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Abstract 

Here we present a Density Functional Theory (DFT) study on the suitability of modern corrections 

for the inclusion of dispersion related terms (DFT-D) in treating the interaction of graphene and 

metal surfaces, exemplified by the graphene/Ni(111) system. The Perdew-Burke-Ernzerhof (PBE) 

exchange-correlation functional is used as basis, on top of which we tested the family of Grimme 

corrections (D2 and D3, including Becke-Jonson damping and Andersson approach) as well as 

different flavors of the approach by Tkatchenko and Scheffler (TS). Two experimentally observed 

chemisorbed states, top-fcc and bridge-top conformations, were examined, as well as one 

physisorbed situation, the hcp-fcc state. Geometric, energetic, and electronic properties were 

compared to sets of experimental data for our model system of graphene/Ni(111), but also for 

available data of bulk Ni, graphite, and free-standing graphene. Results show that two of the most 

recent approximations, the fully ab initio TS-MBD, and the semi-empirical Grimme D3 correction 

are best suited to describe graphene↔metal contacts, yet, comparing to earlier studies, the Rev-vdW-

DF2 functional is also a good option, whereas optB86-vdW and optB88b-vdW functionals are fairly 

close to experimental values to be harmless used. The present results highlight how different 

approaches for the approximate treatment of dispersive forces yield different results, and so fine-

tuning and testing of the envisioned approach for every specific system is advisable. The present 

survey clears the path for future accurate and affordable theoretical studies of nanotechnologic 

devices based on graphene-metal contacts.  
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1 Introduction 

Since graphene was isolated in 2004 by Geim and coworkers [1], it has been rapidly gaining 

importance to become a hub of nanotechnological electronics research. Electronic and technological 

industries have focused on graphene as its mechanical and electric properties, combined with an, in 

theory, low fabrication cost, make it a promising substitute for conventional materials. For the 

synthesis of high-quality and large-size patches of graphene for transparent electronics and high 

frequency devices industry a variety of methods evolved, including exfoliation [1], epitaxial growth 

[2-4], and chemical vapor deposition [5-7].  

Ni(111) quickly gained momentum against other metals in graphene synthesis since the 

lattice mismatch of graphene with respect to Ni(111) is propitiously small allowing the formation of 

well-ordered, rather large, patches [8]. This makes Ni(111) suitable for systematic studies of 

graphene adsorption as well. In addition, conduction measurements involving graphene need metal 

electrodes to be carried out, so a full understanding of the physics of graphene with metal surfaces is 

essential. Fortunately, the binding mechanism has been addressed by a variety of theoretical and 

experimental studies and is now well understood. Previous studies based on X-Ray Photoemission 

Spectroscopies (XPS) detected two energetically degenerate attachment conformations of graphene 

on Ni(111) [9], the so-called bridge-top and top-fcc chemisorbed conformations. The possible 

identification of these arrangements by Scanning Tunneling Microscopy (STM) was suggested from 

theoretical predictions in that study and confirmed in a subsequent study by high-resolution STM 

[10]. Other conformations, such as hcp-fcc, imply that graphene is detached (physisorbed) over the 

Ni(111) surface [9]. The top-hcp conformation, despite being experimentally considered as a 

possibility similar to top-fcc [10], has been characterized as a transition state in between 

conformations [9]. 

Due to its particular electronic structure, graphene is a zero bandgap semimetal and exhibits 

the famous linear band dispersion in the vicinity of each k-point within the Brillouin zone.[11,12] 

However, these Dirac points may be strongly modified when graphene adsorbs on metal surfaces, as 

shown in previous studies [2,5, 13 ]. Indeed, thorough theoretical calculations show strong 

hybridization between metal bands and the graphene π-band for bridge-top and top-fcc modes 

[14,15], breaking the linear dispersion at the Dirac point. In contrast, in the weakly physisorbed hcp-

fcc graphene conformation, the π-band does not strongly interact with the Ni(111) bands due to the 

larger adsorption distance, and, consequently, the linear dispersion prevails. In that case, the 
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influence of the substrate results only in a small shift of the Dirac point with respect to the Fermi 

level, i.e., a small doping effect [16]. 

