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ABSTRACT: Present experiments show that synthesized polycrystalline hexagonal α-

Mo2C is a highly efficient and selective catalyst for CO2 uptake and conversion to CO 

through the reverse water gas shift reaction. The CO2 conversion is ~16% at 673 K, with 

selectivity towards CO > 99%. CO2 and CO adsorption is monitored by DRIFTS, TPD, and 

microcalorimetry, and a series of DFT based calculations including the contribution of 

dispersion terms. The DFT calculations on most stable model surfaces allow for identifying 

numerous binding sites present on the catalyst surface, leading to a high complexity in 

measured and interpreted IR- and TPD-spectra. The computational results also explain 

ambient temperature CO2 dissociation towards CO as resulting from the presence of surface 

facets such as Mo2C(201)-Mo/C —displaying Mo and C surface atoms— and Mo-

terminated Mo2C(001)-Mo. An ab initio thermodynamics consideration of reaction 

conditions however demonstrates that these facets bind CO2 and CO + O intermediates too 

strong for a subsequent removal, whereas the Mo2C(101)-Mo/C exhibits balanced binding 

properties, serving a possible explanation of the observed reactivity. In summary, results 

show that polycrystalline α-Mo2C is an economically viable, highly efficient, and selective 

catalyst for CO generation using CO2 as a feedstock. 

Keywords: CO2 abatement • hexagonal Mo2C • CO2 activation • density functional theory • 

reverse water gas shift 
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INTRODUCTION 

With CO2 being a main active greenhouse gas in the Earth’s atmosphere, there is a 

clear interest in its possible use of as an out-stream chemical feedstock to contribute to the 

reduction of its atmosphere content.1-4 Alongside, CO2 could be considered as a cheap 

carbon C1 source for upgrading rather than a waste with consequences in global warming. 

However, the direct transformation to final sealable, added value products is rather 

difficult, especially at an industrial scale. This is because a possible heterogeneous catalytic 

conversion is hindered by the CO2 high chemical stability and low chemical reactivity. Not 

surprisingly, there is a huge interest in finding materials which could act as appropriate and 

active catalysts for chemical processes involving CO2. Clearly, such a material must be 

capable to efficiently bind and activate CO2. One particular approach to CO2 utilization is 

its reduction to CO employing H2 as a reducing agent via the reverse water gas shift 

(RWGS) reaction:  

CO2 + H2 → CO + H2O    (1). 

After a RWGS step, a CO2/CO/H2 out-stream mixture can be produced via H2O separation 

which can be subsequently used as syngas input for other large scale, well-established, 

chemical processes, such as the Fischer-Tropsch (FT) or the methanol synthesis. The 

RWGS reaction can be carried out under mild conditions aided by an appropriate catalyst, 

often a precious, expensive, scarce metal.5 

Transition metal carbides (TMCs)6,7 are known to display versatile catalytic properties, 

often described as Pt-like,7 with the inherent benefit of their abundance and affordable cost. 

TMCs have been shown to be efficient catalysts for a handful of reactions, such as olefin 

isomerisation8 desulfurization processes, 9 WGS,10 and CO hydrogenation,11 just to name a 

few. Lately, TMCs have been proposed as catalysts for CO2 activation and potential 

materials for CO2 abatement.12 Among the available TMCs, orthorhombic Mo2C (β-Mo2C) 

has been proven to strongly bind and subsequently dissociate CO2, in accordance with 

experimental results.13,14 A recent comparative study indicates that β-Mo2C shows high 

CO2 conversion and CO selectivity in the RWGS, when compared with other TMCs (TM = 

Ti, Zr, Nb, Ta, and W).15 
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Motivated by these interesting catalytic properties, a number of density functional 

theory (DFT) computational studies have been reported involving TMCs, including 

methanol synthesis using β-Mo2C,14 WGS on TiC,10 H2 dissociation on hexagonal 

Mo2C (α-Mo2C)16 and syngas based reactions also on α-Mo2C.17 Specifically relevant in 

the context of present work is the study of the WGS reaction on a α-Mo2C(001) 

molybdenum terminated surface ⎯hereafter denoted as α-Mo2C(001)-Mo⎯by Tominaga 

et al.18 who found CO2 formation from adsorbed CO and O as being the rate limiting step. 

They also identified the CO adsorption mode comparing experimental infrared (IR) spectra 

with DFT results. Activation of CO2 on a surface facet of α-Mo2C was reported by Luo et 

al.19 in the course of formic acid dissociation. Finally, Shi et al.20 provided detailed 

potential energy surfaces and activation barriers for small molecules dissociation and CO2 

hydrogenation on the α-Mo2C(101) surface, featuring both C and Mo atoms, and so 

denoted α-Mo2C(101)-Mo/C, as well as on the α-Mo2C(001)-Mo surface. 

Given the results described above, it is not surprising that Mo2C based samples have 

been rather recently proposed as a more economic alternative to noble metals based 

catalysts for the RWGS reaction.21 However, most experimental studies to date used single 

crystal surfaces and/or studied the reaction at pressures higher than atmospheric. Under 

these experimental conditions, besides CO, methanol and/or methane are also obtained.14 

The interest in designing new and performing Mo2C based catalysts for RWGS led us to 

deeply study CO2 activation and hydrogenation over polycrystalline samples of hexagonal 

Mo2C (α-Mo2C). Such α-Mo2C samples were prepared and fully characterized and their 

reactivity towards CO2 and their catalytic behaviour under RWGS conditions in the 548-

673 K temperature range at atmospheric pressure were analyzed. Here we show that 

polycrystalline α-Mo2C features outstanding performance, displaying high CO2 conversion 

and selectivity for CO at mild temperatures. Results are interpreted on the basis of state-of-

the-art DFT periodic calculations carried out on appropriate slab models representing the 

different surfaces likely to be present and highlight the great capability of α-Mo2C surfaces 

in capturing and selectively decomposing CO2 into CO. 
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EXPERIMENTAL SECTION 

Preparation of α-Mo2C and characterization methods.  

The α-Mo2C sample was synthesized using an urea sol-gel method.22 Thus, 8.2 g of 

urea were added to an alcoholic solution of MoCl5 (urea/MoCl5 = 7 mol/mol ratio) with 

continuous stirring until urea was completely dissolved and a viscous solution was formed. 

The viscous solution was treated at 333 K in air and then transferred to a quartz tube, 

treated under Ar flow up to 1073 K (3 K min-1). The sample was cooled under Ar flow till 

room temperature and then exposed to the air without passivation.  

N2 adsorption-desorption isotherms were recorded at 77 K using a Micromeritics 

Tristar II 3020 equipment. The specific surface area (SBET) was calculated by multi-point 

BET analysis of nitrogen adsorption isotherms. The X-ray powder diffraction (XRD) 

analysis was performed using a PANalytical X’Pert PRO MPD Alpha1 powder 

diffractometer equipped with a CuKα1 radiation. The XRD profiles were collected between 

2θ = 4° and 2θ = 100°, with a step width of 0.017° and by counting 50 s at each step. The 

mean crystallite sizes of α-Mo2C were calculated using Debye-Scherrer equation. The 

morphology of the samples was observed by scanning electron microscopy (SEM) on a 

ZEISS Auriga equipment equipped with an energy dispersive X-ray detector (EDX). 

H2-temperature programmed reduction (H2-TPR) experiments were performed 

using a Micromeritics AutoChem II 2920 chemisorption analyzer. After pretreatment at 363 

K under He, the sample was exposed to a H2/Ar (12% v/v) flow, and the temperature was 

linearly increased at 10 K min-1 up to 1073 K. 

