1	Effects of Electron Transfer in Model Catalysts Composed of Pt		
2	Nanoparticles on CeO ₂ (111) Surface		
3	Sergey M. Kozlov, ^{a,*,†} Konstantin M. Neyman ^{a,b,*}		
4 5 6 7	^a Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, c/ Martí i Franquès 1, 08028 Barcelona, Spain ^b ICREA (Institució Catalana de Recerca i Estudis Avançats), Pg. Lluís Companys 23, 08010 Barcelona, Spain		
8	Highlights:		
9	• ~1.5 nm particles forming $Pt_{122}{111} \ CeO_2(111) \text{ and } Pt_{95}{100}\ CeO_2(111) \text{ interfaces}$		
10	• Simulation approach enabling full control of electron transfer in model catalysts		
11	• Interaction of Pt particles with CeO ₂ (111) shifts d-states of Pt to lower energies		
12	• Pt-ceria interaction increases average Pt-Pt distances in the supported particles		
13	• Geometry and DOS of the Pt particles are slightly altered by the electron transfer		
14			
15	Abstract. Interactions between transition metal nanoparticles and reducible oxide supports		
16	are thought to significantly affect the performance of many catalysts. Usually, several metal-		
17	support effects act together and cannot be separated from each other. Herein, by means of		
18	density-functional calculations we succeeded to single-out and quantify effects of the metal-		
19	support electron transfer on the structure and electronic properties of important model Pt-ceria		
20	catalysts. Namely, we considered ${\sim}1.5$ nm large Pt_{95} and Pt_{122} particles supported on		
21	CeO ₂ (111). We show that Pt-ceria interactions notably reconstruct Pt nanofacets forming the		
22	interface and shift valence d-states of the Pt particles. These effects are rather insensitive to		
23	the Pt-ceria electron transfer, at variance with the electronic structure of oxygen anions at the		
24	interface, which is significantly affected by the electron transfer. The findings of this work		
25	and the special modelling approach applied pave the way for deeper analysis of electronic		
26	metal-support interactions in catalysis.		
27			
28	Keywords: DFT, Pt, ceria, electronic metal-support interaction, electron transfer, electronic		
29	structure		

^{*} Corresponding authors. *E-mail addresses:* sergey.kozlov@kaust.edu.sa (S.M. Kozlov), konstantin.neyman@icrea.cat (K.M. Neyman)

⁺ Present address: KAUST Catalysis Research Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

1 **1. Introduction**

2 Transition metal nanoparticles (NPs) supported on oxides are the foundation of many indispensable catalysts, such as (de-)hydrogenation catalysts [1,2], catalysts for treatment of 3 4 exhaust gases [3,4] and for environmentally friendly energy technologies [5,6]. Performance of such catalysts depends equally strongly on the active material and its support, their nature 5 and their structure [7,8]. Presently, there is an increasing understanding of how the catalytic 6 activity is shaped by low-coordinated atoms on metal NPs [9,10], the modification of the 7 8 latter by the reaction environment [11,12] and the chemical ordering in alloy NPs [13,14]. The effects of nanostructuring of the oxide support on the catalyst properties have also been 9 investigated [15,16]. Yet, relatively little is known regarding atomic and electronic 10 mechanism of electronic metal-support interactions [17–19]. In particular, it is largely 11 12 unexplored how metal-support electron transfer may affect the catalyst [20,21]. Partially, this is because the magnitude of the electron transfer is hard to measure and control both in 13 experiments and simulations. 14

Fortunately, it is possible to quite accurately measure the electron transfer for one of the 15 technologically important oxide supports, CeO_x [3,22,23]. The ability of cerium oxide 16 supports to increase the activity of catalysts [15,24] is often related to their reducibility 17 [22,25,26], i.e. the ease of reduction of particular Ce⁴⁺ cations to localized Ce³⁺ [27,28] and 18 the related ability to easily store/release lattice O [29,30]. These virtues also allow one to 19 measure the charge transferred to cerium oxide by counting Ce^{3+} cations with a highly 20 sensitive technique called resonant photoemission spectroscopy [31,32]. In turn, in electronic 21 structure simulations Ce³⁺ cations are easily distinguished from Ce⁴⁺ ones by their well-22 defined magnetic moment. From the amount of Ce³⁺ cations in the system one can 23 unequivocally quantify the magnitude of metal-support electron transfer both in experiments 24 [23,33] and simulations [26]. Moreover, in simulations one could also tune the number of 25 transferred electrons from the metal to the oxide by enforcing a particular magnetization (and, 26 27 hence, the charge) on every Ce cation in the system [23,34]. This allows one to study the electronic metal-oxide interaction as a function of the amount of the electron transfer. 28

Herein, we have studied the electron transfer and the electronic metal-support interaction in a particularly important catalytic system, Pt nanoparticles deposited on ceria [35–38]. Although Pt-ceria interaction is very complex and may include hydrogen spillover [25,39] and reverse oxygen spillover [34,40], besides the electron transfer [23,41], we deliberately focus on the latter. In particular, we have considered the electron transfer from Pt nanoparticles to the idealized CeO₂(111) support without O vacancies, because the presence of the latter was shown to decrease the number of transferred electrons [23]. Note that an even higher magnitude of the electron transfer may be expected between Pt nanoparticles and the nanostructured ceria support due to the increased reducibility of the latter [26,30].

In the following, we investigate ceria-supported Pt NPs of ~100 atoms and ~1.5 nm in 5 size, which is qualitatively larger than those in previous computational investigations [17,42] 6 and approaches common NP sizes in applications of Pt [43,44]. In fact, metal NPs of this size 7 8 usually belong to the scalable with size regime, so their properties can be extrapolated to those of larger particles [45,46]. To the best of our knowledge, the shape of Pt nanoparticles 9 10 on the $CeO_2(111)$ support and the structure of the formed metal-oxide interface are yet to be characterized with the sufficiently high resolution that would allow one to design 11 12 computational models based on the experimental results [47]. Despite of some understanding of the interface structure between the extended Pt(111) and CeO₂(111) surfaces from the 13 experimental [48,49] and computational [50,51] points of view, it is not possible to apply this 14 knowledge to precisely design the interface between the considered Pt NPs and the ceria 15 support. In the absence of sufficiently accurate atomic structures of Pt NPs on CeO₂(111) 16 derived from observations, models of ceria-supported Pt nanoparticles in the present work 17 were designed following the shapes of Pt NPs supported on MgO(100) [52-54]. The 18 considered nanoparticles featured fully relaxed fcc structure and a shape in line with the 19 Wulff-Kaischev construction. The present work focuses on the investigation of Pt₉₅ and Pt₁₂₂ 20 nanoparticles forming $Pt\{100\}||CeO_2(111)$ and $Pt\{111\}||CeO_2(111)$ interfaces with the 21 22 support, respectively (Fig. 1). The latter NP structure was found to be highly energetically stable when supported on MgO(100) [54]. The Pt₉₅ NP was constructed from the energetically 23 stable MgO(100)-supported Pt₁₁₁ NP by removing 4 Pt atoms from each of the side $\{100\}$ 24 nanofacets to decrease its lateral dimensions. 25

