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1. THESIS STRUCTURE





1.1. Thesis structure 

This thesis has eight chapters. Chapter 1 describes the structure of the thesis and the 

scientific papers it considers. Chapter 2 introduces the topic of radioactivity in the 

environment and radiation protection directives, specifically regarding human drinking 

water and the state of the art in LSS deconvolution. The results of this thesis are presented 

in the next three chapters as a compendium of scientific papers. The fourth chapter 

describes the optimization and validation of gross alpha and beta determination by LSS. 

Chapter 5 includes two papers regarding the development and validation of the direct 

measurement of 226Ra, 228Ra and 210Pb in drinking water by extraction with a 3M Empore 

Radium RAD disk. Chapter 6 includes a paper on the feasibility study of PLS applied to LS 

spectra deconvolution and a study of chemical and colour quenching, which is a critical 

aspect in LS spectra quantification. Chapter 7 globally discusses the results obtained. 

Furthermore, a strategy for the rapid determination of alpha and beta emitters via the 

procedures validated in the thesis is described and the results obtained are discussed. 

Finally, Chapter 8 contains the conclusion of the present thesis.  

1.2. List of scientific papers presented in this thesis 

1- Simultaneous determination of gross alpha, gross beta and 226Ra in natural water 

by liquid scintillation counting. 

Authors: J. Fons, D. Zapata-García, J. Tent, M. Llauradó 

Journal: Journal of Environmental Radioactivity 125 (2013). pp. 56-60. 

2- A comparative experimental study of gross alpha methods on natural waters. 

Authors: Montaña, M.; Fons, J.; Corbacho, J.A.; Camacho, A.; Zapata-García, D.; Guillén, J.; 

Serrano, I.; Tent, J.; Baeza, A.; Llauradó, M.; Vallés, I. 

Journal: Journal of Environmental Radioactivity 118 (2013). pp. 1-8. 

3- On the direct measurement of 226Ra and 228Ra using 3M EmporeTM RAD disk by liquids 

scintillation spectrometry. 

Authors: J. Fons-Castells, M. Vasile, H. Loots, M. Bruggeman, M. Llauradó, F. Verrezen 

Journal: Journal of Radioanalytical and Nuclear Chemistry 309 (2016). pp. 1123-1131. 
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4- Simultaneous determination of 226Ra, 228Ra and 210Pb in drinking water using 3M 

EmporeTM RAD disk by LSC-PLS. 

Authors: J. Fons-Castells, J. Oliva, J. Tent-Petrus, M. Llauradó 

Journal: Applied Radiation and Isotopes 124 (2017). pp. 83-89. 

5- Simultaneous determination of specific alpha and beta emitters by LSC-PLS in water 

samples. 

Authors: J. Fons-Castells, J. Tent-Petrus, M. Llauradó  

Journal: Journal of Environmental Radioactivity 166 (2017). pp. 195-201. 

6- Effect quenching on efficiency, spectra shape and alpha-beta discrimination in liquid 

scintillation spectrometry. 

Authors: J. Fons-Castells, V. Díaz, A. Badía, J. Tent-Petrus, M. Llauradó 

Accepted for publication in Applied Radiation and Isotopes. 
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2. INTRODUCTION



 

 

  



 

 

2.1.  Radioactivity 

Radioactivity is the process by which an unstable nucleus decays to a more stable 

nucleus by losing energy spontaneously and emitting radiation. This liberation of energy is 

the result of a reorganization of the internal nuclear structure caused by an unstable ratio 

of protons and neutrons. The emitted radiation can be classified as alpha, beta, gamma or 

neutrons.  

Alpha radiation occurs when an atom undergoes radioactive decay by giving off a particle 

that consist of two protons and two neutrons (essentially a nucleus of 4He). The energy of 

the alpha particle is characteristic of the emitter. Due to their large charge and mass, alpha 

particles interact strongly with matter to cause ionization, and travel only a few centimetres 

in air. Alpha particles are unable to penetrate the outer layer of skin cells, but are capable, 

if an alpha-emitting substance is ingested in food or air, of causing serious cell damage. 

Beta radiation refers either to an electron or to its antiparticle, a positron, emitted from 

an unstable atom. The emission of an electron entails the formation of an antineutrino, 

which shares the energy of the nuclear reaction with the electron. For this reason, the 

energy of the beta particles emitted by a radionuclide changes from 0, when all the energy 

is collected by the antineutrino, to a maximum energy, when all the energy is collected by 

the electron. This maximum energy is characteristic of the beta emitter. In the same way, 

when a positron is emitted, the total energy of the decay is shared with a neutrino. Due to 

their smaller mass, beta particles have greater penetrating power than alpha particles. 

Gamma radiation consists of electromagnetic radiation, which is characteristic of each 

unstable nucleus. Due to its radiation behaviour gamma radiation has greater penetrating 

power than alpha and beta particles.  

Finally, neutron radiation consists of a free neutron that is usually emitted as a result of 

spontaneous or induced nuclear fission. Neutron radiation has a high penetrating power 

due to its null net charge.  

The magnitude to measure radioactivity is activity, which is the number of nuclei that 

decay per unit time. It is measured in Becquerel (Bq) in the international system of units 

(SI), which is equivalent to disintegrations per second (s-1). The activity of a radioactive 

source depends on the number of nuclei of the source and a constant λ which is 

characteristic of the radionuclide following the next equation.  
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𝐴(𝑡) = 𝜆 · 𝑁(𝑡) (2.1) 

where 

A(t)   is the activity at time t in Becquerel; 

λ    is the decay constant second-1; and 

N(t)  is the number of nuclei in the radioactive source at time t. 

 

Decay constant λ is characteristic of the radionuclide studied and refers to the 

probability that this radionuclide will decay in a fixed time. This is related to the half-live, 

which is the time required to reduce the number of the nucleus of a radioactive source to 

half of its initial value, in accord with Equation 2.2. 

 

𝑇1
2⁄
=
𝑙𝑛(2)

𝜆
 (2.2) 

where 

𝑇1
2⁄

  is half-live measured in second; and 

λ    is the decay constant in second-1. 

 

Since activity depends on the number of nuclides and decay in time, the activity of a 

radioactive source decreases with time. Radioactive decay is defined by Equation 2.3. 

 

𝐴(𝑡) = 𝐴0 · 𝑒
−𝜆𝑡 (2.3) 

where 

A(t)   is the activity at time t in Becquerel; 

A0  is the activity at time 0 in Becquerel; 

λ   is the decay constant in second-1; and 

t  is the elapsed time in second. 

 

Nevertheless, some radioisotopes do not decay directly to a stable state but undergo a 

series of decays until a stable isotope is reached. These sequences of disintegrations are 
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called radioactive chains. Different situations may be reached between two or more 

radionuclides, depending on the ratio of their decay constant. Consider a parent 

radionuclide A that decays to a daughter radionuclide B, which in turn decays to a stable 

nuclide C: 

 

𝑨
𝝀𝑨
→  𝑩

𝝀𝑩
→  𝑪(𝒔𝒕𝒂𝒃𝒍𝒆) 

 

Secular equilibrium may occur in a decay chain only when the λ of the daughter 

(Radionuclide B) is much higher than that of the parent (Radionuclide A). In this situation, 

the decay rate of A, and hence the production rate of B, is approximately constant because 

the half-life of A is very long compared with the timescales considered. The number of 

radionuclides of B grows until the activity of B reaches the activity of A. In a situation of 

secular equilibrium, the activity of the daughter reaches more than 99 % of the activity of 

the parent after seven half-lives of the daughter.  

When the half-life of the daughter is not negligible compared to the parent’s half-life, 

transient equilibrium may occur. In this situation, the daughter’s activity increases and 

eventually reaches a maximum value that can exceed the parents’ activity. Transient 

equilibrium occurs after approximately four half-lives of the daughter.  

In the aforementioned cases of secular and transient equilibrium, the parent 

radionuclide A is longer-lived than its daughter. In other cases, when λA > λB, a situation of 

no equilibrium is achieved. In these cases, the parent decays to a negligible activity, leaving 

only the daughter radionuclide, which decays with its own half-life.  

Furthermore, longer and more complex decay chains may be observed. Some 

radionuclides disintegrate into more than one daughter following the next decay scheme.  

 

For example, 212Bi in the natural chain of 232Th (please see Figure 1), decay by alpha 

emission to 208Tl and by beta emission to 212Po. The half-life of the parent nuclide in a 

branching decay is a function of two decay processes and can be written as,  

 

A

B

C

λA 1

λA 2
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𝑇1
2⁄
=

𝑙𝑛(2)

𝜆𝐴1 + 𝜆𝐴2
 (2.4) 

 

where  λA1 and λA2 are the decay constants of two independent decay processes. 

2.1.1. Effects of ionizing radiation 

Despite the different nature of ionizing radiation, all of these types of radioactivity 

interact with matter in similar ways, and when they reach the electrons of other atoms or 

other molecules, all of them can produce excitation or ionization. For this reason, 

radioactivity is also known as ionizing radiation. When this interaction occurs in molecules 

that are parts of cells of organisms, physico-chemical changes that affect functionality may 

occur. If these changes occur in macromolecules such as enzymes or proteins, the 

macromolecules sometimes return to their natural state. Other times, however, the changes 

are permanent. Besides, the interaction of radioactivity with the water of the cellular 

cytoplasm can give rise to the formation of free radicals that can recombine or react with 

other molecules to generate toxic substances such as peroxides for cells. 

Risk associated with radioactivity exposure is evaluated by means of equivalent dose, 

which is measured in Sieverts (Sv), which are equivalent to joules per kilogram. An 

equivalent dose is the weighted sum of the equivalent dose of all organs and issues. This 

equivalent dose for each tissue is its absorbed dose weighted by the type and energy of the 

absorbed radiation. Absorbed dose is the energy deposited per unit of mass. It is measured 

in Grays (Gy), which are equivalent to joules per kilogram. 

The effects of ionizing radiation on human health may be distinguished into 

deterministic and stochastic effects. Deterministic effects are caused by high dose rate, 

which irreversibly damages many cells and cause the loss of the functionality of the affected 

tissues. Many deterministic effects occur shortly after radiation exposure, frequently within 

a few days or months, so that a link between exposure and health effect is evident. These 

effects are observed in every individual who receives the same high dose.  

In contrast to deterministic effects, the occurrence of a stochastic health effect depends 

on the modification of a cell that changes its original characteristics without preventing its 

proliferation, which may induce cancer and genetic disease. These effects are caused by a 

low dose rate and are inherently random. Not every individual in a community exposed to 

the same low dose rate suffers health effects after exposure (UNSCEAR, 2012). 
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2.2.  Radioactivity in the environment 

Even the effects of ionizing radiation may be disturbing. Humans have been exposed to 

an environment with a notable presence of natural radioactivity and hence have the ability 

to withstand a certain dose level. Natural sources are the most relevant in human exposure. 

However, several economic activities increase the exposure of the population to natural 

radionuclides, and others produce artificial radionuclides. This section describes the 

various origins of radioactivity. 

2.2.1. Natural radiation 

There are several kind of natural radioactivity: cosmic radiation, cosmogenic 

radionuclides and primordial radionuclides. 

Cosmic radiation is high-energy radiation that is generated mainly by solar eruptions 

and by supernovas or other phenomena outside the solar system. It is composed by high-

energy protons, neutrons and alpha particles that produce nuclear reactions with molecules 

in the high atmosphere. As a result of these interactions, cosmogenic radionuclides are 

produced. The important isotopes produced by cosmic rays are 3H, 7Be, 14C, 22Na, 32P, 33P and 

33S. These isotopes are produced by spallation reactions with atmospheric nitrogen, oxygen 

and argon, and by high-energy cosmic rays, mostly of protons and neutrons (Warner & 

Harrison, 1993). 

Primordial radionuclides are radioactive nuclides that have been present on the Earth 

since its formation. Some of these radionuclides give rise to natural radioactive chains, 

thereby producing more than 20 different radionuclides, most of which are alpha emitters. 

Just three of these chains are observed in nature. They are commonly called the thorium 

series, the radium or uranium series, and the actinium series. The mass number of each 

isotope in these chains can be represented as A = 4n, A = 4n + 2, and A = 4n + 3, respectively. 

The chain corresponding to mass A = 4n + 1 is mainly decayed, such that only the last two 

of the isotopes involved (209Bi and 205Tl) are found naturally. 

Figure 1 and Figure 2 show the radionuclides involved in the thorium series and the 

uranium series, respectively, together with their decay modes and half-lives. In both figures, 

the radionuclides included in the Directive 51/2013/EURATOM are highlighted in purple. 

The data used to create these figures was obtained from the Laboratorie National Henri 

Becquerel. 
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Figure 1. Radionuclides involved in the 232Th natural series with their decay modes, decay 
energies and half-lives. 
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Figure 2. Radionuclides involved in the 238U natural series with their decay modes, decay energies 
and half-lives. 
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disequilibrium is observed because uranium is more mobile than thorium in natural 

systems—particularly in oxidizing environments—due to its high solubility in +6 oxidation 

state forms. Thorium forms insoluble hydroxides under the same conditions, regardless of 

redox conditions (Deschamps et al., 2004). 

Radon (222Rn), daughter of 226Ra, is a characteristic radionuclide that takes part in the 

uranium series. Radon is a radioactive noble gas; hence, it can diffuse though soil to the air, 

where it can be incorporated by inhalation. Furthermore, radon has a high solubility in 

water, which is why it should be controlled in water sources. Thoron (220Rn), from the 

thorium series, exhibits the same behaviour but a shorter half live, which makes its 

radiological impact weaker in most scenarios. 

Other primordial radionuclides do occur in radioactive chains, such as 113Cd, 123Te and 

87Rb. The most important is 40K, which has a natural isotopic abundance of 0.012 %.  

It is important to point out that the distribution of natural radionuclides in Earth’s crust 

may be changed by some industrial activities that use a large amount of materials that 

contain natural radionuclides called naturally occurring radioactive materials (NORM). 

Several processes may increase the concentration of natural radionuclides in by-products 

or residues, and these by-products and residues can increase public exposure if they are not 

treated properly. Some of the practices involved in NORM are uranium mining and 

processing, metal mining, coal mining, the use of coal in thermal power plants, practices 

associated with the phosphogypsum industry, oil and gas extraction including fracking, 

practices associated with the titanium-oxides industry, and the production of building 

materials. 

2.2.2. Artificial radiation 

Artificial radionuclides are generated by human intervention by means of nuclear 

reactions. In some occasions, these artificial radionuclides are the target of human 

intervention. For example, artificial radionuclides are produced in particle accelerators, 

mainly for medical purposes (both diagnosis and treatment).  

In other cases, artificial radioactivity is produced as a by-product of another process. 

This is the case with nuclear power plants (NPP’s), in which the objective is the production 

of electrical energy by means of a sustained and controlled fission reaction. A huge amount 

of radioactive fission and activation products are produced during fission reactions. Though 

most of these radionuclides remain in the nuclear reactor and are removed in the 
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dismantling process with the spent nuclear fuel, some may be released outside the NPP in 

controlled venting. 

For this reason, the NPP has a protocol for surveillance to ensure that no releases have a 

significant impact on human health or the environment.  

In Spain, the Nuclear Safety Council (CSN, its acronym in Spanish) establishes the 

requirements for environmental radiological monitoring programs, which must be carried 

out by the NPP owners in the environment surrounding of the installation (Royal Decree 

783/2001). The CSN verifies compliance with these requirements by evaluating the 

programs and their results, conducting periodic inspections and establishing independent 

control programs. 

CSN requires that holders of NPP’s and nuclear fuel-cycle facilities develop 

environmental radiological surveillance programs (PVRA, the acronym in Spanish for these 

programs) in their surroundings during the phases of the facility’s life. The PVRA starts 

several years before the beginning of the operation of the facilities to determine the 

radiological conditions of the environment before any discharge of radioactive effluents and 

to determine their radiological impact. 

This surveillance program is based not only on gamma measurements but also on the 

collection and analysis of samples in the area of influence of the facilities. The samples 

considered in the program for operative nuclear facilities are the following: drinking water, 

rain water, superficial and underground water, air, soil, sediment, bio-indicative organisms, 

milk, agricultural crops, meat, eggs, fish, seafood and honey. To maintain adequate 

confidence in the results obtained in PVRA, CSN requires the application of quality-

assurance systems to environmental radiological monitoring. In addition, 5-15 % of the 

samples should analysed by two different laboratories, and agreement of the results should 

be checked. 

In addition to CSN—the monitoring program of the holders of the NPP—is an 

independent environmental radiological-surveillance program (PVRAIN, its acronym in 

Spanish). Its sampling points, type of samples and analyses performed coincide with those 

of the PVRA, representing approximately 5 % of the samples of PVRA. 

On 11 March of 2011, the Fukushima-Daiichi NPP suffered major damage from 

equipment failure after an earthquake of magnitude 9.0 and subsequent tsunami. It was the 

largest civilian nuclear accident since the Chernobyl accident of 1986. It has been estimated 

that 100 to 500 PBq of 131I and 6 to 20 PBq of 137Cs were released into the environment. The 

published estimates of the corresponding releases to the atmosphere estimated for the 
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Chernobyl accident are about 10 % and 20 %, respectively. Much of the released material 

was dispersed over the Pacific Ocean, but, due to meteorological conditions, a fraction was 

dispersed over eastern mainland Japan, and radioactive material was deposited on the 

ground by means of dry deposition and wet deposition with rain and snow (UNSCEAR, 

2016). 

Apart from the civil uses of nuclear energy, there are also military uses, which also 

increase the exposure of the population. Since the first nuclear test at the Trinity site, several 

counties have tested their nuclear weapons atmospherically or in underground explosions. 

Nuclear explosions in the atmosphere occurred from 1945 to 1980, and radionuclides 

released by these tests have gradually been deposited on the Earth’s crust as fallout. The 

radionuclides generated in nuclear explosions are similar to those obtained in a nuclear 

reactor: i.e., mainly 14C, 90Sr, 95Zr, 134Cs and 137Cs. 

2.3.  Radiation protection: directives and legislation 

The dispersion of the radionuclides in the environment is such that different 

concentrations of radionuclides can be observed in all environmental compartments. The 

radionuclides present in the atmosphere as gas, aerosol or suspended matter, are dispersed 

by atmospheric processes and eventually are deposited in the Earth’s crust in either soil or 

water masses. By means of physico-chemical processes, there are also interchanges 

between the radionuclides of soil and water. Furthermore, interactions with biota have the 

consequence that radionuclides may be incorporated into animal or plants tissues.  

Exposure of humans to radioactivity may occur by way of internal or external irradiation. 

External irradiation is produced when the radioactive source is outside the human body. 

Its main contributors are cosmic radiation and gamma rays from natural or artificial 

radionuclides. On the other hand, internal irradiation is produced when the radioactive 

source is incorporated within the organism, commonly by ingestion or inhalation. Since in 

internal irradiation the radionuclides are near to the organism’s tissues, alpha and beta 

emitters (with low penetrating power) are in this case the main contributors to the internal 

dose because of their high linear energy transfer (LET). Furthermore, some alpha or beta 

emitters—such as 226Ra, 228Ra, 90Sr or 210Po—may be incorporated into human tissues, 

which increases the residence time in the body and thereby increases the effects of 

radiation. 

Several national and international organizations work to control and regulate the 

ionizing radiation exposure of the human population. 
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The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 

was set up by a resolution of the United Nations (UN) General Assembly in 1955. Its mandate 

in the United Nations system is to assess and report levels and effects of exposure to ionizing 

radiation. The original committee was composed of senior scientists from 15 designated UN 

Member States, but several additional countries have been included in this committee over 

time. Spain was invited in 2011 together with six other UN Member States, thus increasing 

the membership to 27 States. 

UNSCEAR reports are the basis for evaluating radiation risk and for establishing 

protective measurements for governments and organizations throughout the world.  

Table 1. Annual average dose for the worldwide population in mSv from different radioactivity 
sources (UNSCEAR, 2008). 

Source Annual 
average 
dose 
(worldwide) 

Range Comments 

Natural source exposure 

Inhalation (radon gas) 1.26 0.2-10  Much higher in some 
locations 

External terrestrial 0.48 0.3-1  Higher in some 
locations 

Ingestion 0.29 0.2-1   

Cosmic radiation 0.39 0.3-1 Increases with 
altitude 

Total natural 2.4 1-13  Sizeable groups of 
population receive 
10-20 mSv y-1 

Artificial source exposure 

Medical diagnosis 
(excluding therapy) 

0.6 From 0 to 
several tens 

 Highly dependent on 
the country 

Atmospheric nuclear test 0.005 
 

 Higher around test 
sites 

Occupational exposure 0.005 0-20   

Chernobyl accident 0.002 
 

The average in the 
norther hemisphere 
has decreased from a 
maximum of 
0.04 mSv un 1986 

Nuclear industry 0.0002 
 

  

Total artificial 0.6  From 0 to 
several tens 

Individual doses 
depend primarily on 
medical treatment, 
occupational 
exposure and 
proximity to test or 
accident sites. 
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In 2008, UNCEAR published a report on the sources and effects of ionizing radiation that 

illustrates the different sources of human exposure. Table 1 includes the main contributors 

to human exposure, the averages annual dose and the range of exposure for the worldwide 

population. 

As can be seen, the most important contributor to the human dose is natural radiation, 

which is, on average, 2.4 mSv y-1. Artificial sources contribute 0.6 mSv y-1, on average. This 

fact is significant, because most of the dose received by the population is due to natural 

radioactivity if there is no source of contamination. 

Directive 2013/51/EURATOM 

In October of 2013, the Council of the European Union published Directive 

2013/51/EURATOM which specifies requirements for the protection of the health of the 

general public with regard to radioactive substances in water intended for human 

consumption (EURATOM, 2013). This directive lays down parametric values, frequencies 

and performance characteristics of methods for monitoring radioactive substances and 

substitutes the Directive 98/83/CE of the Council. 

The parameters regulated by this directive are 3H and 222Rn activity, concentration and 

indicative dose. The parametric values established for 3H and 222Rn activity concentration 

are 100 Bq L-1 in both cases. In the case of ID, the parameter value is 0.1 mSv y-1. 

If the tritium concentration exceeds its parametric value, an analysis is required for the 

presence of other artificial radionuclides. As radon activity concentration is highly 

dependent on the geochemical characteristics of the soil, member states may adjust the 

parametric value in their national legislations in the range between 100-1000 Bq L-1. 

However, remedial action is deemed to be justified without further consideration on 

grounds of radiological protection when radon activity concentrations exceed 1000 Bq L-1. 

The indicative dose (ID) is the committed effective dose for one year of ingestion resulting 

from all the radionuclides whose presence has been detected in a supply of water intended 

for human consumption, of natural and artificial origin, but excluding 3H, 40K, 222Rn and 

short-lived radon decay products considering an annual intake of 730 L for adults. To 

monitor ID, two screening strategies are proposed in the directive. The first involves 

screening for individual radionuclides. If one of the activity concentrations exceeds 20 % of 

the corresponding derived value, an analysis of additional radionuclides is required. The 

second strategy proposed is based on the measurement of gross alpha and gross beta 
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activities. For this purpose, the threshold values of 0.1 Bq L-1 and 1.0 Bq L-1 for gross alpha 

and gross beta activities are recommended.  

If the gross alpha activity and gross beta activity are less than 0.1 Bq L-1 and 1.0 Bq L-1, 

respectively, the member state may assume that the ID is less than the parametric value of 

0.1 mSv y-1 and radiological investigation is not needed. Otherwise, analysis for specific 

radionuclides is required. 

The directive allows member states to set alternative screening levels for gross alpha 

activity and gross beta activity if they can demonstrate that the alternative levels are in 

compliance with an ID of 0.1 mSv. 

The ID is to be calculated from measured radionuclides and dose coefficients following 

Directive 96/29/EURATOM (EURATOM, 1996) for an intake of 730 L per year for an adult. 

However, when Equation 2.5 is satisfied, member states may assume that the ID is less than 

the parametric value of 0.1 mSv y-1: 

 

 

∑
𝐶𝑖(𝑜𝑏𝑠)

𝐶𝑖(𝑑𝑒𝑟)

𝑛

𝑖=1

≤ 1 (2.5) 

 

where 

n   is the number of detected radionuclides; 

Ci(obs) is the observed concentration of radionuclide i; and 

Ci(der) is the derived concentration of radionuclide i. 

