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Abstract

In this paper we investigate some structural properties of the order on the set of em-
bedded coalitions outlined in de Clippel and Serrano (2008). Besides, we characterize the
scalars associated to the basis they proposed of the vector space of partition function form
games.
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1 Introduction

A number of partially ordered sets emerge naturally from a finite set. The Boolean lattice of
subsets and the partition lattice were two remarkable and deeply studied examples. In this paper
we consider a poset defined over the set of so-called embedded coalitions. Given a finite set N,
an embedded coalition is a pair consisting of a subset of N and a partition of its complement
of the subset. The partial order that we consider is indeed a combination of the inclusion and
refinement relations of subsets and partitions, respectively. The main goal of our work is to
study the Mobius function associated to this poset for its application in Economics.

It is important to point out that we are not the first to study a partially ordered set over the
set of embedded coalitions. Myerson (1977) introduced a partial order on this set and Grabisch
(2010) studied its associated lattice structure meticulously. Using a number of isomorphisms
he has derived a Moébius function and has applied the results to cooperative game theory. In
this paper we aim at following a similar path but from a different starting point. The difference
of our paper with respect to Grabisch (2010) lies on the binary relation that we consider. The
relation between embedded coalitions that we consider here was implicitly used in de Clippel
and Serrano (2008) and formally defined in Alonso-Meijide et al. (2015). According to it, an
embedded coalition gets bigger if the subset grows and the partition of its complement gets
finer.

The motivation for our study comes from economics. More precisely, from cooperative
game theory. A cooperative game is a model that describes situations where a set of agents
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interact by forming coalitions. Each coalition of agents generates some utility or worth. Thus,
a game in characteristic function determines the worth of every possible coalition. A more
general approach is to allow the worth of a coalition to depend also on how are the rest of
agents organized. These situations are covered by games in partition function form. These
latter games were first introduced in Thrall and Lucas (1963) and have recently received some
attention (see for instance Dutta et al., 2010; Alvarez-Mozos and Tejada, 2015).

The main subject of study in cooperative game theory is how to share the utility generated
from the cooperation. The Shapley value (Shapley, 1953) stands as one of the most successful
answers to this question. This value was originally defined as the only sharing rule that satisfies
a set of reasonable properties or axioms. The problem of extending the Shapley value to games
in partition function is intricate and a number of different proposals have been developed to
date (Albizuri et al., 2005; Pham Do and Norde, 2007; Macho-Stadler et al., 2007; Dutta et al.,
2010). We argue that our work may shed some light in understanding the differences between
the different proposals and obtaining new characterization results.

It is well known that both, the set of games in characteristic function and the set of games
in partition function form, are vector spaces over R. The former vector space is studied in
Harsanyi (1959, 1963). Harsanyi provided a closed expression for the coefficients of a game
(in characteristic function) in a basis, the so-called Harsanyi dividends. These results have
contributed to the progress of the theory of cooperative games in a large extent. For games in
partition function form de Clippel and Serrano (2008) proposed a basis. In our paper we provide
a closed expression for the coefficients of any game in partition function form with respect to
this basis.

The rest of the paper is organized as follows. Section 2 introduces of some basic concepts and
notations. In Section 3, the structure of the poset of embedded coalitions is studied thoroughly.
The study of the associated Mobius function is presented in Section 4. Finally, Section 5 presents
the application of these results to cooperative games.

2 Preliminaries

Let (L, <) be a partially ordered set with L a finite set and x,y € L. The supremum x Vy is an
element of L such that z,y < xVy and if z € L satisfies z > x,y, then z > xVy'. The infimum
x Ay is an element of L such that x Ay < x,y and if z € L satisfies z < z,y, then z < z Ay.2 A
finite lattice is a finite partially ordered set (L, <) such that there is a supremum x Vy € L and
an infimum x Ay € L, for every x,y € L. From now on, we assume that (L, <) is a finite lattice.
Let 1 € L be such that < 1 for every & € L. We say that 1 is the top element. Similarly, the
bottom element 0 is an element of L such that 0 < z for every z € L. A complement of x is an
element 7 € L, such that VZ =1 and 2 A Z = 0. We say that x is covered by y or y covers x
if if z <y and there is no z € L\ {x,y} such that x < z <y. An atom is any = € L that covers
0. A coatom is any = € L that is covered by 1. An element x € L\ {0} is join-irreducible if for
every y,z € L with
r=yVz implies z=yoraxz=z

An element x € L\ {1} is meet-irreducible if for every y, z € L with
r=yAz implies z=yorz=z.

A (irreducible) chain C is a totally ordered subset of L, C = {xg,x1,...,2} such that z;41
covers z;, for every [ =0,... k— 1.

IWe denote: z =y ifz <yand y<z; z <y if x <y, but  #y.
2The definition of supremum and infimum is extended to every finite subset of elements of L in the usual way.



Let (L, <) be a finite lattice.

o If x,y € L and x <y, we denote by [z,y], the set of elements z € L such that z < z < y.
If no confusion arises, we set [z,y]. Notice that [z,y] is also a lattice.

(L, <) satisfies the Jordan-Dedekind condition if all chains between the same elements
have the same length. This common length is called the rank. The height of an element
x is the rank of the chains that start at the bottom element and finish at . The height of
the lattice is the rank of every chain that joins the bottom and the top elements.

(L, <) is atomic if every x € L is the supremum of a subset of atoms.

(L, <) is distributive if

for every z,y,z € L.

e (L, <) is modular if
zA@yVz)=(xAy)Vz

for every z,y,z € L with z < x.

(L, <) is lower semimodular if xVy covers y implies that x covers x Ay, for every z,y € L.

(L, <) is semimodular or upper semimodular if x covers x Ay implies that x V y covers y,
for every z,y € L.

Apart from the lattice of subsets of a finite set, denoted by (B(NN), C), we need to recall some
notions related to the partition lattice.