Due to the variety of different bonding motives including chemisorption and physisorption, as 

well as the importance of the graphene/Ni(111) system, it constitutes a textbook example of 

metal↔graphene interactions, results of which can be extended to other transition metals. Previous 

theoretical and experimental studies showed that dispersive forces play a crucial role in this system, 

just as in the adsorption of aromatic molecules on metal surfaces [15,17,18].  

Initially ab initio Density Functional Theory (DFT) studies relied on the Local Density 

Approximation (LDA), which could apparently correctly discern between physisorbed and 

chemisorbed states [16].  Nowadays this is known to happen because of the LDA exchange-

correlation functionals tend to overbind [19]. The upgrade to Generalized Gradient Approximation 

(GGA), despite getting rid of part of the overestimation, does not help in here due to the missing 

description of long range dispersive interactions. Indeed GGA functionals yield adverse adsorption 

energies of graphene [20], in the sense that a system where graphene is fully separated to the metal 

surface is energetically preferred. This is also the case when using meta-GGA functionals, yet to a 

lesser extent [21]. Hybrid functionals, providing excellent description of the thermochemistry of 

main group molecules, are unadvised, because of their failure in treating largely delocalized systems, 

such as transition metals and graphene [22]. Calculations within the Random Phase Approximation 

(RPA) were suggested as a good choice [23] to model graphene-metal systems. However, on the one 

hand, these are computationally too expensive for many practical systems, and, on the other hand, 

RPA yields physisorbed and chemisorbed situations with similar adsorption energy, for which there 

is no experimental evidence, i.e. it appears that RPA overestimates the binding strength for 

physisorbed situations.  

Thus, the best approach to describe graphene/Ni(111) and similar systems is to employ GGA 

DFT including dispersion terms through one of the currently available methods to cure the lack of  

long range dispersive interactions. Many functionals and corrections evolved over the last decade, 

since more sophisticated approaches are still computationally limited for such a system and ad hoc 

solutions like single-shot, i.e. non self-consistent RPA seem not to be successful for this challenging 

example.  

Most of (semi-empirical) van der Waals corrections (vdW) can be categorized into two 

different approaches, namely the i) (non-local) van der Waals functionals (vdW-DFT) and ii) energy 

corrections, aimed at accounting for dispersion terms, directly added to the ground state energy 
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determined by standard GGA functionals (DFT-D methods). The validation of such newly developed 

vdW-DFT functionals or DFT-D corrections has been matter of recent investigations [8,24]. 

However, a systematic investigation, with a fair comparison of methodologies, is still lacking in this 

evolving field. We herein provide a systematic assessment of the recent flavors of the most 

successfully applied DFT-D methods of Grimme [25] and Tkatchenko [26]. To this end, we chose 

the graphene/Ni(111) system already described, comparing structure, energy, and bandstructure of 

the physisorbed and chemisorbed conformations —bridge-top and top-fcc— obtained by these 

methods, relating these results to earlier works, spanning a wide range of vdW-DFT functionals and 

DFT-D corrections.  

2 Computational details 

Three adsorption conformations for graphene adsorbed on the Ni(111) surface have been 

studied; namely the so-called top-fcc and bridge-top chemisorbed situations, and the hcp-fcc 

physisorbed situation, see Fig. 1. A representative GGA functional, the Perdew-Burke-Erzenhof 

(PBE) [27], has been used as the basis for the studied DFT-D corrections, given its appropriate 

description of transition metals [19] as well as of graphene [8] and, in particular, matching the 

interatomic experimental distance of bulk Ni. Spin-polarized DFT calculations were performed with 

the VASP 5.3.5 calculation package [28], using the Projector Augmented Wave (PAW) method to 

treat core electrons and their interaction with valence electrons [29]. A plane-wave basis set has been 

used with kinetic energy cut-off of 415 eV, which has been found to yield optimized results in 

previous works [8,9,19]. The reciprocal space has been sampled with a 7×7×1 Monkhorst-Pack [30] 

k-point grid, bandstructures have been obtained using a 9×9×1 k-points grid. Geometry 

optimizations have been considered converged once forces acting on relaxed atoms have become 

smaller than 0.03 eV Å-1. The tetrahedron smearing by Blöchl was used for the electronic 

convergence [31]. 