 

 

Table 2 list the most common natural and artificial nuclides. These are included in 

Annex III of Directive 2013/51/EURATOM together with its derived concentration and the 

required minimum detectable activity MDA for analysis. 
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Table 2. Derived concentration and required MDA of the methods for the radionuclides included in 
Directive 2013/51/EURATOM. 

Origin Nuclide Derived 

concentration 

Required MDA 

Natural 238U 3.0 Bq L-1 0.02 Bq L-1 

234U 2.8 Bq L-1 0.02 Bq L-1 

226Ra 0.5 Bq L-1 0.04 Bq L-1 

228Ra 0.2 Bq L-1 0.02 Bq L-1 

210Pb 0.2 Bq L-1 0.02 Bq L-1 

210Po 0.1 Bq L-1 0.01 Bq L-1 

Artificial 14C 240 Bq L-1 20 Bq L-1 

90Sr 4.9 Bq L-1 0.4 Bq L-1 

239+240Pu 0.6 Bq L-1 0.04 Bq L-1 

241Am 0.7 Bq L-1 0.06 Bq L-1 

60Co 40 Bq L-1 0.5 Bq L-1 

134Cs 7.2 Bq L-1 0.5 Bq L-1 

137Cs 11 Bq L-1 0.5 Bq L-1 

131I 6.2 Bq L-1 0.5 Bq L-1 

 

Furthermore, the directive also list the limits of detection required for analytical 

methods as 10 Bq L-1 for 3H and 222Rn, 0.04 Bq L-1 for gross alpha and 0.4 Bq L-1 for gross 

beta. 

Royal Decree 314/16 

The European Directive 2013/51/EURATOM has recently been transposed to Spanish 

law by means of the Royal Decree 314/16, which amends the following: Royal Decree 

140/2003, laying down sanitary criteria for the quality of water for human consumption, 

Royal Decree 1798/2010, which regulates the exploitation and commercialization of 

natural mineral waters and spring bottled waters for human consumption, and Royal 

Decree 1799/2010, regulating the process of elaboration and commercialization of 

prepared bottled waters for human consumption. All of these decrees are based on the 

previous Directive 98/83/CE. 

The difference in the parametric values between the directive and the Royal Decree is 

just in the specified 222Rn activity concentration, which is 500 Bq L-1 in the Royal Decree. 

However, when the 222Rn activity concentration range is between 100 and 500 Bq L-1, 
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actions must be taken to optimize the population protection, without compromising water 

supply. 

2.4.  Liquid scintillation spectrometry 

Liquid scintillation spectrometry (LSS) was one of the first techniques used for the 

detection of ionizing radiation. This technique is based on the detection of the pulses of light 

that are emitted by some substances when ionizing radiations pass through them 

(L’Annunziata and Kessler, 2012).  

Liquid scintillation spectrometry involves mixing the radioactive sample with a 

scintillation cocktail that is able to accept the energy of nuclear decays. As a result, activated 

solvent molecules are formed that transfer their energy to organic scintillator. The organic 

scintillators, or fluor, are organic molecules that can easily accept the energy from the 

activated solvent to promote into an exited state. These molecules then return to the 

fundamental state by means of a florescence mechanism, emitting the energy as a flash of 

light. These light pulses or scintillations are detected by photomultiplier tubes (PMT) and 

classified in a multichannel (MCA) according to their intensity (number of photons). The 

intensity of the light pulses is related to the energy of the nuclear decay and the number of 

pulses with the number of disintegrations produced in the sample. In this way, a spectrum 

of the sample is obtained that relates the number of disintegrations (counts) as a function 

of the energy of the disintegration (cannels). A scheme of this process is shown in Figure 3. 

 

 

Figure 3. Scheme of scintillation process, highlighting quenching processes, modulation of the 

emitted energy in order to adequate it to PMT sensitivity and alpha beta separation.  
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An essential aspect of LSS is the scintillation cocktail. Cocktails are based on a solvent—

usually diisopropyl naphthalene (DIN)—that absorbs the energy emitted by the 

radionuclides contained in the sample. There are other substances in the cocktail—

commonly called solutes—that modulate the energy of the activated solvent molecules to 

adequate the final emitted light pulse to the PMT sensibility region, usually 2,5-

diphenyloxazole (PPO) and 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP).  

The selection of these solutes may confer special proprieties on the cocktail such as 

improvement of alpha/beta separation. Finally, the cocktails used for the determination of 

aqueous samples need an emulsifier to facilitate the compatibility between organic and 

aqueous phases. 

2.4.1. Quenching 

Various phenomena known collectively as quenching hinder energy transference 

between the particle emitted and the photons detected by the PMT. The quenching 

phenomena that most affect liquid scintillation measurement are ionization, chemical and 

colour quenching.  

Ionization quenching is related to the density of excited solvent molecules. When the 

concentration of these molecules is high, the probability of interaction between them is 

increased. As a result of this interaction, one of the molecules loses the excitation energy 

while the other becomes overexcited and has a high probability to become ionized. The 

result is that the initial excitation energy of both molecules is lost, which entails a loss in 

counting efficiency. 

Chemical quenching is the most common mechanism. It is caused by the presence of 

chemical substances in the sample, including its solvent. These substances obstruct energy 

transference between the radioactive emission and the fluor and, hence, reduce the 

efficiency of photon emission. Colour quenching is caused by the presence of coloured 

substances in the sample that absorb the photons emitted by the fluorine before they can 

be detected by the PMT. In general, both quenching mechanisms reduce the number of 

photons detected by the PMT and consequently the apparent energy of the emission (the 

spectrum shifts to lower energies). Furthermore, this phenomena can also reduce the count 

rate of the samples and hence the counting efficiency. In addition, previous studies (Pates 

et al., 1994; Pujol and Sánchez-Cabeza, 1997; Salonen, 2006; Stojkovic, I. et al., 2015) have 

shown that quenching also affects the degree of α/β misclassification which is a 

consequence of different manners of its influence on early and delayed components of the 

light pulse. 
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For these reasons, LSS efficiency is commonly determined using a quenching curve that 

describes, for a specific radionuclide, the relation between an instrumental parameter of 

quenching and the counting efficiency. Quenching curves are prepared by measuring a set 

of liquid scintillation standard sources with different amounts of quenching agent, either 

chemical or coloured (Cassette, 2016). 

2.4.2. Alpha/beta separation 

The differences in scintillation processes produced by alpha and beta particles have been 

studied since the early use of the LSS technique. These differences are the basis of 

alpha/beta separation in LSS. Section 2.1 highlights the differences regarding weight, LET 

and penetrating power of alpha and beta particles. Alpha emitters emit in the range of 2 to 

8 MeV, while the common beta emitters do not overtake 3 MeV. However, the LS spectra of 

alpha emitters with energies around 5 MeV overlap with the spectra of beta emitters with a 

maximum energy below 2 MeV. For example, Figure 4 shows a spectrum of 241Am pure alpha 

emitter with an energy of 5.64 MeV and a spectrum of 40K pure beta emitter with a maximum 

energy of 1.31 MeV. 

 

Figure 4. Spectra of a pure alpha emitter in green (241Am) and a pure beta emitter in red (40K) in 
which can be see their overlapping. 

This occurs because alpha particles are more affected by ionization quenching than beta 

particles. Since alpha particles cause high ionization and have a low penetrating power, the 

local concentration of ionized molecules of solvent is higher for an alpha than for a beta 

event; hence, scintillation processes for alpha particles lose efficiency. As a consequence, 

alpha particles generate around 1 photon per keV while beta particles generate 10 photons 

per keV (L’Annunziata and Kessler, 2012).  
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However there are other differences between scintillations produced by alpha and beta 

particles. 

Organic scintillators exhibit both prompt and delayed fluorescence processes. Due to 

excitation and de-excitation mechanisms, the delayed component in fluorescence is higher 

for particles of high specific energy loss, such as alpha particles and heavy charged particles. 

This difference may be determined for each pulse, which makes it possible to classify 

scintillations as alpha or beta. 

2.5.  Wallac QUANTULUS 1220 spectrometer 

The Wallac Quantulus 1220 (manufactured in Finland, Turku) was used for the 

measurements done for this thesis. It is a liquid scintillation spectrometer specially 

designed for the ultra-low level measurement of alpha and beta emitters. The spectrometer 

has three trays of 20 positions, each with a total capacity of 60 vials of 20 mL each.  

The spectrometer is controlled by a personal computer by means of the software WinQ. 

It makes it possible to define protocols respecting the number and position of samples, the 

configuration of the photomultipliers, the number of repetitions and cycles, and the 

counting time. 

The detection system is basically formed by two front-faced photomultipliers that are 

arranged on each side of the sample. The signals produced for the disintegration in the 

sample are detected in coincidence for both photomultipliers. The signals produced for 

thermal noise in a photomultiplier are not counted in coincidence and hence are rejected.  

2.5.1. Background reduction 

To achieve a low enough limit of detection, it is necessary to reduce the signal to 

background ratio or, more specifically, the error of the background determination. For this 

reason, the background must be minimized, and the instrument must to be stable during 

the long counting times needed for low-level samples. To accomplish this objective, 

Quantulus 1220 has two different types of shielding; passive or physical shielding, and 

active or electronic shielding. 

The aim of passive shielding is to prevent environmental radiation from reaching the 

detection system. This shielding is formed by three layers of different materials. The 

external layer is an asymmetric block of 630 kg of old lead, the objective of which is to 

attenuate the cosmic radiation. The asymmetric shape of the shield provides a layer of 20 

cm of lead above the detection chamber (the direction with more intense cosmic radiation), 
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and between 7 and 11 cm in the other directions (where the earth attenuates cosmic 

radiation). Quantulus 1220 also includes a second layer of cadmium, which absorbs low-

energy and thermal neutrons very efficiently. This layer also absorbs X-rays produced in the 

lead by fluorescence reactions. Finally, a third layer of copper (the wall of the container of 

the liquid scintillator guard) absorbs the X-rays fluorescence produced in the cadmium 

formed for the cosmic radiation or lead X-ray. 

Fast cosmic particles may cause Cherenkov radiation in the glass of the photomultipliers 

used for the measurement of the sample, which may increase the background in the counter. 

To avoid this, Quantulus 1220 includes active shielding. The active shielding is based on the 

asymmetric liquid scintillation guard formed by a cylinder that contains a mineral-oil 

scintillator. Two photomultipliers are used to detect scintillation produced in the guard by 

gamma rays and cosmic radiation. When a signal is detected in coincidence in both guard 

photomultipliers and sample photomultipliers, the count is registered in another MCA and 

rejected in the sample counting. 

2.5.2. Quenching measurement 

As Section 2.4.1 explains, quenching may entail several drawbacks on LSS quantification, 

including decrease of efficiency, shifting of the spectra and increase of α/β misclassification. 

To control or even correct these effects, it is necessary to know the quenching level of each 

measured sample. The quenching index in Quantulus 1220 is SQP[E] (external standard 

quench parameter). It based on the shifting of the spectra of Compton electrons produced 

by a gamma source of 152Eu. SQP[E] is defined as 99.5 % of the endpoint channel of this 

external source. In this way, the lower the SQP[E] is the higher the quenching is in the 

sample. 

2.5.3. Alpha/beta separation 

As Section 2.4.2 explains, the scintillations produced by an alpha particle are longer than 

those produced by a beta particle. Quantulus 1220 uses a pulse-shape analyser (PSA) to 

separate alpha and beta pulses. PSA is based on the ratio of areas of scintillation pulse after 

50 ns and the total area. Before the measurement, the operator sets a PSA value. Pulses with 

a value lower than the PSA are classified as beta pulses, while those with higher values are 

classified as alpha pulses. 

To obtain an appropriate α/β separation, the PSA value has to be optimized. This 

optimization used to be conducted by a misclassification study, which looks to minimize the 

total interference (alpha interference plus beta interference). Alpha interference (τα) is 
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defined as the percentage of counts classified as beta when a pure alpha emitter is counted. 

In the same way, beta interference (τβ) is the percentage of count classified as alpha when a 

pure beta emitter is counted. Both are expressed as shown the following formulas: 

𝜏𝛼 =
𝑐𝑝𝑚𝛼→𝛽

𝑐𝑝𝑚𝛼→𝛼 + 𝑐𝑝𝑚𝛼→𝛽
 (2.10)  𝜏𝛽 =

𝑐𝑝𝑚𝛽→𝛼

𝑐𝑝𝑚𝛽→𝛼 + 𝑐𝑝𝑚𝛽→𝛽
 (2.11) 

where, 

cpm α → β is the counts per minute produced by a pure alpha emitter which are 

counted in β-MCA; 

cpm α → α is the counts per minute produced by a pure alpha emitter which are 

counted in α-MCA; 

cpm β → β is the counts per minute produced by a pure beta emitter which are  

counted in β-MCA; and

cpm β → α is the counts per minute produced by a pure beta emitter which are counted 

in α-MCA. 

2.6.  Computational separation in LSS 

As the above section explains, liquid scintillation spectrometry is a meaningful technique 

that is used for the determination of alpha and beta emitters. However, the poor resolution 

of this technique hinders the simultaneous determination of different alpha or beta emitters 

from the same spectrum because their spectra overlap. For alpha emitters, this overlap may 

be reduced by using photon-electron rejecting alpha-liquid scintillation PERALS® 

(McDowell and McDowell, 1989). In this method, the alpha emitters from an aqueous 

sample are extracted with a non-quenched organic solvent and mixed with an organic, 

highly efficient scintillator. The scintillator spectrometer for PERALS measurement must 

have an efficient reflector to transmit the maximum amount of produced light to the 

photomultiplier tube (PMT) and a diffuser reflector to ensure a homogeneous transmission 

of the light regardless of where on the sample it was produced.  

Overlap is unavoidable in the case of beta emitters on account of their continuous 

spectra. However, several authors have achieved the quantification of several isotopes 

through the same LSC spectrum. The next sections describe classical and advanced methods 

for the simultaneous determination of two or more radionuclides from the same LS 

spectrum.  
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2.6.1. Classical methods 

Exclusion method 

The first approach is based on the definition of two counting zones (windows) for the 

determination of two isotopes: 3H and 14C (Okita et al., 1957). The high-energy window is 

assumed to contain just counts of the high-energy isotope. However, the low-energy 

window contains counts of both the low and the high-energy isotopes. The counts of the 

high-energy window are used to quantify the high-energy isotope; then these counts are 

used to subtract the contribution of the high-energy isotope in the low-energy window 

(Okita et al., 1957). To determine the efficiency of both radionuclides in each counting 

window, it is necessary to perform quenching curves. This method is no longer used because 

newer and more efficient methods are available for the same purpose. 

Inclusion method 

The exclusion method was improved by considering two windows with contributions of 

both isotopes (the inclusion method). The efficiency of each radionuclide in each counting 

window is determined by considering respective quenching curves. The activity for each 

radionuclide is obtained by solving a two-equation system in which the total count of each 

window is equal to the contribution of each radionuclide in this window: 

𝐶𝑃𝑀𝐴 = 𝐴𝐿 ∗ 𝐸𝑓𝑓𝐿𝐴 + 𝐴𝐻 ∗ 𝐸𝑓𝑓𝐻𝐴 (2.6) 

𝐶𝑃𝑀𝐵 = 𝐴𝐿 ∗ 𝐸𝑓𝑓𝐿𝐵 + 𝐴𝐻 ∗ 𝐸𝑓𝑓𝐻𝐵 (2.7) 

where 

CPMA  is the total counts of A window (low-energy); 

CPMB  is the total counts of B window (high-energy); 

AL and AH   is the activities of low- and high energy radionuclide, respectively;  

EffLA and EffLB  is the efficiency of the low-energy radionuclide in the window A and 

B, respectively; and 

EffHA and EffHB  is the efficiency of the high energy radionuclide in the window A and 

B, respectively. 

Nowadays, the inclusion method is used for the determination of several pairs of 

isotopes, such as 55Fe and 59Fe (Viteri and Kohaut, 1997), 3H and 14C (Shaffer and Langer, 

2007) or 32P and 33P (Nakanishi et al., 2009). 
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Inclusion method with daughters ingrown 

In some cases—commonly after a sample treatment that entails a radiochemical 

separation—there is a fast ingrown of decay products in the sample, and hence in the 

counting vial. These decay products may interfere with the measurement of the target 

radionuclide. In the inclusion method, the dependence between the activity of the decay 

product and the elapsed time between the radiochemical separation and the measurement 

is used to quantify two or three radionuclides from two counting windows. This method is 

commonly used for the simultaneous determination of 89Sr and 90Sr (with the ingrown of 
90Y) in several kinds of matrix such as water or milk (Kim et al., 2009).  

Full Spectrum 

Another method used to determine the composition of binary samples is based on the 

SIS (Spectral Index of the Sample). The SIS is the centre of mass of the spectra and it is 

specific for a radionuclide in a constant level of quenching. In a binary sample the SIS is a 

linear combination of the SIS of pure radionuclide standards. Taking this fact into account, 

the composition of a binary sample can be determined For example, this method was used 

to determine 35S and 32P (Noor et al., 1995), and 3H and 14C (Noor et al., 1996).  

Three over two fitting and digital overlay technique 

A further evolution was based on the definition of three windows to determine two 

isotopes (three over two fitting and digital overlay technique, TOT-DOT). This is an 

intermediate step between classical methods (inclusion method) and advanced methods 

(most probable value method). In general, by this technique, several isotopes can be 

determined by using a number of windows greater than the number of radionuclides. The 

digital overlay technique also permits quench correction. This technique is described in the 

patent (Rundtand Kouru, 1992). Although it allows the quantification of radionuclide 

mixtures, it is typically used to correct quenching effects in single isotopic samples (Kim et 

al., 2006; Hueber-Becker et al., 2007). 

2.6.2. Advanced methods 

Most-probable-value method 

In this method different counting regions are defined (it is possible to reach a number of 

regions equal to the number of channels of the MCA). The counts of each window are equal 

to the sum of the contributions of each radionuclide in that window. In this case, unlike TOD-

DOT, an error equation is defined that expresses the difference between the sum of the 
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individual contributions of each radionuclide and the value measured for each window. The 

minimum of this function provides the most probable value of the activities for each 

radionuclide. This method has been used for the determination of up to six radionuclides 

(Takuie et al., 1991) and to discriminate beta emitters with very similar maximal energies 

such as 14C (156 keV) and 35S (167keV) (Natake et al., 1996). 

Deconvolution of the spectra  

Advances in computation have also facilitated the development of new techniques. Some 

authors have quantified several isotopes by using the same spectra by deconvolution 

techniques. Software was developed and applied to deconvolute complex spectra from pure 

spectra standards by taking into account the quenching of the sample and by allowing for 

the determination of up to six isotopes (Kashirin et al., 2000; Malinovsky et al., 2002) Pure 

spectra standards were used to resolve 85Sr, 90Sr and 90Y in complex mixtures by fitting 

(Altzitzoglou, 2008). Other approaches are based on fitting the spectrum of the sample to a 

linear combination of tailed Gaussian functions (Nebelung and Baraniak, 2007; Nebelung et 

al., 2009) or to a Fourier series (Remetti and Sessa, 2011; Remetti and Franci, 2012). 

Multivariate calibration 

Another approach to fulfil the aim of quantify several isotopes from the same scintillation 

a spectrum is based on multivariate calibration methods. The use of partial least squared 

(PLS) to avoid interference phenomena and to quantify individual isotopes in composite 

spectra has been studied for solid (Roig et al., 1999) and plastic scintillation (Bagán et al., 

2011). For LSC, a model based on multi-way PLS with energy channels as the primary 

variable and cocktail sample ratio as the secondary variable has been developed to 

determine the 235U/238U isotope ratio (Mahani et al. 2012). 

Improvements have also been made to the data pre-process, such as to the selection of 

channels to construct the PLS model selected by means of an artificial neural network using 

a genetic algorithm (Mahani et al., 2007).  

This method, which is the used to process LS spectra along this thesis, is explained in the 

next section. 

2.7.  Chemometrics and PLS 

Our aim is to predict the activity of several alpha and beta emitters in sample spectra by 

using a calibration set of spectra obtained from samples with a known activity for the 

radionuclides of interest. To accomplish this aim, the calibration set must be ordered as an 
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X-Block—an m x n matrix that contains n predictors (or channels) for m observations (or 

standard spectra)—and a Y-Block, which is an m x k matrix that contains k dependant 

variables (or activity concentration of the different radionuclides of interest) for these m 

observations. 

Because LS spectra are used, and because they have a large number of predictors 

(channels) that are collinear, ordinary multiple regression is not an appropriate regression 

method. Several approaches have been developed to deal with this problem. One approach 

is to remove some predictors by using backward elimination, step-wise methods when no 

statistically significant loss of fit is observed. Another two approaches used to reduce 

predictors and to solve the problem of co-linearity are principal-components regression 

(PCR) and partial least-squares regression (PLS). Both are based on constructing new 

variables that contain most of the information on the spectral data in a smaller number of 

variables and on fitting a regression equation that uses these new variables. PCR consists of 

performing a PCA of the X-Block and using the principal components (PC)—which are linear 

combinations of the predictors and orthogonal between them—as regressors on the Y-

Block. The orthogonality of PC solves the multi-collinearity problem. However, the problem 

of choosing an optimum set of predictors remains, because PCs explain X-Block but are not 

necessarily relevant in Y-Block prediction (Abdi, 2003).  

By contrast, PLS regression searches for a set of components called latent vectors (LV) 

that perform a simultaneous decomposition of the X-Block and Y-Block with the restriction 

that these components explain the covariance between X and Y as much as possible. Because 

both the X and Y data are projected to new spaces, PLS methods are known as bilinear factor 

models. When the LV are obtained, a regression step is performed in which the 

decomposition of the X-Block is used to predict the Y-Block. 

X-Block is decomposed into vectors T and PT, while Y-block is decomposed into U and 

QT. Equations 2.8 and 2.9 illustrate the decomposition of both matrices in PLS regression. 

The relationship between the X-Block and the Y-Block is stored in a weight matrix, W: 

𝑋 = 𝑇𝑃𝑇 + E (2.8) 

𝑌 = 𝑈𝑄𝑇 + F (2.9) 

where 

T and U  are respectively projections of x-score (LV) and Y-score; 

P and Q  are respectively orthogonal loading matrixes; and   

E and F  are matrixes with the error terms assumed to be independent and with a 
random normal distribution.  
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Decompositions of X-Block and Y-Block are performed in a manner that maximizes the 

covariance between T and U. Figure 5 depicts a scheme of the construction of a PLS model. 

 

Figure 5. Scheme of PLS model construction from X-Block and Y-Block. 

After model construction, the model can be used to predict dependant variables (activity 

concentration) by means of predictors (LS spectra) by using the vector of weight obtained 

in the calibration process.  

Partial least-square regression (PLS) is a statistical method that reduces the predictors 

to a smaller set of uncorrelated components and performs least-squares regression on these 

components, instead of on the original data. PLS regression is especially useful when 

predictors are highly collinear or when there are more predictors than observations.  

A common application of PLS is to model the relationship between spectral 

measurements near infrared, infrared or ultraviolet, which include many variables that are 

often correlated with each other, and chemical composition or other physico-chemical 

properties (Weakley et al., 2016; Muresan et al., 2016; Bourdon et al., 2014). In PLS 

regression, the emphasis is on developing predictive models that can subsequently be used 

to predict many variables from the spectral measurements.  

In this thesis is studied the feasibility of using PLS to model the relationship between LS 

spectra and the specific activity concentration of alpha and beta emitters in the sample for 

different methodologies. 
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3. OBJECTIVES 

  



 

 

  



 

 

The main objective of this thesis is to develop and apply a strategy for the rapid and 

simultaneous determination of alpha and beta emitters in water samples that focuses on the 

natural and artificial radionuclides included in the European Directive 2013/51/EURATOM.  

This overall aim is divided into specific objectives which are detailed below: 

 

 Development and validation of rapid methodologies not only for the 

determination of the total content of alpha and beta emitters but also of specific 

radionuclides mainly based on LSS (liquid scintillation spectrometry) 

measurements.  

 Feasibility study and implementation of chemometric tools for the deconvolution 

and quantification of specific alpha and beta emitters from LS spectra obtained 

from rapid methodologies. 