Let N be a finite set, |N| = n, and II(/V) the family of partitions of the set N. Let S C N
and P € TI(N). We denote by P_g the partition of N\ S given by P_.¢ = {T'\S : T € P}
and by P\ R = P\ {R}, for every R € P. If 1 < k < n, the total number of partitions of N
with k subsets is the Stirling number of second kind, Sy, . A well-known partial order on II(NV)
is the following;:

P =< @ if and only if for every S € P there is some T € @ such that S C T

and the addition of an element, 0, that satisfies 0 < P, for every P € II(N). We denote this
ordered set by (II(N), <). It is known that (II(N), =) is a lattice. If P,@Q € (II(NV), <), we
denote by P A @ the infimum of P and Q; the supremum of P and @ is denoted by P\/ Q.

An embedded coalition of N is a pair (S; P) with ) .S C N and P a partition of N'\ S, i.e.,
P e TI(N\S). If we have the embedded coalition (T; Q) with T'= N then, @ = {0} and we take
|Q| = 0. For simplicity we denote by (S; N \ S) the embedded coalition (S;{N \ S}), for every
S C N. We consider the family of all embedded coalitions of the set N union an additional
element L. This set is denoted by ECY. Several partial orders are considered on the family of
embedded coalitions of a finite set N. One of them has been studied in Grabisch (2010) and
the partial order was defined for every (S; P), (T;Q) € ECN \ {1} as

(S;P)Co (T;Q) if and only if S C T and P_p <X @,

and L Cg (S; P) for every (S; P) € ECN \ {L}. In our paper we study a different partial order
on ECY oulined in de Clippel and Serrano (2008) which we define next.



Definition 1. Let N be a finite set. We define the inclusion among embedded coalitions as
follows:

(S;P)C(T;Q) ifand only if SC T and Q X P_r (1)
for every (S; P),(T;Q) € ECN \ {1} and L C (S; P) for every (S; P) € ECN \ {1}.
This binary relation defines a partial order on EC?. The next example illustrates the

differences among C and Cy.

Example 1. We consider N = {1, 2,3} and its set of embedded coalitions ECY. Figure 1 depicts
the Hasse diagram corresponding to (ECY,C) and (ECY,C,). Notice that ({1};{2,3}) C
({1,2}; {3}), but they are not comparable according to Cy. Moreover, they are sometimes reverse

orders as in the case of ({1};{2,3}) C ({1};{{2},{3}}), but ({1};{{2},{3}}) So ({1};{2,3});
but also, can provide the same order as in the case of ({1};{{2},{3}}) C ({1,2};{3}) and

({13 {{2}, {3}}) So ({1,2}:{3}).

(N3 0)
(N;0) |

////,,////”’/j;;/ \\i?:::::::::::::i”\‘\‘“\~\\~\\\\ ((1,2): 30 (1.3} (21) ({2 )
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({1}:{2,3}), ({2}:{1.3}) ({3):{1.2})

J / \ J

(a) The lattice (ECY, Co). (b) The partially ordered set (EC™,C)

Figure 1: Comparing Ty and C.

3 The structure of (ECY C)

In this section we examine some properties of the partially ordered set (ECY,C). By the
definition of the order C, it is clear that L Vv (S;P) = (S;P) and L A (S;P) = L, for every
(S;P) € ECN \ {L}. In the next result we obtain the supremum and the infimum when
comparing two embedded coalitions different both different from L.

Proposition 1. (ECN C) is a finite lattice. In fact, for every (S; P), (T;Q) € ECN \ {1},
1. (S;P)V(T;Q)=(SUT; M) with M =P_r AQ_s.
2. SNT #0, (S;PYAN(T;Q)=(SNT; M) with M = (PU{S\T}HV(QU{T\S}). If
SNT =0, (S;P) A (T;Q) = L.
Proof. Let (S; P), (T;Q) € ECN \ {L}.

1. Let (SUT;M) with M = P_p AQ—_s. Then, (S;P), (T;Q) C (SUT;M). For every
(R; M') € ECN such that (S; P), (T;Q) C (R; M'), it is easy to check that (SUT; M) C
(R; M").

2. ESNT # 0, take (SNT; M) with

M = (PU{S\T}H\(QU{T\ 5.



Then, (SNT; M) C (S;P) and (SNT;M) C (T;Q). Let (R;M’) € ECY such that
(R; M) C (S; P) and (R; M') C (T; Q) then, it is easy to see that (R; M') C (SNT;M).
M

)
If SNT =0, it is clear that L C (S; P), L. E (T; Q) and there is no (R; M) # L such that
(R; M) C (S; P) and (R; M) E(T;Q).
O
As a consequence of Proposition 1, the top of (EC™,C) is (N;0). In the following, we denote
by T the embedded coalition (N;0).
Proposition 2. Every (S; P) € (ECYN,C) is complemented. In fact, given (S; P) € ECY, any
embedded coalition (N \ S; M) € ECY is a complement of (S; P).

Proof. Let (S;P), (N\S; M) € ECV. Using Proposition 1, we have that (S; P)V (N \S; M) =
(N;0) =T and (S; P)A(N\S; M) =(0;N) = L. a

Next we illustrate these operators.

Ezample 2. Let N = {1,2,3,4}. If we take (S; P) = ({1};{{2,3},{4}}), (T5 Q) = ({1,2};{3,4}) €
ECY, then (S; P) A (T;Q) = ({1};{2,3,4}), (S; P) V(T3 Q) = ({1,2}; {{3}, {4}}). The embed-
ded coalitions ({3,4}; {{1},{2}}) and ({3,4};{1,2}) are complements of (T; Q).

Proposition 3. Let (S; P) € (ECN,C).
If (S; P) = L, the number of embedded coalitions that cover (S; P) is n.
If (S; P) # L, the number of embedded coalitions that cover (S; P) is given by
d 2t —{Re P : |R| =2} (2)
ReP
Proof. Let (S;P) € ECN.

1. Let (S; P) = L. Notice that for every T C N, i € T, it holds ({i}; N \ {i}) C (T; Q) for
every Q € II(N \ T). Besides, for every ) #T C N, i &€ T, ({i}; N\ {i}) and (T;Q) are
not comparable for every @ € II(N \ T'). By definition of the bottom element, we have
1 C ({i}; N\ {é}) for every i € N. Then, ({i}; N \ {i}) covers L for every i € N.

