer. If there are layers in between input and output, called hidden layers

the networks is referred as multi-layer network.

Furthermore, depending on the connection between neurons different classes of network architectures can be

built (23):

 Feed-Forward networks: are characterized by unidirectional connections between network layers (one

direction flow from input to output).

 Recurrent networks: are characterized by their loops as connection among layers occur in both

directions. In these cases information is no longer transmitted only in one direction but it is also

transmitted backwards. Some recurrent artificial neural networks are Hopfield, Elman, Jordan and bi-

directional.

These networks architectures are depicted in the Figure 4.

Figure 4: Feed-forward (FNN) and recurrent (RNN) topology of an artificial neural network (24)

Building an ANN topology is half the task before we can use this artificial neural network for solving a given

problem. In the next step for setting up the network, the system undergoes a training/learning procedure.

It has to be considered that during neural training overfitting problems may occur: the error on the training set

is a very small value but other new data presented to the model show a larger error. There are two methods

used to avoid overfitting (7): Bayesian regularization and early stopping (use validation set to check if

overfitting is taking place). The Bayesian regularization algorithm , does not make use of an internal validation

stage and does not require an extra subset for this purpose (25).

During the training of an ANN several learning strategies can be used. They are classified in three main groups

depicted in Figure 6 and described below:

 Supervised Learning: this technique uses the training data to set parameters of an artificial neural

network. The training data consists of pairs of input data, in this case the sensors measurements, and

the output, the metal ions concentration. This training process is used to find the best parameters for

each neuron. Different supervised learning algorithms exist: multilayer perceptron, Support Vector

Machines, k-nearest neighbour algorithm, Gaussian mixture model, Gaussian, naive Bayes, decision

tree, radial basis function classifiers and backpropagation. These types of network require a validation

set to test the performance of learned artificial neural network. Validation data set consist of new data,

which has not been previously introduced to artificial neural network (24).

o Backpropagation network: is a subtype of supervised learning and it reassembles RNN as the

output error is used to train the network but there are no back-loops. The network learns by

example, after choosing the weights of the network randomly, the back propagation algorithm

is used to compute the necessary corrections. As most algorithms, the training stops when the

value of the error function has become sufficiently small.

 Unsupervised Learning: this technique does not have a training data set with known answers. This type

of learning is useful in cases such as statistical modelling, compression, filtering, blind source separation

and clustering. It uses cost functions which can be any function and it is determined by the task

formulation. Self-organizing maps are the ones that the most commonly use unsupervised learning

algorithms (24).

Figure

 Reinforcement Learning: this tec

environment to maximize some notion of long

algorithms the ANN finds the policy which produces the maximum return. This type of learning is use

for robot control, telecommunications, and games such as chess and other sequential decision making

tasks and is also frequently used as a part of artificial neural network’s overall learning algorithm (23).

Figure

Not all of them have been tested in this project

The type of ANN has been chosen following related biography. In the list below some of the recent approaches

for ANN and voltammetric electronic tongues are summarized:

 In (17) a feed-forward backpropagation network to determine the concentration of three amino acids

was designed. It consisted of two hidden layers and one output layer.

samples (columns) with 16 coefficients

one. The first hidden layer had six neurons and tangent

layer had 24 neurons and logarithmic

neuron and linear transfer function. The used training algorithm was the Bayesian regularization

algorithm, which avoids overfitting without the need to monitor the fitness degree of an internal

validation subset (28). The goal for convergence training they use was a sum of squared error (SSE) of

0.001 in 200 or less training epochs. SSE was calculated as follows:

where c is the concentration value and N the number of training samples.

To select among the different ANN configuration they use a percentile relative absolute error (PRAE) to

evaluate the different networks' performance:

Figure 5 backpropagation neural network (26)

: this technique uses data which is generated by interactions with the

environment to maximize some notion of long-term reward. Using the generated output and several

algorithms the ANN finds the policy which produces the maximum return. This type of learning is use

robot control, telecommunications, and games such as chess and other sequential decision making

tasks and is also frequently used as a part of artificial neural network’s overall learning algorithm (23).

Figure 6 Classification of learning algorithms (27)

n this project; only supervised learning was tested.

has been chosen following related biography. In the list below some of the recent approaches

tongues are summarized:

forward backpropagation network to determine the concentration of three amino acids

was designed. It consisted of two hidden layers and one output layer. The input matrix is formed by 72

coefficients of DWT using the Daubechies mother wavelet (rows) for each

The first hidden layer had six neurons and tangent-sigmoidal transfer function, the second hidden

layer had 24 neurons and logarithmic-sigmoidal transfer function, and the output layer had a single

neuron and linear transfer function. The used training algorithm was the Bayesian regularization

algorithm, which avoids overfitting without the need to monitor the fitness degree of an internal

The goal for convergence training they use was a sum of squared error (SSE) of

0.001 in 200 or less training epochs. SSE was calculated as follows:

��� =�(���������� − ������������)
�

�

���

where c is the concentration value and N the number of training samples.

To select among the different ANN configuration they use a percentile relative absolute error (PRAE) to

evaluate the different networks' performance:

8

hnique uses data which is generated by interactions with the

term reward. Using the generated output and several

algorithms the ANN finds the policy which produces the maximum return. This type of learning is used

robot control, telecommunications, and games such as chess and other sequential decision making

tasks and is also frequently used as a part of artificial neural network’s overall learning algorithm (23).

has been chosen following related biography. In the list below some of the recent approaches

forward backpropagation network to determine the concentration of three amino acids

The input matrix is formed by 72

of DWT using the Daubechies mother wavelet (rows) for each

sigmoidal transfer function, the second hidden

output layer had a single

neuron and linear transfer function. The used training algorithm was the Bayesian regularization

algorithm, which avoids overfitting without the need to monitor the fitness degree of an internal

The goal for convergence training they use was a sum of squared error (SSE) of

To select among the different ANN configuration they use a percentile relative absolute error (PRAE) to

9

���� =
1

�
�
����������� − �������������

����������
× 100

�

���

where c is the concentration value obtained experimentally and calculated with ANN and M the number

of testing samples.

 In (15) different feed-forward backpropagation networks are tested, but all have an input layer of 16

neurons corresponding to the 16 coefficients obtained from DWT. They tested two set ups where one

network will provide three outputs or three networks with only one output to calculate the

concentration of the substances studied. They tested networks with one or two hidden layers with

variable number of neurons, tansfer functions (logsig: log sigmoid, tansig: hyperbolic tangent sigmoid;

and purelin: linear transfer function) and different supervised learning (conjugate gradient, descendent

gradient, descendent gradient with adaptive learning rate, descendent gradient with momentum,

descendent gradient with momentum and adaptive learning rate, Levenberg–Marquardt optimization

algorithm and the best results with Bayesian regularization algorithm).

 In (29) 16 approximation coefficients are used as input and to output setups: one network with three

outputs and two hidden layers with 10 and 5 neurons; and three networks with one output and two

hidden layers with 6 and 24 neurons. The network is a feed-forward topology and Bayesian

regularization learning algorithm. The error goal for training used was a SSE of 0.01, to be reached in

300 epochs of training or less.

 In (30) they use a training algorithm (Bayesian regularization) and as input the coefficients of the DWT

(Daubechies) and FFT parameters. For the ANN, different parameters were tested and are summarized

in Figure 7 and the maximum of training epochs were set at 200.

To select the best model the predicted concentrations for the three amino acids were compared with

the expected ones. The best regression parameters (slope (m) and correlation value (r) close to 1 and

intercept (b) close to 0) and the lowest root-mean-square error (RMSE) and normalized root-mean-

square error (NRMSE).

The best results were achieved without any autoscaling of the data, by FFT compression and using 160

input neurons, 1 single hidden layer formed by 7 neurons, the purelin hidden layer transfer function and

satlins (symmetric saturating linear transfer function) output transfer function and a residual error of

10-10 M.