 Definition of a strategy for sequentially determining specific alpha and beta 

emitters and application of the proposed strategy to environmental water 

sources that may be used as drinking water and to surveillance around nuclear 

power plants (NPPs).  

 

Development and validation of rapid methodologies 

The analytical methodologies studied are the determination of gross alpha and gross 

beta by concentration method and measurement by liquid scintillation spectrometry 

(LSSconc.); direct measurement of gross alpha and beta by liquid scintillation spectrometry 

(LSSdir.), which is a modification of the first method without the concentration step to 

measure 14C and 3H; and finally, determination of 226Ra, 228Ra and 210Pb by extraction with a 

3M Radium RAD disk and subsequent measurement by LSS. Furthermore, a gamma 

spectrometry measurement is included in the quantification strategy as a screening method.  

Determination of 222Rn, also provided in the European directive, is not considered in this 

thesis for two reasons. On one hand, several rapid methods exist for 222Rn determination. 

On the other hand, the potential interference of 222Rn in the determination of other 

radionuclides can be easily removed from water samples by heating and stirring because it 

is a gas.  
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Feasibility study of chemometrics for LS spectra deconvolution 

To test the feasibility of PLS models to predict the activity of the aforementioned 

radionuclides, a database of spectra from LSSconc., LSSdir. and RAD disk methodologies was 

constructed. It considers different radionuclides, activity levels and quenching levels. 

Several treatments were tested to improve prediction capabilities.  

Definition of a strategy for sequential determination of alpha and beta emitters 

The proposed strategy is based on a set of analytical methodologies that provide 

different information about the sample. The information is combined to quantify several 

alpha and beta emitters. This strategy has been applied to different kinds of real scenarios, 

such as determination of tritium in natural water samples, determination of natural 

radionuclides in environmental water, and determination of natural samples spiked with 

artificial radionuclides that simulate accidental contamination. 
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4. VALIDATION OF GROSS ALPHA AND GROSS BETA

DETERMINATION 





As mentioned in Section 2.3, the Directive 51/2013/EURATOM considers screening 

parameters like gross alpha and gross beta activities that are useful to evaluate whether the 

indicative dose is lower than 0.1 mSv y-1. For this reason, and because it is possible to extract 

more information from the obtained spectra afterwards, we considered the simultaneous 

determination of gross alpha and gross beta activities by means of LSS. This chapter 

presents scientific papers regarding the validation of the methodology for gross alpha and 

gross beta determination by LSS in water samples. 

Simultaneous determination of gross alpha, gross beta and 226Ra in natural water 

by liquid scintillation counting. J. Fons, D. Zapata-García, J. Tent, M. Llauradó. Journal 

of Environmental Radioactivity 125 (2013). pp. 56-60. 

 This paper considers the simultaneous determination of gross alpha, gross beta and 

226Ra activity. A simple and fast method was developed that involves evaporation of the 

sample to remove 222Rn and its decay products and to improve the detection limits. 

Furthermore, a mathematical model based on the secular equilibrium conditions between 

226Ra and its short-lived decay products is proposed. This model allows for determinations 

of 226Ra by means of two measurements of gross alpha activity within the first six days after 

sample preparation. The proposed method was used to determine gross alpha and gross 

beta and 226Ra for several natural water samples used for human consumption.  

A Comparative experimental study of gross alpha methods in natural waters. 

Montaña, M.; Fons, J.; Corbacho, J.A.; Camacho, A.; Zapata-García, D.; Guillén, J.; 

Serrano, I.; Tent, J.; Baeza, A.; Llauradó, M.; Vallés, I. Journal of Environmental 

Radioactivity 118 (2013). pp. 1-8. 

This article compares the aforementioned method with other two traditional methods 

for the determination of gross alpha activity: evaporation and co-precipitation methods.  
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For the evaporation method, the sample is evaporated to dryness and measured by 

proportional counting or solid scintillations with ZnS. For the co-precipitation method, the 

radionuclides of the sample are precipitated by the addition of BaSO4 and Fe3+ in basic 

media, and the precipitate is filtered and measured by proportional counting. Precision 

and accuracy for the three methods was evaluated by using spiked laboratory samples 

and natural waters that may be used for human consumption. 
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4.1.  Simultaneous determination of gross alpha, gross beta and 226Ra 

in natural water by liquid scintillation counting 



 

 

  



J. Fons et al. / Journal of Environmental Radioactivity 125 (2013) 56-60 

Simultaneous determination of gross alpha, gross beta and 226Ra in natural 

water by liquid scintillation counting 

J. Fonsa *, D. Zapata-Garcíab, J. Tenta, M. Llauradóa 

a Laboratory of Environmental Radiology, Analytical Chemistry Department, Universitat de 

Barcelona, Martí i Franquès 1-11, 3a Planta, Catalunya, Barcelona 08028, Spain 

b Ionizing Radiation Division, Physikalisch-Technische Bundesanstalt, Bundesanstalt, 

Germany 

*corresponding author: jordi.fons@ub.edu 

 

Abstract 

The determination of gross alpha, gross beta and 226Ra activity in natural waters is useful 

in a wide range of environmental studies. Furthermore, gross alpha and gross beta param-

eters are included in international legislation on the quality of drinking water [Council 

Directive 98/83/EC]. In this work, a low background liquid scintillation counter (Wallac, 

Quantulus 1220) was used to simultaneously determine gross alpha, gross beta and 226Ra 

activity in natural water samples. Sample preparation involved evaporation to remove 

222Rn and its short-lived decay daughters. The evaporation process concentrated the sam-

ple ten-fold. Afterwards, a sample aliquot of 8 mL was mixed with 12 mL of Ultima Gold AB 

scintillation cocktail in low-diffusion vials. In this study, a theoretical mathematical model 

based on secular equilibrium conditions between 226Ra and its short-lived decay daughters 

is presented. The proposed model makes it possible to determine 226Ra activity from two 

measurements. These measurements also allow determining gross alpha and gross beta 

simultaneously. To validate the proposed model, spiked samples with different activity 

levels for each parameter were analysed. Additionally, to evaluate the model’s applicabil-

ity in natural water, eight natural water samples from different parts of Spain were ana-

lysed. The eight natural water samples were also characterised by alpha spectrometry for 

the naturally occurring isotopes of uranium (234U, 235U and 238U), radium (224Ra and 226Ra), 

210Po and 232Th. The results for gross alpha and 226Ra activity were compared with alpha 

spectrometry characterization, and an acceptable concordance was obtained. 

Keywords: Activity growth model, Radioactivity, Environmental samples, Liquid scintilla-

tion 
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Introduction 

To determine 226Ra activity concentra-

tion is an important task due its high 

radio-toxicity as review Guogang and 

Jing (2012). Gross alpha, gross beta and 

226Ra activity can be used to establish the 

TID (Total Indicative Dose). There are 

various methods of measuring 226Ra, in-

cluding γ-spectrometry (Kahn et al., 

1990; Cazala et al., 2003; Dulaiova and 

Burnett, 2004), a-spectrometry (Purkl 

and Eisenhauer 2003; Bojanowski et al., 

2005), radon emanometric methods (Lu-

cas et al., 1990; Maharana et al., 2010) 

and liquid scintillation techniques with 

radiochemical separation (Salonen, 

1993; Repine and Benedik, 2002) or 

without separation (Salonen, 2006). 

When liquid scintillation spectrometry 

without radiochemical separation is ap-

plied, the point is to eliminate radon and 

its short-lived daughters of the sample 

and to evaluate the increase of the alpha 

activity between the sample treatment 

and 21 days after this treatment. The 

variation was attributed to the increase 

of 222Rn and its short-lived daughters 

into the sample vial. This method was 

tested by several authors and useful re-

sults were obtained (Sanchez-Cabeza and 

Pujol, 1998; Fernandes et al., 2011). 

However to measure after 21 days of the 

sample treatment is an important draw-

back for this method. In this work a 

mathematical model was developed in 

order to determinate 226Ra activity 

measuring the first time just after sample 

treatment and the second one before 21 

days after that treatment. The ad-

vantages of this mathematical model 

application are, on one hand joint the 

determination of gross alpha, gross beta 

and 226Ra in one technique and on the 

other hand avoid radiochemical separa-

tion which entails a reduction in sample 

manipulation and in the reactive con-

sumption. 

Methods and materials 

Detector 

A low background liquid scintillation 

counter (1220 QUANTULUS, Wallac 

(Turku, Finland)) was used. The Pulse 

Shape Analyser (PSA) of the 1220 

QUANTULUS discriminates between al-

pha and beta pulses and separates the 

pulses into different multi-channels. 

The optimal PSA value for the alpha/beta 

discrimination was established by a mis-

classification study using 236U and 40K as 

standards. Please see the report CSN 

(2011). This detector also has a quench 

control parameter. The Spectral Quench 

Parameter of the External Standard 

(SQP[E]) is the lowest channel below 

which 99.75% of the counts generated 

when the sample is irradiated with a 

152Eu source, included in the counter, are 

registered. The SQP[E] was evaluated in 

all samples. In this study, we used con-

stant quench conditions. 
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This detector is under the quality control 

(internal and external) of the Laboratory 

of Environmental Radiology. (ISO/IEC 

17025, ENAC accreditation n° 

520/LE1117). 

Reagents 

High capacity and specially designed for 

the alpha beta discrimination cocktail 

Ultima Gold AB (Perkin Elmer, Turku, 

Finland) was used throughout the work. 

The radioactive solutions were prepared 

by weight from the following radioactive 

standards: 230Th 40.83 ± 0.16 Bq g-1 

standard supplied by NIST National Insti-

tute of Standards and Technology 

(Gaithersburg, Maryland); 226Ra 

176.0 ± 2.4 Bq g-1 standard supplied by 

CIEMAT Centro de Investigaciones 

Energéticas Medioambientales y 

Tecnológicas (Madrid, Spain); 210Pb 

35,500 ± 700 Bq g-1 standard supplied by 

DAMRI Département des applications et 

de la métrologie des rayonnements 

ionitzants France; natU 957.2 ± 19.1 Bq g-1 

standard and 236U 761.1 ± 15.7 Bq g-1 

standard both supplied by Eckert and 

Ziegler (Valencia, California). The 40K 

solutions were prepared from dry KCl 

salt supplied by Merck (Berlin, Germa-

ny). The activity was calculated by apply-

ing the natural abundance of 40K. 

Material 

Twenty-millilitre polyethylene liquid 

scintillation vials were supplied by Per-

kin Elmer. 

General purpose materials in the labora-

tory were used. 

Analytical procedure 

A 100 mL aliquot of a water sample was 

evaporated to dryness. When the precipi-

tate obtained was cooled to room tem-

perature, it was dissolved in 10 mL of 

deionised water acidified by HCl to pH = 

1.5 as describe Zapata-García et al. 

(2009). 

It was necessary to stir the solution for 5 

min to ensure that all the precipitated 

material was dissolved. With this treat-

ment, 222Rn is completely eliminated 

from the sample. The elimination of their 

short-lived daughters occurs by means of 

radioactive decay.  

Fig. 1 show the activity evolution in a 

226Ra sample with their decay daughters 

when 222Rn is removed. To perform this 

simulation we have used the Laplace 

transform solution of the equations of 

radioactive decay. About 3 h and a half 

are required for a quantitative removal 

of the short-lived daughters (Catchen, 

1984). 

 

Fig. 1. Activity evolution for 
226

Ra and its short-lived 

daughters when 
222

Rn was completely removed. 
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An 8 mL aliquot of the evaporated 

samplewas mixed with 12 mL of the scin-

tillator cocktail in a low diffusion scintil-

lator vial. Under these conditions, the 

sample remained homogenous andwas 

stable for several months. The vial was 

counted in a liquid scintillation counter 

that was able to discriminate between 

alpha and beta pulses. It is recommended 

that the vial should remain in the counter 

for 2 h before counting to avoid photo-

luminescence phenomena. The 2 h time 

period is also necessary to allow the de-

cay of the short-lived daughters of 222Rn. 

To find the appropriate calibration 

standard, many alpha emitters (230Th, 
236U and 241Am) and beta emitters (40K, 

137Cs, 90Sr/Y) were used to conduct a 

misclassification study (Zapata-García et 

al., 2012). Both 236U and 40K were select-

ed as calibration standards because they 

are the emitters with the worst misclassi-

fication. Please see the report CSN (2011) 

for more details. 

Samples 

Synthetic samples 

A synthetic water sample containing 

95 mg L-1 Ca2+, 51 mg L-1 Mg2+, 38 mg L-1 

Na+, 2 mg L-1 K+, 227 mg L-1 SO42-, 

149 mg L-1 Cl- and 138 mg L-1 HCO3- was 

prepared. It was acidified by HNO3 to pH 

= 1. Several aliquots of this synthetic 

water sample were spiked with natural 

isotopes. The composition of these solu-

tions is shown in Table 1. 

Natural samples 

Eight natural water samples from differ-

ent parts of Spain were analysed. As 

shown in Table 2, the selected water 

samples have different radioactivity con-

tents and a wide range of dry residue. A 

100 L volume of water was taken at each 

sampling point. The water samples were 

acidified with HNO3 (1.25 mL L-1) for 

preservation.  

Calibration 

Alpha/beta discrimination 

The Pulse Shape Analyser is used to dis-

criminate between alpha and beta pulses. 

With the aim of establishing the optimal 

PSA value, the misclassification phenom-

enon was studied using 236U and 40K as 

standards.  

 
Table 1 
natU, 226Ra, 210Po and gross alpha for the spiked samples. 

Code U-nat (Bq kg-1) Ra-226 (Bq kg-1) Po-210 (Bq kg-1) Gross alpha (Bq kg-1) 
URa 100:0 0.201 ± 0.004 - - 0.201 ± 0.004 
URa 75:25 0.169 ± 0.003 0.108 ± 0.002 0.076 ± 0.002 0.353 ± 0.006 
URa 50:50 0.118 ± 0.002 0.128 ± 0.002 0.090 ± 0.002 0.336 ± 0.005 
URa 25:75 0.072 ± 0.002 0.181 ± 0.003 0.127 ± 0.002 0.380 ± 0.006 
URa 0:100 - 0.208 ± 0.002 0.146 ± 0.002 0.354 ± 0.004 

URa 0.214 ± 0.004 0.198 ± 0.003 0.138 ± 0.006 0.550 ± 0.008 
URaPo 0.196 ± 0.004 0.202 ± 0.003 0.418 ± 0.010 0.816 ± 0.015 
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Table 2 
Chemical and radiochemical characteristics of the natural water samples. 

 

In this study one vial for each one of the 

standards was prepared and measured at 

different PSA values. The optimal PSA is 

found as the value in which the total mis-

classification, alpha plus beta, is lower. 

Fig. 2 shows the graphical representation 

of this misclassification study. We can 

see that the optimal PSA value is around 

100. In this PSA value the misclassifica-

tion is lower than 10% for both alpha 

and beta emitters. 

Results and discussion 

Mathematical model 

The aim of this study was to establish a 

mathematical function that describes the 

alpha evolution in a closed system with 

226Ra and without 222Rn and its short-

lived daughters. 

 

Fig. 2. Alpha and beta misclassification versus PSA 

value. 

A simple case is considered in which the 

parent nuclide A decays to a daughter 

nuclide B, which in turn decays to a sta-

ble nuclide C. In such decay chains, the 

number of atoms of B as a function of 

time is described by Equation (1): 

      
  

     
  

              

   
           

where 

NB(t) is the number of atoms of B at time 

(t); λA and λB are the decay constants of A 

and B, respectively; N0A and N0B are the 

numbers of atoms of A and B, respective-

ly, at time zero and t is the elapsed time. 

Secular equilibrium conditions and an 

absence of B atoms at time zero are con-

sidered in Equation (2): 

        
                

where 

AB(t) is the activity of B at time (t) in Bq; 

λB is the decay constant of B in s-1; A0A is 

the activity of A at time zero in Bq and t is 

the elapsed time in s. 

In Equation (2), a null B activity at time 

zero is shown. At later time points, the B 
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CODE Characteristics 
SUBT-A Dry residue: 1 g L-1. Activity 226Ra ~ 0.40 Bq L-1, 234+238U ~ 1.0 Bq L-1, 210Po ~ 0.02 Bq L-1 
POT-A Dry residue: 5 g L-1. Activity 226Ra ~ 0.60 Bq L-1, 234+238U ~ 1.0 Bq L-1, 210Po ~ 0.06 Bq L-1 
SUP-A Dry residue: 1.5 g L-1. Activity 234+238U ~ 0.10 Bq L-1 
POT-B Dry residue: 0.4 g L-1. Activity 226Ra ~ 0.002 Bq L-1 
POT-C Dry residue: 0.9 g L-1. Activity 234+238U ~ 0.08 Bq L-1, 226Ra ~ 0.002 Bq L-1 
POT-D Dry residue: 4.7 g L-1. Activity 226Ra ~ 1.0 Bq L-1, 228Ra ~ 0.03 Bq L-1, 234+238U ~ 1.0 Bq L-1 
SUP-B Dry residue: 0.6 g L-1. Activity 226Ra ~ 0.01 Bq L-1, 234+238U ~ 0.06 Bq L-1 
SUBT-B Dry residue: 0.9 g L-1. Activity 226Ra ~ 0.10 Bq L-1, 234+238U ~ 1.0 Bq L-1 
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activity is equal to the A activity when 

secular equilibrium is reached (Annun-

ziata, 1998). A priori, this equation can-

not describe our problem because 226Ra 

is a parent radionuclide with a numerous 

daughters. However, it is possible to ap-

ply the philosophy of Equation (2) be-

cause 222Rn, the first of the daughter of 
226Ra, has the longest half-life within the 

decay series and all the other short-lived 

daughters remain in secular equilibrium 

with 222Rn while it is still being generat-

ed. 226Ra has three alpha emitter short-

lived daughters: 222Rn, 218Po and 214Po. 

Considering the secular equilibrium be-

tween 222Rn and all the short-lived 

daughters, the alpha activity in a closed 

system with only 226Ra at time zero is 

described by Equation (3): 

       
               

      

                  
           

where 

Act226Ra(t) is the alpha activity in a 

closed system (which only contains 226Ra 

at time zero) elapsed at t time in Bq; 

Act(226Ra)0 is the 226Ra activity at time 

zero in Bq and λRn is the 222Rn decay con-

stant in s-1. 

Considering that our closed system may 

contain nuclides other than 226Ra and 

considering that their activities do not 

decay significantly in the considered 

time, the alpha activity in the system is 

described by Equation (4): 

                          

where 

Act (t) is the alpha activity in the closed 

system elapsed at t time in Bq; A is a pa-

rameter corresponding to the maximum 

increase in the alpha activity and is equal 

to 3*Act(226Ra)0 in Bq; b is the 222Rn de-

cay constant in s-1 and C is the parameter 

corresponding to the gross alpha at time 

zero in Bq. 

It should be noted that the current model 

(Equation (4)) is indicative of the real 

alpha activity in closed systems where 

only short-lived daughters of 226Ra are 

generated. 

 

Table 3 
Fitted model parameters and bias in the gross alpha and 226Ra activities for samples with similar gross alpha 
activities and increasing 226Ra activities. 

Samples Fitted parameters Bias 

 
A 

(Bq kg-1) 
 

b 
(h-1) 

 

C 
Gross alpha at 

t0 (Bq kg-1) 

Gross alpha 226Ra activity 

URa 0:100 0.578 ± 0.051 0.006 ± 0.002 0.382 ± 0.022 7.9 % 7.4 % 

URa 25:75 0.556 ± 0.026 0.006 ± 0.001 0.350 ± 0.060 -7.9 % 2.4 % 

URa 50:50 0.434 ± 0.006 0.006 ± 0.003 0.226 ± 0.018 -32.7 % 16.7 % 

URa 75:25 0.220 ± 0.029 0.006 ± 0.003 0.235 ± 0.033 -33.4 % -32.1 % 

URa 100:0 0.000 - 0.193 ± 0.024 -4.0 % - 
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Table 4 
Fitted model parameters and bias in the gross alpha and 226Ra activities for samples with similar 226Ra activi-
ties and increasing gross alpha activities. 

Samples Fitted parameters Bias 

 
A 

(Bq kg-1) 
 

b 
(h-1) 

 

C 
Gross alpha at 

t0 (Bq kg-1) 

Gross alpha 226Ra activity 

Ra 0:100 0.578 ± 0.051 0.006 ± 0.002 0.382 ± 0.022 7.9 % -7.4 % 

URa 0.628 ± 0.057 0.007 ± 0.001 0.512 ± 0.041 -7.5 % 5.7 % 

URaPo 0.632 ± 0.049 0.005 ± 0.002 0.717 ± 0.024 -12.1 % 4.3 % 

 

Model’s verification using synthetic sam-

ples 

To validate the proposed theoretical 

model, several synthetic samples (shown 

in Table 1) were analysed. Each sample 

was measured at several time points (2, 

24, 72, 144, 240, 504 and 720 h) after the 

sample treatment. 

226Ra proportion effect 

To evaluate the 226Ra proportion effect in 

the evolution profiles, synthetic samples 

with similar gross alpha values, but in-

creasing 226Ra contributions, were pre-

pared. Fig. 3 shows the mean and stand-

ard deviation of replicate measurements 

of alpha activity evolution over time. 

Error bars represent the standard devia-

tion of each replicate. The modelled ac-

tivity evolution for each sample is also 

shown (solid line). As shown in Fig. 3, the 

alpha activity of the URa 100:0 sample 

with no 226Ra content remains constant. 

Furthermore, the alpha activity of all the 

samples containing 226Ra increases over 

time. Fig. 3 also demonstrates that the 

experimental data match the proposed 

model. The fitted model parameters are 

shown in Table 3. This table also shows 

the bias between the calculated and 

spiked gross alpha and 226Ra activities. 

(Table 4). 

 
Fig. 3. Evolution of the alpha activity over time for samples with similar 
gross alpha values and increasing 226Ra activity. The solid lines represent 
the model evolution. 
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Gross alpha effect 

To evaluate the gross alpha effect in the 

evolution profiles, synthetic samples 

with similar 226Ra activities (approxi-

mately 0.200 Bq L-1) but increasing gross 

alpha activities (adding natU or natU and 

210Po) were prepared. Fig. 4 shows the 

mean and standard deviation of replicate 

measurements of alpha activity evolution 

over time.  

Error bars represent the standard devia-

tion of each replicate. The modeled activ-

ity evolution for each sample is also 

shown (solid line). As demonstrated in 

Fig. 4, the three samples with the same 

226Ra activity have profiles that remain 

equidistant. The only difference between 

the profiles is the addition of a constant 

component. Fig. 3 also shows that the 

experimental data match the proposed 

model. 

The fitted model parameters are shown 

in Table 3. This table also presents the 

bias between the calculated and spiked 

gross alpha and 226Ra activities. 

Model’s application to natural samples 

The proposed model, Equation (4), per-

mits the calculation of gross alpha activi-

ty at time zero and the 226Ra activity. For 

this purpose, two gross alpha determina-

tions at two different times are required. 

To test the proposed model in natural 

samples, several analyses were per-

formed. Two measurements of gross 

alpha at two different times were made 

for each of the eight natural samples. The 

first measurement was performed two 

hours after sample treatment. The se-

cond measurement was conducted six 

days after the sample treatment.

 
Fig. 4. Evolution of the alpha activity over time for samples with simi-
lar 226Ra activities and increasing gross alpha activities. The solid 
lines represent the model evolution. 
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During the six-day measurement period, 

the increase of alpha activity was signifi-

cant, which permitted the estimation of 
226Ra activity. Equations (5) and (6) show 

the values of the model parameters A 

(maximum growth) and C (gross alpha at 

time zero): 

  
         
           

      

 

 

 
                           

           
      

 

Table 5 contains both activities meas-

ured at two hours and six days after the 

sample treatment, the fitted model pa-

rameters and the bias in the gross alpha 

and 226Ra determination. Table 5 also 

contains the reference values used to 

calculate bias. The reference value for 
226Ra is the mean of three replicates, as 

evaluated by alpha spectrometry after a 

radiochemical separation. For gross al-

pha, the reference value is the sum of the 

isotopes found in natural water: 
234,235,238U, 226,228Ra, 210Po and 232Th. For 
226Ra determination, samples containing 

on the order of 10-1 Bq kg-1 226Ra have a 

bias less than 20%. However, when the 

sample contains on the order of 10-3 Bq 

kg-1 of 226Ra, the bias obtained is unac-

ceptable. The results obtained from ap-

plying the model to gross alpha determi-

nation generally have a bias below10%, 

which is as low as the bias obtained from 

single determination. However, a large 

bias was obtained for the POT-C sample. 