2. Let (S;P) # L. Let P, € P with |P;| = 1. We consider the embedded coalition (T; Q)
with T = SUP; and Q = P\ Py. It is clear that (S; P) C (T; Q) and there is no embedded
coalition in between. Additionally, if we consider every partition @ € II(N \( U { 1US))

that is covered by P\ ({'}UEP{Z}) then (S;Q U {{i} : {i} € P}) covers (S5; P) Addmg up

all cases we obtain Expression 2.
O

Ezample 3. Let N = {1,2,3,4} and take the embedded coalition (S; P) = ({2}; {{1},{3,4}}).
The embedded coalitions that cover (S; P) are

({1,23:{{3,4}), ({21 {{1}, {3}, {4}})-



Proposition 4. Let (S;P) € (ECN \ {L},C). The number of embedded coalitions that are
covered by (S; P) is given by

S| if |P|=1
<|]23|> if |S| =1, and |P| > 1
n(S; P) = (3)
1P| .
9 +1S| if |S]| > 1, and |P| > 1.

Proof. First, we assume that |P| = 1. Thus, P = {N\S}. If |S| = 1, then (S; P) = ({i}; N\{i})
and (5; P) only covers the bottom element (.L). Let us assume that |S| > 1. Notice that if (T'; Q)
is covered by (S; N\ S), then S covers T and Q_g covers { N\ S}. Then, (S\{i}; {{i}, N\ S}),
for every i € S, are the only embedded coalitions covered by (S; P). Second, we consider that
|P| > 1. Take a partition M € II(N \ S) that covers P. Then, (S; M) is covered by (S; P). The

P
number of the embedded coalitions of this type is given by (| 2|
|S| > 1, we take i € S and consider (S1; P') = (S\ {i}; P U {{i}}. Clearly, (S; P') is covered
by (S; P). The number of embedded coalitions of this type is |S]. O

) in Equation (4). Besides, if

Ezample 4. Let N = {1,2,3,4} and take the embedded coalition (S; P) = ({1,2}; {{3},{4}})-
The embedded coalitions covered by (S; P) are

({12} {43,41), ({13 {42} {33, {43}), ({2} {1}, {3}, {4}})-

The first one is obtained by joining two elements of P. The last two ones are obtained by
isolating an element of S.

Proposition 5. The set of join-irreducible embedded coalitions is Z; U Zs with

Ty ={({i}; N\ {i}) : i€ N},
L ={{ii{S, N\ (SU{i})}) = S & N\ {i}}.

Proof. First, we prove that every embedded coalition in 7, UZ, is join-irreducible. Let (T;Q), (U; M) €
ECY such that (T;Q) V (U; M) € Iy UZy. If (T;Q) or (U; M) coincides with L, the re-
sult immediately follows. Besides, neither (T;Q) nor (U; M) is the top element. Thus we
can assume (7;Q), (U;M) € ECN\ {L}. If (T;Q) Vv (U;M) = ({i}; N\ {i}) for some
i € Nythen T = U = {i} and Q = M = N\ {i} because N \ {i} = QA M. Thus,
(T:Q) = (Us M) = (T:Q) V (U: M).

Let us assume that (T;Q)V (U; M) = ({i}; {S, N\ (SU{i}}) for some i € N and S C N\{i}.
Then, T'=U = {i}, {S,N\ (SU{i})} = Q A M. Thus, there are L, € Q, L/, € M such that
LyNL),=8Sand L; €@, L € M such that L; N L; = N\ (SU {i}). We distinguish two cases.

1. LyNnLj=0and L/, NL; = 0. Then, Ly = L, = S and L; = L) = N \ (S U {i}) because
SCLy, SCL,,,N\(SU{i}) CL;,and N\ (SU{i}) C Lj. Thus, (T;Q) = (U; M) =
(T;Q) v (U; M).

2. Wlo.g. Ly =L;. Then, Ly = L; = N\ {i} because S C Ly and N\ (SU{i}) C L;. In
this case (T;Q) C (U; M) and (U; M) = (T;Q) V (U; M).



Consequently, any embedded coalition in 77 U Z5 is join-irreducible.

It remains to prove that only the embedded coalitions in 73 U 7y are join-irreducible. Let
(S;P) € ECN \ {L} be a join-irreducible embedded coalition such that (S;P) ¢ Z; U Zs.
Then, |N| > 3 because in case |N| = 2, the non-trivial embedded coalitions are given by
7, UZ,. We distinguish two cases. First, we consider that |S| > 2. Let us take 4,5 € S, i # j
and and P € II(N \ S). We take the embedded coalitions (T;Q) = (S \ {i};{{i}, P}) and
(U; M) = (S\ {5} {{s}, P}). Tt is clear that (S;P) = (T;Q) V (U; M) but neither (T; Q) nor
(U; M) equals (S; P) and this is a contradiction. Second, we consider that |S| = 1. If |P| < 3,
then (S; P) € 7y UZ,. Then, |P| > 3, and

(5 P) = (S; {P U P} U (P\{P1, P2})) V (S; {1y U P3} U (P \ {P1, P3}))

but (S5 {PUP,} U (P\ {Py, P2})) # (S; P) and (S; {P,UPs} U (P\ {P1, Ps})) # (S; P). Then
(S; P) is not join-irreducible and this finishes the proof. O

Proposition 6. The set of meet-irreducible embedded coalitions is M7 U My with

My ={(N\{i};{i}) : i€ N},
My ={(N\{i,j}:{i,j}) : i.jeN, i#j},

Proof. First, we prove that every embedded coalition in M; U M5 is meet-irreducible. Let
(T;Q), (U;M) € ECV such that (T;Q) A (U; M) = (S; P) € My UMs,. If (T;Q) or (U; M)
coincides with T, the result immediately follows. Now we study the case where neither (T'; Q)
nor (U; M) are the top element. Then S =T NU. If (S;P) € My, then S =T or S =U.
In case S = T, then P = @ and if S = U, then P = M and the result is proved. Let us
assume that (S;P) € My. If T = N\ {i} and U = N\ {j}, we obtain (T;Q) A (U; M) =
(VA {i, 3} {{ih 17}) # (S: P). I T = N\ {j} and U = N\ {3}, we obtain (T5Q) A (U; M) =
(N\ {4, 75 {{i},{4}}) # (S;P). Then, T = N\ {i,j} =S or U=N\{i,j} =S. We analyse
the case T = N \ {i,j} = S. Then, Q = {{i,7}} or @ = {{i},{j}}. In the first case we prove
the result. If @ = {{i},{j}}, then (T;Q) A (U; M) = (S; P) if and only if U = N \ {i,j} and
M = {{i,j}}. Thus, (S;P)= (U; M) and the result is proved.