Figure 7: ANN parameters tested by authors in (30)

 In (18) a feed-forward and backpropagation architecture and Bayesian Regularization learning

algorithm was used. The input layer consisted of 23 neurons with a linear transfer function and the

output layer consisted of three neurons. The number of neurons in the hidden layer was changed from

1 to 10 and combinations of tansig, logsig, purelin, satlin (saturating linear transfer function) and satlins

were tested. RMSE was used for an overall comparison. The optimum configuration had 5 neurons and

logsig transfer function in the hidden layer and 3 neurons and purelin transfer function in the output

layer.

10

Objectives
In this project electronic tongues used to measure heavy metals have been presented. The data obtained from

this sensor array has to be processed to obtain the estimated concentrations of heavy metals. In this project

different baseline removal, compression and ANN are tested. The objectives of these project are to study ANN

and how they can be developed using MATLAB to improve the results previously obtained in the data treatment

of the voltammetric tongue results in (5) with a simpler, linear method like PLS.. There are two ways to do this

implementation using the neural network fitting tool GUI (Graphical User Interface) or by coding the network

using the MATLAB toolbox commands. The baseline removal and compression algorithms have also been

developed in MATLAB.

To summarize the main objectives are:

 study electronic tongues and how they are used to measure heavy metals

 study and test baseline removal algorithms

 study and test compression algorithms: focus on DWT

 study and test ANN

 find best set up for the input data used

 develop re-useable MATLAB functions for further use in the Department of Chemical Engineering and

Analytical Chemistry

Integration among study areas

This project involves the following study areas:

 17. Matemàtica i informàtica: developing a program in MATLAB for baseline removal, compression and

ANN involves applying programming skills in MATLAB language and also math. To implement such

programs MATLAB works with matrices and the performance is measured using statistical methods.

 21. Química analítica: The input data consists on data obtained from electronic tongues to analyze the

concentration of heavy metals. These sensors have been developed in the Department of Chemical

Engineering and Analytical Chemistry

 26. Sanitat i gestió ambiental: Electronic tongues have the drawback that the data obtained with them

require processing to obtain the concentrations of heavy metals (not a linear/trivial relation between

measurements and concentrations). However, if a more accurate and reliable processing

algorithm/implementation is developed, these sensors could be used to measure heavy metals

concentration in rivers, lakes and sewers among others. Being able to have a fast and cheap method

to take these measurements will help in having a better knowledge and control in environmental

management.

11

Materials and Methods

Electronic tongue design

The data set for this project was obtained with a voltammetric

electronic tongue constituted by four screen-printed modified

electrodes developed by the authors in (5):

 Carbon nanofiber modified electrode (SPCE-CNF)

 Ex-situ antimony film electrode prepared from carbon

nanofiber modified electrode (ex-situ-SbSPCE-CNF)

 Carbon nanofiber chemically modified with Cys electrode

(Cys-SPCE-CNF)

 Carbon nanofiber chemically modified with GSH

electrode (GSH-SPCE-CNF)

Figure 8: Experimental setup for simultaneous stripping voltammetric

measurements with four different screen-printed electrodes. A) DRP-

CAC connectors. B) Screenprinted electrodes. C) Ag/AgCl reference

electrode. D) Carbon auxiliary electrode (5).

Voltammetric measurements

The data set used in this project is the result of the analysis of solutions containing different heavy metal

concentrations with the above described voltammetric tongue. Using the electrodes presented in the previous

section, stripping voltammetric measurements were performed by applying a deposition potential (Ed) of -1,4 V

and an anodic (oxidation) scan from -1,4 V to -0,4 V in differential pulse mode. Details on chemicals, solutions,

instrumentation and how these measurements were performed can also be found in (5).

The measurements correspond to a total of 80 metal

mixtures samples which are used for the simultaneous

determination of Zn(II), Cd(II), Pb(II), Tl(I), In(III) and

Bi(III) ions inside the concentration range 0 to 200

µg/L and are represented in Figure 9.

These voltammograms have been modified to eliminate

electrodes anomalies and to reduce the effects of the

baseline and only the measurements 81 to 500 are

used.

Figure 9: The four subfigures: I1, I2, I3, I4 represent the

voltammograms of each sensor for all the samples analyzed

Software

MATLAB version 9.0.0.34360 R2016a was used to implement DWT and ANN modelling which are then used to

process the data collected from the electronic tongue. This program has been chosen as it provides Wavelet

Toolbox (Version 4.16) and Neural Network Toolbox (Version 9.0 (R2016a)). In addition, the baseline removal

was done employing the background estimation by minimizing a non-quadratic cost function (9).

Figure 10 is an schematic depicting the main concepts of the software developed. The measurements are first

fed to baseline removal algorithm and then compressed using wavelet transform. These values are then used as

an input for the ANN.

12

Figure 10: Schematic of software developed concepts.

Baseline

To remove the baseline from the signals obtained from the electronic tongues, the approach presented in (9) is

used. It fits the baseline to a low-order polynomial where the polynomial coefficients are estimated by

minimising a non-quadratic criteria. The authors have designed four cost functions that avoid the peaks to be

too influent on the estimation: symmetric/asymmetric Huber function and symmetric/asymmetric truncated

quadratic. In addition to the cost function the hyperparameters have to also be set to perform the removal of

the baseline: threshold and polynomial order.

The criteria used to choose the best type of low-order polynomial to remove the baseline are:

1. Avoid raising the ends of the function

2. Avoid negative values

These are two criteria that are usually evaluated by

the person analysing the signals. However in order to

ease this task three parameters have been calculated:

slope beginning to first minimum, slope from last

minim to end of signal and negative area. The slope

values can help evaluate how the signal rises; more

slope more the edges are rising and therefore worst

baseline removal. The negative area refers to the total

area between x axis<0 and the signal. All this

parameters are represented in the Figure 11.

Figure 11: Representation of performance parameters for

baseline removal.

To find the most suitable baseline removal function different estimations, varying all the parameters have been

performed and the slopes and negative area have been calculated: functions: symmetric Huber function,

asymmetric Huber function, symmetric truncated quadratic, asymmetric truncated quadratic; polynomial order

from 1-10; thresholds: 0.001-0.1 (steps of 0.002). The program then chooses the best 10 estimations: it first

selects the estimations which have slope lower than threshold provided by the user and then from those it

selects the 10 with less negative area.

Figure 12 Compares an example of the sensor's raw data and data without baseline.

Figure 12: a) Raw voltammogram data from one sample of sensor SPCE-CNF; b) Voltammogram data from sensor SPCE-

CNF after baseline removal.

13

0 500 1000 1500
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

poins

I original

0 500 1000 1500
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

poins

I reconstructed

0 500 1000 1500
-0.05

0

0.05

0.1

0.15

0.2

0.25

poins

I from CA coefficients

0 500 1000 1500
-0.05

0

0.05

poins

I from CD coefficients

The MATLAB implementation can be found in the Annex I.b. and a schematic and brief description of the

different functions is shown in Figure 13. Different set-ups were tested for each set of voltammograms (IX,

corresponding to 4 sets of data (4 sensors) with 80 samples): polynomial order between 1 to 10, threshold

between 0,01 to 0,1 and cost function: sh, ah, stq, atq. As output of this software, the best 10 baseline removal

set-ups for each cost-funtcion and sensor are obtained. The user can then chose the most suitable one.

The test function is just used to set the input options, to remove the baseline another function is used. This

function requires an specific set-up (polynomial order, threshold and cost function) and returns the values for

that set up of slopes and negative area, whereas the test function returns a vector for those parameters (each

position corresponding to one set-up). It has to be considered that each sensor has 80 samples and that the

baseline removal is the same for all. Therefore the slope beginning (slope_B), sloped end (slope_E) and

negative area are presented as the mean of those samples.

Figure 13: MATLAB functions developed for baseline removal

Compression

The compression used is DWT, based on representing a function f(t) with wavelet functions, generated by

translating and scaling this mother wavelet. The MATLAB function dwt can be used, which performs a single-

level one-dimensional wavelet decomposition (31). This function returns two types of coefficients of half the

length of the original signal:

 CA or approximation coefficients:

contain information of the lower

frequencies of the voltammogram,

associated to the signal.

