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tournaments. Our findings show that women underperform compared to men of the same ability
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better against women. The gender of the opponent does not affect a male player’s quality of
play. We also find that men persist longer against women before resigning. These results
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women in ways that are detrimental to the performance of women. Lastly, we study the effect of
competitive pressure and find that players’ quality of play deteriorates when stakes increase,
though we find no differential effect over the gender composition of games.
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‘They’re all weak, all women. They're stupid compared to men. They shouldn’t
play chess, you know. They’re like beginners. They lose every single game against a
man. There isn’t a woman player in the world I can’t give knight-odds to and still
beat.” Bobby Fischer, 1962, Harper’s Magazine

‘Chess is a mixture of sport, psychological warfare, science, and art. When you look
at all these components, man dominates. Every single component of chess belongs
to the areas of male domination.” Garry Kasparov, 2003, The Times of London

‘Girls just don’t have the brains to play chess.” Nigel Short, 2015, The Telegraph

1 INTRODUCTION

Despite extensive research, debate and policy interventions, gender differences in labor market
outcomes persist. The unconditional gender wage gap is about 18% in OECD countries. Only
1 in 7 board members in European and US companies are women. Three traditional explana-
tions for this phenomenon are discrimination, differences in ability and differences in preferences
for jobs (Polachek, 1981; Goldin and Rouse, 2000; Black and Strahan, 2001). More recently,
a growing interest has developed around a fourth explanation: Gender differences in compet-
itiveness (see Niederle and Vesterlund (2011) for an excellent survey). The existing evidence
suggests that women perform worse than men of the same ability in competitive environments
(Gneezy, Niederle, and Rustichini, 2003), which may lead women to ‘shy away from competition’
(Niederle and Vesterlund, 2007). Given that good management practice dictates that managers
ought to create competitive environments to increase productivity (Bloom, Propper, Seiler and
Van Reenen, 2015), gender differences in competitiveness might help to explain the persistent
gender differences in wages and the under-representation of women in high-powered jobs.

The majority of studies on gender and competition confine themselves to experiments both
in the lab and in the field. In general, results in this literature suggest that women are more
reluctant to enter into a competition, even when they are no less able than men (Vandegrift
and Brown 2005; Niederle and Vesterlund, 2007; Gupta, Poulsen, and Villeval, 2013), and that
women may be less responsive to competition than men (e.g. Gneezy and Rustichini, 2004).
Any such differences seem to be social rather than innate (Gneezy, Leonard and List, 2009).
However, as Croson and Gneezy (2009) point out, many unanswered questions remain, including
the effect of gender composition on gender differences on competitive performance.

In this paper, we contribute to the existing literature on gender and competition by studying



a natural setting. We employ data from tens of thousands of expert chess games played by highly
skilled and dedicated players. Our first finding is that female players obtain worse outcomes
than male players of the same ability. Second, we show that this performance gender-gap is
due to the gender composition of the match: two players of identical ability perform similarly
in single gender games, whereas female players obtain worse outcomes than male players of the
same ability in mixed gender games. We then move to the study of the mechanisms behind this
effect. We use the method developed by Guid and Bratko (2006, 2011) to compute the quality
of play of each player in each game they play. This differs from measures of ability based on
win-loss records, as it allows us to measure how well a player plays during a particular game. We
find that the effect of the gender composition of the game on the underperformance of women
is driven largely by female players making larger errors when playing against males. This is in
contrast with male players, who play equally well regardless of the sex of the opponent. We
also find that, on average, men persist longer before resigning when playing against a woman,
decreasing the points that a female player can expect to earn against a male opponent. These
results suggest that inter-gender competition changes the behaviour of both men and women
in ways that are detrimental to the performance of women. Lastly, we study the existence
of gender differences in response to increased competitive pressure. We find that the quality
of play diminishes in games with higher stakes, though we do not find compelling evidence of
heterogeneity in this effect over the gender composition of games.

Chess is an ideal testbed for the study of gender differences in competitiveness for a number
of reasons. First, it is one of the few sports, if not the only one, in which male and female
players engage in head-to-head competition against one another. Second, as chess is ultimately
a computational problem, performance is almost exclusively a function of effort and ability. Un-
like in other games, say, poker, luck plays virtually no role. Third, there exists a standard and
well-established metric of players’ ability, the Elo rating (discussed in detail below), allowing
us to control for the relative abilities of the competitors. These ratings are publicly observable.
Consequently, players have a very good sense of where they stand relative to their opponent at
the start of the game. Thus we can largely rule out one of the main explanations for gender
differences in competitiveness, namely, gender differences in overconfidence (Niederle and Vester-
lund, 2011). Finally, our data has records of every move in each game, not just its outcome, so

we can observe the choices made by players and the circumstances in which those choices are



made. As chess is a computational exercise (discussed below), we can objectively assess players’
quality of play by comparing their chosen moves with the preferred move of a powerful chess
engine.! For most competitive environments, sports or otherwise, such counterfactuals cannot
be calculated.