Second, only embedded coalitions in M; U My are meet-irreducible. We proceed by con-
tradiction. Let (S;P) € ECN \ {T} be a meet-irreducible embedded coalition such that
(S; P) ¢ My U Ma. Then, [N| > 2. We distinguish two cases:

1. [N| =3. W.lLog. we assume that (S; P) = ({1};{{2},{3}}). Then,

(S;P) = ({1,215 {3}) A ({1, 3} {2}).
Thus, we achieve a contradiction.

2. |[N| > 3. Then, |S|=n—2and |[P|=2o0r |S|<n—-3. If |S|=n—2and |P| =2, we
have (S;P) = (N \ {4,7}; {{i},{j}}) for some i,j5 € N, i # j. If we take T = N \ {i},
Q={{i}} and U = N\ {j}, M = {{j}}, we obtain (T; Q) A (U; M) = (S; P) but neither
(T; Q) nor (U; M) equals (S; P). Let us assume |S| <n —3. If |P| =n —|S|, we consider
i,j € N\'S,i# 7, (SU{i}; P\ {i}), (SU{j};P\{i}) € ECN\ {T}. It is clear that
(SU{i}; PA\{i))A(SUL} PA{5}) = (55 P) but (SU{i}; P\{i}) # (S; P) # (SU{j}; P\{j})-
If |P| < n—|S|, then there is some P, € P with |P;| > 2. We distinguish two cases.

e There is some P, € P with [P| > 2. Let 4,5 € Py, i # j, and consider (S; P_g; U

{{i}}), (S; P_{;3U{{j}}) € ECN\{T}. Then, (S; P_;y U{{i}})A(S; P_;3U{{j}}) =
(S; P) but (S; P_giy U{{i}}) # (S; P) # (S; P_rj3 U{{j}})



e There is some P, € P with |P;| = 2 and |P| < 2 for every P, € P\ P. Let us
take i € P and j € P, with P, € P\ P, (S; P_giy U{{i}}), (SU{j}P-gy) €
ECN\{T}. It is easy to see that (S; P_;y U{{i}}) A (SU{j}; P_i;3) = (S; P), but
(S; Py U{{i}}) # (S;P) # (SU {71 Pgjy)-

In both cases, we get a contradiction and the proof is finished. O

Proposition 7. (ECYN,C) satisfies the Jordan-Dedekind chain condition. In fact, the height of
any (S;P) € ECN \ {1} is given by h(S;P) = |P| + 2|S| — 2.3 The height of the lattice is
2n — 2.

Proof. We distinguish three situations:

1. (S;P)C ({i};{{j}: 7 € N\{i}}) forsomei € N. Then, S = {i}. Any embedded coalition
(T; Q) covered by (S;P) has T = {i} and |@Q| = |P| — 1. Repeating this reasoning, we
need |P| links to get the bottom element.

2. (T;Q) = {i}; {{y} - j € N\ {i}}) C (S;P) for some i € S. Then, |P| =n —|S|. The
number of links between (7; Q) and (S; P) is |S| — 1 because every P, € P has |Py| =1
or P ={0}. Then, we add the number of links from bottom to (7'; Q) obtained as in Item
1 and we have |S|—14+n—1=n+|S|—2=|P|+2|5] —2.

3. In the remaining cases, (S; P) and (T;Q) = ({i};{{j}: j € N\ {i}}) are not comparable
for every i € N. This implies |S| > 2 and there is some P, € P with |P| > 2. Let
1€ Sand (T5Q) = ({i};{{j}: 7€ N\{i}}). We build a chain from bottom to ({i}; M)
with ({i}; M) C (T;Q) A (S; P) for some i € S. For instance, we take (S \ {j}; Q7) with
j € S\ {i} where Q] = {j}, Q;,, = Px for every k = 1,...,|P|. We repeat this step to
(S\ {j};@Q7) in case (S \ {j};@’) and (T;Q) are not comparable, and so on. Once we
obtain an embedded coalition ({i}; M) C ({i}; Q) A (S; P), we have |[M| = |P| + |S| — 1.
As a consequence, the total number of links between the bottom element and (S; P) is
S| =1+ |P|+|S| —1=|P|+2|S| — 2. This finishes the proof.

Clearly h(N;0) = 2n — 2. O

Proposition 8. Let N a finite set with |[IN| > 2. The number of elements of height k in ECY is
given by

k1
nSp_1k + ZZL:S ! 7; Sn—ik—2(i—1)s 1<k <min{n—1,2n—4}
n k1 n
\Il(k) - k—n+2 +Z}:E+J3—n (i>5n—i,k—2(i—1), n—1<k<2n-4
k—Z+2 ’ max{2n — 4,1} <k <2n -2,

. 2n—2
Then, the total number of elements is ) ;" “ W(k) + 1.
Proof. We prove the result considering the following cases.

1. |[N| = 2. In this case, the height of the lattice is 2 and ECY =2 2N, Then, the result is
true.

3Recall that we take |Q| = 0 if Q = 0.