A very low alpha activity (near the Mini-

mum Detectable Activity) is the cause of 

this unacceptable bias. 

Conclusions 

The proposed model makes it possible to 

quantify 226Ra activity in a closed system 

using two measurements of alpha activi-

ty. To make this measurement possible, it 

is necessary for all the 226Ra short-lived 

daughters to be removed during the 

treatment of the sample. The model per-

mits the second measurement to be con-

ducted within the first 21 days after 

sample treatment instead of waiting until 

secular equilibrium is reached. A liquid 

scintillation vial containing the cocktail 

and the treated sample approximates the 

described closed system. The proposed 

model can be applied for two gross alpha 

measurements to estimate 226Ra activity. 

Biases lower than 20% were obtained for 

samples with 226Ra activities on the order 

of 10-1 Bq kg-1. 
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Abstract 

The aim of the present work was to compare the results obtained with gross alpha meth-

ods such as evaporation, co-precipitation and total evaporation by liquid scintillation 

counting and to check whether these results are representative of the real total alpha ac-

tivity concentration on the sample. The study was carried out on eight natural waters with 

very different radioactive characteristics. For all the samples uranium (238U, 235U, and 

234U), radium (226Ra and 224Ra), 210Po, and 232Th isotopes were also assayed by using radio-

chemical separation and alpha spectrometry in order to determine the sum of the activi-

ties of these alpha emitters. 

Precision (expressed as relative standard deviation) was below 28% for evaporation and 

below 18% for co-precipitation. In the case of total by liquid scintillation counting it was 

below 10% for samples with Total Alpha activity above 0.1 Bq/L (this value is about three 

times the MDA). Furthermore, for most of the studied waters, the Total Alpha activity and 

the gross alpha activity determined by the three methods were comparable. The obtained 

bias by the evaporation, co-precipitation, and total evaporation by liquid scintillation 

counting methods was lower than 40%, 25% and 20%, respectively.  

The ANOVA test was applied to find out if there was significant variability among the 

methods. For the samples with the most common radiochemical characteristics there were 

no significant differences among the three studied methods. However differences were 

detected for samples with a high saline content or with a very low activity level. 

Keywords: Gross alpha activity, Evaporation and co-precipitation methods, Total evapo-

ration and measurement by liquid scintillation counting 
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Introduction 

Due to the importance of water to human 

life, its quality must be strictly controlled. 

For this reason standard methods are 

used to evaluate drinking water for hu-

man consumption in order to guarantee 

that they have a low level of radioactivi-

ty. 

The radioactivity in drinking water may 

be either man made, resulting from 

waste discharges and atomic bomb fall-

out, or produced naturally, from the dis-

solution of gases and rock minerals. The 

most common radioactivity is naturally 

produced and includes isotopes of urani-

um and thorium and their daughter 

products: 226Ra, 228Ra, 222Rn, 210Pb and 

210Po (UNSCEAR, 2000). 

According to the World Health Organiza-

tion (WHO) guidelines (2011), the Total 

Dose Indicative (TDI) parameter must be 

measured in drinking water to ensure 

that it is safe for consumption. The WHO 

(2011) and the European Directive 

98/83/EC (EC, 1998) fixed parameter 

values for TDI (0.1 mSv/year). It is speci-

fied that TDI excludes tritium, 40K, radon 

and radon decay products. A more prac-

tical approach is to use a screening pro-

cedure, where the total radioactivity pre-

sent in the form of alpha and beta radia-

tion is first determined (gross alpha/beta 

activity determination) since this is one 

of the simplest radioanalytical proce-

dures (Jobbágy et al., 2010), without re-

gard to the identity of specific radionu-

clides. 

In Spain, the health criteria governing 

water quality for human consumption 

were published in 2003 in decree no. 

140/2003. This decree established the 

highest permissible values for gross al-

pha (0.1 Bq/L), gross beta excluding 40K 

contribution (1 Bq/L) and tritium activi-

ty (100 Bq/L) (RD, 140/2003). Below 

these screening levels, drinking water is 

acceptable for human consumption, and 

no further action is required. 

In general, gross alpha is more of a con-

cern than gross beta for natural radioac-

tivity in waters, when considering health 

effects from natural radioactivity (Sem-

kow and Parekh, 2001).  

Different methods are used to measure 

gross alpha activity. Two of them are 

based on evaporation (EPA, 1980) or co-

precipitation (EPA, 1984) of the sample, 

using either a gas flow proportional on 

total evaporation of the sample and 

measurement by liquid scintillation 

counting (total evaporation/LSC) 

(ASTM,1996), is being increasingly used. 

Gross alpha activity is intended to ap-

proximate the Total Alpha activity con-

centration (TAAC) of the sample. Howev-

er, this parameter is subject to several 

factors (e.g., alpha particle energies, cali-

bration standard used and time elapsed 

from sample preparation to measure-

ment) that can cause a high degree of 
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variability (Ardnt, 2010), basically be-

cause a mixed radionuclide composition 

has to be simultaneously measured 

(Jobbágy et al., 2010). 

The elapsed time is an important influen-

tial factor. Two different times must be 

considered: the time between sample 

collection and preparation, and the time 

between sample preparation and analy-

sis. When a sample contains 226Ra, the 

contribution of 226Ra progeny to the 

gross alpha activity increases with the 

time between preparation and analysis. 

For example, Oural et al. (1988) found 

that the gross alpha activity of replicate 

samples could vary by two orders of 

magnitude when analysed by different 

laboratories. This was attributed to 222Rn 

progeny. For samples containing 224Ra, 

Parsa (1998) found a large variation in 

the gross alpha activity with time when 

the period between sample collection 

and analysis ranged from days to weeks. 

In addition, Parsa et al. (2000) found that 

the gross alpha activity of some replicate 

water samples analysed within 48 h of 

collection could vary by over one order 

of magnitude and showed the variation 

to be due to 224Ra, 212Pb, and/or 
214Pb/214Bi. 

Taking into account the methods previ-

ously mentioned, the elapsed time be-

tween sample preparation and analysis 

may vary between 3 h and three days 

after sample preparation. For example, 

gross alpha by the evaporation method 

(EPA, 1980) stipulates that once the 

sample is prepared it should be stored 

for at least three days prior to measuring 

its gross alpha activity. On the other 

hand, the co-precipitation method (EPA, 

1984) stipulates that once the sample is 

prepared it should be measured 3 h after 

preparation. However, in a previous 

study (CSN, 2011) carried out by our 

research group, at least a two days delay 

was suggested because during the sam-

ple preparation, and just after filtration 

step, 222Rn from the air is trapped in the 

precipitate and produces the alpha emit-

ters 218Po and 214Po increasing and vary-

ing the alpha contribution in the blank 

and the sample during 48 h after prepa-

ration, more specifically in low-

background laboratories and when sam-

ples have low alpha activities. In the case 

of the total evaporation/ LSC method, 

measurement was done after 2 h of vial 

preparation  in order to prevent photo-

luminescence phenomena (L’Annunziata, 

1998), which interferes with the meas-

urement. In routine laboratory work, 

perhaps it is not possible to ensure that 

measurement is done 2 h after complet-

ing the preparation. This is not a cause of 

problems in the total evaporation/LSC, 

as a spectral output is obtained and it is 

possible to detect the 226Ra contribution 

in these spectra because the signal ap-

pears due to the presence of 214Po (CSN, 

2011). In this case, fresh sample prepara-
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tion and measurement 2 h later is re-

quired. If there is no 226Ra in the sample, 

quantification may be carried out with a 

delay longer than 2 h. 

For the reasons mentioned above, it was 

of interest to study the gross alpha activi-

ty obtained by different methods placing 

utmost importance on the elapsed time 

between sample preparation and meas-

urement with the intention to establish a 

maximum of this elapsed time in order to 

get comparable results. Therefore, the 

aim of the present work was to compare 

the results obtained with gross alpha 

evaporation, co-precipitation and total 

evaporation/LSC methods, and to check 

whether these results are representative 

of the sum of the activities of the alpha 

emitters present in the samples. The 

study was carried out on eight natural 

water samples of very different radioac-

tive characteristics. For all the samples, 

uranium (238U, 235U, and 234U), radium 

(226Ra and 224Ra), 210Po, and 232Th iso-

topes were also assayed using radio-

chemical separation and alpha spectrom-

etry in order to determine the sum of 

activities of these alpha emitters. Then, a 

temporal evolution in gross alpha activi-

ty for the eight natural waters was stud-

ied to evaluate the influence of elapsed 

time between sample preparation and 

measurement taking into account the 

different time established in all three 

methods. Precision and accuracy (ex-

pressed by the bias) were calculated for 

these methods and differences among 

them were also statistically studied using 

ANOVA and “t” tests in order to consider 

whether there was significant variability 

among the three methods. 

Materials and methods 

Three accredited laboratories (ISO/IEC 

17025) took part in the study. A specific 

method for gross alpha determination 

was assayed by each laboratory and ra-

diochemical procedures for specific al-

pha emitters were applied by the three 

laboratories. All three test procedures 

were validated using a synthetic water 

matrix spiked with different radionu-

clides and gross alpha activity values 

were calculated with different alpha 

emitting radionuclide standard counting 

efficiencies to see which standard was 

the best for gross alpha activity determi-

nations (CSN, 2011). 

Sample collection 

A total of eight natural waters from dif-

ferent parts of Spain (Fig. 1), with differ-

ing radioactive levels, and with a wide 

range of dissolved solids, were analysed. 

 

Fig. 1. Sampling sites in Spain. 
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Table 1 
Summary of the types, dry residue, conductivity, original pH, sulphate amount and reservoir geology of waters 
studied. 
Sample 

Code 
Type of water Residue (g/L) Conductivity 

(mS/cm) 
Original 

pH 
Sulphate 
(mg/L) 

Reservoir                                                              
geology 

GW-1 Groundwater 1 1.225 7.2 79 Granitic 

GW-2 Groundwater 0.5 0.700 7.0 51 Gypsum-bearing  

GW-3 Groundwater 4.7 1.295 7.1 32 Basaltic 

GW-4 Groundwater 2.1 2.145 7.1 458 Old lignite mines 

SF-1 Surface 1.5 1.318 7.8 116 Detrital 

SF-2 Surface 0.4 0.214 7.7 22 Detrital 

SF-3 Surface 0.9 1.896 7.7 73 Detrital 

SF-4 Surface 0.7 0.415 7.8 113 Calcareous 

 

Table 1 lists the type of water, residue, 

conductivity, original pH, sulfates and the 

reservoir geology of the waters studied. 

A volume of 100 L of water was taken at 

each sampling point. To preserve the 

water samples, they were acidified with 

HNO3 (1.25 mL/L). The origins of four 

samples were surface waters (SF), while 

the other samples were groundwater 

(GW). All the samples were treated water 

except GW-4 which was raw water. 

Gross alpha activity methods 

Evaporation method 

The procedure used (CSN, 2011) allows 

the simultaneously determination of the 

gross alpha and beta activity. This proce-

dure is similar to the standard method 

(UNE 73311-4:2002) widely used in 

Spain for determining the gross beta ac-

tivity in non-saline water that is basically 

the same as the EPA 900.0 method (EPA, 

1980) with a few modifications to im-

prove the distribution of salt residues on 

the stainless steel planchets and to re-

duce the variability associated with the 

preparation of mass efficiency curves. 

The basis of this method is firstly a mild 

reducing evaporation of a given volume 

of water sample. Subsequently, when the 

volume has been reduced to about 5-

8 mL, the sample is transferred to a stain-

less steel planchet of 4.7 cm diameter 

and oven-dried at 105 °C. The optimal 

mass density of the residue for determin-

ing the gross alpha activity is 5 mg/cm2. 

To improve the uniformity of evaporated 

water residues, the polished bottoms of 

the planchets were roughened using a 

37% HCl treatment. Both the steel 

planchet and the deposit are weighed 

and stored in a desiccator. Finally, the 

sample is measured in a gas flow propor-

tional counter (Berthold LB770). Meas-

urements were performed after two days 

but within a maximum of five days to 

minimise ingrowth of 224Ra and to pre-

vent a significant increase in alpha count-

ing due to 226Ra progeny). For the con-
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struction of a mass efficiency curve, a 

solution spiked with 230Th was prepared. 

The range of the surface density that we 

covered in the mass efficiency was within 

1.5 and 10 mg/cm2. 

Co-precipitation method 

This sample preparation technique in-

corporates both an EPA approved meth-

odology (EPA, 1984) and the method 

proposed by Suarez Navarro et al. (2002) 

for gross alpha determination, together 

with a few improvements in order to 

provide details that are relevant for 

achieving good reproducibility (CSN, 

2011). 

A 500 mL water sample, usually pre-

served with HNO3, was neutralized with 

6N NH4OH. 20 mL of 2N H2SO4 and a 

magnetic stir bar were then added to 

each sample. The sample was stirred and 

heated to boiling for 5 min to purge ra-

don and CO2. The sample was then cooled 

to 50 °C and 1 mL of Ba2+ carrier was 

added to the sample while it was stirred. 

The barium-radium sulphate precipitate 

formed was stirred for 30 min at 50 °C in 

order to obtain optimum precipitate 

formation (Suarez Navarro et al., 2002). 

To coprecipitate the actinides, 1 mL of 

Fe3+ carrier was added to the solution 

and 6N NH4OH was added in drops until 

the precipitate was produced. 

 Bromocresol purple indicator was used 

to control the pH of the precipitation 

(about 7 ± 0.5). It was continuously 

stirred without heating for 30 min. Final-

ly, the combined precipitates were 

cooled to room temperature, filtered and 

collected onto a pre-weighed 0.45 mm 

pore size filter of cellulose nitrate using a 

vacuum filtration system. At this point, it 

is important to consider that a good fil-

tration takes at least about 10 min to 

ensure that the precipitate is collected 

perfectly by removing the maximum 

amount of water and to avoid losing pre-

cipitate. Afterwards, the filter with the 

precipitate was placed on a stainless 

steel planchet, secured with a retaining 

ring and dried in the heater at 105 °C for 

1 h. Finally, the planchet was then cooled 

to room temperature inside a desiccator 

for 15 min, weighed and then counted in 

a ZnS(Ag) scintillation detector, using a 

thin plastic screen of ZnS(Ag) placed on 

the planchet, or directly in a gas flow 

proportional counter (Berthold LB770). 

It is recommended that alpha counting 

should be delayed two days (CSN, 2011). 

Using a 230Th standard, the alpha detec-

tion efficiencies were determined and an 

appropriate masse efficiency curve was 

derived for this standard as an alpha-

calibration source (Montaña et al., 2012). 

Total evaporation/LSC method 

A 100-mL aliquot of a water sample was 

evaporated to dryness. When the precipi-

tate obtained was cooled to room tem-

perature, it was then dissolved in 10 mL 
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of deionized water acidified by HCl to 

pH = 1.5. Some samples with a high salt 

content needed more acidic solution to 

be completely dissolved. The solution 

was then stirred for 5 min in order to 

ensure that the entire residue was dis-

solved. With this treatment 222Rn and all 

its short-lived decay daughters were 

eliminated in the sample. An 8-mL ali-

quot of the evaporated sample was 

mixed with 12 mL of the scintillation 

cocktail Ultima Gold AB (Perkin Elmer 

Life Science, Boston, MA, USA) in a low 

diffusion scintillator vial. Under these 

conditions the sample remained homog-

enous and chemically stable for some 

months. The vial was counted in a liquid 

scintillation counter which could dis-

criminate between alpha and beta pulses 

(Wallac 1220 Quantulus, Perkin Elmer 

Life Science, Boston, MA, USA). It is rec-

ommended that the vial should remain 

within the counter for 2 h before the 

start of counting in order to prevent pho-

toluminescence phenomena 

(L’Annunziata, 1998). Furthermore, this 

time is necessary for the short-lived 222Rn 

daughters to decay. To find the appropri-

ate calibration standard, many alpha 

emitters such as (230Th, 236U, 241Am) and 

some beta emitters (40K, 137Cs, 90Sr/Y) 

were used to carry out a misclassification 

study (Zapata-García et al., 2012). The 

Pulse Shape Analyzer (PSA) level was 

optimized using 236U and 40K calibration 

standards as they showed the best per-

formance in the misclassification study 

and an optimized value of 100 was ob-

tained. The alpha window was set from 

channel 500 to 800; the beta window 

from 250 to 1024. See CSN (2011) for 

more details. 

Radiochemical procedures for specific 

alpha emitter determinations 

Below there is a description of the differ-

ent procedures applied by the laborato-

ries. 

Uranium and thorium 

Procedure 1. To determine the uranium 

and thorium content in the water sam-

ples, 232U/228Th in secular equilibrium or 
229Th were added as tracers. The urani-

um and thorium content was then co-

precipitated with Fe(OH)3. The precipi-

tate was dissolved and separated in a 

Dowex resin AG1X8. The uranium and 

thorium were retained in the column and 

subsequently eluted. A detailed descrip-

tion of the experimental procedure has 

been reported in Vallés (1994). Finally, 

the alpha sources were prepared by co-

precipitation with NdF3 (Sill, 1987) or 

were electrodeposited onto stainless 

steel planchets (Hallstadius, 1984). 

Procedure 2. 232U/228Th in secular equi-

librium was added initially for recovery 

control of the process. The separation 

scheme consisted of the evaporation of 

samples to dryness and further dissolu-

tion in 5 mL of 3M HNO3-0.5M Al(NO3)3. 
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Sample solutions were then transferred 

to the UTEVA column and eluted (Hor-

witz et al., 1992). Eluted solutions were 

evaporated to dryness for coprecipita-

tion of the radionuclides as fluorides. Co-

precipitation of Th was done in the pres-

ence of Nd and nitric media (Horwitz et 

al., 1993), while U was co-precipitated in 

the presence of Ce and hydrochloric me-

dia (Horwitz et al., 1992). 

Radium 

Procedure 1. The radium content in the 

water was absorbed in MnO2 precipitate. 
133Ba was added as a tracer. The precipi-

tate was then dissolved in 5M HNO3, and 

the uranium and thorium present in the 

samples was extracted with TBP (tributyl 

phosphate). Finally, the radium was co-

precipitated as Ba(Ra)SO4 (Baeza et al., 

1998). Recovery was determined by γ-

spectrometry of 133Ba and 226Ra by alpha 

spectrometry. 

Procedure 2. Radium isotopes (226Ra and 

224Ra) were determined by co-

precipitation from a 1-L sample with 

barium and lead carriers adding 

9M H2SO4. The solution was then purified 

by barium sulphate precipitation at pH 5-

5.3 in the presence of EDTA. 

A detailed description of the procedure 

has been reported in Vallés (1994). Both 

226Ra and 224Ra activities were measured 

using a ZnS(Ag) scintillation counter by 

measuring the planchets at two and 

twenty-one days after radium separation. 

Polonium 

2.3.3.1. Procedure 1. In the determina-

tion of 210Po content, 208Po was used as a 

tracer. The polonium content was co-

precipitated with Fe(OH)3. The precipi-

tate was then dissolved in 8M HCl and 

diluted to 1.5M HCl. The polonium was 

deposited onto silver planchets and 

measured by alpha spectrometry (Bolí-

var et al., 2002). 

Procedure 2. 210Po was determined by 

spontaneous deposition onto a silver 

planchet. 209Po was used as a tracer. The 

water sample was previously concen-

trated by evaporation at 90 °C to a vol-

ume of 25 mL. The solution was trans-

ferred to a 40 mL Teflon cell, and 5 mL of 

20% hydrochloride hydroxylamine, 2 mL 

of 25% sodium citrate and 1 mL of Bi+3 

carrier were added and stirred. 

Finally, the polonium was deposited for 

3 h at a temperature of 90-95 °C, with 

agitation of the solution (Vallés, 1994). 

Alpha spectrometry 

Uranium isotope activities (234U, 235U and 

238U), 232Th, 210Po and 226Ra (procedure 1) 

were determined by alpha spectrometry 

using PIPS detectors with a 450 mm2 

active area (Canberra). The detectors 

were energy-calibrated using a NIST 

traceable mixed standard alpha source 

containing 239Pu, 241Am and 244Cm. The 

energy slope of the spectrum was about 

1.5 keV per channel, and the region of 
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observation selected was from 4 to 

8 MeV. The counting efficiency of the 

detectors was between 18 and 30%. The 

activity concentration was calculated 

using Genie 2000 software. The samples 

were generally measured about 5 mm 

from the detectors and during 250,000 s 

in order to achieve adequate minimum 

detectable activities (MDA) of 0.1 mBq/L 

(U), 0.1 mBq/L (Th), 0.4 mBq/L (Po), 0.9 

mBq/L (Ra). 2.4. Temporal evolution of 

gross alpha activity The temporal evolu-

tion in gross alpha activity for the 8 natu-

ral waters was studied to evaluate the 

influence of elapsed time from sample 

preparation to measurement in the gross 

alpha results. Different measurements, 

between 0 and 30 days, were performed 

for each method studied. 

ANOVA and “t” tests 

A One-factor ANOVA test was applied to 

determine if there were significant dif-

ferences in the results provided by the 

three methods. The variance of each 

method was compared to the global vari-

ance for the seven natural waters which 

had gross alpha activities higher than the 

MDA. The study was carried out consid-

ering three replicates of the analysis for 

each method and a confidence level of 

95%. 

A t-test was applied comparing the re-

sults of each of the studied methods with 

the TAAC in order to find the cause of 

differences found with the ANOVA test. 

This test was done for three replicated 

(evaporation and total evaporation/LSC) 

and four replicated (coprecipitation) 

samples. 

Results and discussion 

Activity concentration of alpha emitting 

radionuclides 

The results of the activity concentration 

of specific alpha emitters in the waters 

are given in Table 2. TAAC was calculated 

by summing the quantified specific alpha 

emitter activity. If the activity was lower 

than the minimum detectable activity, 

this value was not used to calculate 

TAAC. Activities were expressed in 

mBq/L because of the very low values for 

some radionuclides. 

According to the results presented in 

Table 2, groundwater showed higher 

TAAC than surface waters. In fact, all the 

studied groundwater presented gross 

alpha activities above the screening level 

of 100 mBq/L, while only one of the four 

studied surface waters exceeded this 

value. The activity concentration 

(mBq/L) of 234U, 235U and 238U in the nat-

ural waters varied from 18 to 2900, from 

<1 to 90 and from 8 to 3000, respective-

ly.  
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Table 2 
238U, 235U, 234U, 232Th, 226Ra, 224Ra, 210Po activity concentrations (mBq/L) in the 8 natural waters. 

 

The high activity concentration of urani-

um observed in the GW-4 sample was 

due to the rock present in the reservoir 

which was mainly lignite containing ele-

vated levels of uranium. The arithmetical 

mean of the 234U/238U activity ratio for all 

samples resulted in 2.0 ± 1.5 (relative 

standard deviation, RSD = 73%) thus 

confirming a different disequilibrium in 

the samples studied. The fact that 226Ra 

concentration in groundwater was high-

er than in surface water was also ob-

served. The minimum 226Ra activity con-

centration was 2.3 mBq/L (SF-2) and the 

maximum value was 550 mBq/L (GW-2). 

Significant activity concentration of 224Ra 

was also measured in the four selected 

groundwater samples. 210Po activity con-

centration was determined for most of 

the samples, but its contribution to Alpha 

Total was below 2.5%. The minimum 

activity concentration of 210Po was 

0.6 mBq/L and the maximum activity 

concentration was 110 mBq/L (GW-4). 