X-ray photoelectron spectra (XPS) were performed in a Perkin Elmer PHI-5500 

Multitechnique System (Physical Electronics) with an Al X-ray source (hν = 1486.6 eV and 

350 W). All measurements were carried out in an ultra high vacuum chamber with a 

pressure in the 5·10-9–2·10-8 torr range during data acquisition. The binding energy (BE) 

values were referred to the BE of C 1s of adventitious carbon at 284.8 eV, which was 

previously determined using Au as reference. Raman spectroscopy analyses were 

performed using a Jobin-Yvon LabRam HR 800, fitted to an optical Olympus BXFM 

microscope with a 532 nm laser and a CCD detector. The Raman spectra of the samples 

were collected with laser power limited to 1.5 mW to minimize laser-heating effects. 
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CO-temperature programmed desorption (CO-TPD) experiments were carried out 

using a Micromeritics Autochem HP 2950 instrument. Prior to CO adsorption, the sample 

was treated under He or under H2/Ar flow (12% v/v) at 573 K, and then cooled down to 

308 K under He. The CO adsorption (10% v/v CO/He) was carried out at 308 K. The 

temperature programmed desorption was carried out under He flow with temperature 

increasing at 10 K min-1 up to 1073 K.  

The adsorption enthalpy of CO2 was measured using a Sensys evo TG-DSC 

instrument (Setaram) equipped with a 3D thermal flow sensor. The α-Mo2C sample was 

reduced in H2/Ar (12% v/v) flow at 573 K and then cooled down to 308 K under Ar flow. 

After that, CO2/He (10% v/v) was flowed to the catalyst at 308 K. The exothermic peak 

corresponding to CO2 adsorption was integrated to provide the total enthalpy of adsorption. 

The mean adsorption energy was calculated by considering the total amount of adsorbed 

CO2. The same equipment coupled to a mass spectrometer analyzer (Balzers) was used to 

analyze the reactivity of α-Mo2C in front of CO2. 

CO2 and CO adsorption was followed by in situ diffuse reflectance infrared 

spectroscopy (DRIFTS). A Bruker VERTEX 70 FTIR spectrometer equipped with a liquid 

nitrogen-cooled MCT detector and a Harrick Scientific HVC-DRP-4 catalytic chamber was 

used. The spectra recorded consisted of 256 scans at a spectral resolution of 4 cm-1. For the 

adsorption experiments, the sample was first treated in situ in the DRIFTS cell under a He 

flow up to 573 K, then cooled to 308 K under He. Afterwards a CO2/He (10% v/v) or 

CO/He (10% v/v) mixture was admitted at 308 K and contacted with the sample for 20 min. 

Before recording the final spectra, the sample was flushed with He and cooled to 298 K. 

RWGS reaction catalytic tests.  

The RWGS reaction tests were performed in a Microactivity-Reference unit (PID 

Eng&Tech) using a tubular fixed-bed reactor. The catalyst sample, 150 mg or 300 mg, was 

diluted with inactive silicon carbide up to a catalytic bed having a total volume of 1 mL. 

The temperature was measured by a thermocouple in direct contact with the catalyst bed. 

Fresh α-Mo2C was employed for reaction without any pretreatment. The sample was 

flowed with N2 from 298 K up to 548 K and then it was exposed to a reactant gas mixture 

of CO2/H2/N2=1/1/3 under a gas hourly space velocity (GHSV) of 3000 h-1 or 6000 h-1. The 

RWGS was studied between 548–673 K at 0.1 MPa. The products were analyzed on-line 
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with a Varian 450-GC-MS equipped with TCD, FID and mass detector. CO and CO2 are 

separated and converted into methane using an appropriate methanizer, and then CH4 

formed is determined by the FID channel. CO2 conversion and product distribution was 

determined at each temperature by the average of at least 3 different analyses. 

Computational methods 

Periodic DFT calculations on suitable surface models (described below) have been 

carried out with the Vienna ab initio simulation package (VASP),23 using the Perdew-

Burke-Ernzerhof (PBE) exchange-correlation (xc) functional,24 and adding the D3 

dispersion contribution as proposed by Grimme (PBE-D3).25 The specific settings for these 

computations are provided in the Supporting Information. From results of these 

calculations, peak desorption temperatures for adsorbed CO and IR-fingerprints of 

adsorbed CO and CO2 have been simulated. Further, ab initio thermodynamics calculations 

for CO2 adsorption and dissociation under reaction conditions have been carried out. For 

details on all these methods we also refer to the Supporting Information, Figure S1 and 

Figure S2. 

Surface models and adsorption study 

For bulk hexagonal α-Mo2C we used the eclipsed stacking mode employed 

previously by Shi et al.26 A caveat is necessary here, as the other stable (orthorhombic) 

crystalline phase of Mo2C has been named as α-Mo2C in some works in the past, and vice 

versa.26,27 Bulk optimizations carried out using the PBE functional yield lattice parameters 

(a = 3.04 Å, c = 4.73 Å) in agreement with previous values and those experimentally 

reported.27 Note that surface slabs notation follows that of Wang and coworkers and are 

based on their bulk unit cell definition.27 

Four highly stable α-Mo2C surfaces, see below for specifications, have been 

initially modelled using periodic (1×1) slabs with a vacuum of 10 Å inserted in the c 

direction, thereby avoiding interactions between translationally repeated slabs, see Figure 1. 

Prior to the envisioned adsorption study, bulk truncated surface slabs had been relaxed with 

the lower half fixed as in bulk structure to account for surface relaxations effects, see 

Figure 1. The results obtained from surface relaxation are in line, in terms of cleavage 

energy trends and geometrical structures, with those previously obtained ones by Shi et 

al.26 using the revised PBE xc functional (RPBE). On the relaxed sides of the surface 
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models, CO2 and CO adsorption was studied in a thorough systematic manner: First, non-

equivalent adsorption sites for each surface were defined as in Figure 1, distinguishing 

between top, bridge, and hollow sites. Site notation follows that of Wang et al.28 whenever 

possible; otherwise, a similar notation has been devised on previously unexplored surfaces. 

To investigate the possible effect of Mo oxidation state during CO adsorption, the MoO2 

(011) and MoO3(010) surfaces have been also studied, as detailed in the Supporting 

information, to provide comparison when needed (Figure S2). 

Adsorption energies on these surface models have been calculated as Eads = EM/slab − 

(Eslab + EM) where EM/slab is the total energy of the molecule (M = CO2 or CO) adsorbed on 

the slab, Eslab is the energy of the relaxed pristine slab, and EM is the energy of the isolated 

gas phase molecule optimized at Γ-point in an asymmetric box of 9×10×11 Å dimensions. 

With this definition, the more negative the Eads, the stronger the adsorption. All Eads values 

include Zero Point Energy (ZPE) correction using computed harmonic frequencies. The 

activation energy barriers (Ea) have been calculated as Ea = ETS − EIS, with EIS and ETS 

being the adsorption energies of the initial- and the previously located transition states. 

More details are provided in the Supporting Information. 

 

RESULTS AND DISCUSSION 

Before entering in detail on the results, it is worth to stress out here fist that the α-Mo2C 

sample performs excellent for the RWGS: In particular, a conversion near the 

thermodynamic equilibrium of 16% is reached, with a selectivity towards CO versus CH4 

above 99.5% at 673 K and 0.1 MPa of pressure gases pressure, see below. However, to 

properly address and support the catalytic results, characterization and simulations are 

commented first, to support on them the observed catalysis.    