2. |[N| = 3. The height of EC¥ is 4. Besides, 2n — 4 = n — 1. The embedded coalitions in
level k =1 < n—1 are of type ({i}; N \ {i}), for every i € N. Then, (k+1)/2=1<2
and

W(1) =35, 11 =35, =3

The embedded coalitions in level k = 2 = 2n — 4 are of type {({i}; {{j}: 7€ N\ {i}}):

i € N}. Thus,
v = (kz+2) - (?) =3

Inlevel k =3,2=2n—-4 <k =3 <2n— 2 = 4. The embedded coalitions are given by
the set {({7,7};{l}) : ¢,5,l € N,i #j, i #1, j #1}. This set has 3 elements and

v = (k—Z+2) - (g) =3

Finally, level k = 4 has a unique embedded coalition that corresponds to T and coincides

with W(4) = <I<:—Z+2> - (g) ~ 1

3. |[N| > 4. If IN| > 4, we have 2n —4 > n—1. Let k =1, then 1 < k < n —1. Ounly
embedded coalitions of type ({i}; N\ {i}) belong to this level, for every i € N. The total
number is nS,_1,1 =n. Let us take 2 < k < 2n — 2 and (T; Q) be an embedded coalition
in level k — 1. We distinguish two cases according to |T.

e First we analyze the case |T| = 1. Using Proposition 7, we have |Q| = k—1-2|T|4+2 =
k —1. Besides, k < n because |Q| < n—|T|. If |Q| < n—|T|, applying Proposition 3,
(T; Q) with |Q| = |Q| + 1 = k and Q covering Q covers (T; Q). Besides, if k —1 > 2
and there is j € N\ T with {j} € @, then (T U{j};Q\ {j}) covers (T;Q). Notice
that if & = n, (T;Q) is only covered by (T'U {j}; @ \ {j}), for every j € N\ T.
Summarizing, at level k we have the following number of embedded coalitions that
cover some (T; Q) with |T| =1 located in level k — 1:

nSnka, k<3

Sk + (Z) Sn-2j-2, 3<k<n

(Z) Sn—2,k—2, k=n.

e Second, let (T; Q) be an embedded coalition with |T| # 1. We consider two cases.

(a) k < mn. Using Proposition 7 and 1 < |Q| < n—|T|, we have |Q| = k—1-2|T|+2 =
k+1-2|T|,2=max{2,k—n+1} <|T| < |%]. If |Q| < n—|T, then (T;Q)
is covered by (R; Q) with R =T, |Q| = |Q| +1 =k —2(|T| — 1), and Q covering
Q. Tf there is j € N\ T with {j} € Q, then (T;Q) is covered by (R;Q \ {j})
with R=TU{j} and |Q\ {7} =1Q| - 1=k—-1-2(T|—-1)—-1=k—-2|T| =
kE—2(Rl—1) > 1.

(b) k> n. Then, (T;Q) with |Q| =n—|T| and |T| = k —n+1 belongs to level k —1
(Proposition 7) and there is no embedded coalition (S; P) with |S| < k+n—1
in level kK — 1. Then, (R;Q \ {j}) with R = T'U {j} covers (T;Q), for every
j € N\T. For every (T;Q) with |Q| < n — |T'|, we proceed as above. Then, if
k < 2n—3, taking k —n+2 < |R| < |%] and @ a partition of N\ R with
k —2(]R| — 1) blocks, we obtain the embedded coalitions in level k.



Finally, let us analyze the case k = 2n — 2. By the induction hypothesis, at level
k — 1 we only have the embedded coalitions (N \ {i}; {¢}), for every i € N. It is
clear that any of these embedded coalitions is covered by (N;0).

Adding up all different types of embedded coalitions obtained above and taking into ac-
count the cases of |[N| < 3, we compute

Lk+1 n
nSn—1k + D=3 ) Sn—ik—2(i-1); 1<k <min{n—1,2n — 4}
1
n Lk+1J n
L(k) = k—mn+2 + 2 ishia n<i>sni,k2(i1)7 n—1<k<2n-—4
k—Z+2 ’ max{2n — 4,1} <k < 2n — 2.

The proof is concluded.
O

As a consequence of Proposition 8 we characterize the set of atoms and coatoms of (EC™, C).
Additionally, notice that all the atoms are join-irreducible elements and all the coatoms are
meet-irreducible elements.

Corollary 1. Let (ECN,C) be the lattice of embedded coalitions.
1. The set of atoms of ECN s given by {({i}; N\ {i}) : i € N}.
2. The set of coatoms of of ECN is given by {(N \ {i}; {i}) : i € N}.

Remark 1. In Table 1 we compare the number of embedded coalitions per level according to
the ordering £y and C. For each value of n, the first row contains the number of embedded
coalitions using =g and the second row is obtained through the function V.

n k=1 2 3 4 5 6
2 2 1

2 2 1

3 3 6 1

3 3 3 3 1

4 4 18 14 1

4 4 12 10 6 4 1

Table 1: Number of embedded coalitions per level using Cq and C.

If |[N| > 3, the lattice (EC™,C) does not belong to any well-known families of lattices as we
see in the following remark.

Remark 2. Let N a finite set with |N| > 3.

1. (ECN,C) is not distributive. For instance, let us take a finite set N with |[N| > 3. Let

(S:P) = ({11 N\ {1}), (T5Q) = ({2}: N \ {2}), and (U3 M) = ({3}; N\ {3}). Then,

),

(S;P)V ((T;Q) A (U; M)) = (S;P)VL=(S;P),

(S;P)V(T5:Q) A ((S; P) vV (U; M) = ({1,255 N\ {1,2}) A({1,3}; N\ {1,3})
({135 {{2}, {3}, N\ {1,2,3}}) # (S; P).

2. (ECY L) is not atomic. The atoms of EC¥ is the set of embedded coalitions {({i}; N \
{i}): i € N}. Let i € N. The embedded coalition ({i};{{j} : 7 € N\ {i}}) is not the
supremum of any subset of atoms.
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3. (ECN, ) is not lower semimodular. In order to show this we consider (S; P) = ({2}; {{1}, {3}, N\

{1,2,3}}) and (T3 Q) = ({3}; {{1}, {2}, N\{1,2,3}}). Then, (S; P)V(T; Q) = ({2,3}; {{1}, N\
{1,2,3}}) and this embedded coalition covers (T; Q). Besides, (S;P) A (T;Q) = L, but
(S; P) does not cover L.