All tested vdW corrections are based on pair-wise interactions dependent on C6 coefficients 

and atomic radii R0 for each species, which is damped by some function for small interatomic 

distances, see Ref. [25] for details. The Grimme D2 correction was later re-parameterized, with C6 

coefficients becoming geometry-dependent, at the toll of adding new adjustment parameters S6, S8, 

and SR [32]. In addition, damping the vdW contribution not to zero but a finite small value, as 

proposed by Becke-Jonson (BJ), was introduced [33]. Finally, another modification was proposed 

later by Andersson (A), claiming to replace the C6 parameters of transition metals by that of the 

noble gas of the upper row in the periodic table [34], in addition to tightening the valence electron 

screening.  
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An alternative approach was presented by Tkatchenko and Scheffler (TS). Formally TS is 

based on D2, seeking, however, to evaluate C6 and R0 for arbitrary systems from the respective 

coefficients of free atoms via the evaluation of the electron density within the studied system [26]. 

Afterwards, the TS correction evolved to include the polarizability variation due to the electric field 

change of surrounding polarizable atoms in the Self Consistent Screening (SCS) TS-SCS method 

[35]. Lately, the TS Many Body Dispersion (MBD) TS-MBD has been proposed to improve the 

description of the long-range many body nature of correlation and dispersion interactions [36]. Note 

however that for TS methods, surface adapted C6, α atomic polarizability, and R0 parameters [37] 

are necessary for the description of transition metal substrates. This is, the reference state in TS surf 

is changed from free-atoms to an atoms-in-bulk situation [38]. Note in passing that the alternative, of 

including vdW effects by one-electron potentials is here not considered [39]. 

A six layer p(1×1) Ni(111) slab unit cell was used in the calculations, where three bottom 

layers were fixed to PBE bulk-optimized positions —targeting the experimental Ni positions— 

whereas the three top layers were relaxed —the so-called 3+3 approximation. Note that previous 

calculations showed very little variations on graphene adsorption energetics and structure by using 

Ni bulk positions as optimized by the method under scrutiny instead of those obtained by PBE, as 

working vdW schemes should yield similar values [8]. The adjacent slabs in the direction 

perpendicular to the surface were separated by a vacuum width of 1 nm. The adsorption energy of 

graphene on Ni(111), Eads, given per C atom, was calculated as: 

    𝐸!"# = [−𝐸!"/!" + (𝐸!" + 𝐸!")]/2    (1) 

where 2 is the number of carbon atoms in the used unit cell, EGr/Ni is the total energy of graphene 

attached to the Ni(111) slab, ENi that of the pristine Ni(111) slab, and EGr that of free-standing 

graphene. Within this definition, the more positive the adsorption energy is, the more exothermic the 

adsorption. The graphene distance with respect to the Ni(111) surface, d(Gr-Ni), has been calculated 

from the mean plane of the graphene sheet and the Ni(111) surface plane, respectively. The isolated 

graphene reference has been calculated using the same unit cell by just removing the Ni layers while 

allowing graphene contraction/expansion, yet maintaining a minimum vacuum width of 1 nm.   

 

3 Results and discussion 

At first, the mismatch between a free-standing graphene sheet and the Ni(111) surface was 

briefly evaluated. The lattice parameter (a) of graphene and interatomic distance (a) of Ni(111) are 

listed in Table S1 in the Supplementary Material. The results therein show that all studied methods 

are well suited to describe the graphene lattice, with errors of, at most, 0.4 pm. In the case of the Ni 
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bulk, the interatomic distance is almost in perfect agreement with experiment for PBE, D2, and D3. 

The D3-BJ or A modification yield a small contraction by up to 2.5 pm. The TS based methods 

results in slightly more acute underestimations of at most 5.8 pm. In summary, the lattice mismatch 

of ~1% is correctly described applying D2 or D3, with the exception of D3-BJ and A modifications, 

which yield no mismatch. The TS based method performs reasonably well but with an opposite 

mismatch in between -0.3 and  -1.3%. 