Expert chess is relevant to the study of gender because it shares several important features
with high-powered jobs and competitive professional settings. First, like board rooms, expert
chess is a domain in where women are severely under-represented. Women constitute only about
eleven percent of mixed-sex tournament players and two percent of Grandmasters. Second, as
the opening quotes demonstrate, negative stereotyping against females is pervasive in high level
chess as it is in professional settings (Auster and Prasad, 2016). Third, female players in
chess underperform their male counterparts. The average female player has a rating that is
15 percent lower than the average male player (Blalic, Smallbone, McLeod and Gobet, 2009).
There is currently (August 2016) only one woman, Hou Yifan, ranked among the top 100 players
and there has never been a female world-champion. This performance gap echoes the gender
wage gap that persists even after controlling for potential confounders (Blau and Kahn, 2016)
because there is no compelling evidence showing that men are innately superior chess players,
as we discuss below. Lastly, top chess players, be they male or female, are individuals with high
levels of cognition, determination, tenacity and dedication. Expert female players, like women
in highly competitive professional environments, have selected into a male-dominated and very
demanding environment. Given this selection, one might think it unlikely that we observe any
gender differences in performance. However, we do. The fact that we observe gender differences
among this very select group of people suggests that vulnerability to such gender effects should
be prevalent, and probably stronger, in wider domains.

In the next section we discuss the literature which has studied gender differences in com-
petitiveness in real settings and in chess in particular. In Section 3 we present the data. In
Section 4 we present our main result and determine that, after controlling for ability, age and
other factors, players’ performance is affected by the gender of the opponent. In Section 5, we

discuss the mechanisms behind this result. Section 6 concludes.

1 As a matter of fact, during competitions, commentators already employ computers to learn which next move
is a player’s best and can recognize mistakes almost immediately. See “How computers changed chess”, The
Conversation, May 2013. Available at https://theconversation.com/how-computers-changed-chess-20772



2 RELATED LITERATURE

COMPETITION IN THE FIELD

The majority of studies on gender differences in competitiveness confine themselves to labo-
ratory and field experiments. Gneezy et al. (2003) conducted a laboratory experiment where
subjects had to solve mazes on the Internet. They found that women performed worse than men
when the payment scheme was competitive but not under piece-rate compensation. Gneezy and
Rustichini (2004) confirmed this finding for Israeli children in running competitions. In these rel-
atively artificial setups, the perceived gender-bias of the task plays an important role. Giinther,
Ekinci, Schwieren, and Strobel (2010) find that females perform better than males when the task
is perceived as female-biased. Along similar lines, Shurchkov (2012) finds that females overtake
men when performing a verbal task under low-time pressure. Iriberri and Rey-Biel (2016) show
that omitting information about the gender of the opponent helps to mitigate the underperfor-
mance of women in competition, indicating that part of the problem is who women compete
against, not simply that they compete at all. Although clearly valuable for their ability to con-
trol confounding factors, these experiments are far removed from real interactions between men
and women and from real competitive stakes. The question that remains is whether differences
in competitiveness observed in experiments persist in real settings.

Only a handful of contributions have addressed gender differences in competitiveness in
natural settings, in part due to the difficulty of finding appropriate conditions (e.g. observable
ability, men and women competing on equal footing). One exception is educational competitions,
and admissions to selective programs in particular, where men and women compete in an equal
footing. This permits the study of differential responses to varying degrees of competition. Ors,
Palomino and Peyrache (2013) compare the results of the same group of male and female students
in a less competitive high school national exam and in a very competitive exam for entry into
a selective French business school. The performance of female students dominates the one of
male students in the less competitive exam whereas the opposite holds in the more competitive
exam. A similar picture emerges from the study by Morin (2015), who takes advantage of an
educational reform in Ottawa which shortened high school by one year. This meant that two
cohorts of students graduated in the same year thus increasing competition for university places.

Morin finds that the average grades and graduation rates of male students increased relative to



those of females. But gender effects do not always appear in competitive environments. For
example, Lavy (2013) studies the behavior of Israeli teachers who participated in rank-order
tournaments that rewarded them with cash bonuses based on the tests scores of their classes.
Teachers were competing with others within their field and school. Male and female teachers
did not respond differently to this new payment scheme.

While informative about how men and women respond to competition, these studies do not,
however, tell us whether it is competing that hurts women’s performance or competing against
men. This question is addressed in Antonovics, Arcidiacono and Walsh (2009), who use data
from the TV trivia show The Weakest Link. In the final round of the show, two players compete
against each other. The authors find that male contestants are more likely to answer a question
correctly when they face a female contestant than when they face another male. The gender of
the opponent does not influence the performance of female contestants. This is in contrast with

our finding of female players making larger errors when facing a male opponent.