4. (ECY,C) is not upper semimodular. In order to show this we take (S; P) = ({1}; N\ {1})
and (T;Q) = ({2}; N\ {2}). Then, (S;P) A (T;Q) = L and this embedded coalition is
covered by (S; P). Besides, (S; P)V(T; Q) = ({1,2}; N\{1,2}) but this embedded coalition
does not cover (T; Q) when |N| > 3.

4 The Mobius function

In this section we characterize the Mobius function of the lattice of embedded coalitions. First,
we recall some well known notions and results about the Mdbius function of a lattice.

Let (L, <) be a finite lattice. The dual of (L, <) is (L, <*) with z <* y if and only if y < z,
for every z,y € L. The Mébius function of (L, <), u, is given by

(2,1) 1 ifx=y
w(x,y) = .
=D pcaay MT2) = =3y ml(zy) <y

for every xz,y € L with < y. The direct product of two finite lattices (L1,<1), (L2, <3)
is the partially ordered set (L; x Lo, <) with (z1,z2) < (y1,y2) if and only if 21 <y y; and
x9 <o yo. It holds that (L; x Ls, <) is also a finite lattice. In this section the Mobius function of
(B(N), C) and the Mdébius function of (II(IV), <) play an important role. The Mébius function
of (B(N),C) is given by 11(S,T) = (=1)ITI=I5I for every S € T C N. The Mébius function of
(TI(N), <) is given by (P, Q) = (~1)IPI=1@l(my — 1)1 - (myq) — 1)! with /%) m, = [P, for
every P,Q € TI(N) \ {0} with P < Q (here 0 is the bottom element of (II(N), <).

Next we recall some well-known facts that we use in the proofs of our results.

Proposition 9 ( see Stanley (2011)). 1. Let (L1,<;1), (L2,<2) be two finite lattices. Let
11, o be their Mobius functions, respectively. Let us consider the direct product (L; x
Lo, <). Then, the Mobius function of (L1 x Lg, <) is given by

(@1, 22), (Y1,y2)) = p1 (21, y1)pa (w2, y2).

2. Let (L,<) be a finite lattice with bottom = 0 and top = 1 and p its Mobius function.
If 0 is not a meet of coatoms, then p(0,1) = 0. Dually, if 1 is not a join of atoms, then
w(0,1) = 0.

First, we obtain an isomorfism between particular subsets of (ECN,C), (B(N),C) and

(II(N), <). Let P,Q € II(N). We denote by Q\ P={U € Q : U ¢ P}.
Proposition 10. Let (EC™,C) be the lattice of embedded coalitions. Let (S; P), (T;Q) € ECN\
{L}, (S;P) C (T;Q) with {i} € P for every i € T\ S and (S; P) # (T; Q).

1. IFQ\P#0and T\ S # 0, then
[(S:P), (T5Q) = [0, T\ Slpv) x [@\ P, P\ Qljyya.r)-
with N9 = Upeq\pR.
2. fQ\P=0and T\ S # 0, then
(S5 P), (T5;Q)] = [0,T \ S]s()

11



3. If T = S, then
[(S;P), (T5Q)] = [@\ P, P\ Qlfyya.r)-

Proof. Let (S; P),(T;Q) € ECY such that (S; P) C (T;Q) with {i} € P for every i € T\ S.
First we consider the case with T\ S # 0. If Q \ P # ), we define the following mapping ¢
from [(S; P),(T;Q)] to [0,T\ Slpny % [@ \ P, P_1 \ Q]E(NQ’P) as follows. For every (U; M) €
[(S; P),(T;Q)], $(U; M) = (U \ S; M) being M = M_7\ Q. We also consider the map ¢

which assigns to every (U, M) € [0, T\ S]pn) x [Q\ P, P_1\ Qlfi(nve.ry the embedded coalition
o(U; M) = (SUU; M) with U € M if

e Uc(PNQ)U{{j} : jeT\U}or

e Uc M.

Tt is clear that ¢ and ¢ are inverse maps. In addition, if (U; K), (V; M) € [(S; P),(T; Q)] with
(U; K) E (V; M), then ¢(U; K) < ¢(V; M) because?

e we have U CV and then U\ S CV\SCT\S.
e M_7\Q=K_r\Q because for every H € M there is some H' € K with H C H'.
The second and the third cases follow inmediately. This finishes the proof. O

Henceforth we omit the subscript corresponding to the set when we consider a direct product
of lattices. Next we illustrate the result in Proposition 10.

Ezample 5. We take N = {1,2,3,4,5,6},
(95 P) = ({1} {{2},{3,4,5},{6}}) and (T3 Q) = ({1,2}; {{3}, {4}, {5}, {6}}).
According to Proposition 10, [(S; P), (T; Q)] = [0, {2}] x [{{3}, {4}, {5}}, {3,4,5}]*. Notice that

[0,{2}] > [{{3}, {4}, {51}, {3, 4,5}]" = [{1}, {1, 2}] x [{{3}, {4}, {5}}, {3,4,5}]".

Figure 2 depicts every lattice in the direct product. The solid lines and the dotted lines in
Figure 3 are replicas of the lattice in Figure 2(b); the dashed lines in Figure Figure 3 are
replicas of the lattice in Figure 2(a).

{3,4,5}
/ .2 {13}, {15} {14}, (3,59} {5}, (3,41}
ty {185, (1), 10
(a) The lattice [{1}, {1,2}]. (b) The lattice [{{3}, {4}, {5}}, {{3,4,5}}].

Figure 2: The elements of the product.

4Here we use the order defined for a direct product.
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({1,231 {{3}, {4}, {5}. {6}})

.
",
.
‘e
.