Having addressed the graphene and Ni(111) systems separately, the graphene layer has been 

optimized on top of the Ni(111) slab in bridge-top, top-fcc, and hcp-fcc positions. The adsorption 

energies Eads and the graphene↔Ni distances, d(Gr-Ni), are listed in Table S2 of the Supplementary 

Material. The obtained data are compared to accurate experimental values yielding a 

graphene↔Ni(111) distance of 211±7 pm [40] and precise adsorption energy values derived from 

graphite attachment to Ni(111) [41] and the graphite exfoliation energy [42], which yield an 

experimental value of 9.2±2.0 kJ mol-1 per C atom [8], yet some margin of error is attributable to this 

graphene attachment energy, and so, comparison should be made with a broad perspective, lacking 

experimental data with improved accuracy.     

Fig. 2 graphically shows the accuracy of the tested methods computing the Mean Error (ME) 

with respect to the mean experimental adsorption energy, including the limits of experimental 

uncertainty. Note that experimentally bridge-top and top-fcc are detected by XPS [9], or observed by 

STM [10], although a particular preference of one against the other is not clear, so they should be 

considered as essentially isoenergetic. Nevertheless, a small preference of bridge-top was suggested 

by XPS data, although this claim must be kept with great caution. This is well observed in Fig. 2; the 

adsorption energy difference between bridge-top and top-fcc is small for all methods, varying from 

0.1 kJ mol-1 per C atom (PBE) to 1 kJ mol-1 per C atom (A). 

Concerning the accuracy of the tested DFT-D methods, PBE clearly underestimates the 

strength of the graphene/Ni(111) interaction, in line with previous results [8] and inherent to PBE 

due to the neglect of dispersion terms. As far as vdW corrections on PBE are concerned, it is to 

highlight the excellent performance of TS-MBD, well within the experimental Eads values, closely 

followed by D3 correction. Former approximations, i.e. D2 and TS yield adsorption energies close to 

the experimental thresholds, but faintly overbinding, up to 1.8 and 1.2 kJ mol-1 per C atom, 

respectively. The BJ and A corrections yield a more acute over- and underestimation of the 

interaction, by up to 4.1 and -2.7 kJ mol-1. The most striking, however, is the overestimation of TS-

SCS by almost 40 kJ mol-1. Note however that such an overestimation can be rationalized in the 

sense that long-range screening in TS-SCS leads to an anisotropic polarization of the electron density 
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[35], which is counteracted in three-dimensional isotropic bulk systems, but does not in anisotropic 

systems such as surfaces, leading to this large overestimation. 

Because of this, TS-SCS is suited in describing bulk graphite, as seen in Table S3 of 

Supplementary Material [43], with exfoliation energies within the experimental range, only 0.3 kJ 

mol-1 far from previous TS-SCS calculations [35], and small variations of 0.4 pm for a cell parameter 

and 6 pm for interlayer distance with respect the experimental structure. Current calculations at TS 

and TS-MBD yield exfoliation energies slightly above the experimental range by 3.5 and 1.3 kJ mol-

1, although previous calculations with finer k-point mesh and larger plane-wave basis set show that 

this discrepancy is reduced by ~2 kJ mol-1 [44,45] and variation with respect graphite interlayer 

distance of ~5 pm. Overall, any of the here tested methods is well suited in describing bulk graphite, 

with the caveat of PBE, which yields negative exfoliation energies and interlayer distances 

overestimated by more than 20 pm, due to the lack of dispersive forces description, and BJ damping, 

which yields exfoliation energies more than 14 kJ mol-1 larger than the experimental values, plus 

interlayer distances overestimated by ~8 pm. 

Back to graphene on Ni(111), note that, as observed in Table S2, the physisorbed hcp-fcc 

conformation is correctly described by any of the DFT-D corrections as a weaker attached situation, 

typically about ~4-10 kJ mol-1 per C atom weaker. No physisorbed state has been experimentally 

observed for graphene on Ni(111), and has only been foreseen from the theoretical point of view, 

i.e., this situation must be energetically less favorable than any of the bridge-top or top-fcc 

chemisorbed situations. This is an indication for the failure of the non self-consistent treatment of 

graphene/Ni(111) within the RPA, yielding almost isoenergetic physisorbed and chemisorbed states 

[23,46]. 

Next, we discuss the ME values of the graphene/Ni(111) attachment distance, shown in Fig. 