26 In the present touchstone study we explore in detail the alteration of structural and electronic properties of Pt NPs by the CeO₂(111) support. We take full advantage of the 27 computational possibility to control the number of transferred electrons to characterize the 28 effects of Pt-ceria interaction depending on the amount of charge transfer. Briefly, we 29 obtained multiple configurations with the transfer of up to 6 electrons from Pt_{95} and Pt_{122} 30 nanoparticles to CeO₂(111) support as detailed in the next section. The number of transferred 31 electrons was counted by the number of Ce^{4+} ions reduced to Ce^{3+} in each system. For the 32 sake of brevity, the the effect of charge transfer on properties of Pt-ceria system is discussed 33 34 only for configurations with the transfer of 0 and 6 electrons.

1

Fig. 1. Structure of the considered Pt_{95} and Pt_{122} nanoparticles forming $Pt_{95}\{100\} \| CeO_2(111)$ and $Pt_{122}\{111\} \| CeO_2(111)$ interfaces, respectively, with the $CeO_2(111)$ support. (Edge) Pt atoms are (dark) blue, (surface) O atoms are (dark) red, Ce^{4+} cations are beige and Ce^{3+} cations – cyan. Dimensions of the employed $CeO_2(111)$ supercells are marked by black lines.

6 2. Computational details

7 VASP software [55] was used to perform spin-polarized calculations with the PW91 exchange-correlation functional [56] augmented with Hubbard [57] U = 4 eV corrections on 8 the f-states of all Ce atoms, adopted in line with previous studies [26,58]. Valence electrons 9 were described using a plane-wave basis set with the cut-off energy of 415 eV, whereas core 10 electrons were treated using projected augmented wave technique (PAW) [59]. The 11 calculations were performed at the Γ -point in the reciprocal space and with 0.1 eV smearing 12 applied to the electronic occupancies. All Pt atoms as well as atoms of the top O-Ce-O tri-13 layer of the $CeO_2(111)$ slabs were relaxed during geometry optimization until the forces 14 acting on atoms decreased to 0.2 eV/nm. Atoms in the bottom tri-layer of two tri-layer thick 15 $p(5\times5)$ CeO₂(111) slab with dimensions 1.909×1.909 nm² were fixed in the positions derived 16 from the experimental bulk geometry. The sensitivity of the presented results to the chosen 17 computational parameters has been examined elsewhere [23]. In particular, the number of 18 transferred electrons was found to be essentially independent on the slab thickness and the 19 choice of particular lattice parameter for the ceria surface, despite possible strain 20

accumulation in the support [60] and previous reports for Au atoms on CeO₂(111) [61]. The separation between adjacent supported NPs was ~0.55 nm. At these distances there is an attraction between each pair of adjacent Pt_{95} and Pt_{122} species with the strength calculated to be 0.02 and 0.05 eV, respectively. Such weak interactions should not affect the conclusions of the present study.

To obtain configurations with varying number of transferred electrons we took advantage of the availability of pseudopotential for Ce³⁺ cations in VASP. In this case one occupied fstate is introduced into the fixed pseudopotential core. Calculations where a part of Ce cations had been represented by Ce³⁺ pseudopotentials were performed to pre-optimize geometries with appropriately distorted ceria substrate for calculations employing only regular Ce pseudopotentials. The discussion in this work is based only on results of the latter fully selfconsistent calculations yielding locally optimized geometries.

Namely, for each nanoparticle we started the calculations by forcing the reduction of all 13 25 surface Ce cations to Ce^{3+} through the use of Ce^{3+} pseudopotentials. For both supported 14 Pt95 and Pt122 nanoparticles such configurations were highly unstable and converged to 15 configurations with 6 electrons transferred from Pt to ceria when Ce^{3+} pseudopotentials were 16 substituted by regular Ce pseudopotentials without fixed f-electrons in the core. To obtain a 17 configuration with one less transferred electron we enforced the oxidation state of 4+ on the 18 Ce³⁺ cation with the lowest magnetization [62] in the previous configuration by setting its 19 magnetization to zero in the beginning of the calculation. By repeating this procedure we 20 obtained configurations with the transfer of zero to five electrons (Figure S1). 21

As a result, Ce³⁺ cations are located in similar positions for all obtained configurations of 22 the supported Pt₉₅ or Pt₁₂₂ particles. This way of calculation minimized oscillations of the 23 relative energies depending on the location of Ce^{3+} on the surface [60,62,63]. Note that in all 24 considered structures Ce³⁺ cations were located exclusively on the slab surface. Whereas on 25 pristine CeO₂(111) surfaces subsurface Ce³⁺ cations do not appear at low coverage θ (Ce³⁺) < 26 0.5 ML [64,65], more complex ceria-based systems may be more prone to develop subsurface 27 Ce³⁺ cations [62,66]. Another important remark is that the electron transfer from Pt particles 28 to the support was shown not to facilitate the formation of O vacancies in ceria [23]. 29

30 **3. Results and discussion**

3.1. Binding of Pt nanoparticles to CeO₂(111) support

The strength of Pt-ceria interaction can be evaluated by the adhesion energy $E_{adh}[Pt_N]$ defined as $E_{adh}[Pt_N] = E[supported Pt_N/ceria slab] - E[unsupported Pt_N] - E[ceria slab], where$

E[X] is the total energy of the system X. The adhesion energies of Pt₉₅ and Pt₁₂₂ NPs to 1 $CeO_2(111)$ in the most stable configurations regarding the electron transfer are calculated to 2 be ~-15.0 eV and ~-9.6 eV, respectively. That is, the binding of Pt nanoparticles to $CeO_2(111)$ 3 through their {100} facets is notably stronger than through their {111} facets. This finding is 4 in line with the lower coordination number of Pt atoms on Pt(100) terraces, $N_{coord} = 8$, than on 5 Pt(111) terraces, $N_{coord} = 9$, and with concomitantly larger number of unsaturated bonds on the 6 former surface. Indeed, the adhesion energy of $Pt_{95}\{100\} \| CeO_2(111)$ interface is -0.71 eV per 7 each of 21 Pt atoms on the interface, that is, -8.97 eV/nm², whereas the strength of the 8 interaction on Pt₁₂₂{111}||CeO₂(111) interface is -0.38 per each of 25 Pt atoms on the 9 interface or -5.57 eV/nm^2 . (Adhesion energies per nm² were calculated using the areas of the 10 corresponding bottom facets of the unsupported Pt NPs.) 11