({1,2};{{5343_7:1}«,{6}}) ({1, 23 {43, {3, 5}, {61} ({1 {02}, 433, {4}, (5). {6}))  ({172): {{3}. {4.5}. {6}})

.
l..... e,
e,
LR
ol ]
]

\
EEEERREN]

112545}, 43,4463} {1k {{2h{4}{3,5},{6}}) ({1} {{2}, {3}, {4,5},{6}}) 12} {{3,4,5}, {6}})

({1}:{{2}, {3,4,5},{6}})

Figure 3: An example of the result in Proposition 10.

Next we characterize the Mdbius function of (EC™, C). Notice that the embedded coalitions
of type (S; N\ S) with S C N, S # ) can be written as
(S N\ S) = Vies({i}; N\ {i}).
Then, p(L, (S;P)) = X acqip:n\{ih): ies}(—l)“‘| = (=1)I8I. Thus, the characterization of the
Mébius function of (ECY C) is not a trivial task. We do that in the next result.
Proposition 11. The Mébius function on ECY is given by

1. If S # 0,
(=S if (S;P) = (S; N\ S)

0 otherwise.

u(L, (S; P)) = {

2. Let (S; P),(T;Q) € ECN\{Ll}, (S;P)C (T;Q) and {i} € P foreveryi € T\ Sor S =T.

Then,
e T o o i e >1
u((8: ). (1:Q)) = 4 Y L Gm =D HIPrA QL2
(—1)IT1=151 otherwise

[P_7\Q|
where m; > 1 forevery j =1,...,|P-2\Q|, > m;=|Q\P|
j=1

3. Let (S; P),(T;Q) € ECN \ {1} such that (S;P) # L, (S; P) C (T;Q) and there is some
1 €T\ S with {i} & P. Then, u((S; P),(T;Q)) = 0.
Proof. Ttem 1 is clear. Item 2 follows from Proposition 10, Item 1 in Proposition 9, the chara-

terization of the Mobius functions of the Boolean lattice, and the partition lattice as we show
next. Notice that

[P_r\Q|
(3 P), (T3Q)) = (=) =)l =@l Ty — 1))

Jj=1

13



|P_r\
where m; > 1 for every j =1,...,|P_7\ @], Z m] |@Q \ P|. Besides,

Q\P|=[P-r\@Q| = [Q—-|QNP|—(|P|-[QNP|—|T|+]S])
Q| = [P +1T] = S].

If [P_7\ Q| > 1, then

[P_T\Q)|

p((S; P, (T5Q)) = (=)I=IPL T (m; — 1)
j=1
where m; > 1 for every j =1,...,|P_1\ Q|, lPﬁZ m; =|Q\P|. f Po.p =Q, then Q\ P =10

and
1((S; P),(T;Q)) = (-1l

Tt remains to prove Item 3. We check that the meet of the coatoms of the lattice [(S; P), (T; Q)] is
different from (S; P) and apply Item 2 in Proposition 9 to derive the result since [(S; P), (T; Q)]
is also a lattice with 0 = (S; P) and 1 = (T; Q). First, notice that any coatom (every embedded
coalition covered by (T';@)) is given by

1. (T\{i}; M;) with M; = {{i}} UQ, for every i € T\ S, or
2. (T; M) with M| =|Q| — 1 and U € M'* if
e U = P.\T in case there are Q;, Qi € Q such that QU Q, C P.\ T, or
o U =(Q; for every t # [, k.
Let A be the whole family of coatoms defined above. By definition, we have (S; P) C (U; M) C
(T;Q), for every (U;M) € A. Thus, Aanea(U; M) € [(S;P),(T;Q)]. We claim that

ANusaneaUs M) = (S;H) with H = {{i} : i€ T\ S}UP_p. Clearly, (S;H) E (U; M)
for every (U; M) € A and Nw,myealU = S. Besides, \/ 7.)e 4 M = H because

e for every ¢ € T'\ S there is (T \ {i}; M;) € A with {i} € M;. We have {i} N R = () for
every R € M with (U; M) € A\{(T'\ {i}; M;)}. Then, {i} € V . aryea M.

e every R € P_p can be obtained as a union of some elements of M\ U for every (U; M) € A
since Q <X P_r.

In addition, we have (S; P) C (S; H), but the partition H is different from P because there
is some i € T \ S such that {Z ¢ P but {i} € H. Then, using Item 2 in Proposition 9, we
obtain u((S; P), (T;Q)) = O

C
}

Ezxample 6. In this example we will illustrate the proof of Item 3 in Proposition 11. We consider
N = {1,2,3,4} and (S5 P) = ({1} N\ {1}) and (T;Q) = ({1,2}: {{3}. {4}}. In Figure 4, we
depict the Hasse diagram of the lattice [(S; P), (T; @)]. Dotted lines join the coatoms and their
infimum.

14



(1,2} {{3}, {4}})

({1} {{2} A3% {43} (1, 2} {3 4})

e

({1} {{4},{2,3}}) {11 {{3},{2,4}}) ({1} {{2} {3,411

{1 N1}

Figure 4: An example of the procedure of Item 3 in Proposition 11.

5 Partition function form games

Finally in this section, we use our previous results to characterize the scalars related to the basis
proposed in de Clippel and Serrano (2008) of the vector space of partition function form games.
We also show that there are additive partition function form games concordant with the order
C.

Let N be a finite set. A partition function form game on N is a map v : ECY — R with
v(L) =0. Let U = {e(r.q) : (T;Q) € ECN \ {L}} be the family of partition function form
games given by
1 if (T;Q) C (S; P),

0 otherwise

e(r;@)(S; P) = {

for every (T;Q) € ECN \ {1}. The set of partition function form games U is a basis of the
vector space of partition function form games as de Clippel and Serrano (2008) proved. Then,

v= Z UT;Q)E(T5Q) (4)
(T;Q)eECN\{L}

These coefficients are characterized next.

Proposition 12. Let v be a partition function form game. Then, for every (T;Q) € ECN \ {1}

max{1,| M\Q|}

o = % (e e RAru gy < i€ BY)
Me[Q,N\T], j=1
RCT
with m; > 1 for every j = 1,...,max{1,|M \ Q|}, Zm“{l MR - = = max{1,|M \ Q|} for

every M € [Q,N\ TJ.