Morphological, structural, and surface characterization of the synthesized polycrystalline 

α-Mo2C samples 

The preparation method used led to α-Mo2C with a good crystallinity according to 

its XRD pattern (Figure S3); other XRD peaks than those assigned to α-Mo2C (JCPDS 00-

035-0787) were not found. The crystallite size of the hexagonal α-Mo2C, calculated using 

the Scherrer equation and the (101) peak, was found to be 35.2 nm. The BET surface area 
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of the sample was 7.7 m2 g-1. SEM analysis of the prepared α-Mo2C showed aggregates 

containing rough and smooth parts (Figure S4). The EDX analysis (mapping images in 

Figure S4) indicated the presence of Mo, C, and O; the presence of oxygen is tentatively 

assigned to the presence of surface molybdenum oxide and/or oxycarbide species formed 

during the preparation of the sample and/or when the α-Mo2C is exposed to the air. For 

Mo2C freshly prepared by carburization, the surface oxidation by oxygen, CO2, or H2O has 

been deeply studied by in situ FTIR spectroscopy.29,30 It has been proposed that a thin layer 

of protective oxycarbide is formed when mild oxidants such as CO2 or H2O are used; the 

extent of surface oxidation when O2 is used for passivation is more difficult to control. 

In order to check the presence of surface molybdenum oxides and/or residual 

amorphous carbon, we have examined the fresh α-Mo2C sample in different zones by 

Raman spectroscopy (see Figure S5a). Only in some cases, very low intensity bands at 

~1350 cm-1 and ~1580 cm-1 (D and G bands), were detected, indicating that negligible 

contents of carbonaceous residues would be present in the synthesized α-Mo2C. Although 

the Raman spectrum in the zone 100-1000 cm-1 is complex, it points to the presence of 

different surface molybdenum oxide species, such as MoO3 and other intermediate oxides 

MoO3-x (Figure S5a).31 This is further confirmed by XPS; Figure 2a shows the 

corresponding Mo 3d XPS peak, which can be deconvoluted into four (Mo 3d5/2, Mo 3d3/2) 

doublets. Peaks at (233.2 eV, 236.3 eV), (232.1 eV, 235.2 eV) and (230.0 eV, 232.9 eV) 

are assigned to Mo6+, Mo5+ and Mo4+ surface species, respectively.21,32 The (228.8 eV, 

231.9 eV) doublet could be related to the presence of Mo2+ and/or Mo3+, which could be 

ascribed to Mo2C and/or oxycarbide species.21,33 The corresponding O 1s XPS peak with a 

maximum at 531.1 eV (Figure S6a) is broad and asymmetric, and can be reasonably 

assigned to O2- bonded to Mon+ in oxide and oxycarbide species;21,34,35 the shoulder at high 

BE values can be indicative of the presence of oxygen in C-O and C=O species.21,33,35,36 

The C 1s peak can be deconvoluted into four components at 283.8 eV, 284.8 eV, 286.0 eV, 

and 288.7 eV, (Figure S7a), which can be assigned to C-Mo, C-C, C-O and O=C-O species, 

respectively.33,35-38 

Finally, Figure 3 shows the H2-TPR profile of the sample; the main peak at 554 K 

can be assigned to the reduction of molybdenum oxycarbide.39 The reduction of surface 

molybdenum oxides could account for the H2 consumption at temperatures higher than 590 
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K. The reduction of MoO3 is known to take place through different intermediate species 

towards MoO2, and the reduction of MoO2 to Mo is expected at temperatures above 800 

K.40 

Probing the α-Mo2C samples through CO adsorption: DRIFTS and TPD measurements 

and DFT calculations 

From the above-presented experimental results, the presence of a) bare α-Mo2C 

surfaces on the fresh sample is confirmed with parts possibly covered by b) oxycarbide 

species. Further, c) some molybdenum oxides MoO3-x could be present. In the following we 

use CO adsorption as a probe, to establish model surfaces for cases a-c), able to capture the 

experimental samples behaviour arriving at a sample description with regard to its exposed 

active sites. The analysis is carried out on the basis of CO-DRIFTS and CO-TPD 

experiments, interpreted from results of periodic DFT calculations. For convenience, the 

computational results on CO adsorption are presented first and we will refer to the different 

surfaces by the corresponding Miller indexes only, omitting the chemical formula.  

CO adsorption on a) bare α-Mo2C surfaces, has previously been theoretically 

studied on the (101)-Mo/C, (001)-Mo, and (201)-Mo/C surfaces, yet not addressing the 

vibrational fingerprints.28 As far as the (001)-C termination is concerned, Han et al.41,42 

described CO adsorption on its reconstructed surface. Shi and coworkers exhaustively 

studied CO adsorption and dissociation on (001)-Mo and (001)-C surfaces, accounting for 

vibrational frequencies, yet employing a cluster model.43 Still, key information for our 

analysis was missing and we therefore conducted a systematic and complete study. The 

results of the DFT based calculations for CO adsorbed on the different α-Mo2C surfaces are 

listed in Table 1 and the optimized geometries are depicted in Figure S8. In short, CO 

chemisorption on all studied surfaces involves a considerable number of binding sites. For 

most stable sites, CO Eads values of -1.48 eV on (101)-Mo/C, -2.87 eV on (201)-Mo/C, -

2.67 eV on (001)-Mo, and -1.88 eV on (001)-C surfaces are found at the PBE level, 

increased by 0.15-0.24 eV when including dispersion contributions using the PBE-D3 

method. Thus, CO adsorption mostly stems out from an electronic effect. The (001)-C 

surface is to be discussed apart as exposes surface C atoms to which CO binds, forming a 

C=C=O species (ketenylidene). Apart from bulk terminated (001)-C surface, we also 

considered the reconstructed (001)-C surface shown in Figure S1. Here, ketenylidene 
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species are also formed on top of two non-equivalent surface carbons (Figure S1 and Table 

2). 

We considered also the influence of b) oxycarbide species in two ways: First, single 

oxygen adatoms could alter the chemical properties of active sites on α-Mo2C surface: An 

oxygen adatom adsorbed vicinal to CO would then likely exert the greatest effect. DFT-

results for such cases are presented in Table 3 and, except in the case of the (001)-C 

surface, indicate a weakening of CO binding relative to the respective cases for adsorption 

at bare surfaces, see Table 1. A slight alteration of adsorbate geometry is further caused; 

still, these CO adsorption sites are not deactivated, indicating that a focus on the bare α-

Mo2C surfaces provides a fairly well description of active sites on the sample. Apart, parts 

of α-Mo2C surfaces are likely covered with a full oxygen monolayer, found in theoretical 

studies to be the most stable situation on surfaces of β-Mo2C44,45 and α-Mo2C,46 while 

medium coverage situations were considered to be of less importance. Liu et al.44 

demonstrated that a monolayer oxygen coverage effectively deactivates (001)-Mo and 

(001)-C β-Mo2C surfaces (α-Mo2C in their notation), rendering CO and CO2 adsorption 

unfavorable. A similar effect is to be expected from oxygen covered α-Mo2C surfaces and, 

for the oncoming discussion, we thus omit the influence of such oxycarbides on adsorption. 

Finally, since c) molybdenum oxides MoO3-x also possibly coordinate CO, we 

modelled CO adsorption on MoO2 and MoO3 surfaces thereby considering Mo4+ and Mo6+ 

sites. Note that MoO2 was also detected by XRD (Figure S3) in the sample after a CO2 

treatment at 673 K. There are seldom reports theoretically studying MoO2, however some 

model surfaces have been described by Tokarz-Sobieraj et al.47 Following their work we 

found considerably stable CO adsorption on MoO2 (011) surface with adsorption energies 

of -1.19 (-1.39) and -0.98 (-1.18) eV, respectively obtained at PBE (PBE-D3) level (Table 

2). Here, CO is coordinated perpendicularly on top of Mo-atoms, see Figure S2a. Finally, 

CO interaction with studied surfaces of MoO3 was found to be weak, see Figure S2b. 