 CD or detail coefficients: contain

information of the higher

frequencies of the voltammogram,

associated to the noise

The original signal can be reconstructed

using both sets of coefficients or only one

of them as it is illustrated in Figure 14 with

one example.

Figure 14: Graphics of an example signal

comparing the original signal with the

reconstructed signal using both coefficients,

only CA and only CD.

It can been seen with naked eye that the reconstructed signal with CA is similar to the original one whereas the

reconstructed signal with CD reassembles noise. The reconstructed signal has the same values as the original

but the CA is half the values and could be fed to the ANN. Therefore DWT is a method that eliminates noise and

compresses the signal.

14

This function can be concatenated as illustrated in Figure 15. First, the wavelet

transform is applied to the original signal and then applied to the obtained CA

coefficients. This is done as many times as necessary, called decomposition level.

This is known as Mallat's pyramidal algorithm and it is used to furthermore

eliminate noise and/or to compress the signal. However, it has to be considered

that with every level of DWT information is also lost.

Figure 15: Mallat’s pyramidal algorithm used to implement the DWT. Approximation and

detail vectors are indicated by cA and cD respectively; subindices denote decomposition

level. (15)

In order to perform DWT with more than one level of decomposition wavedec function (32) is used (Wavelet

Toolbox™). This function inputs are: the original signal, the mother wavelet, and the level of decomposition.

Part of the effort to obtain a acceptable compression consists on determining the mother wavelet function and

the maximum decomposition level that best represents the original signal without significant loss of information

(29). As not all the wavelet available in the MATLAB toolbox can be tested only some of them will be studied,

following the conclusion of other researchers1:

 In (15) the mother wavelets evaluated were Coiflets, Daubechies, biorthogonal and symlets.

Voltammograms were compressed using 165 combinations obtained with 33 different mother wavelets

and five different decomposition levels. They finally use a fourth order Daubechies’ wavelet and a

decomposition level 4, which represents compromise between number of approximation coefficients

obtained at each decomposition level and the degree of similarity between the original voltammogram

and the one recovered with these coefficients.

 In (29) several mother wavelets (Daubechies, Coiflets, symlets and biorthogonal) and four successive

decomposition levels were tested. The combination that fulfilled our purpose was obtained with the

Daubechies wavelet of eighth order and decomposition level 3.

 In (33) different kinds of wavelet basis were tested: Haar, Daubechies ‘n’ (n = 3, 4, 6, 8, 10, 12, 14,

16, 18 and 20), Symlet ‘m’ (m = 2–8) and Coiflets ‘g’ (g = 1–5). Five decomposition levels were

applied. Symlet 3 and Symlet 4 wavelets with decomposition level 4 were selected (typical wavelets to

represent symmetric signals).

In order to selected the best mother wavelet and level of decomposition among the tested wavelets the same

criteria as (15) is used: degree of similarity between the original voltammogram and the one reconstructed from

approximation coefficients after compression. The authors propose a comparison factor named fc, which

considers the area under both signals when superimposed. The fc can range from 0 to 1, depending on

similarity; 1 indicating identical signals. Considering discrete signals of length M, the fc factor can be calculated

as:

�� =
� ∩ �

� ∪ �
= 	
∑ min(��, ��)
�
���

∑ max(��, ��)
�
���

where ai is the ith data point of the original voltammogram, bi the ith data point of the reconstructed signal

from approximation coefficients.

Figure 16: Scheme of surface elements involved in the calculation of fc (15)

To reconstruct the signal the function waverec (34) is used. It has been considered that the comparison factor

should be fc>0,95.

1
 The differences between these types of wavelets are well explained in (28).

15

Table 1: Compression parameters tested

Wavelet family Order Decomposition level MATLAB wavelet names

Daubechies 1, 2, 3, 4, 6, 8, 10, 12, 15,
20, 25, 30, 35, 40, 45

1 to 6 for all 'db1','db2',... ,'db12', 'db15',
'db20', 'db25', 'db30', 'db35',
'db40', 'db45'

Coiflets 1, 2, 3, 4, 5 1 t 6 for all 'coif1', ... , 'coif5'
Symlets 2, 3, 4, 6, 8, 10, 12, 15,

20, 25, 30, 35, 40, 45
1 to 6 for all 'sym2', 'sym3',... , 'sym12',

'sym15', 'sym20', 'sym25'
Biorthogonal 1.1, 1.3, 2.2, 2.6, 3.1, 3.7,

4.4, 5.5, 6.8
1 to 6 for all 'bior1.1', 'bior1.3', 'bior1.5',

'bior2.2', 'bior2.4', 'bior2.6',
'bior2.8', 'bior3.1', 'bior3.3',
'bior3.7', 'bior4.4', 'bior5.5',
'bior6.8'

Reverse
Biorthogonal

1.1, 1.3, 2.2, 2.6, 3.1, 3.7,
4.4, 5.5, 6.8

1 to 6 for all 'rbio1.1', 'rbio1.3', 'rbio1.5',
'rbio2.2', 'rbio2.4', 'rbio2.6',
'rbio2.8', 'rbio3.1', 'rbio3.3',
'rbio3.7', 'rbio4.4', 'rbio5.5',
'rbio6.8'

The MATLAB implementation can be found in the Annex II.b and a schematic and brief description of the

different functions is shown in Figure 17. For each sensor, the voltammogram of all samples are feed to a

function that prepares the data for compression: first the baseline is remove with the best suitable set-up

found, only the measurements between samples 81:500 are kept as to avoid undesired interferences for the

ANN, and finally the signal is normalized. The output signal then undertakes a testing process where the signal

is compressed using different parameters: mother wavelet and decomposition level. For each set-up the results

with fc>0,95 are presented to the user whom can chose the best suitable one; balance compression level and

signal degradation.

Figure 17: MATLAB functions developed for DWT compression

ANN

The Neural Network Toolbox of MATLAB provides the tools to build ANN and the possibility of setting its

parameters. For the case here studied different ANN have been tested and its performance has been compared

using the neural network fitting tool GUI or by coding the network using the MATLAB toolbox commands.

The neural network fitting tool GUI provides limited options such as: only one input neuron and one hidden

layer allowed, no option to choose transfer function in hidden layers, and test one set-up at a time among other

limitations. However the first ANN were implemented using the GUI. The input were the 80 samples and 380

DWT coefficients (95 from each sensor) and for all the simulations 64 samples were used for training 8 for

testing and 8 for validation. Different number of neurons for the hidden layer were chosen: 1-10 and the

training algorithms were Levernberg-Marquardt or Bayesian Regularization.

Therefore an implementation was developed using commands and MATLAB functions (which can be found in

Annex III.b). The ANN implemented using MATLAB commands provides more options that are described below.

The number of inputs in the ANN is fixed to the number of sensors and the data provided. In this case 4

sensors were used and the data were compressed to DWT coefficients. Other authors (7,14,15,35), instead of

16

using the each sensor as an input, use each DWT coefficient as an input as depicted in Figure 18. This set-up

has not been tested, nonetheless it should be considered for further testing.

Figure 18: Conceptual scheme of the titration procedure with the use of the electronic tongue (35)

The outputs can be one or more as an ANN can be modelled for each substance or an ANN can be used for all

substances at once. In this work only networks with one output have been developed as they have shown to

give better results (15).

There is no guide for ANN topology as to infer which number of neurons and hidden layers will yield better ANN

models. According to (7), almost all recorded chemistry situations employ a single layer. However as it has been

described previously various authors use multi-layer ANN so both scenarios are also studied. In order to deduce

the best number of neurons the recommendation is trial and error, starting with a large number and decreasing

until the model deteriorates due to manifestation of a too simple network. The ANN used consists of a feed-

forward network where different number of layers/sensors, transfer functions and learning algorithms have

been tested. The number of hidden layers vary from 1 to 3 and different number of neurons for each layer have

been tested. The list below provides more details about the other parameters tested:

 To build the network two different functions have been used to compare their results:

feedforwardnet (36) and fitnet (37).