CHESS

Chess has been studied by psychologists for years because it involves high order cognition (see
Charness (1992) for an early survey). Chess has also become a recent object of interest for
economists. The cognitive power of expert chess players, combined with the computational
nature of the game, makes chess a natural candidate for the study of strategic sophistication
(Palacios-Huerta and Volij, 2009; Levitt, List and Saddoff, 2011). More closely related to
our analysis, Gerdes and Grénsmark (2010) explore gender differences in risk behaviour by
using chess data. They measure risk according to whether the opening moves of a game are
deemed ‘aggressive’ or ‘solid’ by a number of expert chess players. They associate ‘aggressive’
openings with risk taking. They find that females are on average two percent less likely to use
an ‘aggressive’ opening than male players. Males are more likely to use ‘aggressive’ openings
when playing against females. Females also have a tendency to use more ‘aggressive’ openings
against females but only against female players with higher rating than themselves. However,
the authors also find that ‘aggressiveness’ reduces the probability of winning regardless of the
gender of the opponent. This finding ultimately falls short to explain the gender performance
gap in chess.

Gransmark (2012) explores gender differences in time preferences. Again using survey data



on expert chess players, he finds that males play shorter games on average and that they are
willing to pay a higher price to end the game sooner by arranging a draw. Hence, Grinsmark
(2012) concludes that males are more impatient than women. We return to the issue of game
length in our analysis below.

Two papers have specifically explored the response of female chess players to the gender of
the opponent. Using online games, Maas, D’ettole and Cadinu (2008) find no gender differences
in outcomes when the sex of the opponent remains unknown. Compared to that benchmark,
women perform more poorly when they know they are playing against a male opponent. When
they falsely believe to be playing against a woman, gender differences disappear again. They use
data from “rapid” chess games (15 minutes long) and they do not control for the Elo rating of the
participants. Rothgerber and Wolsiefer (2014) use field data and find that females underperform
when playing against a male opponent. They again use short games (30 minutes) played by
elementary, middle and high school students. Although they have information on students’ pre-
and post-game ratings, their ability measure is not as reliable as the Elo rating.

The closest paper to ours is the recent working paper from de Sousa and Hollard (2015)
who also look at the effect of inter-gender competition using data from chess tournaments. It is
reassuring that they find a gender effect as we do; women perform worse when playing against
male opponents. They go on to consider whether the effect diminishes with experience (only
very slightly) and with the Gender Gap Index of the player’s home country (not at all). Though
their data set is considerably larger than ours in terms of the number of games, they do not
study the mechanisms underlying the observed gender effect nor do they employ a within game
quality of play measure as we do. They are therefore relatively limited in how far they can study
the mechanisms underlying the estimated effect, the central focus of our paper. Moreover, they
do not address the issue of the (conditionally) random assignment of the opponent’s gender
whereas we confront the issue of identification directly. We are also the first ones to characterize
the bias caused by the measurement error in Elo ratings arising from the observed gender effect.
In addition, we study gender differences in the effect on performance of competitive pressure as

measured by the stakes of games.



3 DATA

Chess players are rigorous data collectors who systematically codify information on games played
in tournaments and share it in publicly available archives. They collect a great deal of game
information: date of the game, event at which it was played, all moves made, the color (white
or black) each player plays with, the players involved, the outcomes, the FIDE? registration
number of each player, which allows us to link the game data to information on their gender,
age and affiliated national federation, and the ability of each player at the start of each game
as measured by the Elo rating. Game data are generally stored in Portable Game Notation
(PGN) files which can be read by chess programs allowing players to review how a particular
game unfolded.

We take our data from the weekly publication “The Week in Chess” (TWIC). Every Monday,
TWIC publishes game data from the largest and most notable tournaments from around the
world. We use the PGN files published by TWIC for 2012 and the first six months of 2013 giving
us information from 79,242 games played by 14,056 players from 154 national federations.?

Our data set is constructed by randomly selecting a player from each game (white or black).
The selected player is our unit of observation, i or the ‘player’, and we denote the other person
as the ‘opponent’. Arranging the data in this way means we construct a panel of player i over
games g. We can thus control for player i fixed effects to consider the effect of within ¢ variation
in game conditions, including the gender of i’s opponent, on i’s performance.

We restrict our sample in a number of ways. Following Gransmark (2012) and Gerdes and
Gransmark (2013), we focus on expert chess players and drop those games in which i has an
Elo rating less than 2000 (we keep games in which the opponent has an Elo less than 2000,
though all our results are robust to their exclusion). Players at this level are regarded as experts
and have generally committed between 2500 and 7500 hours of alone study (excluding coaching
and group study) to achieve this level of skill (Hambrick, Oswald, Altmann, Meinz, Gobet and
Campitelli, 2014). We also drop games which lasted fewer than 15 moves as we need games
at least that long to compute our quality of play variable (details below). We also exclude

players who play only one game in our sample. Our full analytic sample is therefore comprised

2 FIDE stands for the Fédération Internationale des Echecs or World Chess Federation which is the international
governing body of chess.

3 These were the TWIC data available when we started working on this paper.



of 57,936 games played by 7,932 players. We define a second sample by excluding those players
who only play against one gender in our sample (all male or all female opponents) reducing
our sample to 28,759 played by 2,506 players, a sub-sample of players we call ‘switchers’. We
present descriptive statistics for male and female players in both the full and restricted sample
of ‘switchers’ in Table 1.