As a rule, the energetic stability of bare nanoparticles increases with the particle size 12 [67,68], and so Pt₁₂₂ particles are more stable than Pt₉₅ species. One may circumvent this 13 well-known dependency by considering the surface excess energy [54,69,70], 14 $\Delta_{\text{exc}}[\text{unsupported } Pt_N] = N^{1/3} \times (E[\text{unsupported } Pt_N]/N - E[Pt_{\text{bulk}}]) \text{ or } \Delta_{\text{exc}}[\text{supported } Pt_N/\text{ceria}]$ 15 = $N^{1/3} \times (\{E[supported Pt_N/ceria] - E[ceria]\}/N - E[Pt_{bulk}])$. According to this metric Pt₁₂₂ is 16 still more stable than Pt₉₅ in the unsupported state with Δ_{exc} [unsupported Pt₁₂₂] = 3.44 eV 17 versus Δ_{exc} [unsupported Pt₉₅] = 3.78 eV. The reason for the lower stability of the Pt₉₅ NP in 18 the unsupported state is the presence of an extended bottom {100} facet, which has higher 19 specific surface energy than {111} facets [71,72]. Nevertheless, surface excess energies of the 20 two nanoparticles are equal in the supported state, $\Delta_{exc}[supported Pt_{95}/ceria] = \Delta_{exc}[supported$ 21 Pt_{122} /ceria] = 3.05 eV. Thus, the intrinsic lower stability of Pt_{95} in the unsupported state is 22 compensated by the stronger interaction between Pt_{95} {100} and the support. As a result, the 23 two considered NPs forming either $Pt\{100\} \| CeO_2(111)$ or $Pt\{111\} \| CeO_2(111)$ interfaces 24 25 appear to be equally energetically stable in the supported state according to our calculations.

26 3.2. Structure of the obtained $Pt||CeO_2(111)$ interfaces

Pt nanoparticles were put on $CeO_2(111)$ in a way that maximizes the number of Pt-O contacts (Fig. 2), which is typical for the contacts between extended Pt and ceria surfaces [41,50] and other Pt-oxide interfaces [53,54]. Note that only local structure optimization of the considered metal-oxide interfaces was performed in view of the computational inaccessibility of the global optimization. Although the bottom $Pt_{122}{111}$ facet has a hexagonal symmetry like the symmetry of $CeO_2(111)$ and the extended $Pt_{95}{100}$ facet has a square symmetry, both facets undergo reconstruction upon contact with the ceria support. The 1 reconstruction is required for a better matching between Pt and O lattices, because of the 2 significant mismatch of the lattice parameters of the involved Pt and ceria surfaces. In the 3 calculated systems, the distance between O atoms on $CeO_2(111)$ surface is 382 pm, whereas

4 the nearest Pt-Pt distances are ~ 280 pm.

5

Fig. 2. Bottom facets of a), d) unsupported and b), e) supported Pt₉₅ and Pt₁₂₂ nanoparticles,
respectively, as well as structures of c) Pt₉₅{100}||CeO₂(111) and f) Pt₁₂₂{111}||CeO₂(111)
interfaces. Color coding as in Fig. 1.

9 On the $Pt_{95}\{100\} \| CeO_2\{111\}$ interface two Pt atoms on the boundary displace outward 10 from the center of the interface in order to move from a "bridge" position between two 11 surface O closer to an "on top" position above surface O atoms. Curiously, this reconstruction 12 of the bottom facets is also locally stable in the unsupported Pt_{95} NPs; however, it results in 13 1.25 eV higher energy than that of the unreconstructed unsupported Pt_{95} . The reconstruction 14 of the bottom {111} facet of supported Pt_{122} NPs is more complex. The shape of the bottom Pt 15 facet changes from a hexagon with 2 and 5 atom long sides to a distorted hexagon with 3 and 4 atoms long sides and the interior area of the bottom facet adjusts accordingly. Such reconstruction is locally unstable in unsupported Pt_{122} NPs, which spontaneously relax to the unreconstructed structure.

The calculated locations of Ce^{3+} ions formed upon the charge transfer seem to be 4 somewhat different for both types of the Pt-ceria interfaces. On the $Pt_{95}{100}||CeO_2(111)$ 5 interface 4 out of 6 partially reduced Ce cations are located at the metal-oxide boundary, 6 whereas only one Ce^{3+} cation resides on the $Pt_{122}\{111\} \| CeO_2(111)$ interface. The other Ce^{3+} 7 cations are located in the substrate areas that are not covered by Pt. Thus, we do not see an 8 obvious preference for Ce³⁺ cations to be located either under Pt NPs or away from them. A 9 dedicated rigorous study is required to identify possible more subtle inhomogeneities in the 10 distribution of Ce^{3+} cations. Note that the presence of Ce^{3+} cations on the ceria surface 11 uncovered by Pt may result in an interesting alteration of the substrate's reactivity. 12

13 *3.3. Effect of CeO*₂(111) support on the geometric structure of Pt nanoparticles

Previous computational studies have found the effect of $CeO_2(111)$ support on the overall 14 geometric structure of small Pt clusters to be important [42,73]. However, in the case of 15 notably larger Pt₉₅ and Pt₁₂₂ nanoparticles only atomic positions in the bottom NP facets are 16 substantially affected by the support (Fig. 2). As a result there is an emergence of intermediate 17 Pt-Pt distances that may or may not be considered as interatomic bonds (Fig. S2). Note that 18 19 this was not the case for Pt NPs supported on MgO(100), where the strength of metal-oxide interaction was not enough to cause the reconstruction of the nanoparticle facet [54]. For 20 example, supported Pt₉₅ particles exhibit Pt-Pt distances of ~370 pm, which are absent in 21 unsupported Pt₉₅ species. Similarly, Pt-Pt distances of ~340 pm in supported Pt₁₂₂ particles are 22 23 absent in the respective unsupported species. Thus, one cannot be certain if such Pt-Pt distances are due to the formation of interatomic bonds between adjacent Pt atoms or due to 24 the coordination of Pt atoms by atoms in their second coordination sphere. 25