Contribution of 232Th was insignificant 

due to its low solubility in water and it 

was not detected in most of the studied 

waters. Uranium and radium isotopes are 

the main contributors to the TAAC in 

these samples and produced more than 

90% of the activity. Uranium isotopes 

(238U+234U) were usually present to a 

higher percentage (more than 70%) 

compared with 226Ra (usually less than 

20%). The exceptions were GW-2 and 

GW-3 with 40% and 80% of 226Ra, re-

spectively. 3.2. Temporal evolution of 

gross alpha activity By way of example, 

Alpha activity concentration (mBq/L) 

Code 238Ua 235Ua 234Ua 232Tha 226Raa 224Raa 210Poa 

Total alpha 
activity       

concentration 
(Σ isotopes)b 

GW-1 240 ± 20 10 ± 3 1330 ± 90 <5 470 ± 60 80 ± 20 36 ± 4 2200 ± 200 

GW-2 370 ± 20 13 ± 6 390 ± 60 <8 550 ± 40 40 ± 10 28 ± 3 1400 ± 200 

GW-3 8 ± 4 <1 18 ± 5 <9 210 ± 20 27 ± 6 0.6 ± 0.4 260 ± 40 

GW-4 3000 ± 200 90 ± 20 2900 ± 200 <10 130 ± 10 17 ± 4 110 ± 10 6200 ± 600 

SF-1 70 ± 10 <2 90 ± 10 9 ± 5 5 ± 1 <2 <0.3 170 ± 30 

SF-2 11 ± 5 <3 21 ± 6 8 ± 5 2.3 ± 0.4 <1 1 ± 0.3 40 ± 10 

SF-3 20 ± 5 <2 34 ± 6 <5 4.0 ± 0.8 <2 0.8 ± 0.4 60 ± 15 

SF-4 34 ± 8 <2 48 ± 9 <5 2.6 ± 0.7 <2 1.2 ± 0.5 90 ± 20 

a The overall uncertainty (coverage factor k = 2) was given as the average uncertainty of individual results, 
corresponding to three replicates by the three laboratories for each sample. This arose mainly from counting 
uncertainty.  

b Uncertainty of Alpha Total activity was given as the combined uncertainty of the average uncertainty of each 
isotope, with a coverage factor k =2, corresponding to a level of confidence of 95%. 
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Fig. 2 shows the gross alpha activities 

measured repeatedly for up to one 

month for water sample GW-3 (80% 

226Ra) using evaporation, co-

precipitation and total evaporation/ LSC 

methods. Some results for the different 

preparation techniques at different times 

are missing from the graph since no 

measurement was performed at those 

times. In Fig. 2, as might be expected for 

samples with 226Ra, it is clear that gross 

alpha activity varies with time and there-

fore can be overestimated depending on 

the method chosen and the time elapsed.  

Evaporation showed the highest gross 

alpha activities in the temporal study, for 

example 800 mBq/L, while co-

precipitation reached 660 mBq/L and 

total evaporation/LSC reached 

540 mBq/L after 21 days of elapsed time. 

 

 

Fig. 2. Temporal evolution of gross alpha activity 
in the GW-3 sample by evaporation, co-
precipitation and total evaporation/LSC methods. 
The dashed line is the TAAC in the sample. The 
error bars represent the overall uncertainty (cov-
erage factor k = 2). 
 

 

The ratio calculated by dividing the 

measured gross alpha activity and the 

Alpha Total activity ranged from 1.0 to 

3.2 for evaporation, from 0.9 to 2.6 for 

co-precipitation and from 0.7 to 2.1 for 

total evaporation/LSC (elapsed time be-

tween 1 and 21 days). According to these 

results, evaporation overestimated gross 

alpha activity, more than did co-

precipitation or total evaporation/LSC, in 

waters with 226Ra as the main contribu-

tor (80%) to Alpha Total. It should be 

noted that evaporation also shows great-

er variability in the results. The recom-

mendation to measure samples prepared 

by the evaporation and co-precipitation 

methods after two days of their prepara-

tion does not provide satisfactory results 

for sample GW-3. But it is important to 

consider three points. First; using 230Th 

as a calibration standard for samples 

with significant amounts of 226Ra will 

tend to overestimate gross alpha activity 

because 226Ra and its daughters emit 

higher energy alpha particles than does 
230Th. On the other hand, samples con-

taining 226Ra can be measured immedi-

ately after preparation, but this recom-

mendation carries some drawbacks un-

der routine laboratory work. Finally, in a 

previous investigation (CSN, 2011) it was 

observed that natural waters in Spain 

with non-negligible 226Ra content are 

unusual. Therefore, the initial recom-

mendations are suitable for most natural 

waters in Spain. 
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Table 3 shows some statistical parame-

ters (arithmetic mean, relative standard 

deviation, minimum and maximum val-

ues and the number of data) for gross 

alpha activity using the evaporation, co-

precipitation and total evaporation/LSC 

methods in the temporal evolution study 

(0-30 days) in the eight selected waters. 

Uncertainty corresponds to average un-

certainty for individual measurements 

which mainly arises from counting statis-

tics, and RSD gives information about 

temporal variation in the measured ac-

tivity. Both parameters are compared 

and if no differences between them are 

found, no gross alpha activity variations 

occur over time. However, this time 

should be considered as an important 

factor that needs to be defined. High un-

certainties are associated with low activi-

ties (SF-2 or SF-3) with values near the 

MDA. The evaporation method shows a 

higher uncertainty than the co-

precipitation and total evaporation/ LSC 

methods. On the other hand, RSDs for 

radioactivity in groundwaters from the 

three methods were usually higher than 

the mean uncertainty. 

Table 3 
Average of gross alpha activity (mBq/L) obtained at different elapsed times and statistical parameters for the 
three methods. 

 

  

Sample 
code 

Statistical parameters Evaporation Co-precipitation Total evaporation/LSC 

GW-1 Mean (uncertaintya) 2006 (± 10%) 2451 (± 8%) 2300 (± 4%) 
 Range (min-max) (1432 - 2842) (1935 - 3259) (1800 - 2900) 
 RSD (data) 20% (37) 16% (55) 36% (9) 

GW-2 Mean (uncertaintya) 918 (± 10%) 2144 (± 5%) 1700 (± 5%) 
 Range (min-max) (643 - 1161) (1249 - 2805) (1200 - 2400) 
 RSD (data) 14%(45) 21% (78) 47% (9) 

GW-3 Mean (uncertaintya) 665 (± 29%) 550 (± 8%) 427 (± 8) 
 Range (min-max) (247 - 1929) (229 - 1070) (194 - 678) 
 RSD (data) 42% (42) 35% (62) 34% (12) 

GW-4 Mean (uncertaintya) 3836 (± 8%) 5374 (± 8%) 6400 (± 5%) 
 Range (min-max) (3111 - 4457) (4562 - 6113) (6100 - 6700) 
 RSD (data) 8% (29) 7% (56) 19% (6) 

SF-1 Mean (uncertaintya) 106 (± 10%) 151 (± 9%) 178 (± 16%) 
 Range (min-max) (63 - 140) (126 - 175) (123 - 223) 
 RSD (data) 22% (17) 8% (55) 3% (6) 

SF-2 Mean (uncertaintya) 12 (± 60%) 7 (± 28%) <MDA 
 Range (min-max) (<1 - 48) (3 - 18) - 
 RSD (data) 112% (26) 58% (52) - 

SF-3 Mean (uncertaintya) 33(± 132%) 51 (± 12%) 40 (± 50%) 
 Range (min-max) (<3 - 81) (44 - 79) (0 - 70) 
 RSD (data) 56% (29) 17% (49) 2% (6) 

SF-4 Mean (uncertaintya) 59 (± 64%) 87 (± 10%) 100 (± 20%) 
 Range (min-max) (26 - 87) (49 - 113) (70 - 130) 
 RSD (data) 32% (29) 22% (69) 2% (6) 

The number of data used in calculation is indicated in brackets. 
a All data average uncertainty k = 2. 
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Table 4 
Gross alpha activity obtained for each method in mBq/L. The mean value obtained among the three methods is 
also presented. 

Code Evaporation Co-precipitation Total evaporation/LSC Average activity among 
methods 

 Act. Unc.a RSD(%) Act. Unc.a RSD(%) Act. Unc.a RSD(%) Act Unc.b RSD(%) 
GW-1 1860 460 17(3) 2235 193 8(4) 1970 70 9(3) 2020 190 9 
GW-2 1120 280 28(3) 1604 134 9(4) 1320 60 6(3) 1350 243 18 
GW-3 380 200 20(3) 321 30 11(4) 210 30 9(3) 310 90 29 
GW-4 3780 920 8(3) 5591 295 15(4) 6830 250 2(3) 5170 1278 25 
SF-1 150 70 17(3) 144 13 9(4) 180 30 5(3) 160 20 13 
SF-2 <MDA   <MDA         
SF-3 60 40 5(3) 52 7 18(4) 30 20 55(3) 50 16 33 
SF-4 60 40 16(3) 76 9 25(4) 100 20 26(3) 80 18 23 
The number of data used in each calculation is indicated in brackets. 
a Uncertainty is given as average uncertainty, corresponding to three replicates for each sample which arises main-
ly from counting uncertainty 
b Uncertainty is given as a standard deviation, corresponding to the three methods. 

 

One characteristic of studied groundwa-

ter is the presence of significant 226Ra 

activities. Ingrowth of 226Ra daughters 

means that elapsed time has an influence 

on count rate and ideally would require 

measurements to be carried out as soon 

as possible. However, one must decide on 

a compromise between the theoretically 

ideal time and each laboratory’s work 

routine. Consequently, to limit the varia-

bility associated with the elapsed time 

after source preparation, an optimal 

range for measurement delay should be 

established. It is recommended that the 

elapsed time for the evaporation and co-

precipitation methods be after 2 days 

and before a maximum of 5 days. The 

differences between the values for the 

same sample obtained at two and five 

days (Fig. 2) were calculated and found 

to be 21% for both methods. This value is 

less than the threshold reference value of 

50% for gross alpha derived from the 

IAEA-CU-2010-03 world-wide open pro-

ficiency test on the determination of nat-

ural radionuclides in water and 226Ra in 

soil (IAEA, 2010). Additionally, if there is 

a non-negligible presence of 226Ra in 

samples with activities around 0.1 Bq/L, 

not enough time has passed for its de-

scendants to significantly increase the 

gross alpha count rate in that maximum 

elapsed time proposed. By contrast, for 

the total evaporation/LSC method, rec-

ommending a maximum is not necessary 

since a spectral output with the 214Po 

signal can be used to assess the 226Ra 

contribution. A large variation in gross 

alpha activity (RSD) was also observed 

for sample SF-2 which had detectable 

activity at or slightly above the MDA. 

Gross alpha activity (two days or 2 h val-

ues after preparation): comparative study 

among methods 

Table 4 shows the data for the eight wa-

ters studied and presents a comparison 

among gross alpha activities measured 

by the three methods. Additionally, the 

average activity among the three meth-
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ods is given. As the optimal elapsed time 

between sample preparation and meas-

urement is different for each method, the 

gross alpha activity after two days of 

measurement for evaporation and co-

precipitation and after 2 h for total evap-

oration/LSC are presented in order to 

compare results among these methods. 

RSD between methods was less than 

30% with the exception of sample SF-3, 

whose gross alpha activity is near the 

minimum detectable activity for the total 

evaporation/LSC method. In order to test 

if this deviation entails a no significant 

variation, an ANOVA test was applied. 

ANOVA results 

In order to test statistically whether 

there was significant variability among 

the three methods, an ANOVA test was 

applied to the results from the eight nat-

ural water samples. SF-2 was excluded 

because its activity was below the MDA 

for all three methods. This test was ap-

plied to the data obtained at the optimal 

elapsed time for each method (two days 

for evaporation and co-precipitation and 

2 h for total evaporation/LSC). The con-

clusions derived from this test involve 

only the methods when the measure is 

performed at this optimal elapsed time. 

The ANOVA results are presented in Ta-

ble 5. 

For five of the seven water samples test-

ed there were no significant differences 

among the three studied methods. There 

were significant differences among 

methods for samples SF-3 and GW-4. In 

order to find the cause of these differ-

ences a t-test was applied comparing the 

results of each of the studied methods 

with the TAAC. This test was done for 

three replicated (evaporation and total 

evaporation/LSC) and four replicated 

(co-precipitation) samples. 

Table 6 showed the t-test results. In gen-

eral, for all water samples, the results 

obtained for the studied method (evapo-

ration, co-precipitation or total evapora-

tion/LSC) were not significantly different 

for alpha spectrometry determination. 

This finding is concordant with the ANO-

VA test results.  

 
Table 5 
ANOVA test results for comparison of gross alpha activity determination methods in natural water samples.  
Sample code Fcal F’ Differences between methods Degrees of freedom 

SF-1 2.95 4.75 No diff. 9 
SF-2 - - - - 
SF-3 4.85 4.75 Sig. diff. 9 
SF-4 4.55 5.41 No diff. 8 
GW-1 1.60 4.75 No diff. 9 
GW-2 4.10 4.75 No diff. 9 
GW-3 5.78 6.59 No diff. 7 
GW-4 17.38 4.75 Sig. diff. 9 

Fcal: Calculated value from the F distribution. 
F’: 0.05 critical value from the F distribution (evaporation and concentration 3 degrees 
of freedom, co-precipitation 4 degrees of freedom. 
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Table 6 
T test between each sample for each method and the alpha spectrometry results. 

Sample 
code 

Evaporation Co-precipitation Total evaporation/LSC 

 tcal t' Equal to  
α spect. 

tcal t' Equal to  
α spect. 

tcal t' Equal to  
α spect. 

GW-1 1.407 3.182 Equal 0.508 4.715 Equal 1.133 3.182 Equal 
GW-2 1.267 3.182 Equal 1.525 4.527 Equal 0.606 3.182 Equal 
GW-3 2.102 3.182 Equal 1.368 4.551 Equal 1.778 3.182 Equal 
GW-4 6.457 3.182 Sig. diff. 1.034 4.337 Equal 0.167 3.182 Equal 
SF-1 1.615 3.182 Equal 2.357 4.724 Equal 0.223 3.182 Equal 
SF-2 - -  - -  - -  
SF-3 0.226 3.182 Equal 0.734 4.603 Equal 1.954 3.182 Equal 
SF-4 2.468 3.182 Equal 1.659 4.773 Equal 0.044 3.182 Equal 
tcal: Calculated value from the t distribution 
t': 0.05 critical value from the t distribution (evaporation and concentration 3 degrees of freedom ,co-
precipitation 4 degrees of freedom. 
 

However, there were differences be-

tween the evaporation method and the 

alpha spectrometry determination for 

sample GW-4.This allows us to attribute 

to the evaporation method the significant 

differences detected between the three 

methods using the ANOVA test. The ina-

bility of the evaporation method to de-

termine gross alpha activity in sample 

GW-4 was due to the high residue of the 

sample. A high saline content in the sam-

ple is a drawback for the evaporation 

method as it implies a high mass residue 

which increases autoabsorption. Moreo-

ver, the high sulphate content in sample 

GW-4 (unusual in natural waters in 

Spain) generated residues with an auto-

absorption greater than that obtained 

with the nitrates matrix used in the cali-

bration. This fact involves an underesti-

mation of the gross alpha content. How-

ever, for sample SF-3 there were differ-

ences between methods but there were 

no differences between each method and 

the TAAC. This apparent contradiction 

could be justified on the basis of the MDA 

of the methods, since the evapora-

tion/LSC method has a MDA one order of 

magnitude higher than the other two 

methods, and similar to the level of activ-

ity of sample SF-3. This means that the 

differences between methods were de-

tected by the ANOVA test but in the com-

parison of each method with the TAAC, 

the high dispersion in the total evapora-

tion/LSC method provides the non-

significant result. 

Precision and accuracy 

A comparison of the gross alpha activity 

results, excluding SF-2, for each method 

and the TAAC was also reported as a bias 

(Fig. 3). Bias was calculated by the fol-

lowing equation: 

𝐵𝑖𝑎𝑠 (%) =
𝐺𝑟𝑜𝑠𝑠 𝑎𝑙𝑝ℎ𝑎 − 𝑇𝐴𝐴𝐶

𝑇𝐴𝐴𝐶
· 100
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Fig. 3. Bias (%) obtained by the three methods (evaporation, co-precipitation and 
total evaporation/LSC) and the TAAC for the natural water samples studied. The 
error bars represent the overall uncertainty (coverage factor k = 2). 

 

Total evaporation/LSC has usually the 

lowest bias (generally <10%) with the 

exception of GW-3 and SF-3. SF-3 pre-

sented gross alpha activity close to the 

MDA of this method. On the other hand, 

significant biases (positive) in the evapo-

ration and co-precipitation methods 

were shown for sample GW-3 due to the 

significant contribution of 226Ra, 80% of 

the TAAC. Results obtained for the other 

samples presented an acceptable bias 

(less than -20%) for the three methods. 

When the bias is greater than 20% it is 

due to low activity levels, as in samples 

SF-1, SF-3 and SF-4. Gross alpha activity 

determined by the evaporation method is 

often underestimated as a negative bias 

was obtained for most of the samples. 

Gross alpha activity determined by the 

co-precipitation method has a bias below 

25% for all the samples irrespectively of 

the activity. Gross alpha activity deter-

mined by the total evaporation/LSC 

method and the TAAC were comparable 

when the samples contained significant 

activity. 

Conclusions 

Uranium and radium isotopes are the 

main contributors to TAAC in eight natu-

ral surface water and groundwater sam-

ples from different regions of Spain, each 

with different radioactive characteristics. 

Groundwater shows higher gross alpha 

activities than does surface waters. The 

comparison of results for gross alpha 

activity obtained by the three methods 

(evaporation, co-precipitation and total 

evaporation/LSC) show an acceptable 

deviation (RSD less than 30%). For prac-

tical uses, especially because radiological 

laboratories sometimes process a large 

number of samples in a small window of 

time, gross alpha measurements should 
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be carried out after two days and prefer-

ably before five days after sample prepa-

ration for the evaporation and co-

precipitation methods in order to obtain 

results which are not largely overesti-

mated, especially in waters in which the 

main contributor is 226Ra. ANOVA tests 

were used to identify differences among 

evaporation, co-precipitation and total 

evaporation/LSC methods. For the sam-

ples with the most common radiochemi-

cal characteristics there were no signifi-

cant differences among the three studied 

methods. However differences were de-

tected for samples with a high saline con-

tent or with a very low activity level. Pre-

cision (as RSD) was below 28% for evap-

oration and below 18% for co-

precipitation, while in the case of total 

evaporation/LSC it was below 10% for 

samples with TAAC above 0.1 Bq/L. The 

biases obtained by the evaporation, co-

precipitation, and total evaporation/LSC 

methods were lower than 40%, 25% and 

20%, respectively. 
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4.3.  Discussion 

Give the results obtained in the two scientific papers of this chapter, it must be 

emphasized that the development and validation of an analytical procedure for 

simultaneous determination of gross alpha and gross beta activity has been described. 

Furthermore, an estimation of 226Ra activity is also made by means of a second 

measurement of the sample considering the increase of alpha activity due to the ingrowth 

of 222Rn and its short-lived daughters. This methodology has been validated and compared 

with other classical techniques for the determination of gross alpha activity—such as 

evaporation and co-precipitation methods with subsequent measurement by solid 

scintillation with ZnS or proportional counter. 

The developed procedure involves evaporating an aliquot of 100 mL of the sample to 

dryness. When the precipitate obtained is cooled at room temperature, it is dissolved in 

10 mL of deionised water acidified by HCl to pH 1.5. An aliquot of 8 mL of the concentrated 

sample is then mixed with 12 mL of the scintillation cocktail (Ultima Gold AB) in low-

diffusion polyethylene vials. After 2 hours of waiting for photoluminescence decay, the 

sample is measured in a Wallac QUANTULUS 1220 for 400 minutes by using the alpha beta 

counting mode. The instrumental parameter PSA (pulse shape analyser) used to separate 

the alpha and beta events is optimized by means of interference studies by using 236U as a 

pure alpha emitter and 40K as a pure beta emitter. 

We have also developed a mathematical model to estimate the activity of 226Ra from a 

second measurement of the counting vial within the 21 first days after sample treatment. 

This model also makes it possible to determine gross alpha activity without the contribution 

of 222Rn and their short-lived decay products, as is indicated by the directive. The premises 

for the correct application of this model are as follows: 

 All 222Rn must been removed from the sample during treatment. Two hours must be 

allowed for the decay of alpha emitters and short-life daughters (218Po, 214Pb and 

214Po). 

 The counting vial should be sealed in other to avoid 222Rn release. 

 The procedure can only be used to estimate 226Ra samples that do not contain other 

radionuclides that may modify the alpha activity in the counting vial, like 228Ra. 

The increase of alpha activity over time after sample treatment was evaluated by using 

samples spiked with different contributions of gross alpha activity and with different 

proportions of 226Ra activity concentration. Figure 6 shows the evolution of alpha activity 

over time for different spiked samples. Each experimental measurement is shown and the 
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error bars represent the counting uncertainty. The lines represent the proposed model for 

each spiked sample. Figure 6a shows the evolution of samples with a constant 226Ra activity 

concentration and increasing gross alpha activity. Figure 6b shows that the samples contain 

a similar gross alpha activity and increasing 226Ra activity concentration. The experimental 

data match the proposed model. 

Figure 6. Evolution of alpha activity in samples with the same activity of 226Ra and increasing gross 
alpha activities (a) and with similar gross alpha activities and an increasing activity concentration of 
226Ra. 

The analytical procedure and mathematical model has been validated by using spiked 

samples with different proportions of gross alpha activity and 226Ra. The detection limits 

were established as 0.025 Bq kg-1 and 0.095 Bq kg-1 for gross alpha and gross beta 

respectively.  

Then, natural water samples were analysed by applying the proposed method, and the 

results were compared by selective procedures with alpha spectrometry measurements. 

Generally, the results obtained for gross alpha determination have a bias below 10 %. 

However one sample with an activity close the detection limit shows a higher bias.  

Regarding 226Ra, it was observed that samples with activity concentrations around 

0.1 Bq kg-1 are determined with bias lower than 20 %, while the bias is unacceptable in 

samples that contain on the order of 10-3 Bq kg-1.  

This procedure has been compared with the procedure of evaporation and proportional 

counter measurement and the procedure of co-precipitation and solid scintillation 

measurement. 

The procedure of evaporation and proportional counter measurement is based on the 

concentration of the sample to dryness on a stainless steel planchet. Due to the relatively 

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

A
lp

h
a 

ac
ti

vi
ty

 (
B

q
 k

g-1
)

Time (h)

URa0

URa25

URa50

URa75

URa100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800

A
lp

h
a 

ac
ti

vi
ty

 (
B

q
 k

g-1
)

Time (h)

Ra

URa

URaPo

a b

76  |  Validation of Gross Alpha and Gross Beta Determination



 

 

low power of penetration of alpha particles compared with beta particles, the amount of 

precipitate on the planchet should be lower (on the order of 5 mg cm-2, while when gross 

beta is measured it can be 25 mg cm-2), to reduce the self-absorption (USEPA, 1980; 

Llauradó et al., 2004; Llauradó et al., 2005). 

In the co-precipitation procedure, barium and iron carriers are added to the sample and 

are subsequently precipitated as BaSO4 and Fe(OH)3 by adding basic media. Radium 

isotopes co-precipitate with BaSO4, while other elements like actinides or polonium are 

absorbed into Fe(OH)3. The precipitate is then filtered, dried and after that measured by 

solid scintillation with ZnS (Montaña et al., 2012). 

A comparative study of the three methods was carried out based on the analysis of spiked 

samples with different alpha emitters and with natural samples characterized with total 

content of alpha emitters by alpha spectrometry. 

The content of alpha emitters in natural samples was characterized by using 

radiochemical separations to determine specific radionuclides. The alpha emitters 

determined in the natural waters are: 238U, 235U, 234U, 232Th, 226Ra, 224Ra and 210Po. From this 

small set of samples, it can be seen that more than 90 % of gross alpha activity is produced 

by the contribution of uranium and radium isotopes. Furthermore, uranium isotope 

contribution is the most important in 70 % of the cases while radium is most important in 

less than 20 %. This observation has been confirmed in larger datasets (Corbacho et al., 

2016). 

A t-test was used to determine whether there are significant differences between each 

method and the summation of activity concentration of all the specific alpha emitters for 

each sample. The result shows that just for one sample (GW-4) with a high salt content, the 

procedure of evaporation and measurement by proportional counter shows significant 

differences. This can be easily explained due to the high saline content, which is a drawback 

for the evaporation method as it implies a high mass residue which increases auto-

absorption. Moreover, the high sulphate content on sample GW-4 has the consequence that 

the residue obtained causes a higher auto-absorption than the nitrate matrix used in the 

calibration, which entails an underestimation of gross alpha activity. 