Columns (1) and (2) are for the full sample of male and female players respectively, and
columns (3) and (4) are for the sub-sample of switchers. In our full sample, male players earn
an average of 0.53 points per game (the standard point system assigns one point for a win,
0.5 for a draw and zero for a loss) and female players earn 0.50, a differential which holds for
switchers.* Players and opponents are about 31 years old on average, though females tend to be
a bit younger. The degree to which chess is male dominated is apparent with 87 percent of the
players in our full sample and 80 percent in our restricted sample being male. Note also that
male players are more likely than female players to face a male opponent, an important point

we return to below.

THE ELO RATING

The availability of the Elo ratings, created by the physicist Arpad Elo (Elo, 1978), is one of
the major advantages of using chess data. The Elo is a cardinal rating of each player’s ability
as a function of the outcome of previous games played and the difference between the player’s
own Elo rating and that of the opponent in those games. The Elo rating has a minimum score
of zero and no upper bound. For each 200 point interval from 100 to 1999 players are rated
J to A. Players with Elo ratings of 2000-2199 are classified as ‘Experts”, ‘Candidate Masters’
have ratings in excess of 2200, ‘International Masters’ ratings above 2400 and ‘Grand Masters’
have ratings larger than 2500. There are also women’s equivalent titles, though the Elo rating
thresholds are 200 points lower than for the men’s titles and some top female players have opted
not to take on such gendered titles. Very few top players have obtained ratings of over 2700.

The current world champion, Magnus Carlsen, achieved the highest Elo score ever obtained by

4 Note that the expected points for players in our sample exceeds 0.5 as we condition our sample to include
players with Elo ratings of at least 2000, while opponents may have an Elo rating below 2000.



a human player, 2882, in 2014. Top computer chess engines have Elo scores above 3200.°

A player’s Elo rating at the end of game g can be expressed as

Bloigi = Elogg + K [pig — Blpig)], (1)

where LO;, is i’s Elo rating at the start of game g, p;, is the points the player obtains in
game ¢, and K is an adjustment parameter. Following the FIDE rules applying to our sample,
K =15 if the player has a rating lower than 2400 and K = 10 once a player achieves a rating of

2400, even if her rating falls back below that threshold.® Finally,
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is the so called ‘Elo curve’, that is, the points i is expected to earn from a game against an
opponent with an Elo rating of Eloj, at the start of game g. As it can be seen, Elo points
are earned (lost) by performing better (worse) in a game than the Elo curve predicts. Players
always increase their Elo rating following a win and decrease it following a loss. The effect of a
draw is positive if Elo;y < Eloj,, negative if Elo;; > Elof, and neutral if Elo;; = Elog,.

The advantage of the Elo rating is two-fold. First, regardless of the player’s subjective
assessment of her ability relative to her opponent’s, it provides an objective and publicly known
measure of that ability. Second, the Elo rating allows us to control for the relative abilities of
the two individuals competing, a feature often absent in studies of competitions where proxies
for skill generally need to be used.

The players in our sample are exceptionally good at the game. A rating of 2000, the lower
bound for players included in our sample, puts a player in the top 5 percent of all registered
FIDE players. A rating of 2350, roughly the mean for all players in our sample, puts them in
the top 0.5 percent of registered FIDE players. The mean Elo rating for male players is 2370.06

in our full sample (2342.98 for switchers), which is about 90 Elo points higher than the mean

5 Note that the ratings of computer programs (there are two well known rating lists: SSDF list (Swedish Chess
Computer Association) and the CCRL list (Computer Chess Rating Lists)) have only be computed through
games with other computer programs and as such are an estimate. The question whether those ratings are
directly comparable to the ratings of human players is debated among computer scientists and chess experts.
However, although the 3200 Elo rating of the best computer programs is indeed an estimate, it is generally
safe to assert they are much stronger than any human player.

6 By FIDE rules, K = 25 if a player has played fewer than 30 games. Given the skill of the players in our sample,
we assume all players have played more than 30 games.
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rating of women. Women’s opponents have lower average Elo ratings than men’s opponents
because players play opponents with similar Elo ratings as the majority of events have tiered

entries, i.e. they follow the so-called Swiss system. We return to this point below.

THE QUALITY OF PLAY MEASURE

In competitive activities, rating systems are generally accepted as a way to assess the relative
skill levels of the participants. While there are numerous approaches to rating competitors (Elo
ratings being just one example), these systems tend to be based on the realized outcomes of
competitions.” Elo is a good measure of a player’s overall ability but tells us nothing about
how well a particular game is played. This distinction is important because we want to study
whether the gender composition of a game affects how well a player plays a particular game.