3. It is known that DFT methods usually provide excellent structural data, providing interatomic 

distances within good accuracy, whereas energetics is more difficult to describe [19,22]. The DFT-D 

methods tested here are no exception and all methods can be considered within experimental 

accuracy —note that top-fcc case in D3-BJ targets the mean experimental value, and bridge-top case 

of TS-SCS and TS-MBD gives a distance just 2 and 1 pm below the experimental range—. Bridge-

top conformation distances are usually lower than the average experimental value or computed 

distances for the top-fcc arrangement. Considering the physisorbed situation hcp-fcc, all methods 

yield a d(Gr-Ni) distance above 300 pm, as typically observed for the physisorbed states of graphene 

on noble metals, such as Au [5].  
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We now focus on the band structure of graphene/Ni(111) comparing the energy levels ε of 

the graphene σ and π bands at Γ  and K points of reciprocal space to experimental Angle-Resolved 

Photoemission Electron Spectroscopy (ARPES) data [9,47] (see Table S4 of the Supplementary 

Material). More precisely, we compare σ and π bands at Γ , and only the σ band at K, since the π 

band around K, i.e., the Dirac point, is disturbed as above mentioned. An exemplary bandstructure is 

shown in Fig. 4. Despite the sensitivity of Eads with respect to the applied vdW correction, the 

bandstructure is well reproduced by any of the tested methods. This is in line with earlier reports 

demonstrating that the relative level of graphene to substrate bands is determined by the adsorption 

distance, which only showed small deviations throughout the variety of tested methods [8]. It is 

worth noting that 𝜀!! usually is in very good agreement with experiment, with overall deviations of at 

most 0.1 eV. This deviation is increased when comparing eigenstates lower in energy, with 

deviations of up to 0.5 and 0.8 eV for 𝜀!! and 𝜀!!, respectively. Fig. 4 also shows the well-known 

opening of the Dirac points caused by the graphene↔Ni(111) interactions. Last but not least, the 

physisorbed state for graphene on Ni(111),  would it exist, would feature 𝜀!!, 𝜀!!, and 𝜀!! eigenvalues 

at ~3, 9, and 10 eV respectively, as similarly found for graphene on intercalated Au monolayer on 

Ni(111) [5]. 

At this point one could try to assess the suitability of DFT, DFT-D, vdW-DFT, and RPA 

methods in describing the interaction of graphene with Ni(111) surface in particular, and on 

transition metals in general. To discern over the archipelago of data found in the literature, the top-

fcc conformation has been chosen, as it happens to be a conformation in common for the full set of 

literature, see Table S2 in Supplementary Material. A comparison for Eads is given in Fig. 5, whereas 

structural data analyzed in terms of d(Gr-Ni) is provided in Fig. 6. Note beforehand that one must be 

indulgent in such a comparison since different computational setups were used for the calculations, 

with different k-point grid density, plane wave kinetic energy cutoff, or different types of basis sets 

and pseudopotentials, to name a few, and present tests reveal that these factor may vary Eads by 1-2 

kJ mol-1 and d(Gr-Ni) by 2-3 pm. However, general trends can be captured and discussed; see for 

instance the PBE results, where present and past results [8,48] essentially coincide; this is also the 

case for D2 and D3 Eads values. A caveat is necessary for the D3 results obtained by Li and 

coworkers [49], reporting a slightly weaker adsorption, and larger d(Gr-Ni) distances, as shown in 

Figs. 5 and 6. The authors apparently found the physisorbed state of graphene on top-fcc 

conformation by D3, whereas PBE and other vdW-DFT found the proper chemisorbed situation. 

Note that a physisorbed state exists above the chemisorbed ones [9,14,15], and this is exactly the 

case found for other vdW-DFT methods, such as the revPBE-vdW, rVV10, vdW-DF, vdW-DF2, and 
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vdW-WFs1-shift —we address the reader to the original papers for further details—. All that said, 

we may now determine which methods provide results within the experimental accuracy for both 

Eads and d(Gr-Ni). Neglecting the physisorbed situation of Li and coworkers [49], there are only 

three methods fulfilling these criteria: The TS-MBD and Grimme D3 methods, and the Rev-vdW-

DF2 [50], which relies on using the Becke-86 GGA functional [51] for the vdW-DF2 functional [52]. 