As a consequence, the average Pt-Pt bond-lengths in the supported nanoparticles can be 26 quantified in different ways (Table S1). On the one hand, one could consider only Pt-Pt 27 distances shorter than 340 pm (roughly the middle of the gap between the first and the second 28 coordination spheres in the unsupported Pt_{122}) as interatomic bonds. Then, the metal-support 29 interaction would result only in 0.3 and 0.6 pm average elongation of Pt-Pt bonds in Pt₉₅ and 30 Pt₁₂₂ particles, respectively. On the other hand, one could assume that the overall number of 31 Pt-Pt bonds in the nanoparticles does not change upon their interaction with $CeO_2(111)$. Then, 32 the average Pt-Pt bonds would appear to be 4.6 and 5.8 pm longer in the supported Pt₉₅ and 33

Pt₁₂₂ nanoparticles than in the respective unsupported species, because in this case numerous
 elongated Pt-Pt distances at the interface would be considered as bonds.

If the electron transfer from Pt nanoparticles to $CeO_2(111)$ support is suppressed in the calculations, then Pt-Pt bonds become even longer on average due to the higher resulting occupancy of antibonding Pt-Pt d-states. In the case of supported Pt₉₅ particles the elongation due to the suppressed electron donation to the support amounts to ~0.5 pm. At the same time, the absence of the electron transfer leads to 0.2 or 1.3 pm longer Pt-Pt bonds in supported Pt₁₂₂ nanoparticles depending on the method used to calculate the average bond distance.

9 3.4. Effect of CeO_2 on the electronic structure of supported Pt nanoparticles

The contact between metallic Pt particles and ionic ceria support leads to the polarization 10 of the electron density of the former by near-surface electric fields, described previously for 11 the Pt(111)||CeO₂(111) interface [50]. The mutual polarization of Pt and ceria due to Pt-ceria 12 interaction can be visualized by means of charge density difference (CDD) plots, which 13 display isosurfaces of $\Delta \rho = \rho[Pt_N/ceria|_{6e}] - \rho[Pt_N] - \rho[ceria]$. In this formula $\rho[Pt_N]$ and 14 p[ceria] are electron densities of individually calculated Pt NP and ceria support with 15 geometries from the optimized structure of supported Pt_N particle (with 6 transferred 16 electrons), which yields electron density $\rho[Pt_N/ceria|_{6e}]$. Isosurfaces plotted at isovalue of 0.05 17 atomic units (a. u.) show that the electron density in supported Pt nanoparticles moves from 18 19 the regions above negatively charged O anions towards regions above positively charged Ce cations (Fig. 3). However, the polarization of electron density on Pt atoms diminishes rapidly 20 21 with growing distance to the ceria support (middle panels in Fig. 3). Note that the electron density of Pt nanoparticles supported on $CeO_2(111)$ is significantly more polarized than the 22 charge density of similar Pt nanoparticles on MgO(100) [54]. This can be explained by better 23 charge compensation within Tasker type I MgO(100) surface compared to Tasker type II 24 $CeO_2(111)$ surface and by concomitantly stronger electric fields in the vicinity of the latter. 25

The electron density of the $CeO_2(111)$ support also becomes polarized due to its interaction with Pt. First, there is a visible change in the electron density of Ce cations that get reduced from Ce^{4+} to Ce^{3+} upon Pt-ceria interaction. Second, one may notice a significant polarization of the electron density on surface O anions that are in contact with Pt NP.

To focus on the contribution of the electron transfer to the polarization of the electron density we generate CDD between two electronic states, with and without electron transfer: $\Delta \rho_e = \rho[Pt_N/ceria|_{6e}] - \rho[Pt_N/ceria|_{0e}]$. Both states are calculated on the optimized geometry with the transfer of 6 electrons. The resulting plots (right panels in Fig. 3) show that the electron transfer leads to the polarization of reduced Ce³⁺ cations and Pt atoms on Pt-ceria
interface. Importantly, by comparing CDD for overall Pt-ceria interaction and solely for the
contribution of the electron transfer one concludes that the latter accounts for a mere fraction
of the polarization of electrons in Pt particles.

5

Fig. 3. Isosurfaces of charge density difference for the interaction between ceria and the
considered Pt particles involving the transfer of 6 electrons plotted at different isovalues (in
a.u.) as well as the distilled contribution of Pt-ceria electron transfer to the electron
polarization (see discussion). Regions of electron accumulation (depletion) are colored yellow
(pink). (Edge) Pt atoms are (dark) blue, O atoms are red, Ce cations are beige.

Bader charges provide another perspective on the polarization of electron density as a 11 result of Pt-ceria interactions (Table S2). The Bader charge on the nanoparticles in the 12 configurations without Ce³⁺ cations is 0.76 and 0.56 atomic units for Pt₉₅ and Pt₁₂₂, 13 respectively. However, the charge on nanoparticles increases only by ~ 1.3 a. u. when 6 Ce³⁺ 14 cations are present in the support. This finding is in agreement with the underestimation by 15 the Bader analysis of the difference between charges on Ce⁴⁺, $\delta_{Bader}^+ = 2.4$, and Ce³⁺, δ_{Bader}^+ 16 = 2.0, cations. In line with the CDD analysis, Bader charges indicate that most of the charge 17 accumulated by the nanoparticle is located on the Pt atoms forming the interface with the 18 19 oxide support.

A similar conclusion can be drawn from the analysis of densities of states (DOS) projected on atoms on the perimeter of the bottom facets of Pt nanoparticles, i.e. the facets

that form the interface with ceria. Indeed, there are some noticeable differences between the 1 DOS projected on the bottom facets of the supported and unsupported nanoparticles (Fig. 4). 2 The center of the occupied d-states projected on the bottom $\{111\}$ facet of Pt_{122} shifts down 3 by 0.12 eV due to the interaction with $CeO_2(111)$. The shift of the d-states is even more 4 significant, 0.52 eV, for the bottom $\{100\}$ facet of the Pt₉₅ NP, which interacts more strongly 5 with $CeO_2(111)$ than the Pt₁₂₂ species. Note that this shift is specific to $CeO_2(111)$ support and 6 not to all oxide supports. For example, MgO(100) support is calculated to have a negligible 7 effect on the DOS of supported Pt particles [54]. 8

9

Fig. 4. Electronic densities of states projected on Pt atoms on the metal-oxide boundary. Red line – the nanoparticles supported on $CeO_2(111)$ in the absence of the electron transfer (no Ce^{3+}); blue line – the nanoparticles on $CeO_2(111)$ in the presence of the electron transfer (6 Ce^{3+}); black line – the respective atoms in unsupported nanoparticles. Electronic energies are given with respect to the Fermi level of each particular system.