Measuring within game play quality differs conceptually from studying strategic decisions.
Others (e.g. Gerdes and Gransmark, 2010) have sought to study the relationship between gender
and strategic choices in chess focusing on the variation in the ‘aggressiveness’ of play, as defined
by expert players. However, chess is ultimately a computational problem, which is precisely
why computers excel at it.® The game of chess is theoretically solvable (Schwable and Walker,
1999).9 That is, there is an optimal move for any given board position which can be calculated
via backward induction. Any deviation from that move, be deemed ‘aggressive’ or otherwise by
a human player, is suboptimal to some degree. How well a game is played can be objectively
determined by the deviation of a move relative to the optimal move. Therefore, we depart from
the literature that has considered more subjective, interpretive concepts such as ’style of play’
or ‘aggressive/solid move’ (how a game is played) and instead consider the quality of play (how
well a game is played).

To do so, we use a recently developed method by Guid and Bratko (2006, 2011) which
allows us to assess the quality of the move played by each player for a given board position.

The basis for this assessment is the difference between the move played by the human player

7 For a comprehensive overview of such ratings in chess see Glickman (1995).

8 As John von Neumann once noted ‘Chess is not a game. Chess is a well defined form of computation.’
(Bronowski, 1973).

9 While the chess game is in principle solvable, it has never been solved. According to Shannon (1950) a typical
game of 40 moves involves 10120 variations to be calculated from the first move. A computer calculating at
the ’rate of one variation per micro-second would require over 1099 years to calculate the first move!’.

11



and the ‘optimal’ move as chosen by a powerful chess program.'® For the current paper we
use the powerful Houdini 1.5a x64 program which has a maximum Elo rating of 3126, several
hundred points above even the very best human players in history''. The Elo curve suggests
this program would defeat the average player in our sample every time they played. Following
Guid and Bratko (2006, 2011), we base our quality of play variable on the analysis of moves
n = 15,..., 30, in each game g with total length N moves. We then calculate 32 optimal
moves (technically they are called plies), 16 for the player and 16 for the opponent. We consider
this subset of moves for two reasons. First, to limit the substantial computational burden of
calculating so many moves (about 1.5 million in our full sample). Second, we want to focus on
the middle game, which is least likely to follow an established plan as expert players tend to
study the opening moves of their opponents and practice end games in advance. For each of
these moves, the chess program determines its preferred move given the position on the board
with a search depth of 15 moves.'? The chess engine effectively evaluates a decision tree that
extends 15 moves forward from the move in question, evaluating the best move of both the player
and the opponent at each node; this process encapsulates billions of possible board positions.*3

We measure a player’s relative advantage at a point in the game using the widely accepted
metric called a centipawn. A centipawn is equal to 1/100 of a pawn.'* A player in a given
position with a score of 100 centipawns is seen as having an advantage equivalent to having an
extra pawn on the board.

The quality of each move is measured by the difference between the centipawn (dis)advantage

given the n'” move made by the chess engine, romputer» and the centipawn (dis)advantage given

10 We put optimal in inverted commas because the move determined by the powerful chess engine may not be
the truly optimal move for a given board position since chess has not been solved yet.

I http://www.computerchess.org.uk /ccrl /4040 /rating _list all.html

12 While greater search depth is feasible, it rapidly increases the computational burden. In general, increasing
search depth by one move doubles the required computing time required.

13 We include a non-technical discussion of how chess engines find optimal moves in Appendix A.

14 For a given board configuration and a given chess engine configuration, the score in centipawns = can be
interpreted as follows:

T Translates as
r<-200 = Black is winning
-200<z<-50 = Black is clearly better
-50<x<-20 = Black is slightly better
-20<z <20 = Approximately equal
20<x <50 = White is slightly better
50<x<200 = W hite is clearly better
200<zx = W hite is winning

12



the n'" move actually made by the player, Cglayer,

with larger differences indicating a larger
error made by the player, i.e. a more poorly played move. We measure the quality of play for
each player in each game, as the mean error committed by player 7 for moves n = 15,..., 30

n n n
Zn:lS (CcomputeT - Cplayer)

erToT, = - , (3)

computer

where (C" - C;)Llayer) > 0 and 7 = min{30, N} as some games end in fewer than 30
moves. We also calculate the mean error of the opponent, W. Note that larger values of
error;y indicate a lower quality played game.

Guid and Bratko (2011) considered dozens of games played by world champions, finding a
mean error of about five. We consider tens of thousands of games and find a mean error of
16.5 (17.3 for opponents) in the full sample. As can be seen in Table 1, women commit larger
mean errors, as might be expected given their lower average Elo ratings. There is a statistically

significant negative correlation between a player’s Elo and the mean error (p = —0.18, p-value<

0.000) suggesting better players make smaller mean errors.

4 Analysis and results

(GENDER AND PERFORMANCE

We first consider whether a player’s gender plays a role in determining the outcomes of chess
games. To do so, we regress the points earned from a game (one for a win, 0.5 for a draw, zero
for a loss) on the player’s gender -the effect of interest- while controlling for E[p;4] as defined in
equation (2) to capture the difference in ability between the player and the opponent. We also
include the age of each player and the color that 7 plays (white or black) as control variables.
We estimate the model using OLS on pooled data and present results in Table 2.