 An ANOVA test for each sample was applied to determine whether there are significant 

differences among the studied methods. In general, no differences were observed except for 

sample GW-4 and SF-3. Regarding GW-4, the observed difference is caused by the 

autoabsorption issue of the evaporation method.  
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Regarding sample SF-3, an apparent contradiction is observed, because the result obtained 

for each method is not significantly different from the summation of alpha emitters. But the 

results differ among them. This can be explained on basis of the MDA of the methods, since 

a concentration method with LSS measurement has an MDA that is one order of magnitude 

higher than evaporation and co-precipitation methods and that is close to the activity of SF-

3. For this reason, even the results obtained by the three methods have significant 

differences. The high variability of the LSS method for a sample close the MDA means that 

no differences can be observed between this value and the summation of alpha emitters.  
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5. VALIDATION OF RADIUM ISOTOPES 

DETERMINATION BY MEANS OF RADIUM RAD 

DISK 

  



 

 

  



After the development and validation of simultaneous determination of gross alpha and 

gross beta activities, specific methodologies have to been developed in order to deal with 

radionuclides which progeny ingrown in short time after sample treatment. This chapter 

presents a methodology that entails a rapid radiochemical separation for the determination 

of 226Ra, 228Ra and 210Pb using Radium RAD disk and direct LSS measurement.  

On the direct measurement of 226Ra and 228Ra using 3M EmporeTM RAD disk by 

liquid scintillation spectrometry. J. Fons-Castells, M. Vasile, H. Loots, M. Bruggeman, 

M. Llauradó, F. Verrezen. Journal of Radioanalytical and Nuclear Chemistry 309 

(2016). pp. 1123-1131. 

Methodologies that use RAD disk for radium isotopes determination are based on a 

selective extraction of Ra and a subsequent elution in order to measure by classical methods 

(emanation techniques for 226Ra and gamma spectrometry via 228Ac for 228Ra) or by LSS. 

However, the solution for the elution of radium from the RAD disk is not always compatible 

with LSS cocktails. For this reason, and in order to simplify and streamline the method, a 

direct measurement of the RAD disk into counting vial has been evaluated. This paper is a 

feasibility study of the determination of 226Ra and 228Ra. It describes direct measurement of 

3M EmporeTM radium RAD disk. 

Simultaneous determination of 226Ra, 228Ra and 210Pb in drinking water using 3M 

EmporeTM RAD disk by LSC-PLS. J. Fons-Castells, J. Oliva, J. Tent-Petrus, M. Llauradó. 

Applied Radiation and Isotopes 124 (2017). pp. 83-89. 

Once the direct measurement of radium RAD disk was evaluated as a viable methodology 

for 226Ra and 228Ra determination, the problem of interference between 228Ra and 210Pb had 

to be solved. Both are low energy beta emitters with similar maximal energies (45.8 keV for 
228Ra and 63.5 keV for 210Pb), which, due to the quenching caused by the RAD disk in the 

vial, cannot be decomboluted. This paper presents a procedure in which elution of 210Pb 

from the RAD disk and PLS model are combined to simultaneously determine 226Ra, 228Ra 

and 210Pb. Furthermore, the quantification of the spectra by means of multilinear calibration 

using PLS model was also used to improve the determination of 210Pb. 
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5.1.  On the direct measurement of 226Ra and 228Ra using 3M 

EMPORETM RAD disk by liquid scintillation spectrometry 
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Abstract 

A study on the use of 3M Empore™ Radium RAD disk for the rapid and direct determination 

of 226Ra and 228Ra concentration in drinking water samples by means of liquid scintillation 

spectrometry is described. Three cocktails and several treatments were tested in order to 

improve the knowledge on the energy transfer between the alpha or beta – particle emissions 

of the isotopes fixed in the RAD disk and the cocktail. The sources of variability of this method 

were compared with the elution method, in which radium is stripped from de RAD disk and 

measured by liquid scintillation spectrometry using a Quantulus 1220TM. 

Keywords: RAD Disk, Solid Phase Extraction, 226Ra, 228Ra, 210Pb, Rapid methods 
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Introduction 

Determination of 226Ra and 228Ra is im-

portant from the point of view of environ-

mental protection and radiation protec-

tion. Determination of radium isotopes is 

considered in a huge range of environmen-

tal studies related to NORM and TE-NORM 

(Technologically-Enhanced, Naturally-Oc-

curring Radioactive Materials). 

Since radium is a bone-seeking element, 

and 226Ra and 228Ra have high radiotoxi-

city, these nuclides are considered poten-

tial contributors to the human Indicative 

Dose (ID). As it can be found in UNSCEAR 

2000 [1], drinking water is one of the ma-

jor sources in human intake of radium. For 

this reason 226Ra and 228Ra are also in-

cluded in the new European directive for 

drinking water [2] for which derived levels 

have been specified.  

Solid Phase Extraction (SPE) is a widely 

used alternative to BaSO4 co-precipitation 

methods [3,4] to pre-concentrate radium 

from aqueous solutions. SPE techniques 

commonly use chromatographic resins [5] 

or ionic exchange columns [6,7] in order to 

separate and concentrate radium. After 

that, radium isotopes can be measured by 

liquid scintillation spectrometry [6], alpha 

spectrometry [7,8] or gamma spectrome-

try [9]. However these methods are often 

time-consuming and may involve the use 

of large amounts of reagents. In the late 

‘90s the RAD disk has been introduced as a 

very practical SPE method for the concen-

tration of radium [10,11]. Radium RAD 

disks are available from vendors like 3M 

Empore™. 

The radium RAD disks used in this study 

are circular 47 mm diameter filters com-

posed by crown ether covalently bound to 

an inert substrate which selectively ex-

tracts Ra2+ from acid solutions [12]. These 

filters are used to extract and concentrate 

radium from aqueous samples. Detailed 

studies on the interfering elements in the 

extraction process were performed and 

reported by Scapitta and Miller in 1996 

[10]. After filtration of the sample through 

the RAD disk, several procedures may be 

applied for the subsequent radioactivity 

determination of 226Ra and 228Ra. For 228Ra 

it is recommended by the supplier [13] to 

store the filter for 14 to 28 days to allow 

for the decay of 224Ra and its decay prod-

ucts that interfere the measurement. This 

time is enough to achieve the ingrowth of 
228Ac, and to subsequently elute 228Ac to be 

counted by LSC or by a proportional coun-

ter. 226Ra may be determined via 222Rn by 

an emanation technique by elution with 

ethylene diamino tetraacetic acid (EDTA) 

and transferring in a radon bubbler [11]. 

However, methods that use radium RAD 

disk described in the literature commonly 
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involve the elution of radium with EDTA 

[14-18] or diammonium hydrogen citrate 

(DHC) [11,19] or both [20,21] and a subse-

quent measurement by LSC. 

Scapitta and Miller [10] suggested the pos-

sibility of performing a direct measure-

ment of the Radium RAD disk by liquid 

scintillation spectrometry transferring the 

filter directly inside a counting vial, adding 

scintillation cocktail and measuring it as 

such. This method is faster and reduces the 

use of reagents but may entail several 

problems that are not yet systematically 

reported. Seely and Osterheim in 1998 

used a similar approach for strontium by 

direct measurement of the Strontium RAD 

disks by liquid scintillation spectrometry 

[22]. 

In this paper, different factors that hinder 

the direct measurement of the radium 

RAD disk by liquid scintillation spectrom-

etry were studied with the aim to under-

stand them and, if possible, to eliminate or 

minimise their effect. Additionally, some 

observations associated with the elution of 

radium isotopes from RAD disk with basic 

EDTA and the subsequent measurement 

by LSC are reported. 

Experimental 

Apparatus 

All the measurement results that are re-

ported here were performed with an ultra-

low level liquid scintillation spectrometer 

Wallac Quantulus™ 1220 in alpha-beta 

separation mode and low coincidence bias. 

The counting time was 60 minutes for each 

sample and 1 minute for the SQP[E] (Spec-

tral Quench Parameter of the External 

standard) determination. The target iso-

topes were, 226Ra (alpha emitter with the 

energies 4.78 MeV (93.8 %) and 4.60 MeV 

(6.2 %)), 228Ra (weak beta emitter Emax = 

39.0 keV (60%) and 14.5 keV (40 %)) and 

210Pb (weak beta emitter Emax = 16.5 keV 

(80 %) and 63.0 keV (20 %))[23]. 

Reagents and Materials 

The samples were prepared using reverse 

osmosis water and diluted standard solu-

tions; such as a 226Ra certified standard so-

lution (containing 210Pb) and a 228Ra solu-

tion both supplied by National Institute of 

Standards and Technology (NIST) and a 

210Pb solution supplied by National Physi-

cal Laboratory (NPL). For the pulse shape 

analysis (PSA) optimization, diluted stand-

ards of 14C supplied by CERCA-LEA and 

241Am by the National Physical Laboratory 

(NPL) were used. 

Four different liquid scintillation cocktails, 

OptiPhase Hisafe™ III, Optiphase Super-

Mix™, Ultima Gold™ AB and Insta-Gel Plus 

supplied by Perkin Elmer, were tested for 

use with the RAD disk.  
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3M Empore™ Radium RAD disks were 

used for the extraction of radium and lead. 

20 mL PE vials supplied by Perkin Elmer 

were used in this study.  

For the filtration of the water samples, a 

3M Empore™ filtration system was cou-

pled to a N 840 FT.18 LABOPORT® vacuum 

pump. 

All reagents used were of analytical grade. 

Optimization of the Pulse Shape Analysis 

(PSA) level  

The PSA was optimized for three cocktails 

(Hisafe™ III, Ultima Gold™ AB and Insta-

Gel Plus) using 241Am as pure alpha emit-

ter and 14C as pure beta emitter. The PSA 

was not optimized for Optiphase Super-

Mix™ because this cocktail was just used in 

elution method to check phase stability.  

The vials for the optimization were pre-

pared by adding a conditioned RAD disk 

obtained after filtration of 20 mL of 2 M 

HNO3. Then, a known amount of the stand-

ard (241Am or 14C) was added together 

with 20 mL of the cocktail into the vial. 

These vials were counted for 10 minutes 

using different values of the PSA level in 

order to obtain a misclassification curve 

[24]. The optimal PSA was obtained as the 

value with the minimum total interfer-

ence. For Hisafe™ III, a second method for 

the optimization of the PSA level was also 

tested by using a sample containing 1 Bq 

of 226Ra standard solution which was fil-

tered through a previously conditioned 

RAD disk and transferred in a polyeth-

ylene LS vial with 20 mL of cocktail [25]. 

These results were compared with the 

standard PSA determination method. In 

order to avoid a misinterpretation in the 

alpha/beta separation caused by the in-

growth of the short lived decay products of 
226Ra, the vial was stored 28 day to allow 

secular equilibrium to be reached prior to 

the PSA tests. Then, the vial was counted at 

several PSA levels for 60 minutes. 

All the results and conclusions are dealt 

with in following paragraphs. 

Determination of 226Ra and 228Ra by direct 

measuring of the RAD disk 

Preliminary tests showed that measure-

ments of 226Ra by direct counting of the 

RAD disk by LSC are subject to several 

sources of bias. The measurements per-

formed right after the sample preparation 

show crosstalk from alpha particles in the 

beta window. Additionally, the spectra 

clearly shift to high energies (mainly in the 

alpha window) with time. 

In order to optimize the measurement 

conditions and to investigate the source of 

the problems mentioned above several ex-

perimental parameters were investigated. 
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At first, a poor energy transfer between 

the ionizing particle emitted from the radi-

onuclide fixed in the RAD disk and the 

cocktail were believed to be responsible 

for the observations made. In order to 

check this hypothesis, several tests were 

performed as described below.  

For all the tests, the sample was prepared 

as follows: the RAD disk was conditioned 

with 20 mL of 2 M HNO3, then the 250 mL 

sample spiked  with known amount of 
228Ra (3 Bq) or 226Ra  (1 Bq) acidified to pH 

< 2 with concentrated HNO3  was filtered 

through the RAD disk. In all cases the flow 

rate was lower than 50 mL min-1. 

The first test consisted of studying the im-

pregnation of the RAD disk with different 

types of cocktail. After the sample prepa-

ration, as described above, each filter was 

transferred into a LSC vial, where 20 mL of 

scintillation cocktail was  added. Respec-

tively, Hisafe™ III (S1 – S3),

 Ultima Gold™ AB (S4) or Insta-Gel Plus (S5) 

were used (see Table 1), followed by 1 

hour of cooling down in darkness to avoid 

photoluminescence phenomena. Then 

each sample was measured for 60 minutes. 

In the second test we applied different 

treatments believing to have an impact on 

the way the disk is impregnated by the 

cocktail: mixing for 30 minutes in an ultra-

sonic bath (S6), or for 10 minutes in a vor-

tex agitator (S7), drying of the RAD disk on 

a watch glass for 1 hour on a hot plate (S8) 

after filtration of the sample (see Table 1). 

Another treatment which was tested was 

to impregnate the RAD disk with the cock-

tail by suction, using the same filtration 

system as is used to filter the sample. 

10 mL of Hisafe™ III were sucked through 

the RAD disk and the eluted fraction was 

collected in a separate LS vial prepared 

also for counting after addition of another 

10 mL of fresh cocktail. 

The RAD disk impregnated with cocktail in 

this way was then transferred into another 

LSC vial and 20 mL of Hisafe™ III were 

added (S9) (see Table 1). 

  

Validation of Radium Isotopes Determination by means of Radium RAD disk   |  89



 

J. Fons-Castells et al. / J Radioanal Nucl Chem (2016) 309:1123-1131 

  

Table 1 
Radionuclides considered, treatment after filtration and impregnation methods and cocktails used for each sam-
ple. 

Test code Radionuclide(s) Treatment after filtra-
tion 

Cocktail 

S1 226Ra/210Pb Direct Hisafe™ III 
S2 228Ra Direct Hisafe™ III 
S3 210Pb Direct Hisafe™ III 
S4 226Ra/210Pb Direct Ultima Gold™ AB 
S5 226Ra/210Pb Direct Insta-Gel Plus 
S6 226Ra/210Pb Ultrasonic Hisafe™ III 
S7 226Ra/210Pb Vortex Hisafe™ III 
S8 226Ra/210Pb Dry Hisafe™ III 
S9 226Ra/210Pb Cocktail suction Hisafe™ III 
S10 226Ra/210Pb Direct creased Hisafe™ III 
S11 226Ra/210Pb Direct folded Hisafe™ III 

 

An overview of different types of cocktails 

and different treatments applied is pre-

sented in Table 1. 

In all these tests, the RAD disk was posi-

tioned inside the LS vial along its walls 

(see Fig. 1). 

Since the counting geometry of the LS vial 

with the RAD disk inside is not necessary 

symmetric with respect to the position of 

the photomultipliers tubes (PMT) of the 

LSC, the position of the LS vial in the coun-

ter has to be considered. In order to evalu-

ate the influence of the vial position on the 

counting rate or on the shape of the spec-

tra, sample S1 was measured at several ori-

entations (0°, 45°, 90°, 135° and 180°) af-

ter 28 days, when 226Ra reached the secu-

lar equilibrium with its daughter products. 

Two other ways of inserting the disk in the 

vial were considered: one by folding the 

disk in a specific way and another by 

creasing the disk. Fig.1 shows a schematic 

representation of the folding and different 

orientations of the vial with respect to the 

PMT. 

Elution of radium and lead from the RAD 

disk 

In the methods that entail elution of the ra-

dium isotopes from the RAD disk after the 

filtration, the EDTA is the most commonly 

extractant used [14-18]. We also tested 

this method. Samples were prepared in the 

same way as for the direct measurement, 

but radium was eluted from the disk using 

20 mL of a 0.25 M basic EDTA solution. 
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Fig. 1. Schematic representation of the folding of the filter in the vials in 

the counter (a) and different orientations and geometries of the RAD disk 

inside the LS vials (b) with respect to the PMT. 

 
An elution curve for 226Ra and 210Pb was 

obtained by collecting the eluted fraction 

every 2 mL. Furthermore, several tests 

were performed in order to check the 

amount of EDTA solution accepted by the 

cocktails (we tested four different cock-

tails); no radioactive tracers were added in 

these tests. 

Results and discussion 

Optimization of the Pulse Shape Analysis 

(PSA) level  

The results of the alpha and beta calibra-

tion with 241Am and 14C for Insta-Gel Plus 

show, at the optimal PSA level set at 40, an 

interference around 20 %, which is too 

high to achieve valid results in samples 

that may contain both alpha and beta emit-

ters. For Optiphase Hisafe™ III and Ultima 

Gold™ AB the misclassification was much 

lower (less than 1 %) at the optimum PSA 

level set at 90 for Hisafe™ III and 70 for Ul-

tima Gold™ AB using the missclasification 

method. 

For Optiphase Hisafe™ III we also per-

formed the alpha and beta calibration by 

means of Feng's method [24] in the ab-

sence of pure alpha or beta emitter, but 

just by using a 226Ra source. This method 

assumes that around the optimum PSA 

level there is an inflection in the misclassi-

fied counts. The data near the inflection 

point can be fitted to a cubic polynomial 

function (y=ax3+bx2+cx+d) and the opti-

mum PSA level is obtained by investigating 

where the second derivative of the fitted 

function (y”=3ax+b) is equal to 0. The op-

timal PSA is equal to –b/3a. 
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In Fig. 2 the counting rate in the alpha win-

dow relative to the total count rate is plot-

ted against the PSA level. The mathemati-

cal fitting of the curve by a cubic polyno-

mial is also shown. 

With this method, the optimum PSA level 

obtained is 75, which is fifteen units below 

the value obtained in the misclassification 

study with 241Am and 14C. The main ad-

vantage of this alternative method is to 

perform the calibration with the same ra-

dionuclides that are measured in the sam-

ples. However, in our case, this is not com-

pletely possible since the calibration 

standard was measured at secular equilib-

rium between 226Ra and its short-lived de-

cay products, while the actual samples are 

measured as soon as possible. This fact can 

be the cause of the difference in the PSA 

level obtained by classical method and the 

one obtained by Feng’s method. For this 

reason, the classical method was consid-

ered more appropriate and hence, for the 

measurements of our samples we decided 

to use Hisafe™ III as cocktail with a PSA 

level set at 90. 

Determination of 226Ra and 228Ra by direct 

counting of the RAD disk 

As shown by the preliminary studies, the 

measurements of 226Ra with the wet RAD 

disk inserted into a vial and then adding 

the cocktail (Hisafe™ III), show several 

sources of measurement bias. The meas-

urements performed just after the sample 

treatment have crosstalk from alpha parti-

cles in the beta window. 

 

Fig. 2. Ratio between count rate in the alpha multi-

channel and total count rate versus PSA value and 

fitting with a cubic polynomial 

This misclassification decreases during 

the first 5 hours after the preparation of 

the vial and stabilizes for times exceeding 

5 hours. Fig. 3 shows the evolution of the 

spectra as a function of the delay between 

sample preparation and counting, for sam-

ple S1, the delay is 1 hour (a) and 5 hours 

(b). Fig. 3 clearly shows that counts move 

from the beta window to the alpha win-

dow as a function of time. After 5 hours de-

lay between the preparation and the 

counting) the spectra still show further 

evolution mainly in the alpha window 

where it is observed that the spectrum 

shifts to higher energies. This effect can be 

seen in Figure 4 where spectra of sample 

S1 without considering alpha-beta separa-

tion are shown respectively 1, 3 and 5 
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hours after vial preparation. A similar 

counting vial was prepared using a sample 

spiked at 1 Bq/sample with 228Ra (S2) and 

the same effects were observed for the al-

pha counts of 224Ra. However, for sample 

S3 which just contains 210Pb, these phe-

nomena are not observed. In Figure 5 the 

evolution of spectral parameters during 

the first 20 hours after the preparation of 

a sample S1 is shown. The misclassifica-

tion, defined as the ratio between beta and 

alpha counts, and the spectral shifting de-

fined as the shift in channels measured at 

the channel with the maximum counts, are 

presented. The figure equally shows the 

mean value (continuous line) and 2σ 

standard deviation (dashed lines) for the 

misclassification and shifting parameters 

once they are stable. As can be seen, mis-

classification evolves during the first 5 

hours after sample preparation while the 

shifting evolves during the first 8 hours af-

ter sample preparation. 

An experimental parameter that combines 

radium recovery and counting efficiency 

was determined after 8 hours of the LS vial 

preparation when misclassification and 

shifting are stable. Values of (100 ± 2) % 

for 226Ra and (48 ± 2) % for 228Ra were ob-

tained. With these results we can conclude 

that the chemical yield for radium is 100 

%. 

 

  

 
Fig. 3. Spectra of sample S1, with alpha beta separation 1 hour after vial preparation (a) and 5 hours after 
vial preparation (b). 
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Fig. 4. Spectra of S1 after 1 hour (doted in blue), 3 

hours (dashed in green) and 5 hours (yellow) of de-

lay between sample preparation and LSC. No alpha 

beta separation is applied. Spectra were smoothed 

using Savitzky-Golay filter to better illustrate the 

shifting.  

The efficiency is 100 % for the alpha emis-

sion of 226Ra and 48 % for 228Ra, a low beta 

emitter. However lead is also retained in 

the radium RAD disks and may interfere in 

228Ra measurements due to the overlap-

ping between both LS spectra [10-11,14-

16]. These results are consistent with the 

literature, were 100 % of radium and lead 

retention is reported. Regarding the effi-

ciency, Wallner et. al. report values of 

100 % for 226Ra and 57 % for 228Ra [18].  

However, these results were obtained 

eluting radium from the RAD disk and 

measuring the solution. In our case, 226Ra 

and 228Ra are directly measured from the 

RAD disk and hence the efficiency for 
228Ra, low energy beta emitter, decreases. 

 

 

Fig. 5. Evolution of the misclassification (as ratio of 

the beta/alpha counts) and shifting (as channel with 

maximum number of counts) for the sample S1. 

It is known from literature that quenching 

may affect the alpha beta separation [26, 

27] and that it also affects the shape of the 

spectrum. However, the quenching, read 

from the SQP[E], remained constant dur-

ing the measurements, at a value of about 

765, and only in the first measurement is 

was slightly lower (775). It has to be 

pointed out that an increase of SQP[E] en-

tails a decrease of the quenching. Although 

SQP[E] remained constant, we assumed 

that the variations observed during the 

first hours after sample preparation are 

caused by changes in the energy transfer 

between the ionizing particle emitted from 

the radionuclide fixed in the RAD disk and 

the cocktail. The SQP[E] parameter may 

not describe this loss of energy before the 

excitation of the cocktail since the quench-

ing parameter is obtained from the spectra 

of Compton electrons produced in the vial 

by an external source. To explain the ob-

servations discussed, two possible causes 
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were considered. One possible cause is ex-

plained by considering that radionuclides 

fixed in the RAD disk slowly migrate into 

the cocktail during the first hours after 

sample preparation. The other possible 

cause, assuming that nuclides do not mi-

grate, is attributed to a slow impregnation 

of the disk by the cocktail. When the filter 

is not yet fully impregnated some radia-

tion may lose energy before it can interact 

with the cocktail. When the filter is fully 

impregnated, the emitted particles trans-

fer their energy in a unique way to the 

cocktail. In order to prove that one of these 

explanations was true, the RAD disk from 

the sample S2 was removed from the vial 

(after 21 h, once the spectrum is stable) 

and was transferred to a new vial contain-

ing fresh cocktail. Next, the new vial (con-

taining the RAD disk) and the initial vial 

with the cocktail that has been in contact 

with the RAD disk for 21 hours where 

counted again.  

Fig. 6 shows the spectra that were ob-

tained from both samples. It can be seen 

that only 220Rn and some beta decay prod-

ucts leached out in the cocktail, while the 

radium isotopes (224Ra and 228Ra) clearly 

remain fixed in the RAD disk.  

Fig. 6. Spectrum of the cocktail of S2 when the RAD 

disk is removed after 21 h (blue), and spectrum of 

the RAD disk of sample S2 with fresh cocktail (yel-

low). 