At the same time, in line with results of CDD analysis, the electron transfer makes an insignificant contribution to the overall alteration of the electronic structure of Pt nanoparticles by the ceria support. The shifts of d-states due to the electron transfer were calculated to be less than 0.05 eV.

19 *3.5. Effect of Pt nanoparticles on the electronic structure of CeO₂(111) support*

Importantly, both the Pt-ceria interaction and the Pt-ceria electron transfer have a considerable effect on the electronic structure of surface O anions of the support. Fig. 5 shows that DOS projected on surface O in contact with Pt nanoparticles is qualitatively different from that of other O atoms on the same surface. Whereas DOS of the latter O atoms forms a sharp peak between -3.5 and -1.5 eV with respect to the Fermi level, O atoms contacting with
Pt exhibit a broad feature between -6.0 and -2.5 eV below the Fermi level in their DOS. The
shift of O DOS to lower energies results in more significant overlap with Pt DOS extending
up to -6.5 eV below the Fermi level, which strongly suggests the formation of the joint Pt-O
electronic states.

6

Fig. 5. Electronic densities of states projected on surface O atoms (solid line) on the metaloxide boundary and (dashed line) not in contact with Pt. Red line – the nanoparticles supported on $CeO_2(111)$ in the absence of the electron transfer (no Ce^{3+}); blue line – the nanoparticles on $CeO_2(111)$ in the presence of the electron transfer (6 Ce^{3+}). Electronic energies are given with respect to the Fermi level.

In turn, the electron transfer affects DOS of surface O atoms, irrespective whether they form bonds with Pt or not. As a result of the transfer of 6 electrons from Pt nanoparticles to ceria support electronic states of O shift by 0.3-0.4 eV to higher energies. One can expect that the deposition-induced modifications of the electronic states of O anions at the Pt-ceria interface, including those related to the electron transfer from Pt to ceria, represent important channels for affecting the reactivity of Pt-ceria catalysts.

18 4. Conclusions

We investigated how interaction between Pt nanoparticles and defect-free $CeO_2(111)$ support affects properties of the former using density-functional calculations. In particular, we considered 1.4 nm large Pt₉₅ and 1.5 nm large Pt₁₂₂ particles forming Pt{100}||CeO₂(111) and Pt{111}||CeO₂(111) interfaces. Both studied supported nanoparticles exhibit similar calculated energetic stability. This may be an indication of a similar thermodynamic stability of both interfaces, implying that both interfaces could be observed experimentally. For both
nanoparticles we investigated how Pt-ceria interaction and transfer of 0 or 6 electrons to the
support affect the properties of the supported particles.

4 First, the metal-oxide interaction results in a certain elongation of average interatomic distances in supported Pt nanoparticles. This elongation is accompanied by a reconstruction of 5 the Pt facet forming the interface with $CeO_2(111)$ support due to the notable lattice mismatch 6 between Pt and ceria surfaces. Notably, the transfer of 6 electrons from Pt to ceria leads to the 7 8 contraction of Pt-Pt bonds by less than 1 pm on average. The Pt-ceria interaction also shifts the electronic density of states of Pt atoms on the metal-oxide boundary to lower energies, 9 10 with the more significant shift for Pt atoms on $Pt_{95}\{100\} \| CeO_2(111)$ interface than on $Pt_{122}{111}||CeO_2(111)$. However, the role of the electron transfer in this shift appears to be 11 12 insignificant. Charge density difference analysis also indicates that Pt-ceria interaction leads to a significant polarization of the electron density of Pt nanoparticles. However, again the 13 electron transfer does not affect the polarization as much as other components of the metal-14 oxide interaction. At the same time, the electronic structure of O atoms on Pt-ceria interface is 15 profoundly affected by the metal-oxide interaction and the electron transfer. Moreover, some 16 Ce³⁺ cations are calculated to be present on the areas of ceria surface that were not covered by 17 Pt, which may alter the reactivity of the ceria substrate. 18

Note that the effects of Pt-ceria interaction on the geometric and the electronic structures of the supported particles have been somewhat different for the two considered Pt_{95} and Pt_{122} species due to the different types of formed Pt-ceria interfaces. This finding suggests that the effects of Pt-ceria interaction on the properties of Pt particles are also likely to depend on the type of ceria surface forming the interface.

In summary, the electron transfer only modestly contributes to the overall ceria-induced 24 changes of the geometric and electronic structure of Pt particles that are large enough to be 25 relevant for technical catalysis (Pt₉₅ and Pt₁₂₂). In variation, sub-nanometer clusters such as 26 Pt₈ are shown to be strongly affected by the electron transfer to the ceria support [23]. Hence, 27 it is still uncertain at what particle size the metal-support electron transfer becomes important 28 for practical catalysis. The key requisite for a study addressing this problem is the ability to 29 control the magnitude of the metal-support electron transfer, which was achieved in the 30 31 present work for the important case of Pt-ceria model catalysts.

Acknowledgments. We gratefully acknowledge the support of the European Commission
 (FP7-NMP.2012.1.1-1 project ChipCAT, Reference No. 310191), Spanish MINECO (grants)

- 1 CTQ2012-34969 and CTQ2015-64618-R, co-funded by FEDER), as well as Generalitat de
- 2 Catalunya (grants 2014SGR97 and XRQTC). The research was also supported by Red
- 3 Española de Supercomputación.