In column (1), we use the full sample and in column (2) we use the sub-sample of switchers.
Female players earn about 0.01 fewer points, on average and ceteris paribus, than their male
counterparts. This simple result based on pooled data is consistent with much of the literature
in this area which finds that women underperform men in competitive environments. This
underperformance does not, however, seem to be simply a function of a player being female,

nor can we deduce from this result that women are somehow innately worse players than men.
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This is because there is another person, a male or female opponent, sat across from the player.
In columns (3) and (4), we add a control for the gender of the opponent in game g. Results
here suggest that it is not that players under or over-perform according to their own gender,
but that it is the gender composition of the game what matters. Female players can expect to
earn about 0.035 fewer points when they face a male opponent, even after controlling for the
differences in their abilities via the Elo differential (E[p;4]). Because of this, we next dwelve

deeper in the study of the relationship between gender composition of games and performance.

GENDER COMPOSITION AND PERFORMANCE

In the analysis that follows, we explore the importance of the gender composition of games on
the performance gender gap. To do so we exploit the panel dimension of our data and rely on
within player ¢ variation in the gender of the opponent. As players sometimes play a man and
sometimes play a women, the opponent’s gender might be conceived of as a ‘treatment’ which
is applied in some games and not in others, the effect of which we want to study.

Any claim we make to the identification of the effect of this ‘treatment’ rests largely on the
gender composition of a game being random, i.e. the genders of the player and the opponent
being independent of one another. The advantage of laboratory experiments like Maas et al.
(2008) is that they can explicitly randomize the gender composition of games. Because we study
real competitions, we cannot randomly assign the gender composition of games, but we can still
check whether the assignment is random or at least conditionally so.

The proportion of opponents who are female in our sub-sample of switchers is 0.22. The
probability that a female player faces a female opponent is 0.61, much higher than the probability
that a male player faces a female opponent (0.12). If the gender of the opponent were truly
random, we would expect these values to match the proportion of opponents that are female.
The fact that they do not indicates that the assignment of the opponent’s gender, and thus the
gender composition of the game, is not random.

The randomness of the gender composition of games is compromised by the presence of
women-only events such as the Women’s World Chess Championship,'® and female-only sub-

events taking place at larger mixed gender events. Female players can thus select out of playing

15 While there are some tournaments that include only men by chance, there are no tournaments which exclude
women as a matter of policy.
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male opponents. Moreover, many tournaments have some form of seeding or tiers so that players
of similar abilities end up playing each other. Given that men have higher average Elo ratings,
this seeding system can further contribute to the correlation between the gender of the player
and that of the opponent. The correlation between the Elo rating of the player and that of the
opponent in our data is 0.449.

On the other hand, there is a random component in the assignment of players to games
as the vast majority of tournaments employ a round robin format, with the players in the
tournament playing one another once. Hence, players have virtually no control over who they
end up playing with.'® Given this random component in the assignment of players, the genders
of the player and the opponent can be conditionally independent after controlling for both the
gender composition of events and the mean Elo rating of players in the game.!”

To test the conditional independence of the players’ genders we regress the opponent’s gender,
a dummy equal to one if the opponent is male, on the player’s gender, a dummy equal to one if the
player is male, via OLS on pooled data. If the coefficient on the player’s gender is not different
from zero, it indicates that the genders of the player and the opponent are (conditionally)
independent and that the gender composition of games is random. Results are presented in
Table 3.

In column (1), the point estimate is 0.56 (95 percent CI: 0.537 to 0.588) indicating that a
male player is 56 percentage points more likely to face a male opponent than a female opponent.
In column (2), we re-estimate the model using the sample of ‘switchers’, i.e. only those players
who play both men and women in our sample. For this sub-sample, the coefficient on the player
being male falls to 0.49 (95 percent CI: 0.457 to 0.513). However, when we introduce the share of
other players (excluding the player and opponent in game g) at the event who are female (column
(3)) to capture the effect of women’s tournaments and women only competitions taking place
within larger tournaments, the coefficient on the player being male falls to 0.02 (95 percent CI:
-0.000 to 0.041). In column (4), we include the mean Elo rating of the player and the opponent
in game g (Wog) to account for the fact that male players tend to have higher Elo ratings and

players tend to play against opponents of similar ability. The point estimate of the coefficient on

16 As chess tournaments often have a fairly large number of competitors, these round robin tournaments are
generally of the Swiss-system variety where players play a pre-determined number of rounds, but fewer than a
true round robin tournament.