Interaction is here ascribable to physisorption in accordance with experimental results,48 at 

ambient temperatures likely favouring desorption. We therefore discarded MoO3 from 

further discussion.  

From previous discussion, possible adsorption sites are known and located on α-

Mo2C and MoO2 surfaces. Considering in situ CO adsorption studied by DRIFTS, Figure 4 
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shows the spectrum in the 2250-1250 cm-1 region. Notice how most significant features are 

located below 2000 cm-1, yet weak broad bands centred at 2163 cm-1 and 2063 cm-1 are also 

clearly visible. CO species linearly coordinated to surface Mon+ oxide species are expected 

to give rise to νCO bands above 2000 cm-1. From existing literature, CO coordinated to Mo5+ 

sites could contribute to the band centred at 2163 cm-1; a band at 2183 cm-1 has been 

proposed due to the coordination of CO on Mo5+ sites.49 However, present calculations link 

the band at 2163 cm-1 to C=C=O species formed on the unreconstructed (001)-C surface. 

To further support this assignment we note that on the unreconstructed (001)-C surface νCO 

is predicted to appear at 2142 cm-1 whereas accounting for reconstruction frequencies 

slightly shifts this value to 2110 cm-1 and 2118 cm-1 (Table 2). Thus, reconstruction does 

not seem to lead to a significantly different signature. Alternatively, what seems a 

determining factor is the coupling with surface phonons; on the reconstructed (001)-C 

surface, Han et al.41 published a CO stretching value decoupled from the surface of 2066 

cm-1, which we could reproduce likewise to 2071 cm-1, and so, phonon coupling enlarges 

the stretching by 39 to 47 cm-1. Note that a band at 2196 cm-1 has been related to ketene 

species for the Mo2C/Al2O3 supported system.29 From previous work, the broad band 

centred at 2063 cm-1 could be attributed to the coordination of CO on surface Mon+ sites (n 

< 4), likely molybdenum oxycarbide species. This is supported from experiments regarding 

the Mo2C/Al2O3 system exhibiting characteristic bands at 2054 cm-1 and 2081 cm-1 

attributed to Mom+ and Mok+ sites, where 0 < m < 2 < k < 3.30 Present model calculations 

(Table 2) suggest that the band at 2031 cm-1 is likely to be due to CO adsorption on MoO2 

(011). It is worth noting that the suggested assignments are based on considering an overall 

accuracy of ± 35 cm-1 with anharmonicity and coverage effects being the main sources of 

disagreement. 

The IR spectrum in Figure 4 features main bands below 2000 cm-1. The theoretical 

calculations relate the bands with maxima at 1919, 1827, 1772, 1747, 1647, and 1585 cm-1 

to the stretching modes of CO adsorbed on the (201)-Mo/C terminated surface. To provide 

a complete overview, possible assignments based on the calculated vibrational frequencies 

reported in Table 1 and Table 2 are summarized in Table 4. The values at 1772 cm-1 and 

1747 cm-1 can be easily explained based on symmetric and asymmetric coupling of 

adsorbed vicinal CO groups. Likewise the bands at 1507, 1458, and 1415 cm-1 could be 
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attributed to CO adsorbed on (001)-Mo and (001)-C terminated surfaces. Despite a 

quantitative determination from the DRIFTS experiment is challenging, the high population 

of CO on (201)-Mo/C and (001)-Mo surfaces linked to the strongest adsorption, see above, 

could account for the intensity of the observed infrared bands measured at 308 K. The band 

at 1993 cm-1 could be related to CO adsorbed on (001)-C (T1 site) and/or (101)-Mo/C (T2 

site) and that at 1945 cm-1 to CO on (101)-Mo/C (T4 site) and/or (001)-C (T2 site) surfaces. 

Finally, we note that other peaks present in the spectrum cannot be unambiguously 

assigned, e.g. it is hard to assign the feature at 1699 cm-1 on the basis of the present model 

calculations only. The presence of defects, CO adsorption on other non-contemplated less-

stable surfaces or alterations in vibrational frequency induced by neighbouring oxygen 

adatoms (see again Table 3) can account for the appearance of such bands.  

Further analysis is gained by TPD experiments, see Figure 5. The CO adsorption 

carried out at 308 K onto the catalyst previously treated at 573 K with either He or 12% 

H2/Ar flow at 573 K, delivers similar profiles, and only that of the H2-treated α-Mo2C is 

shown. A total adsorption of 0.24 mmol CO/g was determined, and CO desorption started 

at 323 K achieving a first relative maximum at around 415 K, then increased up to 463 K, 

and from this temperature desorption profiles slowly decreased. The experimental TPD 

profile points to the presence of different adsorption sites with different adsorption 

energies; the higher the CO desorption temperature is, the stronger is the CO interaction 

with the surface, with a concomitant larger adsorption energy. To further confirm the 

present assignments, Figure 5 includes the experimental TPD profile and desorption peak 

temperatures calculated from the present theoretical models (see Tables 1 and 2). The 

simulation has been carried out for each of the identified minimum energy structures and 

using a similar approach to that applied and discussed in detail elsewhere.50-52 Note that 

adsorption energies from PBE-D3 were used, as dispersion terms noticeably contribute to 

the strength of binding to the catalyst surface. The comparison in Figure 5 shows that the 

observed broad temperature range for CO desorption is indeed explainable as consisting of 

superimposed desorption peaks from numerous exposed CO binding sites. Further the 

magnitude of the adsorption interaction in different temperature regions can now be used to 

approximately estimate the quantity of exposed surfaces. From qualitative comparison, 

experimental peaks of highest intensity at 415 K and 463 K could originate from desorption 
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from the most stable and therefore likely most exposed (101)-Mo/C surface, thus further 

supporting the assignment. Further, the (001)-C surface could play a role in the desorption 

region below 600 K, whereas the desorption above 600 K could be related with higher 

adsorption energy sites as found on (201)-Mo/C and (001)-Mo terminations. The 

desorption peaks associated to MoO2 which are expected below 400 K are also included in 

Figure 5. Last, note that slight disagreements in TPD can be tracked back to exposure of 

other minority surfaces, here not contemplated, by the presence of oxygen adatoms 

lowering adsorption strengths (see again Table 3) and can further be related to coverage 

effects during desorption, as demonstrated by Wang et al.28 Moreover, note that, as stated 

above, the adsorption energies have been evaluated at coverages of 1/4 to 1/8 ML, likely to 

represent a realistic approximate coverage at a peak desorption rate. 

CO2 adsorption studied by DRIFTS, microcalorimetry, and DFT 

The theoretical modelling of CO2 adsorption has been carried out following the 

strategy employed to study CO adsorption. The DFT based calculations for CO2 on well-

defined α-Mo2C surfaces are used to guide the assignment of spectroscopic features 

measured on the synthesized samples. Again, many possible adsorption sites with high 

adsorption energy (Table 5) were found for CO2 interacting with the four surfaces 

considered in the present work (Figure 1). Moreover, in the course of geometry 

optimization an easy CO2 dissociation with C-O bond scission was often found. Table 6 

shows the initial position of CO2 and the final position of CO and O when geometry 

optimization indicated a CO2 spontaneous dissociation where we ascertain a presumably 

small energy barrier. Figures S9 and S10 in the supporting information, show the adsorbate 

geometries for molecular and dissociative CO2 adsorptions, respectively. Briefly, on the 

most stable surface (101)-Mo/C surface, adsorption energies for T3 and B2 of -0.86 and -

0.85 eV, respectively, compare well to values of -0.87 (-0.92) and -0.81 (-0.81) eV found 

by Luo et al. for 1/4 ML (1/16 ML).19 For H4 on (001)-Mo, a previous adsorption energy of -

1.70 (-2.07) eV for PBE (-D3)20 compares well to a value of -1.78 (-2.09) eV reported here. 