Proof. Let (T;Q) € ECN \ {L}. The coefficient a(r,q) in Equation 4 can be obtained through
the Mobius inversion formula as follows

amg) =, #l(S;P),(T;Q))v(S; P).

L#(S;P)E(T;Q)
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Using Proposition 11, the only embedded coalitions 1 # (S;P) C (T;Q) with a non null
w((S; P),(T;Q)) correspond to any partition

P—U{{i} ieT\S}UM
with @ # S C T and M € [Q, N \ T]. Then,
max{1,|M\Q|}

arq = X (~DREMIEET T ) (T R M U{{} ;i€ RY)
Me[Q,N\T], j=1
RCT

with m; > 1 for every j = 1,...,max{1,|M \ Q|}, Zmax{l IMAQEY - — max{1, M\ Q|} for
every M € [Q,N\T]. O

In particular,

ar = X (~D)Fu(N\Ri{{i} : i€R})

RCN

Ezample 7. Let us consider |[N| = 3. In Figure 5 we depict the lattice of the embedded coalitions
for n = 3. Next we obtain the non null values of its Mobius function.

T

({2,3}:{1}) ({1,3}:{2}) ({1,2}:{3})

{35 {11421 ({25441} {31} {15442} {31}

({3} {1,2}) ({2} {1,3}) ({1}:{2,3})

Figure 5: The lattice of EC" for n = 3.

w((S; P),(S; P)) =1, for every (S; P) € ECN,

w(L, ({i}; {j, k}) = 71 for every i € N\ {j, k}

p(L, ({7, k3 {i})) = 1, for every {j, k} € N\ {i},
n((S; P), (T )) = —1, for every (S; P), (T; Q)

such that (S; P) C (T;Q), h(T;Q) — h(S;P) =1,
u(({i}; {{J} {k‘}})f)) =1, forevery i€ N\ {j,k}.

Then,
ar =0, aqynpy = o({ih N\ {d}),
aiy Gy = odih (k) — o({ih N\ {4}),
for every 1,5,k € N, i # j, k, j #k,
iy = v g1 k) —o({ahs {{a ) {k1) —o({G} {{d}, {k})),
for every 4,5,k € N, i # j, k, j #k,
at =0(T) = Xien 2ojenv 0HG a1 LR + Xien vl {{7} {EH ),
i,j k€N, ik, j+k
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We apply this to the example in Grabisch (2010, pp. 486). The game is

o(T) =3, v({1,2};{3}) = 2, o({3};{1,2}) = 0, v({1}; {{2,3}}) = 1,
v({2,3}{1}) = 2, v({1,3};{2}) = 1, v({2};{1,3}) = 1,
o({11{{2} {33)) = ({2} ({13, {3}D) = 1, v({3}; {{1},{2}}) = 0

and it can be written as

U= e(ahN\{1}) T E({21N\{2}) T €({2,3}:{1})

If we consider (N;w) with w({3}; {{1},{2}}) = 2 and w(S; P) = v(S; P) for every (S;P) #
({3}; {{1},{2}}). We obtain

W= euypN\h T eq2nn\{2h) T 263 {1} .42}
—2e({1,3}:{2}) ~ €({2.3%:{1}) T 2e(i{o)-

Grabisch (2010) showed that there is no additive partition function form game in (ECY,Cy)
different from v(S; P) = 0 for every (S; P) € ECY if |N| > 3. On the contrary we show that
any additive TU game is also additive in (FC™,C). In lattice theory the concept of a valuation
corresponds to the concept of an additive function in the setting of partition function form
games. Let (L, <) be a finite lattice. A wvaluation is a real-valued function f on L satisfying

fVierxi) = Z (=DM f(Aiess) (5)

JCI, J£0

for every finite set I and {x; : i € I} C L. A valuation f is monotone if f(x) < f(y) whenever
Tz <uy.

Proposition 13. There are non-constant monotone valuations on (EC™, C).

Proof. Let us take n non-negative real numbers aq,...,a,. Let us define

v(S;P) = a; — (IS| = V(L) if (S;P) # L.

i€S

It is clear that v is monotone if 0 < v(L) < %min{ai : i € N}. We prove that v is a
valuation function by checking Equation 5 for |I| = 2 because the remaining cases follow applying
induction on |I| immediately. Let (S; P), (T;Q) € ECN. We check that v(S; P) + v(T; Q) =
v((S; P)V (T;Q)) +v((S; P) A (T;Q)). Notice that

o(T;Q) +v(S;P) = Yicrai—(T|—Dv(L) + > cgai — (IS| = Dv(L)
Yicrus @ — (1T +[S] = 2)v(L) + X icrns @i
= D ierus @ — (T +[S] = [T'NS| = 1)v(Ll)
+ > ierns @ — (TN S| = Dv(L)
= v((S;P)V(T;Q)) +v((S; P) A (T;Q))

because [T US| =|T|+|S|—|T'NS|. O

If v(L) = 0, the valuation defined above can be seen as an additive TU game. We can choose
adequate non-null values for v(L) and obtain different valuations. The valuation defined above
is not strictly monotone because v(S; P) = v(S; Q) for every P,Q € I(N\ S) and § # S C N.

17



6 Concluding remarks

We study some structural properties of the set of embedded coalitions endowed with the partial
order outlined in de Clippel and Serrano (2008). In particular we prove that this partial ordered
set is a lattice. Moreover, we characterize the set of atoms, the set of coatoms, the join or
meet-irreducible elements, as well as the number of embedded coalitions that cover any other
embedded coalition, the number of embedded coalitons covered by any other embedded coalition,
the height of every irreducible chain and the number of embedded coaliton per level. Besides,
we obtain the Mobius function of this partial ordered set. This finding allows us to calculate
explicitly the scalars related to the basis of the vector space of partition function form games
that de Clippel and Serrano (2008) used. We expect that our results can contribute to a
better understanding of some values proposed in the context of partition function form games.
Moreover, we can also define new values in this context using some properties that appear in
this paper.
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