 Two backpropagation training functions have been tested:

o Levenberg-Marquardt backpropagation: is a network training function that updates weight

and bias values according to Levenberg-Marquardt optimization. It is often the fastest

backpropagation algorithm; however it does require more memory than other algorithms

(38).

o Bayesian regularization backpropagation: is a network training function that updates the

weight and bias values according to Levenberg-Marquardt optimization. It minimizes a

combination of squared errors and weights, and then determines the correct combination

that reduces the performance error (39).

 Different transfer functions have been tested: logsig, satlins, tansig and purelin. These transfer

functions have been combined in the different hidden layers and also in the output layer.

Another factor to consider is the kind of performance error used during the training process, SSE was used as

the authors in (28,29):

��� =�(��������� − �����������)
�

�

���

To compare the different ANN simulated two parameters have been compared: lack of fit (lof) and percentile

relative absolute error (PRAE). These allow to evaluate the different networks' performance:

���� =
1

�
�
����������� − �������������

����������
× 100

�

���

��� = �
∑ (���������� − ������������)

��
���

∑ ����������
��

���

× 100

where c is the concentration value obtained experimentally and calculated with ANN and M the number of

testing samples.

17

Figure 19 summarizes the different configurations for the ANN implemented. For each simulation a type of

neural network function to create the network was chosen: fitnet or feedforwardnet and also the learning

algorithm was selected: Levenberg-Marquardt or Bayesian Regularization. Then the number of hidden layers

was chosen and ANN configuration .m file was implemented. In order to keep track of the different set-ups

simulated these type of files where name as follows: 'ANN_create_XX_YY_ABCD.m' where XX corresponds to

the neural network function used (fit: fitnet or feed: feedforwardnet); YY indicates the learning algorithm (LM

or Bay) and ABCD are the transfer function used for each layer (L: logsig, S: satlins, T: tansig and P: purelin).

For example: ANN_create_fit_LM_LS_P: indicates that the file creates a ANN using fitnet with training algorithm

Levenberg-Marquardt with two hidden layers: first layer uses logsig transfer function and the second layer uses

satlins transfer function and the output layer uses a

purelin transfer function. This configuration files are

then called from another .m file which trains and

tests the ANN as shown in Figure 20. These type of

files are called 'ANN_test_XX_YY_ZZ.m' where XX

corresponds to the neural network function used (fit:

fitnet or feed: feedforwardnet); YY indicates the

learning algorithm (LM or Bay) and Z indicates de

number of hidden layers 1-3. For networks with 1 or

2 hidden layers the transfer function can be the

same for all the layers (including output) or different,

generating more possibilities. Hence, each test file

will call more than one ANN_create.m file, i.e.

'ANN_test_fit_BAY_2.m' will call all create ANN .m

files corresponding to two hidden layers:

'ANN_create_fit_BAY_AB_D.m'. On the other hand,

for 3 hidden layers the same transfer function has

been used for all layers, i.e. all neurons in the ANN

use the same type of function. Over 1000 different

ANN configurations were tested for each

concentration.

 Figure 19: ANN parameters used

The MATLAB implementation can be found in the Annex III.b and a schematic and brief description of the

different functions is shown in Figure 20.

Figure 20: MATLAB functions developed for ANN

Function Neural Network

fitnet feedforwardnet

Learning Algorithm

Levenberg-Marquardt Bayesian Regularization

Number Hidden Layers

1 2 3

Number Neurons/Layer

1 2 3 4 5 6 7 8 9 10

Hidden Layer Transfer Funtion*

purelin satlins logsig tansig

For 3 hidden layers not all combinations have been tested

Output Transfer Funtion*

purelin satlins logsig tansig

18

Results

Baseline

The removal has been done separately for each type of sensor, therefore 4 estimations have been obtained. In

all cases the best estimations were found using asymmetric truncated quadratic and the final results are

summarized in Table 2.

Table 2: Best baseline removal parameters

Sensor Function Polynomial
order

Threshold

SPCE-CNF Asymmetric truncated quadratic 4 0,030

ex-situ-SbSPCE-CNF Asymmetric truncated quadratic 4 0,100

Cys-SPCE-CNF Asymmetric truncated quadratic 4 0.050

GSH-SPCE-CNF Asymmetric truncated quadratic 4 0.040

Figure 21: Sensor Cys-SPCE-CNF for all samples a) Raw data, b) Data after removing baseline.

Additionally, to eliminate electrodes anomalies and to reduce the effects of the baseline and only the

measurements 81 to 500 are used.

Compression

The best fc factor is obtained with level 1 compression as it reduces de data input from 420 measurements to

234 DWT coefficients. However, higher compression levels are used to further reduce the number of DWT input

coefficients. As stated before only compressions that provide a factor above 0,95 are considered. From all the

different set-ups tested over a 100 fulfil this condition and some of the results can be found in Annex III.c.

Some of them have a similar performance (similar fc value), but the compression chosen was Daubechies order

25 with compression level 3 reducing the data into 95 DWT coefficients and obtaining a fc>0,995 for all 4

electronic tongues.

Table 3: Compression results for Daubechies order25 with compression level 3

Sensor fc

SPCE-CNF 0,9966

ex-situ-SbSPCE-CNF 0,9989

Cys-SPCE-CNF 0,9976

GSH-SPCE-CNF 0,9962

19

ANN

After testing the ANN using neural network fitting tool GUI the developed .m files explained in the previous

section were evaluated. Some of the ANN implemented have good performance with the training data, however

this performance is drastically reduced with test and validation data. For each heavy metal, an ANN has been

implemented; and therefore different configurations can be used for each one. However, it has been hard to

determine which were the best configuration as none of them performed as good as expected and do not

provide enough accurate results.

The first ANN implemented was done using the neural network fitting tool GUI. As it provides limited options

and it has to be done all throw the GUI (time consuming) only a few ANN have been tested to analyze one of

the heavy metals.

After these preliminary tests the MATLAB software explained in previous chapter was tested. The results are not

as stable as foreseen as for the same configuration re-training can give very different results. Figure 22, shows

the results of the same network after different train tests, the best and worst results are plotted.

Figure 22: Results for ANN_XX_XX after different train

attempts; top: worst results; bottom: best results; left:

linear regression for training, test and overall; right: MSE

for training and testing

20

After analyzing the output of over a 1000 the simulations the best results seem to be obtained with 2 hidden

layers with 5-1 neurons/layer; but always more than 5 neurons in the whole network. Due to the variance of

ANN explained earlier; i.e. different results after every training, the best results seem to be obtained with LT_S

ANN with 5-4 neurons in each hidden layer. Nevertheless, further testing should be done: train the ANN an

analyze if any configuration has better results. Figure 23 plots the best results obtained with one hidden layer

and with three hidden layers and in Figure 24 the best results with LT_S ANN are presented.

a) Performance results for ANN _feed_BAY_L__P with 5 neurons

b) Performance results for ANN _feed_BAY_LLLP with 3,5 and 3 neurons per layer

Figure 23: Best performance results for one and three hidden layers; left: linear regression for training, test and overall;

right: MSE for training and testing

21

In order to study which MATLAB function (fitnet or feedforwardnet) and learning algorithm (LM or BAY) are

better four different configuration have been tested. The results comparing them are presented in Figure 24.

These results are the best obtained among 6 train attempts.

a) Performance results for ANN_feed_BAY_LT_P

b) Performance results for ANN_fit_BAY_LT_P

22

c) Performance results for ANN_feed_LM_LT_P

d) Performance results for ANN_fit_LM_LT_P

Figure 24: Best results for ANN_LT_P with 5 neurons in each hidden layers after 6 train attempts; left: linear regression for

training, test and overall; right: MSE for training and testing

From the performance results depicted in Figure 24 it can be seen that the best results are obtained with ANN_

feed/fit_BAY_LT_P: better linear regression (higher values for R) and less MSE for training and test (lower

MSE).

To conclude, Figure 25 shows the concentration one heavy metal obtained experimentally compared with the

concentration estimated with the ANN. As it can be seen these estimations are not good estimations as they

23

diverse from the real concentration. The best results obtained seemed promising during training (summarized in

Table 4, however the results with testing data where not accurate as it can be seen in Figure 25.