4 Appendix A

5 Supplementary data associated with this article can be found in the online version.

6 **References**

- W. Yu, M.D. Porosoff, J.G. Chen, Review of Pt-based bimetallic catalysis: From model
 surfaces to supported catalysts, Chem. Rev. 112 (2012) 5780–5817. doi:10.1021/cr300096b.
- 9 [2] G. Vilé, D. Albani, N. Almora-Barrios, N. López, J. Pérez-Ramírez, Advances in the Design of Nanostructured Catalysts for Selective Hydrogenation, ChemCatChem. 8 (2016) 21–33.
 11 doi:10.1002/cctc.201501269.
- T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and Catalytic
 Applications of CeO₂-Based Materials, Chem. Rev. 116 (2016) 5987–6041.
 doi:10.1021/acs.chemrev.5b00603.
- K. Shimizu, Selective catalytic reduction of NO over supported silver catalysts-practical and mechanistic aspects, Phys. Chem. Chem. Phys. 8 (2006) 2677–2695. doi:10.1039/b601794k.
- P. Azadi, R. Farnood, Review of heterogeneous catalysts for sub- and supercritical water
 gasification of biomass and wastes, Int. J. Hydrogen Energy. 36 (2011) 9529–9541.
 doi:10.1016/j.ijhydene.2011.05.081.
- B. Christian Enger, R. Lødeng, A. Holmen, A review of catalytic partial oxidation of methane
 to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts, Appl.
 Catal. A Gen. 346 (2008) 1–27. doi:10.1016/j.apcata.2008.05.018.
- [7] A. Ciftci, D.A.J.M. Ligthart, P. Pastorino, E.J.M. Hensen, Nanostructured ceria supported Pt
 and Au catalysts for the reactions of ethanol and formic acid, Appl. Catal. B Environ. 130-131
 (2013) 325–335. doi:10.1016/j.apcatb.2012.10.029.
- [8] D.R. Rolison, Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity, Science. 299 (2003) 1698–701. doi:10.1126/science.1082332.
- [9] S.M. Kozlov, K.M. Neyman, Insights from methane decomposition on nanostructured
 palladium, J. Catal. 337 (2016) 111–121. doi:10.1016/j.jcat.2016.02.010.
- F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P.
 Sautet, W. Schuhmann, A.S. Bandarenka, Finding optimal surface sites on heterogeneous
 catalysts by counting nearest neighbors, Science. 350 (2015) 185–189.
 doi:10.1126/science.aab3501.
- H.A. Aleksandrov, S.M. Kozlov, S. Schauermann, G.N. Vayssilov, K.M. Neyman, How
 absorbed hydrogen affects the catalytic activity of transition metals, Angew. Chemie Int. Ed.
 53 (2014) 13371–13375. doi:10.1002/anie.201405738.
- D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A. Knop-Gericke, S.D. Jackson,
 R. Schlögl, The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne
 hydrogenation, Science. 320 (2008) 86–89. doi:10.1126/science.1155200.
- 40 [13] A. Wolfbeisser, G. Kovács, S.M. Kozlov, K. Föttinger, J. Bernardi, B. Klötzer, K.M. Neyman,
 41 G. Rupprechter, Surface composition changes of CuNi-ZrO₂ during methane decomposition:

An operando NAP-XPS and density functional study, Catal. Today. (2016). 1 2 doi:10.1016/j.cattod.2016.04.022. 3 L. Cao, T. Mueller, Rational Design of Pt₃Ni Surface Structures for the Oxygen Reduction [14] Reaction, J. Phys. Chem. C. 119 (2015) 17735–17747. doi:10.1021/acs.jpcc.5b04951. 4 5 [15] M. Cargnello, J.J.D. Jaen, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gamez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO₂ 6 7 Subunits on Functionalized Al₂O₃, Science. 337 (2012) 713–717. 8 doi:10.1126/science.1222887. A. Bruix, Y. Lykhach, I. Matolínová, A. Neitzel, T. Skála, N. Tsud, M. Vorokhta, V. 9 [16] 10 Stetsovych, K. Sevcikova, J. Mysliveček, R. Fiala, M. Václavů, K.C. Prince, S. Bruyère, V. Potin, F. Illas, V. Matolín, J. Libuda, K.M. Neyman, Maximum noble-metal efficiency in 11 catalytic materials: Atomically dispersed surface platinum, Angew. Chemie - Int. Ed. 53 (2014) 12 13 10525-10530. doi:10.1002/anie.201402342. 14 [17] A. Bruix, J.A. Rodriguez, P.J. Ramírez, S.D. Senanayake, J. Evans, J.B. Park, D. Stacchiola, P. 15 Liu, J. Hrbek, F. Illas, A new type of strong metal-support interaction and the production of H₂ through the transformation of water on Pt/CeO₂(111) and Pt/CeO_x/TiO₂(110) catalysts, J. Am. 16 Chem. Soc. 134 (2012) 8968-8974. doi:10.1021/ja302070k. 17 M. Cargnello, V.V.T. Doan-Nguyen, T.R. Gordon, R.E. Diaz, E.A. Stach, R.J. Gorte, P. 18 [18] Fornasiero, C.B. Murray, Control of metal nanocrystal size reveals metal-support interface role 19 20 for ceria catalysts, Science. 341 (2013) 771-773. doi:10.1126/science.1240148. 21 [19] C.T. Campbell, Catalyst–support interactions: Electronic perturbations, Nat. Chem. 4 (2012) 22 597-598. doi:10.1038/nchem.1412. M. McEntee, A. Stevanovic, W. Tang, M. Neurock, J.T. Yates, Electric field changes on Au 23 [20] 24 nanoparticles on semiconductor supports - The molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO₂ Nanocatalysts, J. Am. Chem. 25 26 Soc. 137 (2015) 1972–1982. doi:10.1021/ja511982n. Y.P.G. Chua, G.T.K.K. Gunasooriya, M. Saeys, E.G. Seebauer, Controlling the CO oxidation 27 [21] rate over Pt/TiO₂ catalysts by defect engineering of the TiO₂ support, J. Catal. 311 (2014) 306-28 29 313. doi:10.1016/j.jcat.2013.12.007. [22] D.R. Mullins, The surface chemistry of cerium oxide, Surf. Sci. Rep. 70 (2015) 42-85. 30 doi:10.1016/j.surfrep.2014.12.001. 31 32 [23] Y. Lykhach, S.M. Kozlov, T. Skála, A. Tovt, V. Stetsovych, N. Tsud, F. Dvořák, V. Johánek, A. Neitzel, J. Mysliveček, S. Fabris, V. Matolín, K.M.M. Neyman, J. Libuda, Counting 33 electrons on supported nanoparticles, Nat. Mater. 15 (2016) 284-289. 34 35 doi:10.1038/NMAT4500. 36 [24] J. Kugai, E.B. Fox, C. Song, Role of CeO₂ support for Pd-Cu bimetallic catalysts for oxygenenhanced water gas shift, Appl. Catal. A Gen. 456 (2013) 204-214. 37 doi:10.1016/j.apcata.2013.02.021. 38 Y. Lykhach, V. Johánek, H.A. Aleksandrov, S.M. Kozlov, M. Happel, T. Skála, P.S. Petkov, 39 [25] N. Tsud, G.N. Vayssilov, K.C. Prince, K.M. Neyman, V. Matolín, J. Libuda, Water chemistrv 40 on model ceria and Pt/ceria catalysts, J. Phys. Chem. C. 116 (2012) 12103-12113. 41 42 doi:10.1021/jp302229x. 43 [26] A. Bruix, K.M. Neyman, Modeling Ceria-Based Nanomaterials for Catalysis and Related Applications, Catal. Letters. (2016). doi:10.1007/s10562-016-1799-1. 44 45 [27] I.K. Naik, T.Y. Tien, Small-polaron mobility in nonstoichiometric cerium dioxide, J. Phys.