Since radium does not migrate from the 

disk to the cocktail, we assume that the 

evolution of the grade of impregnation of 

the RAD disk by the cocktail evolves for 

several hours once the RAD disk is in-

serted in the vial, causing the misclassifi-

cation and shifting of the spectra. For this 

reason, different cocktails and procedures 

that affect the impregnation of the RAD 

disk were tested. Direct measurement of a 

RAD disk containing a mixture of 226Ra and 

210Pb was also performed using both, Ul-

tima Gold™ AB (S4) and Insta-Gel Plus (S5) 

as cocktail. For Ultima Gold™ AB misclassi-

fications were observed until 5 hours after 

sample preparation, and shifting until 8 

hours after sample preparation as was ob-

served for Optiphase Hisafe™ III. These re-

sults were consistent because both cock-

tails are based on di-isopropylnaphtha-

lene (DIN). However, for Insta-Gel Plus 
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(1,2,4-Trimethylbenzene based cocktail) 

the misclassification does not change in 

time although it is high (~20 %). Also the 

spectral shifting is observed only for the 

first three hours after sample preparation. 

Insta-Gel Plus clearly impregnates the 

RAD disk faster, but the high misclassifica-

tion does not allow an accurate determina-

tion of 226Ra due to the high contribution of 

the cross talk.  

The different treatments applied to im-

prove the impregnation speed of the RAD 

disk by the cocktail (S6, S7 and S8) show 

similar results as for the sample S1. The en-

visaged methods (ultrasonic and drying) 

did not appreciable shorten the time of im-

pregnation. The time needed for the stabi-

lization of misclassification was decreased 

from 5 to 4 hours and from 7 to 8 hours for 

shifting of the spectra. 

Still another attempt was tried to speed up 

the impregnation of the RAD disk with 

cocktail. This was done by suction of the 

cocktail (S9) through the filter after filtra-

tion of the sample. This method showed 

that no misclassification or shifting oc-

curred after the first hour after the sample 

preparation. The alpha beta separation 

was correct, and the channel with the max-

imum counts did not change (and stayed at 

550 ± 5 channels). Furthermore, when the 

cocktail is sucked through the RAD disk af-

ter filtration of the sample, part of 210Pb 

that may interfere in 228Ra determination 

is also removed. Fig. 7 shows the spectra of 

the RAD disk impregnated through suction 

of the cocktail (S9) (a) and the eluted cock-

tail collected during the impregnation by 

suction of the RAD disk (b). It was ob-

served that 50 % of 210Pb was stripped 

from the RAD disk with Hisafe™ III while 
226Ra remains on the RAD disk (less than 

1 % is eluted in the cocktail fraction). 

The measurements of the sample S1 show 

that the orientation of the LS vial in the 

counter with respect to the PMT has no in-

fluence on the counting efficiency or on the 

shape of the spectra when the RAD disk is 

inserted along the vials wall. The measure-

ments for the creased and folded filter 

show loss of efficiency, misclassification 

problems and shifting of the spectra to 

lower energies.  
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Fig. 7. Alpha and beta spectra for a RAD disk with forced impregnation with cocktail (a) and the cocktail fraction 
used to impregnate it (b) samples S9. 
 

For example, for the folded RAD disk (S11) 

only 40 % of efficiency for 226Ra is 

achieved 8 hours after sample treat-

ment.As a summary of the test performed, 

it is possible to determine 226Ra and 228Ra 

by direct measurement of RAD disks under 

some considerations. One liter of sample 

acidified to pH < 2 with HNO3 is filtered 

through a RAD disk. To achieve the maxi-

mum efficiency and no problems of mis-

classification or shifting of the spectra, the 

RAD disk has to be inserted along the vials 

wall and a good impregnation of the RAD 

disk has to be achieved by means of wait-

ing 8 hours or sucking the cocktail through 

the RAD disk. Direct measuring of 228Ra 

will overestimate the real value when the 

sample contains 210Pb due to its chemical 

and spectral interference. 

Elution of radium and lead from the RAD 

disk 

The elution curves for 226Ra and 210Pb are 

shown in the Fig. 8 and are consistent with 

the literature. Möbius et al. reported that 

lead (210Pb) is more concentrated than ra-

dium in the first 5 mL of basic EDTA frac-

tion [20].  

 

Fig. 8 Elution curves for 226Ra and 210Pb from ra-
dium RAD disk by EDTA. 
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Table 2  
EDTA/cocktail ratio, cocktail used and appearance after 2 hours cooling down at 14 °C for test of sample ac-
ceptance. 

CODE EDTA/cocktail ratio Cocktail Observations 

E1 2/18 Ultima Gold™ AB Milky aspect 
E2 10/10 Ultima Gold™ AB Milky aspect and phase separation 
E3 2/18 Insta-Gel Plus Milky aspect 
E4 10/10 Insta-Gel Plus Milky aspect 
E5 2/18 SuperMix™ Clear 
E6 10/10 SuperMix™ Milky aspect 
E7 2/18 Hisafe™ III Clear 
E8 5/15 Hisafe™ III Phase separation 
E9 5/10(1) Hisafe™ III Phase separation 
E10 5/10(2) Hisafe™ III EDTA crystallization 

E11 10/18(3) Hisafe™ III Milky aspect 

(1) 5 mL of 0.25 M EDTA + 5 mL of Reverse Osmosis water + 10 mL of cocktail 
(2) 5 mL of 0.25 M EDTA + 5 mL 0.25 M HNO3 + 10 mL of cocktail 
(3) 10 mL of 0.25 M EDTA evaporated to 2 mL + 18 mL of cocktail 

 

 

There is a need to elute radium and lead 

from the RAD disk with at least 10 mL of 

0.25 M basic EDTA in order to achieve a 

yield of more than 95 %.  

The remaining 5 % is eluted with another 

10 mL of EDTA. Less than 0.5 % of the activ-

ity remains in the RAD disk after stripping 

with 20 mL of basic EDTA. Taking into ac-

count the volume of EDTA needed to strip 

95 % of radium and lead, we tested the ac-

ceptance of the EDTA eluted by different 

cocktails. The ratio EDTA to cocktail, the 

type of the cocktail used and the observa-

tions of these tests are presented in Table 2. 

The samples were prepared and cooled 

down for 2 hours at 14 °C. As is shown in 

Table 2, samples with a ratio 2/18 for Su-

perMix™ (E5) and Hisafe™ III (E7) have a ho-

mogeneous and clear aspect and are per-

fectly suitable for liquid scintillation meas-

urement. Samples E2, E8, E9 and E10 are not 

stable and present phase separation and 

hence are not suitable for liquid scintilla-

tion measurement. The dilution (E9) or neu-

tralization (E10) of EDTA does not increase 

the sample acceptance in the cocktail. The 

other samples show a milky aspect that, 

even when homogeneous, indicates that the 

mixtures are close to immiscible point. If 

these mixtures are measured by liquid scin-

tillation counting, a check after measure-

ment has to be done in order to ensure than 

no phase separation has occurred during 

the counting. Milky homogeneous samples 

were obtained for E6 and E11. 

 

 

98  |  Validation of Radium Isotopes Determination by means of Radium RAD disk



 

J. Fons-Castells et al. / J Radioanal Nucl Chem (2016) 309:1123-1131 

Conclusions 

Determination of 226Ra and 228Ra may be 

performed by means of the direct measure-

ment of the Radium RAD disk by liquid scin-

tillation counting under some considera-

tions. To ensure a good alpha and beta sep-

aration and good stability of the spectra af-

ter the sample preparation, it is necessary 

to wait at least 8 hours between sample 

preparation and counting. The RAD disk 

has to be inserted unfolded with the disk 

along the wall of the vial in order to achieve 

the maximum counting efficiency. 228Ra is 

overestimated in samples containing 210Pb 

due to interference.  

The waiting time between sample prepara-

tion and measurement can be reduced if the 

RAD disk is impregnated by the forced flow 

of the cocktail. One valid procedure to 

achieve this is to suck the cocktail through 

the RAD disk using a vacuum system. When 

this impregnation procedure is applied, the 

waiting time needed is just to avoid photo-

luminescence. Moreover the impregnation 

by suction of the cocktail also removes up 

to 50 % of 210Pb from the RAD disk and 

therefore, reduces its interference. 

For the elution of radium from the RAD 

disk, at least 10 mL of 0.25 M basic EDTA 

solution are needed to achieve a 95 % re-

covery for lead and radium.  The selection 

of a cocktail compatible with the EDTA so-

lution is critical. In case of working with 

milky solutions, the sample needs to be con-

trolled before and after the counting. 
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Abstract 

A procedure for the rapid and simultaneous determination of 226Ra, 228Ra and 210Pb in 

drinking water by means of extraction with a 3M EmporeTM Radium RAD disk and liquid 

scintillation spectrometry is described. The selective elution of 210Pb from the RAD disk 

and a multivariate calibration using partial least squares regression (PLS) are tested as 

methods to avoid overlap in the spectra between 228Ra and 210Pb. The validated procedure 

was tested with mixtures of radionuclides and interlaboratory materials; finally, it was 

applied to natural waters. 

Keywords: 226Ra, 228Ra, 210Pb, RAD disk, Multivariate Calibration 
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Introduction 

226Ra, 228Ra and 210Pb are radionuclides 

included in the European Directive for 

drinking water (Council Directive 

2013/51/Euratom) due to their radio-

toxicity and because they are common 

radionuclides in natural waters. Recently, 

in Spain, the new Royal Decree 314/2016 

included 226Ra, 228Ra and 210Pb as target 

radionuclides that have to be analysed in 

drinking water. For this reason, rapid 

methods for evaluating these radionu-

clides are required.  

Several methods for performing 210Pb 

determination based on radiochemical 

separation are described in the literature 

as well as for 226Ra and 228Ra. 

Regarding 210Pb, the common methods of 

separation are performed using sulfate 

co-precipitation method (Wallner, 2002) 

or extraction chromatography using Sr-

Spec resin (Vajda et al., 1997; Vrecek et 

al., 2004). 

Regarding radium isotopes, Ba(Ra)SO4 

and or Pb(Ra)SO4 coprecipitation and 

cation-exchange resin absorption are the 

most commonly used techniques to pre-

concentrate radium isotopes (Guogang & 

Jing, 2012). 

Another procedure based on the absorp-

tion of radium isotopes on MnO2-coated 

disk is described in the literature (Eik-

enberg et al., 2001). In this procedure, a 

rapid determination of 226Ra and 224Ra 

(alpha emitters) is achieved with low-

level alpha spectrometry. However, the 

determination of 228Ra is performed via 

228Th after a standing time of approxi-

mately six months. 

In the late 1990s, the Radium RAD disk 

was introduced as a rapid SPE (solid 

phase extraction) method for concentrat-

ing radium (Scapitta & Miller, 1996). 

Radium RAD disks are circular 47-mm 

diameter inert supports with a covalently 

bonded crown ether that selectively re-

tains radium isotopes (Durekova, 1997). 

It is important to note that although the 

RAD disk is a practical separation meth-

od for radium, these filters also retain 

lead isotopes and this may be an im-

portant drawback (Scapitta & Miller, 

1996; Ďureková , 1997; Ďureková  et ál., 

1999; Möbius, 2006; Schönhofer & Ma-

ringer, 2006; Wallner et al., 2008). 

There are different procedures to evalu-

ate radium using the RAD disk. In brief, 

they can be sorted into two classes. In the 

first one, radium is eluted from the RAD 

disk, which is usually achieved with a 

solution of basic EDTA (ethylenedia-

minetetraacetic acid) (Möbius, 2006; 

Schönhofer & Maringer, 2006; Wallner et 

al., 2008). When these methods are used, 

100 % of radium is eluted, but all the 

retained lead is also eluted. If this solu-

tion is measured by LSC with alpha beta 

separation, 226Ra can be determined, but 
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210Pb interferes with 228Ra (a low beta 

emitter) (Möbius, 2006; Schönhofer & 

Maringer, 2006; Wallner et al., 2008).  

A method to avoid this interference be-

tween 210Pb and 228Ra is based on the 

previous elimination of interferents like 

210Pb or 90Sr from the RAD disk. In the 

experiments done by Ďureková et ál., 

DHC (Diammonium hydrogen citrate) is 

used for both to elute interferents and 

after that to elute radium isotopes as 

well. In a first step lead and strontium 

were removed from the RAD disk with 20 

mL of DHC 6·10-4 mol L-1, after wait the 

ingrown of 228Ac (48 hours) it was eluted 

from the RAD disk with 20 mL of DHC 

3·10-4 mol L-1 and measured in a propor-

tional counter to determine 228Ra. Finally 

radium isotopes were removed from the 

RAD disk with 40 mL of DHC 0.2 mol L-1 

adjusted to pH 7.8 and 226Ra is counted 

by conventional radon emanation tech-

nique (Ďureková , 1997; Ďureková  et al., 

1999). This method solves the problem 

of interference between 228Ra and 210Pb 

but requires of time consuming classical 

techniques. 

Following similar strategy, a new method 

has been recently developed for the de-

termination of 210Pb and 226Ra/228Ra 

(Eikenberg et. al. 2014). This is based on 

the extraction of lead from the RAD disk 

with 5 mL of DHC 0.2 mol L-1 and fol-

lowed by the extraction of radium iso-

topes with 6 mL of 0.25 mol L-1 basic 

EDTA. On this work, triple-to-double 

coincidence ratio TDRC was used for 

efficiency tracing.  

The second approach for evaluating ra-

dium and lead include direct measure-

ments from the RAD disk as Scapitta & 

Miller suggest in 1996 for strontium RAD 

disk. Recently, some authors measured 

radium isotopes using this approach but 

overlapping 228Ra and 210Pb spectra are 

also a problem (Vasile et al., 2016; Fons-

Castells et al., 2016). In these cases, the 

authors do not determine 210Pb and no-

tice that in presence of 210Pb, 228Ra may 

be overestimated.  

Several methods for LSC spectra decon-

volution that can solve the problem of 

overlapping have been described in the 

literature. In the last years, PLS (Partial 

Least Squares) has been described as a 

practical tool for quantifying mixtures of 

alpha and beta emitters from LSC spectra 

(Mahani et al., 2012; Fons-Castells et al., 

2017).  

PLS is based on a reduction of variables 

by the use of a new coordinate system 

performed from new axes called latent 

variables (LVs), which are linear combi-

nations of the original variables (in our 

case, the count in each channel of the LSC 

spectra). These LVs are chosen to explain 

the maximum correlation between the 

original variables and activity of each 

isotope. In a first step, a PLS model was 
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created using a set of spectra for single 

or multiple isotope samples and the cer-

tified activity of these samples. After-

wards, the PLS model can be used to de-

termine the activity of a sample with its 

LSC spectrum. 

In this paper two strategies to eliminate 

the interference between 228Ra and 210Pb 

are studied to propose a procedure for 

simultaneously determining 226Ra, 228Ra 

and 210Pb; selective extraction of lead 

isotopes with DHC from the RAD disk 

and PLS quantification. Both strategies 

were validated with prepared mixtures 

and a quality control material. Then, the 

method was applied for evaluating the 

226Ra, 228Ra and 210Pb in water samples 

collected from five different sources, 

which may be used for human consump-

tion. 

Experimental   

Apparatus 

Retention test analyses were measured 

with a BEGe 3830 CANBERRA high reso-

lution gamma spectrometer. In the reten-

tion test, the target radionuclides were 

228Ac 911.21 keV, [26.60 %] measured to 

follow the retention of 228Ra when the 

secular equilibrium is reached 3 days 

after the sample treatment and 210Pb 

46.5 keV, [4 %]. The counting time was 

sufficient to achieve a proper measure 

statistics.  

A Wallac QUANTULUS 1220 low level 

liquid scintillation spectrometer was 

used for quantification of  massic activi-

ties of 226Ra, 228Ra and 210Pb. The count-

ing time was 100 min for each sample 

and 1 min for the spectral quench pa-

rameter of the external standard 

(SQP[E]). The target radionuclides were 

226Ra (alpha emitter with the energies 

4.78 MeV [93.8 %] and 4.60 MeV 

[6.2 %]), 228Ra (weak beta emitter 

Emax = 39.0 keV [60%] and 14.5 keV 

[40 %]) and 210Pb (weak beta emitter 

Emax = 16.5 keV [80 %] and 63.0 keV 

[20 %]) (Wallner, 2002). 

Reagents 

Nitric acid (69 %) was used to acidify 

water samples to pH 2. DHC (Diammoni-

um hydrogen citrate) was used as ex-

tracting solution to elute 210Pb from the 

RAD disk. All reagents were of analytical 

grade. 226Ra and 228Ra were certified 

standard solutions from Eckert and Zieg-

ler and 210Pb certified standard solution 

from DAMRI, all of which had 3 % uncer-

tainty with a coverage factor k=2. The 

scintillation cocktail used in this study 

was Optiphase Hisafe III. 
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Preliminary studies RAD disk retention 

To evaluate the influence of the sample 

volume in the retention of radium and 

lead isotopes in radium RAD disk, some 

preliminary tests were performed. Two 

volumes were tested, 1 L and 5 L. Two 

tests for both volumes were performed 

from spiking with 3 Bq of 228Ra or 210Pb, 

respectively. For each test two RAD disk 

were used, the first one was used to filter 

each sample. Then, the filtered water for 

each experiment was filtered again 

through the second RAD disk. Both RAD 

disks were measured by gamma spec-

trometry to determine the retained 228Ra 

and 210Pb.  

Elution 

According to the literature, basic EDTA 

solution is commonly used to elute radi-

um and lead isotopes from the RAD Disk 

(Möbius, 2006; Schönhofer & Maringer, 

2006; Wallner et al., 2008). However, the 

amount of EDTA needed to achieve a 

recovery near 100 % is not accepted by 

commonly used cocktails (Fons-Castells 

et al., 2016); hence, the volume of sample 

added to the counting vial has to be re-

duced. To avoid the hindrance that in-

creases the detection limits, the pro-

posed procedure radium isotopes were 

directly measured on the RAD Disk. 

As mentioned previously, one of the key 

issues for evaluating the 228Ra using the 

RAD disk is the interference of 210Pb due 

to its overlapping spectra. To minimize 

this interference, DHC was used to elute 

lead isotopes. 

Several DHC concentrations and pH val-

ues for the extraction solution were test-

ed to optimize the extraction 210Pb from 

the RAD disk. The pH values were select-

ed considering the constant of complex 

formation of DHC with Ra and Pb. In Ta-

ble 1, the compositions of the tested solu-

tions were described.  

Table 1 
 DHC concentration and pH of the tested extrac-
tion solutions. 

Code 
Concentration DHC 

(mol L-1) 
pH 

E1 0.05 6.50 
E2 0.05 8.50 
E3 0.05 5.75 
E4 0.01 6.50 

 

Elution tests were performed using dif-

ferent solutions to remove lead from the 

RAD disk. One-liter sample was spiked 

with 1 Bq L-1 of 210Pb and 1 Bq L-1 of 

226Ra. A total of 20 mL of each solution 

described in Table 1 was used to elute 

lead from the RAD disk. 10 fractions, 2 

mL each, were collected. After the elution 

fraction was collected, the RAD disks 

were transferred in a LS vial, 20 mL of 

scintillation cocktail had been added and 

measured by LSC. To avoid shifting of the 

spectrum or misclassification problems, 

the RAD disk was counted 8 hours after it 

was placed into a counting vial. This pro-

cedure ensured good impregnation with 
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the cocktail (Fons-Castells et al., 2016). 

The counting time was 100 min. 

Optimization of the Pulse Shape Analyser 

(PSA) 

The optimization of the alpha beta dis-

criminator parameter, PSA, was per-

formed with an interference study using 

236U as an alpha emitter and 40K as a beta 

emitter. The optimal PSA value was es-

tablished as 100. 

Interferents evaluation 

226Ra decay products 

To avoid misclassification issues caused 

by the incomplete impregnation of the 

RAD disk by the cocktail, the waiting time 

was at least eight hours. Consequently, 

several short lived decay products of 
226Ra may have grown into the counting 

vial. For this reason, 226Ra activity is cor-

rected by taking into account the time 

that elapsed between the sample prepa-

ration and measurement. Furthermore, 

the 226Ra standard contains 14 % 210Pb 

because the standard was not recently 

separated. For this reason, in all samples, 

the presence of 210Pb in the 226Ra stand-

ard was considered. 

228Ra decay products 

224Ra, as 228Ra, occurs in the decay chain 

of 232Th. 224Ra, as a radium isotope, is 

retained in RAD disks and could interfere 

with the determination of 226Ra because 

it is an alpha emitter. However, the 224Ra 

alpha emission (5.78 MeV) is more ener-

getic than the emission of 226Ra 

(4.87 MeV) and does not overlap (Cook & 

Kleinschmidt, 2011). 

90Sr 

Strontium, as radium, is an alkaline earth 

metal; hence, their chemical proprieties 

are similar. For this reason, 90Sr is an 

interferent that has to be considered 

when radiochemical separation is re-

quired for radium isotope determination. 

Furthermore, some authors evaluated an 

important retention of 89Sr in radium 

RAD disks (Scapitta & Miller, 1996).  

To evaluate the interference of 90Sr in the 

determination of 226Ra, 228Ra and 210Pb in 

the developed method, a retention test 

was performed. Following the optimized 

procedure, although 90Sr is retained, 

more than 97 % is eluted with DHC solu-

tion. For this reason, 90Sr does not signif-

icantly interfere with determination of 
226Ra and 228Ra. However, the presence of 
90Sr in a sample may cause overestima-

tion of 210Pb. 

Counting efficiency 

The counting efficiency has to be deter-

mined for each radionuclide of interest in 

both the RAD disk and solutions used to 

elute 210Pb. The efficiency in the RAD disk 

for each radionuclide was evaluated at 

two massic activity concentration levels 
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(1.0 and 0.1 Bq kg-1) in triplicate. This 

efficiency was determined by filtering 

known levels of standards, 226Ra, 228Ra or 

210Pb, and considering the results ob-

tained on RAD disk retention study of 

each element. The spectra obtained from 

the standards used to evaluate the effi-

ciency were also used as calibration 

standards for the PLS models. 

The counting efficiency of 210Pb in DHC 

was determined by spiking with a known 

amount of 210Pb standard, which was 

previously purified by eliminating 210Bi 

and 210Po with Sr-Specific resin, a DHC 

solution and mixing it with the scintilla-

tion cocktail Optiphase Hisafe III. 

As is mentioned above, the quenching 

was controlled by means of SQP[E] pa-

rameter in both, RAD disk and eluted 

fraction. The quenching level of spiked 

samples, intercomparison material and 

natural samples measured was compa-

rable and evaluated around the 830 ± 10 

for RAD disk and 810 ± 10 for DHC frac-

tion. For the application of this method to 

different kind of samples (e.g. marine 

water or waste water) the role of 

quenching on the counting efficiency has 

to be considered. 

Analytical procedure 

The results obtained in the preliminary 

tests allow the optimization of the proce-

dure for 226Ra, 228Ra and 210Pb determina-

tion. In this section, the optimized proce-

dure and samples analysed by means of 

it are described. 

Prepared mixtures 

Several mixtures of radionuclides were 

prepared in the laboratory by adding a 

known amount of radioactive standard to 

test the veracity of the procedure. In Ta-

ble 2, the massic activity of the three ra-

dionuclides in each mixture is presented. 

In order to remove 224Ra from the 228Ra 

standard two sequential separations 

were performed. Triskem U/TEVATM 

resin was used to retain the 228Th con-

tained in 228Ra standard. After 21 days of 

the separation the activity of 224Ra de-

cays until 3 % of the initial activity. At 

this point a second separation of 228Th 

was performed to ensure than the stand-

ard of 228Ra contains less than 1.5 % of 
224Ra during the course of the experi-

ments. High resolution γ-spectrometry 

was used to confirm the activity of 228Ra 

via 228Ac and the decay of non supported 

224Ra. 

Table 2 
Massic activity added and its uncertainty with a 
coverage factor k=2 for 226Ra, 228Ra and 210Pb in 
laboratory prepared mixtures. 