Table 4: Performance result for ANN_ feed_BAY_LT_P

MSE training data 9,4·10-8

MSE test data (during training) 180

R linear regression training 0,9987

R linear regression testing 0,9541

R test data (After training) -0,5907

Figure 25: Comparison of the test data concentration with the results obtained from ANN_ feed_BAY_LT_P; left:

Concentrations for each sample: experimental vs ANN results; b) linear regression

24

Conclusion
This work evaluates the possibility of processing with ANN the data obtained by a voltammetric electronic

tongue for the simultaneous quantitative determination of six heavy metals: Zn(II), Cd(II), Pb(II), Tl(I), In(III)

and Bi(III) ions inside the concentration range 0 to 200 µg/L. In order to do this the raw data has been pre-

processed before using ANN. The pre-process consisted in baseline removal and DWT compression. Different

baseline removing configurations and different mother wavelets for compression have been tested. The results

obtained in this first part of the project are favourable as the baseline has been successfully removed and the

data have been compressed from 420 samples to 95 for each sensor. The pre-processing of the

voltammograms by DWT has permitted the reduction of the amount of information needed to represent its

content in a factor of almost 5, which means a huge reduction considering the high difficulty of the case

studied: overlapped combination of six compounds plus noise and the oxidation of containing media.

The presented work used the pre-processed data as input for ANN. Different configurations for ANN have been

tested; i.e. different number of hidden layers and neurons, transfer function and training algorithm have been

tested. The results do not perform as expected and heavy metal concentrations for the test data could not be

approximated accurately. However it can be seen from the results obtained that more number of hidden layers

or neurons/layer do not imply a better performance. Better results are obtained with 2 hidden layers and

between 5--2 hidden neurons, but less more than 4 neurons in total. From the results obtained it seems that

the best configuration is ANN_ feed_BAY_LT_P; however, further testing with the prepared configurations

should be performed.

 Even thought during the training of the ANN good R

values are obtained for training and testing sets. However

when the network is feed with other testing data the

results are not accurate (Figure 24).

A possible reason the results are not as favourable as in

other articles such as (15,29,35), is that the concentration

used for the six heavy metals are not incremental; i.e.

they are not equally distributed in the studied range 0 to

200 µg/L as it can be seen in Figure 24. This fact can

influence the ANN training process and therefore the

results are not as reliable as for other authors. It should

be considered to use other input data where the

concentrations where more distributed over a range and

avoid repeating concentration values. This could also be

done by . In Figure 25 the relation of concentrating

among three of the heavy metals is represented. Figure 25: Heavy metal concentrations corresponding to

 the electronic tongues data used.

Further work
As just stated the different ANNs developed could be tested with the same

data but providing a change in axis. Another test that could be done is

change the pre-processing parameters; i.e. use more or less DWT; and

test the ANN again and check if the performance improves or deteriorate.

The program developed could be also used with other input data.

However, the network parameters should be adjusted to the new data;

i.e. number of sensors and input DWT and number of substances to be

tested. As it can be seen in the annexes the program files are commented

to help further researchers reuse this program in their studies/projects.

Additionally, a GUI for software developed could be implemented. From

this GUI the user could chose among more options than the ones

provided by GUI ; however it would also have some limitations. This

GUI could also include the pre-processing calculations; where the user could test which baseline removal and/or

compression configuration is best suited for a specific set-up before using the ANN.

Figure 26:Experimental design for 3 of the

6 heavy metals studied. Small circles

indicate the concentration of the heavy

25

References

1. Foster IDL, Charlesworth SM. Heavy metals in the hydrological cycle: trends and explanation. Hydrol

Process. Wiley Online Library; 1996;10(2):227–61.

2. Jorgensen SE, Fath B. Encyclopedia of ecology. Newnes; 2014.

3. Baby J, Raj JS, Biby ET, Sankarganesh P, Jeevitha M V, Ajisha SU, et al. Toxic effect of heavy metals on

aquatic environment. Int J Biol Chem Sci. Ivyspring International Publisher; 2010;4(4).

4. Castro-González MI, Méndez-Armenta M. Heavy metals: Implications associated to fish consumption.

Environ Toxicol Pharmacol. Elsevier; 2008;26(3):263–71.

5. Pérez-Ràfols C, Serrano N, Díaz-Cruz JM, Ariño C, Esteban M. A screen-printed voltammetric electronic

tongue for the analysis of complex mixtures of metal ions. Submitted 2017.

6. Vlasov Y, Legin A, Rudnitskaya A, Di Natale C, D’amico A. Nonspecific sensor arrays (‘ electronic tongue’)

for chemical analysis of liquids (IUPAC Technical Report). Pure Appl Chem. 2005;77(11):1965–83.

7. del Valle M. Sensor arrays and electronic tongue systems. Int J Electrochem. Hindawi Publishing

Corporation; 2012;2012; 11 pages.

8. Cetó X, Céspedes F, del Valle M. Comparison of methods for the processing of voltammetric electronic

tongues data. Microchim Acta. Springer; 2013;180(5–6):319–30.

9. Mazet V, Carteret C, Brie D, Idier J, Humbert B. Background removal from spectra by designing and

minimising a non-quadratic cost function. Chemom Intell Lab Syst. Elsevier; 2005;76(2):121–33.

10. Simons J, Bos M, van der Linden WE. Data processing for amperometric signals. Analyst. Royal Society

of Chemistry; 1995;120(4):1009–12.

11. Despagne F, Luc Massart D. Neural networks in multivariate calibration. Analyst [Internet]. The Royal

Society of Chemistry; 1998;123(11):157R–178R. Available from: http://dx.doi.org/10.1039/A805562I

12. de Carvalho RM, Mello C, Kubota LT. Simultaneous determination of phenol isomers in binary mixtures

by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a

multivariate calibration tool. Anal Chim Acta. Elsevier; 2000;420(1):109–21.

13. Gemperline PJ. Rugged spectroscopic calibration for process control. Chemom Intell Lab Syst. Elsevier;

1997;39(1):29–40.

14. Serrano N, Prieto-Simón B, Cetó X, del Valle M. Array of peptide-modified electrodes for the

simultaneous determination of Pb (II), Cd (II) and Zn (II). Talanta. Elsevier; 2014;125:159–66.

15. Moreno-Barón L, Cartas R, Merkoçi A, Alegret S, Del Valle M, Leija L, et al. Application of the wavelet

transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic

tongue. Sensors Actuators B Chem. Elsevier; 2006;113(1):487–99.

16. Leung AK, Chau F, Gao J. A review on applications of wavelet transform techniques in chemical analysis:

1989--1997. Chemom Intell Lab Syst. Elsevier; 1998;43(1):165–84.

17. Moreno Barón L, Cartas R, Merkoçi A, Alegret S, Gutiérrez JM, Leija L, et al. Data Compression for a ‐

Voltammetric Electronic Tongue Modelled with Artificial Neural Networks. Anal Lett [Internet]. Taylor &

Francis; 2005 Oct 1;38(13):2189–206. Available from: http://dx.doi.org/10.1080/00032710500259342

18. Cetó X, Céspedes F, Pividori MI, Gutiérrez JM, Del Valle M. Resolution of phenolic antioxidant mixtures

employing a voltammetric bio-electronic tongue. Analyst. Royal Society of Chemistry; 2012;137(2):349–

56.

19. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys.

Springer; 1943;5(4):115–33.

26

20. Pitts W, McCulloch WS. How we know universals the perception of auditory and visual forms. Bull Math

Biophys. Springer; 1947;9(3):127–47.

21. Veitch D. Wavelet Neural Networks and their application in the study of dynamical systems. Dep Math

Univ York UK. 2005;

22. Maltarollo VG, da Silva ABF, Honório KM. Applications of artificial neural networks in chemical problems.

INTECH Open Access Publisher; 2013.

23. Suzuki K. Artificial neural networks: methodological advances and biomedical applications. InTech; 2011.

24. Krenker A, Kos A, Bešter J. Introduction to the artificial neural networks. INTECH Open Access Publisher;

2011.

25. Gutiérrez JM, Gutés A, Céspedes F, del Valle M, Muñoz R. Wavelet neural networks to resolve the

overlapping signal in the voltammetric determination of phenolic compounds. Talanta. Elsevier;

2008;76(2):373–81.