1		Chem. Solids. 39 (1978) 311–315. doi:10.1016/0022-3697(78)90059-8.
2 3 4	[28]	J. Paier, C. Penschke, J. Sauer, Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment, Chem. Rev. 113 (2013) 3949–3985. doi:10.1021/cr3004949.
5 6 7	[29]	T. Duchoň, F. Dvořák, M. Aulická, V. Stetsovych, M. Vorokhta, D. Mazur, K. Veltruská, T. Skála, J. Mysliveček, I. Matolínová, V. Matolín, Ordered phases of reduced ceria as epitaxial films on Cu(111), J. Phys. Chem. C. 118 (2014) 357–365. doi:10.1021/jp409220p.
8 9 10	[30]	M.A. Sk, S.M. Kozlov, K.H. Lim, A. Migani, K.M. Neyman, Oxygen vacancies in self- assemblies of ceria nanoparticles, J. Mater. Chem. A. 2 (2014) 18329–18338. doi:10.1039/C4TA02200A.
11 12 13	[31]	V. Matolín, I. Matolínová, L. Sedláček, K.C. Prince, T. Skála, A resonant photoemission applied to cerium oxide based nanocrystals, Nanotechnology. 20 (2009) 215706. doi:10.1088/0957-4484/20/21/215706.
14 15 16	[32]	U. Berner, K. Schierbaum, G. Jones, P. Wincott, S. Haq, G. Thornton, Ultrathin ordered CeO ₂ overlayers on Pt(111): Interaction with NO ₂ , NO, H ₂ O and CO, Surf. Sci. 467 (2000) 201–213. doi:10.1016/S0039-6028(00)00770-6.
17 18 19 20	[33]	K. Ševcikova, V. Nehasil, M. Vorokhta, S. Haviar, V. Matolín, I. Matolínová, K. Mašek, I. Píš, K. Kobayashi, M. Kobata, T. Nagata, Y. Matsushita, H. Yoshikawa, Altering properties of cerium oxide thin films by Rh doping, Mater. Res. Bull. 67 (2015) 5–13. doi:10.1016/j.materresbull.2015.02.059.
21 22 23 24	[34]	G.N. Vayssilov, Y. Lykhach, A. Migani, T. Staudt, G.P. Petrova, N. Tsud, T. Skála, A. Bruix, F. Illas, K.C. Prince, V. Matolín, K.M. Neyman, J. Libuda, Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles, Nat. Mater. 10 (2011) 310–315. doi:10.1038/nmat2976.
25 26 27	[35]	G. Lafaye, J. Barbier, D. Duprez, Impact of cerium-based support oxides in catalytic wet air oxidation: Conflicting role of redox and acid-base properties, Catal. Today. 253 (2015) 89–98. doi:10.1016/j.cattod.2015.01.037.
28 29	[36]	A. Alijani, A. Irankhah, Medium-Temperature Shift Catalysts for Hydrogen Purification in a Single-Stage Reactor, Chem. Eng. Technol. 36 (2013) 209–219. doi:10.1002/ceat.201200151.
30 31 32 33	[37]	O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO ₂ under reaction conditions, J. Catal. 237 (2006) 1–16. doi:10.1016/j.jcat.2005.10.014.
34 35	[38]	T. Zheng, J. He, Y. Zhao, W. Xia, J. He, Precious metal-support interaction in automotive exhaust catalysts, J. Rare Earths. 32 (2014) 97–107. doi:10.1016/S1002-0721(14)60038-7.
36 37 38	[39]	P. Ciambelli, V. Palma, A. Ruggiero, Low temperature catalytic steam reforming of ethanol. 1. The effect of the support on the activity and stability of Pt catalysts, Appl. Catal. B Environ. 96 (2010) 18–27. doi:10.1016/j.apcatb.2010.01.029.
39 40 41 42	[40]	M. Happel, J. Mysliveček, V. Johánek, F. Dvořák, O. Stetsovych, Y. Lykhach, V. Matolín, J. Libuda, Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts, J. Catal. 289 (2012) 118–126. doi:10.1016/j.jcat.2012.01.022.
43 44 45	[41]	P. Luches, L. Giordano, V. Grillo, G.C. Gazzadi, S. Prada, M. Campanini, G. Bertoni, C. Magen, F. Pagliuca, G. Pacchioni, S. Valeri, Atomic Scale Structure and Reduction of Cerium Oxide at the Interface with Platinum, Adv. Mater. Interfaces. 2 (2015) 1500375.