Our results show that, similarly to CO, adsorption energies on (001)-Mo and (201)-Mo/C 

are considerably higher than those on (101)-Mo/C and (001)-C surfaces. Again, PBE-D3 

values of adsorption energy were only 0.26-0.34 eV higher than PBE values, whereas 

geometries are similar, indicating that adsorption and CO2 activation is largely of chemical 
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(electronic) origin. In general, the adsorbed CO2 species are bent with α(OCO) angles 

between 116.4º and 136.8° and C-O bond lengths in the range 1.18-1.48 Å. In each case at 

least one of the two C-O bond is significantly enlarged compared to the gas phase value of 

d(C-O) = 1.177 Å. Both findings strongly indicate CO2 activation by charge transfer from 

the underlying surface, as previously observed on other TMCs.12 In some cases the 

lengthening of the two C-O bonds differs considerably indicating a preferential C-O 

scission. 

We determined the transition states for those systems where spontaneous CO2 

dissociation was observed during molecular adsorption. Thus, CO2
δ- most stable adsorbed 

situations were identified and the transition state along the pathway. This was carried out 

for the four surfaces at PBE-D3 level, starting from most stable adsorption geometry of 

CO2 and going to CO + O final states in Table 3. Results are summarized in Figure 6. 

Activation energies from the CO2
δ- towards CO + O reveal significant reactivity differences 

between the different studied surfaces. On (101)-Mo/C starting from B2 site, and from TC 

on (001)-C surfaces, C-O bond scission implies activation energies of 0.59 and 0.63 eV, 

respectively. In contrast, lower activation energies of 0.26 and 0.32 eV are predicted from 

H3 on (201)-Mo/C and from H4 on (001)-Mo. Note here, that for (001)-Mo an effective 

barrier is given with the low energy pathway consisting of a conversion from H4 to H4 (3) 

by torsional motion and a subsequent C-O bond scission. A previously reported activation 

barrier of 0.69 eV on (101)-Mo/C is in full agreement with present results, whereas the 

value of 0.56 eV reported on (001)-Mo is reproduced as 0.54 eV when dissociation is 

directly contemplated from H4.20 All in all present theoretical results indicate a high CO2 

uptake with subsequent activation and decomposition into CO at low temperature likely to 

occur on (201)-Mo/C and (001)-Mo surfaces, as well as the high temperature opening of 

the CO2 dissociation channel on (101)-Mo/C and (001)-C surfaces.  

To gain a first insight on which surface ending could actively catalyse the CO2 

dissociation step, ab initio atomistic thermodynamics53 was employed, allowing for a 

consideration of RWGS reaction conditions. Note that these conditions are approximated 

by a temperature of T = 600 K and steady-state partial pressures of 𝑝!"! = 𝑝!!  = 0.2 𝑏𝑎𝑟 

for CO2(g) and H2(g) and 𝑝!!! =  𝑝!" = 1 𝑚𝑏𝑎𝑟 for CO(g) and H2O(g). Respective Gibbs free 

energy profiles for CO2 adsorption, dissociation to adsorbed CO + O, subsequent 
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hydrogenation and removal as CO(g) + H2O(g) are given in Figure 6; transition states have 

been included for the purpose of visualization. According to the results, dissociation to CO 

+ O is the most favourable state on all tested surface facets, and considering the kinetic 

evidence presented before, this state can likely be reached in all cases. A subsequent 

removal of CO and O however only seems viable on the (101)-Mo/C surface, where ΔGads 

for CO + O + H2(g) and for CO(g) + H2O(g) are in a similar range with -0.58 eV and -0.37 eV 

respectively. Given the results presented above, the inclusion of nearby oxygen adatoms, 

could even modulate this energetic situation favourably. Note also, that the further 

dissociation of CO to C + O was found to be slightly less favourable (-0.23 eV). In contrast 

to the situation found for (101)-Mo/C, dissociation to CO + O on (201)-Mo/C, (001)-Mo 

and (001)-C is considerably more exergonic and intermediates are then likely bound too 

strongly for an efficient reaction to occur and we thus here neglect a possible further 

dissociation of the adsorbed CO, together with the experimental evidence of the lack of 

oxycarbide formation. In total, the thermodynamic analysis suggests occurrence of the 

RWGS on the most stable (101)-Mo/C, providing a possible explanation for the RWGS 

reactivity detailed below, but with a full mechanistic investigation being out of the scope of 

the current work. 

The vibrational fingerprints of the above commented adsorption conformations are 

summarized in Table 5, which contains the two highest frequencies ν1 and ν2, which from 

analysis of the normal modes correspond to symmetric and asymmetric stretching of the 

bent adsorbed CO2 molecule. Figure 4 compares the experimental DRIFT spectrum 

obtained after CO2 adsorption and simulated IR spectrum of adsorbed CO2. The many 

features exhibited by the experimental spectrum can be interpreted on the light of the 

spectrum obtained after CO adsorption and with the support of the simulated IR of 

adsorbed CO and CO2 chemisorption on the different α-Mo2C surfaces. Notice, for 

instance, that bands above 2000 cm-1 were already present after CO adsorption, and related 

to ketenylidene species on (001)-C surface and CO adsorbed on surface Mon+ sites. Indeed 

fingerprints of molecularly adsorbed CO2 do not appear at frequencies higher than 1800 

cm-1 (Table 5). This implies that some CO2 molecules dissociated at the experimental 

temperature of 308 K. It is worth to note the different position and relative intensity of 

these high frequency bands when dosing CO2; the O adatoms generated during the CO2 
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treatment can modify the vibrational frequency of the CO fragments, take e.g. the 

differences between ν(CO) for respective cases found in Tables 1 and 3. For instance, the 

strong band around 1895 cm-1 can be assigned to CO adsorption on the T3 site of (101)-

Mo/C (Table 1) when influenced by the effect of O adatom(s), now visible due to the 

overall lower intensity, and thus supporting the exposure of most stable (101)-Mo/C 

surface. As stated above, CO2 related spectrum shows up in the 2000-1000 cm-1 region. The 

spectrum complexity prevents a straightforward unambiguous assignment. However, 

simulated IR predicts that CO2 adsorbed on different α-Mo2C surfaces would rise ν1(CO2) 

and ν2(CO2) bands in the 1800-1200 cm-1 range and 1300-700 cm-1 range, respectively 

(Table 5). However, ν(CO) bands generated from adsorbed CO resulting from CO2 scission 

are expected to appear in the same region. Indeed, main bands at 1690 cm-1 and 1594 cm-1 

could be also contributed by adsorbed CO on α-Mo2C. Added complexity in the 1500-1300 

cm-1 region could come from CO2 adsorbed on (001)-Mo. Below 1300 cm-1 contribution 

from all studied surfaces is possible and one should refrain from a more detailed 

assignment. Still, the wealth of observed peaks in both our DRIFT studies suggest that a 

mere focus on most stable adsorption could here lead to an incomplete description, being 

more complete when other situations close in energy are considered, probably reachable 

under reaction conditions, or prompted by coverage or surface point defect effects. 