26. Kim H, Soibelman L, Grobler F. Factor selection for delay analysis using knowledge discovery in

databases. Autom Constr. Elsevier; 2008;17(5):550–60.

27. Bevrani H, Syafaruddin, Hiyama T. Artificial Neural Network (ANN) [Internet]. Electric Power System

Laboratory. 2010 [cited 2017 Feb 4]. Available from: http://www.cs.kumamoto-

u.ac.jp/epslab/ICinPS/Lecture-2.pdf

28. Beale MH, Hagan MT, Demuth HB. Neural Network ToolboxTM User’s Guide. MathWorks Inc. Citeseer;

1992;

29. Gutés A, Céspedes F, Cartas R, Alegret S, del Valle M, Gutierrez JM, et al. Multivariate calibration model

from overlapping voltammetric signals employing wavelet neural networks. Chemom Intell Lab Syst.

Elsevier; 2006;83(2):169–79.

30. Faura G, González-Calabuig A, del Valle M. Analysis of Amino Acid Mixtures by Voltammetric Electronic

Tongues and Artificial Neural Networks. Electroanalysis. Wiley Online Library; 2016;28(8):1894–900.

31. dwt [Internet]. MathWorks Documentation. [cited 2017 Feb 4]. Available from:

https://es.mathworks.com/help/wavelet/ref/dwt.html

32. wavedec [Internet]. MathWorks Documentation. [cited 2017 Feb 5]. Available from:

https://es.mathworks.com/help/wavelet/ref/wavedec.html?searchHighlight=wavedec&s_tid=doc_srchtitl

e

33. Palacios-Santander JM, Jimenez-Jimenez A, Cubillana-Aguilera LM, Naranjo-Rodriguez I, Hidalgo-

Hidalgo-de-Cisneros JL. Use of artificial neural networks, aided by methods to reduce dimensions, to

resolve overlapped electrochemical signals. A comparative study including other statistical methods.

Microchim Acta. Springer; 2003;142(1–2):27–36.

34. waverec [Internet]. MathWorks Documentation. [cited 2107 Feb 5]. Available from:

https://es.mathworks.com/help/wavelet/ref/waverec.html?searchHighlight=waverec&s_tid=doc_srchtitle

35. del Valle M. Electronic tongues employing electrochemical sensors. Electroanalysis. Wiley Online Library;

2010;22(14):1539–55.

36. feedforwardnet [Internet]. MathWorks Documentation. [cited 2017 Feb 12]. Available from:

https://es.mathworks.com/help/nnet/ref/feedforwardnet.html

37. fitnet [Internet]. MathWorks Documentation. [cited 2017 Feb 12]. Available from:

https://es.mathworks.com/help/nnet/ref/fitnet.html

38. trainlm - Levenberg-Marquardt backpropagation [Internet]. MathWorks Documentation. [cited 2017 Feb

12]. Available from: https://es.mathworks.com/help/nnet/ref/trainlm.html

39. trainbr - Bayesian regularization backpropagation [Internet]. MathWorks Documentation. [cited 2017

Feb 12]. Available from: https://es.mathworks.com/help/nnet/ref/trainbr.html

27

Annex

I. Remove Baseline

a. Tested configurations

Parameter Tested Options

cost-function Symmetric Huber function

Asymmetric Huber function

Symmetric truncated quadratic

Asymmetric truncated quadratic

polynomial estimation order for baseline 1-10

threshold for baseline 0.01-0.1 steps of 0.01

b. MATLAB Implementation

Only one of the cost-function is included in this annex (due to space limitations). For each cost funtion the

same code is applied.

function test_baseline(sensor,E)

% This implementation s reapeted for each cost function fct= {'sh, 'ah', 'stq', 'atq'}
fct='sh';
count=1;
for(ord=1:10)
 for s=0.01:0.01:0.1
 [sensor_bck_sh(:,:,count), baselines_1(:,:,count),slope_E_sh(count),slope_B_sh(count), area_sh(count)]=

remove_baseline(sensor,E, ord,s,fct);
 set_sh(count,:)=[ord s];
 count=count+1;
 end
end
 %best 10
slope_E_sh_aux=slope_E_sh;
for count=1:20
 [mins(count) pos_slope_E_sh(count)]=min(slope_E_sh_aux);
 slope_E_sh_aux(pos_slope_E_sh(count))=99999;
end
slope_B_sh_aux=slope_B_sh;
for count=1:20
 [mins_slope_B(count) pos_slope_B_sh(count)]=min(slope_B_sh_aux);
 slope_B_sh_aux(pos_slope_B_sh(count))=99999;
end
area_sh_aux=area_sh;
for count=1:20
 [mins_area_sh(count) pos_area_sh(count)]=min(area_sh_aux);
 area_sh_aux(pos_area_sh(count))=99999;
end
 %worst
worst_slope_E_sh=max(slope_E_sh);
worst_slope_B_sh=max(slope_B_sh);
worst_area_sh=max(area_sh);

28

function [sensor_bck, baselines,slope_E,slope_B, area]= remove_baseline(sensor,E, ord,s,fct)

 [samples, recordings]= size(sensor);
area_aux=zeros(1, samples);
for signal = 1:samples
 [z,a,it]=backcor(E,sensor(signal,:), ord, s, fct);
 baselines(signal,:)=z;
 sensor_bck(signal,:)=sensor(signal,:)-baselines(signal,:);
 %calculate slope from begining to min
 slope_B_aux(signal)=(sensor_bck(signal, 1)-sensor_bck(signal,40))/40;
 %calculate slope from min to end
 slope_E_aux(signal)=(sensor_bck(signal,recordings)-sensor_bck(signal,520))/35;
 %negative area
 for i=1:555
 if sensor_bck(signal,i)<0
 area_aux(signal)=area_aux(signal)+abs(sensor_bck(signal,i));
 end
 end
end
slope_E=mean(slope_E_aux);
slope_B=mean(slope_B_aux);
area=mean(area_aux);

c. Results
The results, and also the MATLAB functions can be found in:

https://www.dropbox.com/sh/grx8ddo7osv3q03/AACT9xszzQZumGa3D1EpK4z7a?dl=0

The results_baseline remove.mat file contains the outputs of test_baseline.m function.

For each cost function the following vectors are created as out from the test function:

 set_XX: The first column contains the polynomial order and the seconds column the threshold of each

simulation (rows).

 Sensor_bck_XX: Contains the signal without baseline for each simulation.

 slope_E_XX, slope_B_XX, area_XX: contains the results for each simulation of the slope at the

beginning of the signal, the slope at the end of the signal and the negative are respectively.

 pos_slope_E, pos_slope_B, pos_area_XX: contains the position in the above vectors of the 20 best

results of the slope at the beginning of the signal, the slope at the end of the signal and the negative

are respectively.

 worst_slope_E_XX, worst_slope_E_XX, worst_area_XX: contains the worst result.