Note aside that, as previously stated [8], the optB86b-vdW [53] and optB88b-vdW [54] functionals 

yield energetic data very close to the experimental reported ones, only a few tenths of kJ mol-1 away 

from experimental value limits, and so could be fairly used to investigate this type of systems.  

4 Conclusions 

To sum up, the performance of modern DFT-D corrections —Grimme D2, D3, BJ damping, 

and A corrections, as well as TS, TS-SCS, and TS-MBD— applied in conjunction with PBE has 

been assessed relying on their description of the adsorption of graphene on Ni(111) featuring 

chemisorbed and physisorbed states, as a paradigm for adsorption on late transition metals. Two 

experimentally observed chemisorbed states, namely top-fcc and bridge-top, were examined, as well 

as a hypothetic physisorbed situation (hcp-fcc). Geometric, energetic, and electronic properties of 

graphene adsorbed on Ni(111), bulk Ni, graphene, and graphite were compared to sets of 

experimental data. From the results it is clear that all methods are suited to describe graphene↔metal 

contacts, with the exception of TS-SCS, which yields a sensible binding strength overestimation due 

to a long-range screening anisotropic polarization.  

A survey of present tested methods compared to previous DFT-D corrections, vdW-DFT 

functionals, as well as RPA shows that fully ab initio TS-MBD and semi-empirical Grimme D3 

corrections, as well as the Rev-vdW-DF2 functional, are best suited to describe graphene/Ni(111) 

system providing chemical accuracy, although optB86b-vdW and optB88b-vdW vdW-DFT 

functionals are fairly close. Note that these results are likely to hold for the adsorption of graphene 

on other transition metals. However, the suitability of each method should be further validated on 

other metals with detailed experimental data and a restricted testing of the here presented methods. 

Present results highlight how different approaches to introduce dispersion in DFT based methods 

may yield discrepant results, mostly due to the subtle treatment of such a weak interaction. In any 

case, one must take dispersion related interactions with great caution when studying systems of 

technologic interest. Along this line, the present survey clears the path for future accurate and 

affordable theoretical studies of nanotechnologic devices based on graphene-metal contacts. 
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Fig. 1 Side and top views on graphene adsorbed on Ni(111) in bridge-top (left), hcp-fcc (middle), 
and top-fcc (right) conformations. Violet spheres represent carbon atoms, whereas nickel atoms are 
colored with diverse tones to differentiate Ni layers. 
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Fig. 2 Mean Error (ME) with respect to averaged experimental results, in kJ mol-1, of the adsorption 

energy (Eads) of graphene on Ni(111) at bridge-top (blue bars) and top-fcc (green bars) for PBE and 

various DFT-D schemes. Dashed horizontal lines indicate the experimental deviation. 
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Fig. 3 Mean Error (ME), in pm, for d(Gr-Ni) of graphene attached on Ni(111) at bridge-top (pink 

bars) and top-fcc (orange bars) as obtained at PBE level and including any of the studied DFT-D 

dispersive forces corrections. 
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Fig. 4 Bandstructure of graphene adsorbed on Ni(111) in the bridge-top conformation as predicted 

by PBE. The contributions of graphene C s and p orbitals to bands are colored violet and pink, 

respectively. The points in bandstructures whose energy value are analyzed in detail are marked by 

green circles. Zero energy is here the Fermi energy. 
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Fig. 5 Mean Error (ME), in kJ mol-1, for the adsorption energy Eads of graphene attached to Ni(111) 

in the top-fcc conformation as obtained with different DFT, DFT-D, vdW-DFT, and RPA methods. 

Blue bars are present results, whereas green bars are values from previous studies. See Table S1 in 

Supplementary Material for further details. a Ref. [8], b Ref. [48], c Ref. [55], d Ref. [49], e Ref. [23], f 

Ref. [56], g Ref. [57], h Ref. [58], i Ref. [50], j Ref. [21], k Ref. [59], l Ref. [46]. 
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Fig. 6 Mean Error (ME), in pm, for the distance d(Gr-Ni) of graphene attached to Ni(111) in the top-

fcc conformation as obtained with different DFT, DFT-D, vdW-DFT, and RPA methods. See Table 

S1 in Supplementary Material for further details. Orange bars are present results, whereas red bars 

are values from previous works. References as in Fig. 5. 
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