- 1 doi:10.1002/admi.201500375.
- [42] F.R. Negreiros, S. Fabris, Role of Cluster Morphology in the Dynamics and Reactivity of
 Subnanometer Pt Clusters Supported on Ceria Surfaces, J. Phys. Chem. C. 118 (2014) 21014–
 21020. doi:10.1021/jp506404z.
- 5 [43] S. Nishimura, K. Ebitani, Recent Advances in Heterogeneous Catalysis with Controlled
 6 Nanostructured Precious Monometals, ChemCatChem. 8 (2016) 2303–2316.
 7 doi:10.1002/cctc.201600309.
- 8 [44] A.S. Crampton, M.D. Rötzer, F.F. Schweinberger, B. Yoon, U. Landman, U. Heiz, Ethylene
 9 hydrogenation on supported Ni, Pd and Pt nanoparticles: Catalyst activity, deactivation and the
 10 d-band model, J. Catal. 333 (2016) 51–58. doi:10.1016/j.jcat.2015.10.023.
- [45] S.M. Kozlov, K.M. Neyman, Catalysis from first principles: Towards accounting for the effects
 of nanostructuring, Top. Catal. 56 (2013) 867–873. doi:10.1007/s11244-013-0050-1.
- [46] I. V. Yudanov, A. Genest, S. Schauermann, H.J. Freund, N. Rösch, Size Dependence of the adsorption energy of CO on metal nanoparticles: A DFT search for the minimum value, Nano Lett. 12 (2012) 2134–2139. doi:10.1021/nl300515z.
- [47] Y. Zhou, J.M. Perket, J. Zhou, Growth of Pt nanoparticles on reducible CeO₂(111) thin films:
 Effect of nanostructures and redox properties of Ceria, J. Phys. Chem. C. 114 (2010) 11853–
 11860. doi:10.1021/jp1007279.
- [48] K.-D. Schierbaum, Ordered ultra-thin cerium oxide overlayers on Pt(111) single crystal
 surfaces studied by LEED and XPS, Surf. Sci. 399 (1998) 29–38. doi:10.1016/S0039 6028(97)00808-X.
- [49] P. Luches, S. Valeri, Structure, morphology and reducibility of epitaxial cerium oxide ultrathin
 films and nanostructures, Materials. 8 (2015) 5818–5833. doi:10.3390/ma8095278.
- [50] C. Spiel, P. Blaha, Y. Suchorski, K. Schwarz, G. Rupprechter, CeO₂/Pt(111) interface studied
 using first-principles density functional theory calculations, Phys. Rev. B. 84 (2011) 045412.
 doi:10.1103/PhysRevB.84.045412.
- [51] D. Loffreda, F. Delbecq, Growth of a Pt film on non-reduced ceria: A density functional theory study, J. Chem. Phys. 136 (2012) 044705. doi:10.1063/1.3678864.
- [52] C. Gatel, P. Baules, E. Snoeck, Morphology of Pt islands grown on MgO(001), J. Cryst.
 Growth. 252 (2003) 424–432. doi:10.1016/S0022-0248(03)00868-6.
- J. Olander, R. Lazzari, J. Jupille, B. Mangili, J. Goniakowski, G. Renaud, Size- and
 temperature-dependent epitaxy for a strong film-substrate mismatch: The case of Pt/MgO(001),
 Phys. Rev. B. 76 (2007) 075409. doi:10.1103/PhysRevB.76.075409.
- S.M. Kozlov, H.A. Aleksandrov, J. Goniakowski, K.M. Neyman, Effect of MgO(100) support on structure and properties of Pd and Pt nanoparticles with 49-155 atoms, J. Chem. Phys. 139 (2013) 084701. doi:10.1063/1.4817948.
- 37 [55] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations
 38 using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186.
 39 doi:10.1103/PhysRevB.54.11169.
- J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B. 45 (1992) 13244–13249.
- 42 [57] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss
 43 spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B. 57 (1998)

- 1 1505–1509.
- [58] C. Loschen, J. Carrasco, K.M. Neyman, F. Illas, First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B. 75 (2007) 035115.
 doi:10.1103/PhysRevB.75.035115.
- [59] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B. 59 (1999) 1758–1775. doi:10.1103/PhysRevB.59.1758.
- [60] M.V. Ganduglia-Pirovano, J.L.F. Da Silva, J. Sauer, Density-functional calculations of the
 structure of near-surface oxygen vacancies and electron localization on CeO₂(111), Phys. Rev.
 Lett. 102 (2009) 026101. doi:10.1103/PhysRevLett.102.026101.
- [61] M.M. Branda, N.J. Castellani, R. Grau-Crespo, N.H. De Leeuw, N.C. Hernandez, J.F. Sanz,
 K.M. Neyman, F. Illas, On the difficulties of present theoretical models to predict the oxidation
 state of atomic Au adsorbed on regular sites of CeO₂(111), J. Chem. Phys. 131 (2009) 094702.
 doi:10.1063/1.3216102.
- [62] S.M. Kozlov, K.M. Neyman, O vacancies on steps on the CeO₂(111) surface, Phys. Chem.
 Chem. Phys. 16 (2014) 7823–7829. doi:10.1039/c4cp00136b.
- [63] A. Migani, K.M. Neyman, F. Illas, S.T. Bromley, Exploring Ce³⁺/Ce⁴⁺ cation ordering in reduced ceria nanoparticles using interionic-potential and density-functional calculations, J. Chem. Phys. 131 (2009) 064701. doi:10.1063/1.3195063.
- [64] Y.-G. Wang, D. Mei, J. Li, R. Rousseau, DFT+U Study on the Localized Electronic States and Their Potential Role During H₂O Dissociation and CO Oxidation Processes on CeO₂(111)
 Surface, J. Phys. Chem. C. 117 (2013) 23082–23089. doi:10.1021/jp409953u.
- [65] G.E. Murgida, M.V. Ganduglia-Pirovano, Evidence for subsurface ordering of oxygen
 vacancies on the reduced CeO₂(111) surface using density-functional and statistical
 calculations, Phys. Rev. Lett. 110 (2013) 246101. doi:10.1103/PhysRevLett.110.246101.
- [66] K. Kośmider, V. Brázdová, M.V. Ganduglia-Pirovano, R. Pérez, Do Au Atoms Titrate Ce³⁺
 Ions at the CeO_{2-x}(111) Surface?, J. Phys. Chem. C. 120 (2016) 927–933.
 doi:10.1021/acs.jpcc.5b05335.
- [67] A. Roldán, F. Viñes, F. Illas, J.M. Ricart, K.M. Neyman, Density functional studies of coinage
 metal nanoparticles: Scalability of their properties to bulk, Theor. Chem. Acc. 120 (2008) 565–
 573. doi:10.1007/s00214-008-0423-x.
- I. V. Yudanov, A. Genest, N. Rösch, DFT Studies of Palladium Model Catalysts: Structure and
 Size Effects, J. Clust. Sci. 22 (2011) 433–448. doi:10.1007/s10876-011-0392-4.
- [69] T. Halicioglu, Properties of Diamond and Diamond-like Clusters in Nanometric Dimensions,
 Phys. Status Solidi. 199 (1997) 345–350.
- W. Vervisch, C. Mottet, J. Goniakowski, Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface, Phys. Rev. B. 65 (2002) 245411.
 doi:10.1103/PhysRevB.65.245411.
- S.H. Yoo, J.H. Lee, Y.K. Jung, A. Soon, Exploring stereographic surface energy maps of cubic
 metals via an effective pair-potential approach, Phys. Rev. B. 93 (2016) 035434.
 doi:10.1103/PhysRevB.93.035434.
- [72] L. Vitos, A. V. Ruban, H.L. Skriver, J. Kollár, The surface energy of metals, Surf. Sci. 411
 (1998) 186–202. doi:10.1016/S0039-6028(98)00363-X.
- 43 [73] A. Bruix, A. Migani, G.N. Vayssilov, K.M. Neyman, J. Libuda, F. Illas, Effects of deposited Pt

1 particles on the reducibility of $CeO_2(111)$, Phys. Chem. Chem. Phys. 13 (2011) 11384–11392. doi:10.1039/c1cp20950g.