II. Compression

a. Tested configurations
Parameter Tested Options

wname

Daubechies 'db1','db2', 'db3', 'db4', 'db5', 'db6', 'db7', 'db8', 'db9', 'db10', 'db11', ,'db12', 'db15',

'db20', 'db25', 'db30', 'db35', 'db40', 'db45'

Coiflets 'coif1', 'coif2', 'coif3', 'coif4', 'coif5'

Symlets 'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 'sym7', 'sym8', 'sym9', 'sym10', 'sym11', 'sym12',

'sym15', 'sym20', 'sym25'

Biorthogonal 'bior1.1', 'bior1.3', 'bior1.5', 'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8', 'bior3.1', 'bior3.3',

'bior3.7', 'bior4.4', 'bior5.5', 'bior6.8'

Reverse

Biorthogonal

'rbio1.1', 'rbio1.3', 'rbio1.5', 'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8', 'rbio3.1', 'rbio3.3',

'rbio3.7', 'rbio4.4', 'rbio5.5', 'rbio6.8'

Decomposition level 1-6

29

b. MATLAB Implementation
function [wname_over95 fc_over95 lev_over95]= test_compresion(sensor)

wname_best='';
fc_best=0;
lev_best=0;
fc_over95=zeros(1,500);
wname_over95=cell(1,500);
wname_over95(:) = {'as'};
lev_over95=zeros(1,500);
i=1;
% this is done for each wname
wname ='db1';
for (lev=1:6)
wname;
lev;
[sensor_comp, fc]= compression(sensor, wname,lev);
if (fc_best<fc)
 fc_best=fc;
 wname_best=wname;
 lev_best=lev;
end
if (0.95<fc)
 fc_over95(i)=fc;
 wname_over95(i)={wname};
 lev_over95(i)=lev;
 i=i+1;
end

function [sensor_comp, fc]= compression(sensor, wname,lev)

 [samples recordings]= size(sensor);
fc_bot=0;
fc_top=0;
for signal = 1:samples
 [c,l] = wavedec(sensor(signal,:),lev,wname);
 sensor_comp(signal,:) = c(1:l(1));
 c(l(1)+1:end)=0;
 reconstruction= waverec(c,l,wname);
 for i=1:recordings
 fc_top_now=min(sensor(signal,i), reconstruction(i));
 fc_bot_now=max(sensor(signal,i), reconstruction(i));
 fc_top=fc_top_now+fc_top;
 fc_bot=fc_bot_now+fc_bot;
 end
 fc_all(signal)=fc_top/fc_bot;
end
fc=mean(fc_all); %% calculate error

c. Results
The results, and also the MATLAB functions can be found in:

https://www.dropbox.com/sh/1e8uh1gwhlvp9jo/AABln_CKzYfWHAHo_GdjQdZha?dl=0

For each sensor the following vectors are created as out from the test function:

fc_over95_X, wname_over95_X, lev_over95_X. Each column contains the results and

30

configuration (wname and lev) that fulfil 0.95<fc: fc value, the mother wavelet and the level of decomposition

respectively.

III. Artificial Neural Network

a. Tested configurations
Parameter Description Set value

Create network Used to create different types of

networks

Feedforwardnet

fitnet

hiddenLayerSize defines number of hidden layers

(number of columns) and

neurons (value in each column

1 hidden layer: [1-10];

2 hidden layer: [1-5; 1-5];

3 hidden layer: [1-5; 1-5; 1-5];

net.numInputs number of sensors 4

net.inputs{i}.size number of DWT coeficients 95

net.inputs{i}.processFcns Normalize all inputs 'mapminmax'

trainFcn Training function trainbr

trainlm

net.layers{i}.transferFcn transfer functions is used to

calculate the ith layer's output,

given the layer's net input, during

simulation and training.

Logsig

Satlins

Purelin

tansig

net.inputConnect connections between inputs and

hidden layers

1 hidden layer: [1 1 1 1; 0 0 0 0];

2 hidden layer: [1 1 1 1; 0 0 0 0; 0 0 0 0];

3 hidden layer: [1 1 1 1; 0 0 0 0; 0 0 0 0; 0 0 0 0];

net.divideFcn Divide data randomly into

tran/validation/test

'dividerand'

net.divideMode Divide up every sample 'sample'

net.divideParam.trainRatio % of saamples for training LM: 70; BAY: 80

net.divideParam.valRatio % of saamples for validation LM: 10; BAY: 0

net.divideParam.testRatio % of saamples for testing for LM: 20; BAY: 20

net.performFcn Performance Function Mean

squared error

'mse'

net.trainParam.epochs Maximum number of epochs to

train/iterations

200

net.trainParam.goal Performance goal 0.00000001

The specific configurations tested can be seen in the list of functions in the next section as each ANN_create_

createNet_trainFcn _ transferFcn.

b. MATLAB Implementation
The ANN_test functions variate the number of neurons per layer and call ANN_create to create the network

with a specific configuration.

1 hidden layer (1-10 neurons)

 ANN_test_fit_LM_1:

o ANN_create_fit_LM_L__P

o ANN_create_fit_LM_S__P

o ANN_create_fit_LM_T__P

o ANN_create_fit_LM_P__P

o ANN_create_fit_LM_L__S

o ANN_create_fit_LM_S__S

o ANN_create_fit_LM_T__S

o ANN_create_fit_LM_P__S

 ANN_test_feed_LM_1

o ANN_create_feed_LM_L__P

o ANN_create_feed_LM_S__P

o ANN_create_feed_LM_T__P

o ANN_create_feed_LM_P__P

o ANN_create_feed_LM_L__S

o ANN_create_feed_LM_S__S

o ANN_create_feed_LM_T__S

o ANN_create_feed_LM_P__S

 ANN_test_fit_BAY_1

o ANN_create_fit_BAY_L__P

o ANN_create_fit_BAY_S__P

o ANN_create_fit_BAY_T__P

o ANN_create_fit_BAY_P__P

o ANN_create_fit_BAY_L__S

o ANN_create_fit_BAY_S__S

o ANN_create_fit_BAY_T__S

o ANN_create_fit_BAY_P__S

 ANN_test_feed_BAY_1

o ANN_create_feed_BAY_L__P

o ANN_create_feed_BAY_S__P

o ANN_create_feed_BAY_T__P

o ANN_create_feed_BAY_P__P

o ANN_create_feed_BAY_L__S

o ANN_create_feed_BAY_S__S

o ANN_create_feed_BAY_T__S

o ANN_create_feed_BAY_P__S

2 hidden layers (1-5 neurons per layer)

 ANN_test_fit_LM_2_EQU:

o ANN_create_fit_LM_LL_L

o ANN_create_fit_LM_SS_S

o ANN_create_fit_LM_TT_T

o ANN_create_fit_LM_PP_P

o ANN_create_fit_LM_PP_S

o ANN_create_fit_LM_LL_S

o ANN_create_fit_LM_TT_S

o ANN_create_fit_LM_SS_P

o ANN_create_fit_LM_LL_P

o ANN_create_fit_LM_TT_P

 ANN_test_fit_LM_2_DIF_DIF:

o ANN_create_fit_LM_TS_P

o ANN_create_fit_LM_ST_P

o ANN_create_fit_LM_TL_P

o ANN_create_fit_LM_LT_P

o ANN_create_fit_LM_LS_P

o ANN_create_fit_LM_SL_P

o ANN_create_fit_LM_TS_S

o ANN_create_fit_LM_ST_S

o ANN_create_fit_LM_TL_S

o ANN_create_fit_LM_LT_S

o ANN_create_fit_LM_LS_S

o ANN_create_fit_LM_SL_S

 ANN_test_feed_LM_2_EQU

o ANN_create_feed_LM_LL_L

o ANN_create_feed_LM_SS_S

o ANN_create_feed_LM_TT_T

o ANN_create_feed_LM_PP_P

o ANN_create_feed_LM_PP_S

o ANN_create_feed_LM_LL_S

o ANN_create_feed_LM_TT_S

o ANN_create_feed_LM_SS_P

o ANN_create_feed_LM_LL_P

o ANN_create_feed_LM_TT_P

 ANN_test_feed_LM_2_DIF_DIF

o ANN_create_feed_LM_TS_P

o ANN_create_feed_LM_ST_P

o ANN_create_feed_LM_TL_P

o ANN_create_feed_LM_LT_P

o ANN_create_feed_LM_LS_P

o ANN_create_feed_LM_SL_P

o ANN_create_feed_LM_TS_S

o ANN_create_feed_LM_ST_S

o ANN_create_feed_LM_TL_S

o ANN_create_feed_LM_LT_S

o ANN_create_feed_LM_LS_S

o ANN_create_feed_LM_SL_S

 ANN_test_fit_BAY_2_EQU

o ANN_create_fit_BAY_LL_L

o ANN_create_fit_BAY_SS_S

o ANN_create_fit_BAY_TT_T

o ANN_create_fit_BAY_PP_P

o ANN_create_fit_BAY_PP_S

o ANN_create_fit_BAY_LL_S

o ANN_create_fit_BAY_TT_S

o ANN_create_fit_BAY_SS_P

o ANN_create_fit_BAY_LL_P

o ANN_create_fit_BAY_TT_P

 ANN_test_fit_BAY_2_DIF_DIF

o ANN_create_fit_BAY_TS_P

o ANN_create_fit_BAY_ST_P

o ANN_create_fit_BAY_TL_P

o ANN_create_fit_BAY_LT_P

o ANN_create_fit_BAY_LS_P

o ANN_create_fit_BAY_SL_P

o ANN_create_fit_BAY_TS_S

o ANN_create_fit_BAY_ST_S

o ANN_create_fit_BAY_TL_S

o ANN_create_fit_BAY_LT_S

32

o ANN_create_fit_BAY_LS_S

o ANN_create_fit_BAY_SL_S

 ANN_test_feed_BAY_2_EQU

o ANN_create_feed_BAY_LL_L

o ANN_create_feed_BAY_SS_S

o ANN_create_feed_BAY_TT_T

o ANN_create_feed_BAY_PP_P

o ANN_create_feed_BAY_PP_S

o ANN_create_feed_BAY_LL_S

o ANN_create_feed_BAY_TT_S

o ANN_create_feed_BAY_SS_P

o ANN_create_feed_BAY_LL_P

o ANN_create_feed_BAY_TT_P

 ANN_test_feed_BAY_2_DIF_DIF

o ANN_create_feed_BAY_TS_P

o ANN_create_feed_BAY_ST_P

o ANN_create_feed_BAY_TL_P

o ANN_create_feed_BAY_LT_P

o ANN_create_feed_BAY_LS_P

o ANN_create_feed_BAY_SL_P

o ANN_create_feed_BAY_TS_S

o ANN_create_feed_BAY_ST_S

o ANN_create_feed_BAY_TL_S

o ANN_create_feed_BAY_LT_S

o ANN_create_feed_BAY_LS_S

o ANN_create_feed_BAY_SL_S

3 hidden layers (1-5 neurons per layer)

 ANN_test_fit_LM_3:

o ANN_create_fit_LM_PPPP

o ANN_create_fit_LM_SSSS

o ANN_create_fit_LM_TTTT

o ANN_create_fit_LM_LLLL

o ANN_create_fit_LM_PPPS

o ANN_create_fit_LM_TTTS

o ANN_create_fit_LM_LLLS

o ANN_create_fit_LM_SSSP

o ANN_create_fit_LM_TTTP

o ANN_create_fit_LM_LLLP

 ANN_test_feed_LM_3

o ANN_create_feed_LM_PPPP

o ANN_create_feed_LM_SSSS

o ANN_create_feed_LM_TTTT

o ANN_create_feed_LM_LLLL

o ANN_create_feed_LM_PPPS

o ANN_create_feed_LM_TTTS

o ANN_create_feed_LM_LLLS

o ANN_create_feed_LM_SSSP

o ANN_create_feed_LM_TTTP

o ANN_create_feed_LM_LLLP

 ANN_test_fit_BAY_3

o ANN_create_fit_BAY_PPPP

o ANN_create_fit_BAY_SSSS

o ANN_create_fit_BAY_TTTT

o ANN_create_fit_BAY_LLLL

o ANN_create_fit_BAY_PPPS

o ANN_create_fit_BAY_TTTS

o ANN_create_fit_BAY_LLLS

o ANN_create_fit_BAY_SSSP

o ANN_create_fit_BAY_TTTP

o ANN_create_fit_BAY_LLLP

 ANN_test_feed_BAY_3

o ANN_create_feed_BAY_PPPP

o ANN_create_feed_BAY_SSSS

o ANN_create_feed_BAY_TTTT

o ANN_create_feed_BAY_LLLL

o ANN_create_feed_BAY_PPPS

o ANN_create_feed_BAY_TTTS

o ANN_create_feed_BAY_LLLS

o ANN_create_feed_BAY_SSSP

o ANN_create_feed_BAY_TTTP

o ANN_create_feed_BAY_LLLP

Only one creation and test files have been included as an example. It is indicated where the paramaters vary

from file to file.

function [net]= ANN_create_1c(hiddenLayerSize)

%Acoording to learning algorithm: trainbr-Bayesian Regulation or trainlm - Levenberg-Marquardt

trainFcn= 'trainlm';
net = fitnet(hiddenLayerSize,trainFcn); %%net=feedforwardnet(hiddenLayerSize,'trainbfg');

net.numInputs=4; % number of sensors
for i=1:4
 net.inputs{i}.processFcns = {'mapminmax'};

 net.inputs{i}.size= 95; % number of coeficients per sensor
end

33

% % Setup Division of Data for Training, Validation, Testing
net.divideFcn = 'dividerand'; % Divide data randomly
 net.divideMode = 'sample'; % Divide up every sample
 net.divideParam.trainRatio = 70/100; % for LM: 70; BAY: 80
 net.divideParam.valRatio = 10/100; % for LM: 10; BAY: 0
 net.divideParam.testRatio = 20/100; % for LM: 20; BAY: 20

%Acoording to number of hidden layers 1 hidden layer [1 1 1 1; 0 0 0 0]; 2 hidden layer: [1 1 1 1; 0 0 0 0; 0

0 0 0]; 3 hidden layer: [1 1 1 1; 0 0 0 0; 0 0 0 0; 0 0 0 0];

net.inputConnect=[1 1 1 1; 0 0 0 0; 0 0 0 0];
 %% transfer functions for hidden layers; changes for each file
num_Layer=net.numLayers; % number layers
net.layers{1}.transferFcn='tansig';
net.layers{num_Layer}.transferFcn='purelin'; %% Output layer
% Choose a Performance Function
net.performFcn = 'mse'; % Mean squared error
net.trainParam.epochs = 200; % %200 Maximum number of epochs to train
net.trainParam.goal= 0.00000001; % % Performance goal
net.trainParam.time=60*60*5; % %Maximum time to train in second

function ANN_test_comp_fitnet_LM_2_DIF_DIF(sensors, conc, test_sensor,test_conc)

PRAE_1c=zeros(200,1);
lof_1c=zeros(200,1);
test_results_1c=zeros(200,14);
hiddenLayerSize=[6 6 6];
hidden_1c=zeros(200,2);
count=1;
 for i1=1:5
 for i2=1:5
 %set hidden layers neurons
 hiddenSize(1)=hiddenLayerSize(1)-i1;
 hidden_1c(count,:)=hiddenSize; %save config
 %create network -->each repetition change what file calls
 [net]= ANN_create_fit_LM_TS_P(hiddenSize);
 [net,tr] = train(net,sensors,conc);
 trs_1c(count)=tr; %save results
 test_results = net(test_sensor); %save test concentrations (estimated conc_p)
 aux=cell2mat(test_results);
 test_results_1c(count,:)=aux;
 PRAE_aux2=0; lof_aux1=0; lof_aux2=0;
 for m=1:size(test_conc)
 PRAE_aux=abs(test_conc(m)-aux(m))/test_conc(m);
 PRAE_aux2=PRAE_aux2+PRAE_aux;
 lof_aux1=(test_conc(m)-aux(m))^2+lof_aux1;
 lof_aux2=(test_conc(m)^2)+lof_aux2;
 end
 [aux2, aux3]=size(test_conc);
 PRAE_1c(count)=PRAE_aux2/aux3*100;
 lof_1c(count)=sqrt(lof_aux1/lof_aux2)*100;
 count=count+1;
 end
end

34

%change where to save each repetition

save('fitnet_LM_TS_P.mat','PRAE_1c','lof_1c','hidden_1c','trs_1c','test_results_1c','sensors', 'conc', 'test_sensor',

'test_conc');

c. Results
The results, and also the MATLAB functions can be found in:

https://www.dropbox.com/sh/f6owl6ww0tj3sxg/AABvXhPvrcQWf3znfBIoVYdya?dl=0

For each ANN configuration the following vectors are created as out from the

different test functions:

 Hidden: Each column represents a hidden layer and the value it contains de number of neurons.

 lof: lof value for each configuration

 PRAE: PRAE value for each configuration

 trs: each row contains details of a specific network. Particularly interesting the MSE values for training,

validation and testing.

 test_results: concentrations obtained after training the network and running it with test data.