For a better quantitative analysis of the adsorption of CO2 on the α-Mo2C catalyst, 

CO2 adsorption was followed by microcalorimetry. The mean CO2 adsorption heat 

determined for the sample was -3.2 eV, similar in magnitude to the calculated final states 

for CO + O on (201)-Mo/C or (001)-Mo surfaces, with PBE-D3 energies of -3.62 eV and -

3.90 eV, respectively (Figure 6). Note that the experimental heat has to be regarded as an 

average involving different situations, including CO2 non-dissociative adsorption, and CO2 

decomposition on other surfaces as well, yet present results strongly suggest adsorption of 

CO + O as a main ruler.  

The apparent easiness of CO2 dissociation on the α-Mo2C sample leads us to further 

study its reactivity through different experiments. For such purpose a fresh α-Mo2C was 

treated with CO2 flow at 673 K by 10 h and then characterized. During the CO2 treatment, 

CO was detected in the effluent. The BET surface area of α-Mo2C determined after the CO2 

treatment was 8.3 m2 g-1, which is very similar to that of the fresh sample (7.2 m2 g-1). The 
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corresponding XRD pattern, shown in Figure S3, indicates the presence of α-Mo2C and 

monoclinic MoO2 (JCPDS: 00-032-0671). The Raman spectrum shows bands at 740, 589, 

570, 495, 457, 227, 202, and 138 cm-1 assigned to the presence of MoO2 patches in the 

sample resulting from the reaction with atomic O available at the surface from CO2 

dissociation (Figure S5b).31 The analysis by XPS also indicates a transformation of the 

surface of fresh α-Mo2C after the CO2 treatment. Figure 2 compares the Mo 3d core level 

spectrum of the α-Mo2C before (spectrum a) and after the CO2 treatment (spectrum b). 

After the CO2 treatment at 673 K, the Mo 3d5/2 component at 229.8 eV is assigned to Mo4+ 

species, in accordance to XRD and Raman results. After the CO2 treatment, a H2-TPR 

experiment was carried out (Figure 3). The H2-consumption peak observed at about 544 K 

is related with the reduction of oxycarbide species as previously discussed. A main peak at 

906 K is ascribed to the MoO2 reduction.40 After the H2-TPR experiment up to 1073 K, 

XRD peaks due to MoO2 were not present; the presence of crystalline α-Mo2C and Mo was 

determined (Figure S3). 

Catalytic behaviour of polycrystalline α-Mo2C under reverse water gas shift reaction 

conditions.  

The RWGS reaction over the fresh α-Mo2C and over a previously CO2-treated 

sample was studied between 548 K and 673 K under different gas hourly space velocity 

(GHSV) at 0.1 MPa. Under the reaction conditions used the main product found was CO; 

only very small amounts of CH4 were detected as a function of the temperature. Figure 7 

shows the catalytic behaviour as a function of the reaction temperature of the fresh α-Mo2C 

sample. The CO2 conversion increases with temperature, reaching about 16% at 673 K, a 

value not too far from that expected from the thermodynamic equilibrium at this 

temperature (ca. 22%). CO selectivity at 548 K was 97.5% and slightly increases, reaching 

99.5% at the highest temperature studied (673 K); only very low amounts of CH4 by-

product were found, which decreased with increasing temperature.  For CO production, 

apparent activation energy of 0.57 ± 0.02 eV was deduced from the Arrhenius plot at the 

low temperature region (548-598 K) (Figure S11); this value is close to the calculated 

energy barriers for CO2 dissociation (Figure 6). After 3h under reaction at 673 K, the 

contact time of reactants was decreased; Figure 8 shows the CO2 conversion and the CO 

selectivity variation. At 673 K under a GHSV of 6000 h-1, a decrease on the CO2 
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conversion to 13.5% was observed; however, selectivity towards CO approached 100% 

under these conditions. The generation of CO is related to an easy CO2 dissociation on the 

α-Mo2C catalyst. As stated above, in a separate experiment, a fresh α-Mo2C sample was 

previously treated with CO2 at 673 K for 22 h. During the CO2 treatment, CO was detected 

in the effluent; its concentration decreased with time. Then, the RWGS reaction under a 

GHSV of 3000 h-1 was followed at the same temperature of 673 K. Figure 8 shows that a 

drastic decrease on the CO2 conversion occurred meanwhile keeping the high selectivity 

towards CO. As discussed in the previous section, the CO2 treatment at 673 K produces a 

partial transformation of the fresh α-Mo2C resulting in the formation of MoO2 species. The 

presence of H2 under the RWGS reaction at 673 K could be able to reduce the oxycarbide 

species present but not the MoO2. Thus, the number of active surface centres decreased but 

the selectivity towards CO was maintained above 99%. 

In order to verify the stability of the α-Mo2C catalyst under the RWGS reaction 

conditions used, a new experiment was carried out. In this case, the RWGS was studied 

between 548 K and 673 K at 0.1 MPa using 150 mg of fresh α-Mo2C catalyst under a 

GHSV of 3000 h-1 and according to the following reaction temperature sequence: 598 K 

(3h) → 573 K (3h) → 548 K (10h) → 598 K (3h) → 623 K (3h) → 648 K (3h) → 673 K 

(3h) → 648 K (3h). In this way, the changes of catalytic behaviour of α-Mo2C could be 

observed by changes on the CO2 conversion and/or selectivity towards CO. Figure 9 shows 

the CO2 conversion and selectivity towards CO as a function of the reaction temperature of 

the fresh α-Mo2C sample subjected to this reaction procedure. The CO2 conversion values 

corresponded well with those expected using less amount of catalyst and its variation with 

temperature, as well as that of selectivity towards CO, resulted similar to those previously 

found. It is worth of mention that CO2 conversion and CO selectivity obtained at 598 K and 

648 K did not change along the reaction sequence used. 

Characterization of post-RWGS catalyst.  

The post-reaction catalyst showed a BET surface area of 11.6 m2 g-1 close to that of 

the fresh α-Mo2C sample (7.7 m2 g-1). SEM images of the sample after RWGS reaction 

showed no big changes on the morphology of the sample (Figure S12). The XRD pattern of 

post-reaction α-Mo2C (Figure S3) is similar to that of the fresh sample, indicating the only 

presence of crystalline hexagonal α-Mo2C with a crystallite size determined by the Scherrer 
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equation of 35.5 nm. The registered Raman spectrum (Figure S5c) is also similar to that 

above discussed corresponding to the fresh α-Mo2C and pointing to the presence of MoOx 

species. The XPS analysis of the post-RWGS yields no significant differences in the Mo 3d 

spectrum when post-reaction sample (Figure 2c) is compared with the fresh sample (Figure 

2a). However, some differences are found in the O 1s and C 1s XPS signals; the presence 

of a greater amount of C-O and C=O surface species in post-RWGS can be proposed, see 

Figures S6c and S7c. 
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CONCLUSIONS 

The experimental results show that the prepared polycrystalline hexagonal α-Mo2C 

is a highly efficient and highly selective catalyst for CO2 uptake and conversion to CO 

through the reverse water gas shift reaction; from a CO2/H2 = 1/1 reaction mixture, a CO2 

conversion of about 16% with CO selectivity of 99.5% was achieved at 673 K.  