17 Given three variables x, y and z, the independence of # and y conditional on z requires that the conditional
distribution of x given y and z, p(z|y, z) does not depend on the value of y, so that p(z|y, z) = p(z|z).
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the player being male is effectively zero (95 percent CI: -0.020 to 0.020). In the last row of Table
3, we show the correlation and partial correlation coefficients which tell the same story. Namely,
that once we condition on the mean Elo rating of the game and the gender composition of the
event at which the game is played, there is no evidence of a relationship between the gender
of the player and that of the opponent. We take this as evidence that, for the sub-sample of
switchers, the ‘treatment’ in the form of the opponent’s gender is conditionally independent of
the player’s own gender and that the gender composition of games is conditionally random.
We next exploit this conditional randomness to estimate the effect of the opponent’s gender

on a player’s performance. To do so we estimate the following model:

pointsig = i + Bmi; + 0Xig + eig, (4)

where pointsig is the points earned by the player ¢ in game g, m, equals one if i's opponent is
male and zero if female, /3, our parameter of interest, is the effect of the opponent’s gender on
the outcome of the game in terms of the points earned by the player, X is a vector of controls
detailed below, «; is a player i fixed effect capturing time invariant individual characteristics

such as innate ability and preferences for an opponent’s gender that may be correlated with X,

o

and/or my, ,

and e;4 is a random error term with mean zero that is assumed to be uncorrelated
with X;, and m7,, though we return to this issue below.

We estimate equation (4) using OLS on within-i mean differenced data to eliminate ;. Our
main results are presented in Table 4.

In column (1), we regress points;; on mg, only. The coefficient of -0.10 (95 percent CI: -0.12
to -0.09) indicates that the player earns on average 0.1 percent fewer points when the opponent
is male. In column (2), we add the control vector X: the ages of the player and the opponent,
the player’s expected points as calculated in equation (2), dummies for the opponent’s affiliated
national chess federation, the color being played by the player, the mean Elo of the player and
the opponent, and the share of other players at the event who are female. The point estimate
of 3 falls in absolute value to -0.04 (95 percent CI: -0.053 to -0.027). In column (3), we estimate
the model using the restricted sample in which the player plays both genders at least once
(‘switchers’). As discussed above, it is for this sub-sample that the gender composition of the
game is conditionally random. The estimated /3 remains -0.04 (95 percent CI: -0.054 to -0.027).

We then allow the effect of the opponent’s gender to differ for male and female players since
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so far we have been mixing two types of games in the reference category: male player vs female
opponent and female player vs female opponent. To address this, we split the sample according
to players’ gender and re-estimate equation (4). In column (4), we estimate the model using
only female players who have played both men and women in our sample. The magnitude of the
point estimate maintains (95 percent CI: -0.080 to -0.007), i.e. female players earn fewer points
against male opponents. We estimate the model for only male players who have played both
men and women in column (5) and find a very similar result (95 percent CI: -0.057 to -0.028).
A t-test of the equality of the 3 coefficients in columns (4) and (5) returns a p-value of 0.961.'®
We thus find no evidence that the effect of the opponent’s gender differs with the gender of the
player.

These results indicate that players earn, on average and ceteris paribus, about 0.04 fewer
points when playing against a man as compared to when their opponent is a woman. Or
conversely, men earn 0.04 points more when facing a female opponent than when facing a male
opponent. This is a sizable effect, comparable to women playing with a 30 Elo point handicap
when facing male opponents. Such an effect indicates some change in behaviour when people
engage in inter-gender competition. What we cannot say from simply looking at the effect of
inter-gender competition on outcomes is whether it is the behaviour of men, women or both
which changes. We study this below, but first we test the robustness of our main results from

Table 4.

SUPPLEMENTARY ANALYSIS

In this section, we carry out supplementary analyses to test the credibility of the identifica-
tion strategy and the results above. First, we test the robustness of the primary results to
mis-specification. Second, we consider a particular mis-specification in the form of a possibly
unaccounted for non-linearity in the relationship between the outcome of the game and the Elo
differential, as controlled for by E[p;g]. Such a non-linearity might in turn be correlated with
the gender of the opponent and thus bias our results. Third, we consider the bias arising from

the measurement error in Elo ratings that a genuine gender effect, i.e. § # 0, would introduce.

18 We estimated a fully interacted version of equation (4). This p-value is from the t-test of the coefficient on the
interaction of the player’s and opponent’s genders being equal to zero.
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ROBUSTNESS TO MISSPECIFICATION

To test the robustness of our results to mis-specification we follow the good practice outlined in
Athey and Imbens (2015) and re-estimate equation (4), via OLS using within-i mean differenced
data for different sub-samples. The results are presented in Table 5. In column (1), we estimate
the model excluding any games played in single sex tournaments, either those explicitly women
only, or those accidentally all male or all female. In column (2), we follow Gerdes and Gransmark
(2010) by estimating the model excluding games that ended in a draw, and in column (3)
we estimate the model using players who play at least 20 games in our sample. In column
(4), we exclude blitz events and junior events. Lastly, in column (5), we replace the gender
composition of the event variable with event fixed effects. In each case, the magnitude and
statistical significance of the effect of the opponent’s gender maintains.

In Table 6, we re-estimate equation (4) for different sub-samples defined by the Elo differential
and the Elo rating of the player. In column (1), we include only games where the Elo differential
between the player and the opponent is less than or equal to 200 Elo points; in column (2) we
use only games where the Elo differential is less than or equal to 100 Elo points; and in column
(3) less than or equal to 50 Elo points. In column (4), we exclude games played by players with
Elo ratings less than 2200, and in column (5) we exclude those with Elo ratings less than 2400.