Different experimental techniques have been applied to characterize the samples 

and to investigate CO and CO2 adsorption, and subsequent reactivity towards the reverse 

water gas shift reaction. The different characterization techniques reveal the expected 

complexity of the polycrystalline α-Mo2C. However, the complex experimental behavior 

has been successfully interpreted from periodic DFT based calculations employing a 

realistic combination of most stable α-Mo2C surfaces. This strategy allowed us to identify 

numerous binding sites and adsorption modes, as well as interpreting almost all 

experimental IR fingerprints and TPD desorption profiles. At this respect, our experiments 

indicate the formation of CO when CO2 contacts with the α-Mo2C catalyst even at a quite 

low temperature (308 K) which is consistent with calculated low energy barriers on (201)-

Mo/C and (001)-Mo surfaces. The DFT results are consistent with the final state energies of 

-3.2 eV obtained from experimentally measured heat of adsorption of CO2 on the 

polycrystalline α-Mo2C samples. Moreover, a further presence of (101)-Mo/C and (001)-C 

surface facets is indirectly evidenced from experiments. 

From the experimental evidence, surface oxygen increases with the CO2 treatments, 

however, as the RWGS reaction proceeds without a decrease in conversion, continuous O 

removal is suggested by reduction with hydrogen under H2O formation; on the 

contemplated surfaces, H2 could be easily adsorbed and dissociated.  

A consideration of the thermodynamic situation under RWGS reaction conditions 

indicates that (201)-Mo/C, (001)-Mo and (001)-C surfaces could bind adsorbates too 

strongly not allowing for facile release or removal. In contrast, from the ab initio 

thermodynamics analysis of CO2 dissociation, the (101)-Mo/C seemed to exhibit more 

balanced properties, activating CO2 well towards dissociation, while a subsequent release 

of CO seems viable from a thermodynamic point of view. A presence of this surface on the 

catalyst can therefore provide an explanation for the observed RWGS reactivity. It is 

further noticeable that computed energy barriers for CO2 dissociation on these surfaces are 
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of the same order as experimentally determined for the RWGS from Arrhenius plots at the 

lower temperature regime.  

To summarize, polycrystalline hexagonal α-Mo2C could be considered as an 

economically viable, highly efficient and selective catalyst for CO generation from CO2 

through the reverse water gas shift reaction. 
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Table 1. Adsorption energy (Eads, in eV), desorption temperature (Td, in K), 

vibrational frequency of CO (νCO, in cm-1) and its relative intensity (Rel. int.) for CO 

adsorbed on the different studied α-Mo2C surfaces as predicted from DFT based 

calculations at the PBE and (PBE-D3) level. Adsorbate geometries are given in the 

Figure S8, Supporting Information. Bold sites are those considered most stable. 

Notation of adsorption sites is as in Figure 1.  

Surface Site Eads Td νCO (Rel.int.) 
(101)-Mo/C T2 -0.94 (-1.14) 285 (330) 1971 (0.59) 

 T3 -1.22 (-1.43) 355 (400) 1900 (0.50) 
 T4 -1.48 (-1.66) 435 (470) 1960 (0.84) 
 H4 -1.29 (-1.49) 330 (370) 1003 (0.02) 

(201)-Mo/C T3 -1.59 (-1.78) 455 (505) 1908 (0.65) 
 H3 -2.87 (-3.10) 745 (800) 1085 (0.01) 
 H4 -2.02 (-2.22) 550 (605) 1614 (0.28) 
 B1 -1.88 (-2.10) 525 (585) 1746 (0.26) 
 B6 -2.11 (-2.31) 595 (650) 1870 (0.47) 
 B6(2) -2.06 (-2.27) 560 (615) 1587 (0.24) 

(001)-Mo H1 -2.67 (-2.89) 720 (760) 1377 (0.01) 
 H1(2) -2.57 (-2.81) 695 (740) 1340 (0.01) 
 H2 -2.42 (-2.63) 680 (695) 1247 (0.01) 
 H3 -1.91 (-2.13) 510 (565) 1433 (0.01) 
 H3(2) -1.96 (-2.16) 530 (580) 1417 (0.01) 
 H4 -2.52 (-2.73) 665 (715) 1412 (0.01) 
 H4(2) -2.41 (-2.61) 650 (695) 1471 (0.02) 
 B4 -2.47 (-2.69) 670 (725) 1600 (0.05) 

(001)-C T1 -1.52 (-1.74) 430 (490) 1988 (0.49) 
 T2 -1.10 (-1.31) 310 (365) 1960 (0.37) 
 TC -1.59 (-1.74) 440 (505)a 2142 (1.00)b 

1275 (0.01)b 
 H1 -1.88 (-2.06) 540 (590)a 1477 (0.02)b 

963 (0.01)b 
a The desorption prefactor of 1016 s-1 was used. b Concerted modes of the 

formed C-C-O species. 
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Table 2. Adsorption energy (Eads, in eV), desorption temperature (Td, in K) and 

vibrational frequency of CO (νCO, in cm-1) on the additionally studied surfaces as 

predicted from DFT based calculations at the PBE and (PBE-D3) level. The normal 

mode vibrational frequency for the C-O stretch is listed together to its associated 

relative intensity (Rel. int.). Adsorbate geometries are given in the Supporting 

Information. Bold sites are those considered most stable. Notation of adsorption sites 

is as in Figure 1.  

 

Surface Site Eads Td νCO (Rel.int.) 
α-Mo2C (001)-C 
reconstructed 

T1 -1.62  477a 2118 (1.00)b 
1243 (0.02)b 

T2 -1.98 575a 2110 (1.00)b 
1254 (0.01)b 

T3 -1.47 395 1981 (0.51) 
MoO2(011) T8 -0.98 (-1.18) 285 (345) 2036 (0.66) 

T9 -1.19 (-1.39) 340 (395) 2031 (0.75) 
a The desorption prefactor of 1016 s-1 was used. b Concerted modes of the formed C-C-O 
species. 
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Table 3. Influence of vicinal O on CO adsorption exemplified for one case each on the 

different studied α-Mo2C surfaces. Given are the final positions of CO and O together with 

CO adsorption energy (Eads, in eV), vibrational frequency of CO (νCO, in cm-1) and CO 

desorption temperature (Td, in K) from DFT based calculations at the PBE and (PBE-D3) 

level. Notation for adsorption sites is as in Figure 1 and structures are similar to CO + O 

final states from Figure 6. 

Surface CO 
final site 

O 
final site Eads 

νCO  
(Rel.int.) Τd 

(101)-Mo/C T4 T4 -1.40 (-1.60) 2016 (0.60) 400 (450) 
(201)-Mo/C H3 H3 -2.01 (-2.25) 1094 (0.02) 525 (580) 
(001)-Mo H1 H1 -2.00 (-2.21) 1502 (0.05) 535 (585) 
(001)-C TC H2 -1.79 (-1.97) 2147b (0.89) 

1254b (0.01) 
530a (575a) 

a The desorption prefactor of 1016 s-1. b Concerted modes of the formed C-C-O 
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Table 4. Tentative assignment of the experimental values of CO related vibrational 

frequencies (DRIFTS). All values are in cm-1. Notation of adsorption sites is as in 

Figure 1. 