Again, in each case, the magnitude and statistical significance of the result maintains.

NON-LINEARITY IN THE E[p;,]-OUTCOME RELATIONSHIP

As discussed above, women have, on average, lower Elo ratings than men, though they also
face opponents with lower average Elo ratings. However, when a female player in our sample
plays a male opponent, she faces an average disadvantage of 27 Elo points as opposed to a
mean advantage of 23 Elo points when she faces a female opponent. The Elo differential is thus
correlated with the gender of the opponent. The correlation between the opponent being male
and the Elp;4| is small but significant (p = —0.049, p-value< 0.000). We control for the Elo
differential via E[p;,] and for the mean Elo of the game with Elo,. Still, we may be neglecting
some non-linearity in the effect of the Elo differential or of Elo, on the outcome of games. We
test the robustness of our results to more general specifications of the Elo ratings and the Elo
differential using switchers only, and present the results in Table 7.

In column (1), we replace E[p;q] and Elog in equation (4) with the logged Elo ratings of
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the player and the opponent. In column (2), we replace E[p;,] and Elo, in equation (4) with
dummies for decile groups of Elo, and E[p;,]. In column (3), we add the squares an cubes of
Elo, and E[p;,] to equation (4). In column (4), we include the interactions of the player and
the opponent’s logged Elo ratings with the decile groups of Wog and E[p;4], allowing the effect
of Elo ratings to vary depending on the relative (dis)advantage of the player and the average
ability of the player and opponent in the game. In column (5), we add a dummy equal to one
if the player is at an Elo point disadvantage and zero otherwise to our baseline specification.

It is encouraging that the estimated gender effect of the opponent being male remains
markedly stable in both magnitude and precision as the specification of the effect of Elo ratings

becomes increasingly flexible.

MEASUREMENT ERROR BIAS

Next, we address the issue of a potential measurement error in Elo ratings resulting from the
effect of the opponent’s gender which may bias the estimator of 5. Under the null hypothesis that
B = 0, the Elo rating is a reliable measure of players ability. However, under the alternative
that 6 # 0, Elo ratings would systematically measure with error the ability of any player
who plays members of the opposite sex, given that women (men) under- (over)-perform when
playing against men (women). That is, if the gender of the opponent matters, Elo ratings
would systematically mis-measure the true ability of players compared to the case where the
gender effect is absent or where players are unaware of the gender of their opponent.'® In
particular, if women perform worse against men, even after controlling for Elo differentials,
women’s Elo ratings would systematically under-rate their true ability whereas men’s Elo ratings
would systematically over-rate their ability. Players’ Elo ratings would then tend to be ‘too big’
for men and ‘too small’ for women. This measurement error in the opponent’s Elo rating would
therefore be correlated with m{, and would bias the OLS estimator of 3. It is important to keep
in mind that this measurement error, and thus the resulting bias, would be present if and only
if B # 0. Therefore, this measurement error cannot be responsible for the significance of our
result but it may lead us to underestimate its magnitude.

To see this formally, consider a simplified version of our model

19 This mis-measurement would also affect players who only play opponents of their own gender but whose
opponents’ opponents have been of the opposite sex and so on.
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points;y = Bmg, + 027, + nig, (5)

where points;, is the points earned by player 1, xfg is the measured Elo of the opponent, mfg is
the dummy equal to one if the opponent is male and 7;4 is an error term uncorrelated with ;4
or mg,. Our problem is that 2° will be measured with error such that 2° = 2% + w where z°*
is the true Elo rating of the opponent and w is positively correlated with mg, if 5 # 0.

To derive the bias in our estimator of 3 we first regress m{, on z7, and obtain the residuals,
t. We then regress points;; on x7; and obtain the residuals, 7. Finally, we regress 7 on ¢ to

obtain

B = (m'Pm)~" (m'Py), (6)

where P = I—z (z'z) " 2/ is the symmetric idempotent matrix with Pz = 0. Restating equation

(6) gives

B = (m'Pm)~" (m' P (Bm + 6z + 1 — 6w)) (7)
=B+ (m’Pm)_1 m/'P (n — 6w).

Taking expectation throughout yields

E (B) =B8+E {(m'me1 m’Pn] - 0F {(m’me1 m' Puw| . (8)

The second term in equation (8) equals zero as F [pm] = 0 by assumption. The third term
depends on the covariance of m and w, which is positive, and on 6, which is negative (the points
i can expect to earn in a game decrease with the Elo of the opponent). Therefore, the bias in B
is positive, i.e. towards 0. This means that our estimates of 8 in Table 4 can be interpreted as
lower bounds (in absolute value) of the true effect of the opponent’s gender on ¢’s performance.
That is, the true gender effect may be larger than what we find.

The key result here is that the bias cannot drive our finding that performance is diminished
by playing against a male opponent since i) the bias is only present if there is indeed a gender
effect; and 47) the bias is towards zero, meaning that