 

Surface Site Calculated Experimental 
(001-C) TC 2142 2163 

T1 2118 
T2 2110 

(011) MoO2 T9 2031 2063 
T8 2036 

(001)-C T1 1988 1993 
(101)-Mo/C T2 1971 
(101)-Mo/C T4 1960 1945 
(001)-Mo T2 1960 
(201)-Mo/C T3 1908 1919 
(101)-Mo/C T3 1900 
(201)-Mo/C B6 1870 1827 
(201)-Mo/C B1 1746 1747, 1772 
—   1699 
(201)-Mo/C H4 1614 1647 
(001)-Mo B4 1600 

1585 (201)-Mo/C B6 (2) 1587 
(001)-C H1 1477 1458, 1507 
(001)-Mo H4 (2) 1471 1458, 1507 
(001)-Mo H3 1433 1415 
(001)-Mo H3 (2) 1417 
(001)-Mo H4 1412 
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Table 5. PBE and (PBE-D3) adsorption energy values (Eads, in eV) and Gibbs free energy 

of adsorption (Gads, in eV) at reaction conditions (T = 600 K, 0.2 bar), adsorbate related 

highest vibrational frequencies (ν1 and ν2 in cm-1) and relative intensities (Rel. int.) for the 

stable structures of CO2 adsorbed on the different studied surfaces. Most stable sites on 

each surface are highlighted in bold. Site notation is as in Figure 1.  

Surface Site Eads ν1(Rel. int.) ν2(Rel. int.) 
(101)-Mo/C T1 -0.37 (-0.63) 1271 (0.00) 1160 (0.02) 
 T3 -0.86 (-1.17) 1515 (0.01) 1256 (0.02) 
 T3 (2) -0.58 (-0.88) 1677 (0.05) 928 (0.01) 
 B2 -0.85 (-1.11) 1679 (0.01) 1180 (0.05) 
(201)-Mo/C H1 -0.98 (-1.29) 1202 (0.00) 1033 (0.03) 
 H1 (2) -0.73 (-1.04) 1132 (0.01) 1064 (0.02) 
 H1 (3) -0.56 (-0.85) 1681 (0.30) 741 (0.05) 
 H2 -1.14 (-1.44) 1228 (0.01) 1059 (0.03) 
 H2 (2) -1.10 (-1.39) 1565 (0.04) 1103 (0.10) 
 H3 -2.12 (-2.45) 1203 (0.00) 936 (0.06) 
 H3 (2) -2.10 (-2.42) 1226 (0.03) 874 (0.01) 
 H3 (3) -1.78 (-2.10) 1270 (0.02) 973 (0.06) 
 H4 -1.40 (-1.72) 1222 (0.00) 1089 (0.03) 
 H4 (2) -1.18 (-1.49) 1599 (0.28) 729 (0.11) 
 H5 -0.74 (-1.06) 1538 (0.10) 899 (0.05) 
 B5 -1.49 (-1.78) 1624 (0.00) 1166 (0.12) 
 B6 -1.39 (-1.69) 1643 (0.00) 1167 (0.10) 
 B7 -1.35 (-1.66) 1216 (0.01) 937 (0.03) 
 B8 -1.01 (-1.30) 1626 (0.01) 1155 (0.11) 
(001)-Mo H1 -1.75 (-2.09) 1437 (0.03) 1058 (0.06) 
 H1 (2) -1.50 (-1.83) 1351 (0.02) 985 (0.04) 
 H2 -1.78 (-2.11) 1243 (0.04) 857 (0.01) 
 H3 -1.17 (-1.48) 1204 (0.01) 1027 (0.03) 
 H3 (2) -1.21 (-1.52) 1508 (0.02) 1074 (0.09) 
 H4 -1.78 (-2.09) 1116 (0.00) 1039 (0.30) 
 H4 (2) -1.57 (-1.89) 1395 (0.02) 986 (0.04) 
 H4 (3) -1.65 (-1.96) 1271 (0.00) 1160 (0.02) 
 B1 -1.46 (-1.76) 1619 (0.00) 1153 (0.10) 
 B2 -1.36 (-1.67) 1605 (0.00) 1150 (0.09) 
 B4 -1.51 (-1.82) 1590 (0.00) 1152 (0.09) 
(001)-C TC -0.79 (-1.06) 1732 (0.27) 970 (0.04) 
 TC (2) -0.55 (-0.82) 1791 (0.39) 1020 (0.01) 
 TC (3) -0.60 (-0.86) 1749 (0.31) 962 (0.01) 
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Table 6. Adsorption of CO2 naturally evolving to CO + O in the course of geometry 

optimization. The PBE and (PBE-D3) calculated Eads are given (eV), as well as the initial 

positions of CO2 and the final positions of CO and O. Notation for adsorption sites is as in 

Figure 1 and structures are reported in Figure S10 (Supporting Information).  

Surface CO2 placement Eads CO final site O final site 

(101)-Mo/C ---------------------- Not observed ------------------------------ 
(201)-Mo/C T3 -2.87 (-3.18) T3 H3 
 T4 -2.90 (-3.22) B8 H3 
(001)-Mo T1 -3.15 (-3.49) H2 H4 
 H2 -3.66 (-4.02) H1(2) H1 
(001)-C B1 -1.26 (-1.54) TC TC 
 T2 -1.51 (-1.84) H1 T1a 

a Formation of CO species with surface carbon and displacement to T1 site. 
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Figure 1. Slab models of the different bare, relaxed α-Mo2C surfaces used to represent the 

exposed facets of the catalyst. Each model is shown in, side (top part) and top (bottom part) 

views. Layers in lighter colour were fixed during optimizations and frequency calculations. 

Non-equivalent top (T), bridge (B), and hollow (H) sites for CO2 and CO adsorption are 

highlighted. 
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Figure 2. Mo 3d level XPS of α-Mo2C sample: (a), fresh; (b), CO2 treated at 673 K for 10 

h; (c), Post-RWGS.  
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Figure 3. H2-TPR profiles of fresh and CO2 treated (673 K, 10 h) α-Mo2C 
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Figure 4. Experimental DRIFT spectra from CO2 and CO adsorption and simulated 
infrared spectra. Experimental spectra (Expt.) have been normalized to unity for each 
separate case. Vertical lines in simulated infrared spectra (Sim.) correspond to vibrational 
wavenumbers and relative intensities (Rel. int.) as given in Tables 1, 2 and 4. Dotted grey 
line inserted in the simulated CO infrared graph corresponds to maximum intensity in 
simulated CO2 infrared plot. In simulated infrared spectra, intensity scale starts below zero 
to depict bands with no change in perpendicular component of the dipole moment. 
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Figure 5. Experimental CO TPD profile (grey line) and calculated temperatures of 

adsorption modes corresponding to highest desorption rate (vertical colour-coded lines) as 

obtained from PBE-D3 values in Table 1. Note that simulated intensities have been 

deliberately placed to guide the eye in the comparison with the experimental profile. 
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Figure 6. Potential energy surfaces (black) and Gibbs free energy surfaces (red, for 
conditions see text), of CO2 dissociation to CO+O from most stable sites on different 
surfaces (PBE-D3 values). The zero of energy for all has been chosen as indicated in the 
second subplot.  
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Figure 7. Catalytic behaviour of α-Mo2C in the reverse water gas shift reaction; CO2 

conversion and CO selectivity, as function of reaction temperature. Reaction conditions: 

300 mg catalyst, CO2/H2/N2 = 1/1/3, GHSV = 3000 h-1, T = 548-673 K, P = 0.1 MPa. 
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Figure 8. CO2 conversion and CO selectivity under reverse water gas shift reaction at 

different contact time (GHSV) conditions of fresh and CO2 treated (673 K, 10 h) α-Mo2C. 

Reaction conditions: 300 mg catalyst, CO2/H2/N2 = 1/1/3, T = 673 K, P = 0.1 MPa. 
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Figure 9. Catalytic behavior of α-Mo2C in the RWGS reaction; CO2 conversion and CO 
selectivity as function of reaction temperature using a sequential reaction temperature 
cycle. Reaction conditions: 150 mg catalyst, CO2/H2/N2 = 1/1/3, GHSV = 3000 h-1, P = 0.1 
MPa. 
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