CODE 
226Ra

Bq kg-1 

228Ra 
Bq kg-1 

210Pb 
Bq kg-1 

M1 1.00 ± 0.05 - 0.96 ± 0.10 
M2 1.00 ± 0.05 - 0.19 ± 0.02 
M3 0.10 ± 0.01 - 0.89 ± 0.09 
M4 0.11 ± 0.01 - 0.09 ± 0.01 
M5 1.01 ± 0.05 0.12 ± 0.01 0.10 ± 0.01 
M6 0.10 ± 0.01 1.09 ± 0.06 0.02 ± 0.01 
M7 0.10 ± 0.01 0.11 ± 0.01 0.02 ± 0.01 
M8 - 1.14 ± 0.06 0.08 ± 0.01 
M9 - 0.13 ± 0.01 0.09 ± 0.01 
M10 0.10 ± 0.01 0.13 ± 0.01 0.09 ± 0.01 
M11 1.02 ± 0.05 0.12 ± 0.01 0.19 ± 0.02 
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The method was validated for determin-

ing 226Ra with a quality control material 

IAEA-TEL-2014-03 sample 03 that con-

tains 24.5 ± 0.2 Bq kg-1 of 90Sr/90Y, 

26.3 ± 0.2 Bq kg-1 of 134Cs, 19.6 ± 0.1 Bq 

kg-1 of 137Cs, 17.9 ± 0.1 Bq kg-1 of 226Ra, 

5.48 ± 0.04 Bq kg-1 of natU and 20.0 ± 0.1

Bq kg-1 of 241Am.  

Natural samples 

After the validation, five natural samples 

from different places in Spain and differ-

ent radiochemical proprieties were ana-

lysed according to the developed proce-

dure. In Table 3, the type of water, dry 

residue, conductivity, pH and geological 

reservoir type for each sample are pre-

sented. 

Optimized Procedure 

For all the samples, prepared mixtures,

quality control material and natural 

samples, the following procedure was 

applied. A radium RAD disk was mounted 

in a vacuum filtration tramp and it was 

connected to a vacuum pump. Twenty 

millilitres of 2 mol L-1 HNO3 were filtered 

through the RAD disk to condition it. 

Then, 5 L of sample that was acidified to 

pH < 2 with HNO3 was filtered through 

the RAD disk, and the funnel was cleaned 

with 20 mL of 2 mol L-1 HNO3. After-

wards, 7 mL of DHC 0.05 mol L-1 at pH 

5.75 were used to elute 210Pb from the 

RAD disk, and they were collected in a

polyethylene (PE) vial. An aliquot of 5 mL 

of this solution was mixed with 15 mL of 

Optifase Hisafe III. This vial was meas-

ured in a Wallac QUANTULUS for 100 

min after waiting 2 hours to avoid photo-

luminescence phenomena. The RAD disk 

was transferred into another PE vial to 

which 20 mL of Hisafe III were added. 

This vial was measured for 100 min after 

waiting 8 hours to ensure correct im-

pregnation of the RAD disk with the 

cocktail, which prevents a bad alpha beta 

classification and shifting of the spectra 

during the measurement (Fons-Castells 

et al., 2016). 

Table 3  
Chemical and geological characteristics of natural waters. 

CODE Type of water Residue  
(g L-1) 

Conductivity 
(mS cm-1) pH Reservoir geology 

S1 Groundwater 1.0 1.22 7.2 Granitic 
S2 Drinking water 0.5 0.70 7.0 Gypsum-bearing rocks 
S3 Drinking water 4.7 1.96 7.1 Basaltic 
S4 Groundwater 2.1 2.15 7.1 Old lignite mines 
S5 Surface 1.5 1.32 7.8 Detrital 
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Optimized Procedure 

For all the samples, prepared mixtures, 

quality control material and natural 

samples, the following procedure was 

applied. A radium RAD disk was mounted 

in a vacuum filtration tramp and it was 

connected to a vacuum pump. Twenty 

millilitres of 2 mol L-1 HNO3 were filtered 

through the RAD disk to condition it. 

Then, 5 L of sample that was acidified to 

pH < 2 with HNO3 was filtered through 

the RAD disk, and the funnel was cleaned 

with 20 mL of 2 mol L-1 HNO3. After-

wards, 7 mL of DHC 0.05 mol L-1 at pH 

5.75 were used to elute 210Pb from the 

RAD disk, and they were collected in a 

polyethylene (PE) vial. An aliquot of 5 mL 

of this solution was mixed with 15 mL of 

Optifase Hisafe III. This vial was meas-

ured in a Wallac QUANTULUS for 100 

min after waiting 2 hours to avoid photo-

luminescence phenomena. The RAD disk 

was transferred into another PE vial to 

which 20 mL of Hisafe III were added. 

This vial was measured for 100 min after 

waiting 8 hours to ensure correct im-

pregnation of the RAD disk with the 

cocktail, which prevents a bad alpha beta 

classification and shifting of the spectra 

during the measurement (Fons-Castells 

et al., 2016). 

Data treatment 

Two different data treatment were taken 

in consideration for the quantification of 

226Ra, 228Ra and 210Pb. In the first one, the 

activity of each radionuclide is deter-

mined by integration of the counts de-

tected in each counting window. The 

counting windows defined were for RAD 

disk measurement, from channel 530 to 

950 of the α-MCA for 226Ra and from 20 

to 300 of the β-MCA for 228Ra. For the 

measurement of DHC eluted fraction, the 

chánnels from 60 to 460 of the β-MCA 

were integrated for determine the activi-

ty of 210Pb. The uncertainty and the de-

tection limits were calculated for this 

method following ISO 11929:2010 con-

sidering uncertainty on the sample prep-

aration and elution yields and counting 

uncertainty.  

To ensure a better separation between 

228Ra and 210Pb a second data treatment 

based on a PLS model which was handled 

using MATLAB 2009b (MathWorks, Inc. 

Natic, MA, USA) and SMPLS algorithm 

with a Statistics Toolbox (Eigenvector 

Research) was tested. 

A PLS model correlates an X-Block, which 

contains the predictors (spectra), with a 

Y-Block, which contains variables (activi-

ty of the radionuclides of interest). First, 

the model is created with the data from 

the calibration standards. Afterwards, 

the model can be used for determination 

of the massic activity of the radionuclides 

of interest using the spectra of each sam-

ple as predictors. 
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Three different PLS models were con-

structed to determine the 226Ra, 228Ra and 

210Pb. Each model was constructed using 

a specific region of all spectra obtained in 

the measurements of calibration stand-

ards.  

The model for determining 226Ra was 

constructed using channels 530 to 950 

from the alpha region of the measure-

ment of the RAD disk, while the model 

for the determination of 228Ra using the 

channels from 20 to 300 of the beta re-

gion of the RAD disk measurement. In the 

case of the model for determining the 

210Pb, it was constructed using channels 

from 60 to 460 for the beta spectra of the 

DHC solution measurement. 

The Y-Block’s for all models were the 

activities of 226Ra, 228Ra and 210Pb added 

to each calibration standard. The proce-

dure for constructing PLS models for 

determining several alpha and beta emit-

ters is fully described in (Fons-Castells et 

al., 2017). 

The uncertainty of the predicted activi-

ties was estimated using simple Faber 96 

method (Faber et al., 1996; Zhang & Gar-

cia-Munoz, 2009). 

To estimate the limit of detection for 

each model, a set of blanks (samples that 

do not contain the radionuclide of inter-

est but that may contain other interfering 

radionuclides) were analysed according 

to the developed procedure. In other 

words, the set used to estimate the MDA 

of the method for 226Ra contain mixtures 

spiked with 228Ra and 210Pb, but none 

were spiked with 226Ra. The limit of de-

tection for each radionuclide was evalu-

ated as the arithmetic mean plus three 

times the standard deviation of each set 

(Fons-Castells et al., 2017). 

 In Fig. 1, the spectra of a mixture of 
226Ra, 228Ra and 210Pb for RAD disk and 

eluted fraction are represented together 

with the counting windows used for its 

determination for both treatments, win-

dow quantification and PLS model.

  

 

Fig. 1. Spectra of the RAD disk after the elution (a) and the eluted fraction of 210Pb (b) for a spiked sample with 
226Ra, 228Ra and 210Pb together with the counting windows used for its determination. 
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Results and discussion 

Preliminary studies 

RAD disk retention 

The retention of radium in one litre sam-

ples by the RAD disk was 97.5 ± 2.9 %. 

The retention of lead by the RAD disk 

was 88.4 ± 2.4 %. No significant differ-

ences in the retention between 1 L and 

5 L samples were observed. 

Elution 

In Fig. 2, the accumulated extraction lev-

els of 226Ra and 210Pb in function of the 

volume of the extracting solution are 

represented for each solution.   

For E2 and E4 tests, the eluted radium 

was low with 20 mL of extracting solu-

tion, 1 % and 2 %, respectively. 

However, the total eluted lead was clear-

ly below 100 %. In the case of E2, the 

maximum extraction was achieved at 

8 mL of extracting solution and is evalu-

ated as approximately 70 %. For test E4, 

the lead extraction is constantly increas-

ing, but the accumulated extraction ob-

tained at 20 mL is approximately 90 %. 

In test E1, the maximum extraction of 
210Pb was achieved with 10 mL of ex-

tracting solution and was evaluated as 

85 %. With 10 mL of this solution, 1 % of 
226Ra was extracted from the RAD disk. 

Finally, for test E3 99.2 % of lead and 

1.4 % of radium were eluted with 7 mL of 

extracting solution. Considering these 

results, 7 mL of DCH 0.05 mol L-1 at pH 

5.75 was selected as the extracting solu-

tion to elute 210Pb from the RAD disk. 

 

 

Fig. 2. Percentage of radium and lead eluted at increasing volumes of extracting solutions, E1, E2, E3 and E4. 
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Table 4 
Quality parameters for 226Ra, 228Ra and 210Pb. 

 

Counting efficiency 

Table 4 summarizes the results obtained 

for retention, elution and efficiency for 
226Ra, 228Ra and 210Pb. Global retention 

refers to the radium retained on the RAD 

disk after the elution step, while global 

elution refers to the percentage of lead 

eluted regarding the initial amount.  

Data treatment 

The criterion used in this work for opti-

mizing the number of latent variables 

(LVs) in PLS models was based on the 

minimization of the root mean square 

error of the cross validation (RMSECV). 

The PLS models for determining 226Ra 

and 228Ra were constructed with 3 LVs, 

while the one for 210Pb was constructed 

with 1 LV. This is because 226Ra and 228Ra 

are determined using the spectra of the 

RAD disk where some decay produces 

ingrowth. These results make it more 

difficult to explain the spectra of the RAD 

disk; hence, more LVs are needed to 

achieve sufficient correlation between 

the initial variables (channels of the 

spectra) and activity of each isotope.  

In Table 5, the coefficient of determina-

tion for the calibration (R2) and root 

mean square error of the calibration for 

each model are shown. The coefficient of 

determination of the linear regression 

between the added activity and that de-

termined by the model were for radium 

isotopes higher than 0.99 and for 210Pb 

approximately 0.97. 

Table 5 
R2 of the calibration and root mean square error of 
cross validation (RMSECV) for each radionuclide. 

 R2 RMSECV 
226Ra 0.997 0.128 
228Ra 0.997 0.076 
210Pb 0.973 0.102 

 

The detection limits obtained were 0.02 

Bq kg-1 for 226Ra, 0.03 Bq kg-1 for 228Ra 

and 0.02 Bq kg-1 for 210Pb with 5 L for the 

sample volume and 100 min for the 

counting time. The detection limits ob-

tained are sufficiently low to fulfil the 

request of the European Directive. 

Prepared mixtures 

Table 6 shows the massic activity spiked 

in the prepared mixtures described in 

Table 2, and the activity determined us-

ing both methods, window quantification 

 226Ra 228Ra 210Pb 

Initial retention (%) 97.5 ± 2.9 97.5 ± 2.9 88.4 ± 2.4 
Eluted with DHC (%) 1.4 ± 0.7 1.4 ± 0.7 99.2 ± 1.0 
Global retention (%) 96.1 ± 2.9 96.1 ± 2.9 - 
Global elution (%) - - 87.7 ± 2.8 

Counting efficiency (%) 98.7 ± 3.7 35.6 ± 2.1 92.6 ± 3.7 
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and PLS model for 226Ra, 228Ra and 210Pb. 

The reported uncertainty is reported 

with a coverage factor k=2 and the bias 

between the determined activity and the 

added is showed in brackets.  

As seen in Table 6, for both radium iso-

topes, the maximum bias obtained is ob-

served in the samples with low massic 

activity (0.1 Bq kg-1) and is evaluated as 

approximately 10 % for both methods. 

Furthermore, no effects of interference 

between radionuclides were observed 

because the bias observed in these mix-

tures is comparable to that obtained with 

pure standards. 

On contrary, for 210Pb determination a 

slightly higher bias is observed. For win-

dows quantification, the bias registered 

goes up to 30 % for samples with 228Ra 

and a low activity of 210Pb (M8) which is 

in part explained with 1.4 % of 228Ra 

eluted in lead fraction. This high bias is 

partially solved using PLS quantification 

which removes 228Ra contribution from 

210Pb fraction.  

However, the bias obtained for 210Pb de-

termined by PLS model is higher than the 

obtained for radium isotopes. This fact is 

consistent with the results of R2 for 210Pb 

shown in Table 5, which is lower than 

that obtained for radium isotopes. The 

highest bias observed is approximately 

20 % for one sample with low massic 

activity (0.2 Bq kg-1). For the other of the 

samples, the bias was below 10 %.  

The results confirm an improvement in 

the crosstalk between 228Ra and 210Pb 

that was achieved using two different 

separation strategies; the specific elution 

of 210Pb with DHC and the use of a multi-

variate calibration (PLS) for quantifying 

both, eluted and retained fraction. For 

the quantification of radium isotopes, the 

bias is below than 10 % considering both 

methods while for 210Pb the use of PLS 

models is need to reduce the bias below 

20 %. 

Quality control 

The procedure was then validated for to 

determine the 226Ra with the quality con-

trol provided from IAEA. The massic ac-

tivity determined with the procedure 

was 18.6 ± 0.6 Bq kg-1 instead of the 

17.9 ± 0.1 Bq kg-1 that was provided for 

the organizer. 

Natural samples 

The validated procedure was applied to 

determine the massic activity of 226Ra, 

228Ra and 210Pb in five natural samples, 

which may be used for human consump-

tion. Table 7 shows the results obtained 

for these samples with their uncertainty. 

When the determined massic activity is 

below the limit of detection, it is shown 

as < MDA. 

  

Validation of Radium Isotopes Determination by means of Radium RAD disk   |  115



 

 
J. Fons-Castells et al. / Applied Radiation and Isotopes 124 (2017) pp. 83-89 

 
 

 

 

T
a

b
le

 6
 

Ad
de
d 
m
as
si

c 
ac
tiv

it
y

 o
f t
he

 p
re
pa
re
d 
m
ix
tu
re
s a
nd

 m
as
si

c 
ac
tiv
ity

 d
et
er
m
in
ed

 w
ith

 P
LS

 m
et
ho
d 
an
d 
w
in
do
w

 m
et
ho
d 
w
ith

 th
e 
re
la
tiv
e 
bi
as

 b
et
w
ee

n
 th
em

 in
 b
ra
ck
et
s 

fo
r 
ea
ch

 m
ix
tu
re

 a
nd

 ra
di
on
uc
lid
e.

 

 
  

2
2

6
R

a 
2

2
8
R

a 
2

1
0
P

b 

C
O

D
E 

A
d

d
ed

 
D

et
. W

in
d

 (
B

ia
s)

 
D

et
. P

LS
 (

B
ia

s)
 

A
d

d
ed

 
D

et
. W

in
d

 (
B

ia
s)

 
D

et
. P

LS
 (

B
ia

s)
 

A
d

d
ed

 
D

et
. W

in
d

 (
B

ia
s)

 
D

et
. P

LS
 (

B
ia

s)
 

B
q

 k
g

-1
 

B
q

 k
g

-1
 (%

) 
B

q
 k

g
-1

 (%
) 

B
q

 k
g

-1
 

B
q

 k
g

-1
 (%

) 
B

q
 k

g
-1

 (%
) 

B
q

 k
g

-1
 

B
q

 k
g

-1
 (%

) 
B

q
 k

g
-1

 (%
) 

M
1
 

1
.0

0
 ±

 0
.0

5
 

1
.0

2
 ±

 0
.1

5
 (

1
 %

) 
0

.9
6

 ±
 0

.0
9

 (
-4

 %
) 

- 
< 

0
.0

6
 

< 
0

.0
3

 
0

.9
6

 ±
 0

.1
0

 
1

.0
2

 ±
 0

.1
5

 (
6

 %
) 

0
.9

8
 ±

 0
.0

9
 (

3
 %

) 
M

2
 

1
.0

0
 ±

 0
.0

5
 

0
.9

5
 ±

 0
.1

4
 (

-5
 %

) 
0

.9
7

 ±
 0

.0
9

 (
-3

 %
) 

- 
< 

0
.0

6
 

< 
0

.0
3

 
0

.1
9

 ±
 0

.0
2

 
0

.2
1

 ±
 0

.0
3

 (
9

 %
) 

0
.2

0
 ±

 0
.0

2
 (

6
 %

) 
M

3
 

0
.1

0
 ±

 0
.0

1
 

0
.1

1
 ±

 0
.0

2
 (

1
0

 %
) 

0
.1

1
 ±

 0
.0

2
 (

1
1

 %
) 

- 
< 

0
.0

6
 

< 
0

.0
3

 
0

.9
9

 ±
 0

.0
9

 
1

.0
7

 ±
 0

.1
6

 (
8

 %
) 

0
.9

5
 ±

 0
.0

9
 (

-4
 %

) 
M

4
 

0
.1

1
 ±

 0
.0

1
 

0
.1

0
 ±

 0
.0

2
 (

-5
 %

) 
0

.1
0

 ±
 0

.0
1

 (
-2

 %
) 

- 
< 

0
.0

6
 

< 
0

.0
3

 
0

.0
9

 ±
 0

.0
1

 
0

.1
0

 ±
 0

.0
2

 (
1

2
 %

) 
0

.1
0

 ±
 0

.0
1

 (
5

 %
) 

M
5
 

1
.0

1
 ±

 0
.0

5
 

1
.0

0
 ±

 0
.1

5
 (

-1
 %

) 
1

.0
3

 ±
 0

.0
9

 (
2

 %
) 

0
.1

2
 ±

 0
.0

1
 

0
.1

3
 ±

 0
.0

2
 (

1
0

 %
) 

0
.1

2
 ±

 0
.0

2
 (

1
 %

) 
0

.1
0

 ±
 0

.0
1

 
0

.1
2

 ±
 0

.0
2

 (
1

5
 %

) 
0

.0
9

 ±
 0

.0
1

 (
-6

 %
) 

M
6
 

0
.1

0
 ±

 0
.0

1
 

0
.0

9
 ±

 0
.0

1
 (

-1
0

 %
) 

0
.1

0
 ±

 0
.0

1
 (

0
 %

) 
1

.0
9

 ±
 0

.0
6

 
1

.1
3

 ±
 0

.1
7

 (
4

 %
) 

1
.1

8
 ±

 0
.1

0
 (

9
 %

) 
0

.0
2

 ±
 0

.0
1

 
< 

0
.0

6
 

< 
0

.0
2

 
M

7
 

0
.1

0
 ±

 0
.0

1
 

0
.0

9
 ±

 0
.0

1
 (

-7
 %

) 
0

.1
0

 ±
 0

.0
1

 (
-4

 %
) 

0
.1

1
 ±

 0
.0

1
 

0
.1

1
 ±

 0
.0

2
 (

0
 %

) 
0

.1
2

 ±
 0

.0
2

 (
9

 %
) 

0
.0

2
 ±

 0
.0

1
 

< 
0

.0
6

 
< 

0
.0

2
 

M
8
 

- 
< 

0
.0

4
 

< 
0

.0
2

 
1

.1
4

 ±
 0

.0
6

 
1

.1
6

 ±
 0

.1
7

 (
3

 %
) 

1
.2

3
 ±

 0
.1

1
 (

8
 %

) 
0

.0
8

 ±
 0

.0
1

 
0

.1
2

 ±
 0

.0
2

 (
3

3
 %

) 
0

.1
0

 ±
 0

.0
1

 (
1

4
 %

) 
M

9
 

- 
<0

.0
4

 
< 

0
.0

2
 

0
.1

3
 ±

 0
.0

1
 

0
.1

3
 ±

 0
.0

2
 (

5
 %

) 
0

.1
2

 ±
 0

.0
2

 (
-4

 %
) 

0
.0

9
 ±

 0
.0

1
 

0
.1

0
 ±

 0
.0

2
 (

1
7

 %
) 

0
.1

0
 ±

 0
.0

1
 (

1
5

 %
) 

M
1

0
 

0
.1

0
 ±

 0
.0

1
 

0
.1

1
 ±

 0
.0

2
 (

8
 %

) 
0

.1
0

 ±
 0

.0
1

 (
-5

 %
) 

0
.1

3
 ±

 0
.0

1
 

0
.1

2
 ±

 0
.0

2
 (

-5
 %

) 
0

.1
2

 ±
 0

.0
2

 (
-5

 %
) 

0
.0

9
 ±

 0
.0

1
 

0
.1

1
 ±

 0
.0

2
 (

2
1

 %
) 

0
.1

0
 ±

 0
.0

1
 (

9
 %

) 
M

1
1
 

1
.0

2
 ±

 0
.0

5
 

1
.0

3
 ±

 0
.1

5
 (

0
 %

) 
1

.0
3

 ±
 0

.0
9

 (
1

 %
) 

0
.1

2
 ±

 0
.0

1
 

0
.1

4
 ±

 0
.0

2
 (

1
3

 %
) 

0
.1

3
 ±

 0
.0

2
 (

1
0

 %
) 

0
.1

5
 ±

 0
.0

2
 

0
.1

2
 ±

 0
.0

2
 (

-2
0

 %
) 

0
.1

6
 ±

 0
.0

2
 (

1
0

 %
) 

 

116  |  Validation of Radium Isotopes Determination by means of Radium RAD disk



 

 
J. Fons-Castells et al. / Applied Radiation and Isotopes 124 (2017) pp. 83-89 

Table 7 
Massic activity of 226Ra, 228Ra and 210Pb determined with the PLS method for the five natural samples de-
scribed in Table 3. 

CODE 
226Ra 

Bq kg-1 

228Ra 
Bq kg-1 

210Pb 
Bq kg-1 

S1 < 0,02 < 0,03 < 0,02 
S2 < 0,02 < 0,03 < 0,02 
S3 0,51 ± 0.05 < 0,03 < 0,02 
S4 0,08 ± 0.01 < 0,03 < 0,02 
S5 0,19 ± 0.02 < 0,03 0,13 ± 0.02 

 

 

As seen in Table 7, for all samples, the 

228Ra massic activity is below the detec-

tion limit. For 210Pb, just S5, has an activi-

ty that is higher than the detection limit, 

but it is below the derived level estab-

lished by the European Directive. In the 

case of 226Ra, S3, S4 and S5 has higher ac-

tivity than the detection limit, but S3 has 

an activity that is greater than that estab-

lished in the directive. With these results, 

all samples may be used for human con-

sumption, except for S3, due to the high 

226Ra level. 

Conclusions 

A procedure for rapidly and simultane-

ously evaluating 226Ra, 228Ra and 210Pb 

based on separation using a radium RAD 

disk and LSC-PLS measurement has been 

described. This procedure combines the 

strength of the selective extraction of 
210Pb using DHC 0.05 mol L-1 at pH 5.75 

from a RAD disk and multivariate cali-

bration to avoid interference between 

228Ra and 210Pb. Radium isotopes can be 

determined directly from the counting of 

the RAD disk and 210Pb from the eluted 

fraction without PLS model obtaining 

similar biases. The procedure was vali-

dated and applied to determine three 

natural radionuclides in five water 

sources in Spain that have potential use 

as drinking water. Four of these sources 

were evaluated as suitable for human 

consumption, while the other one was 

close to the limit of the European Di-

rective for 226Ra.  
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5.3.  Discussion 

From the results obtained in the two scientific papers from this chapter, it has to be 

mentioned that a procedure has been validated for the simultaneous determination of 226Ra, 
228Ra and 210Pb by means of solid phase extraction using a radium RAD disk and subsequent 

measurement by liquid scintillation spectrometry. 

The first paper considers the feasibility of the direct measurement of radium isotopes 

from the RAD disk into the counting vial. The problems that entail the direct measurement 

are, on the one hand, that a shifting to channels of high energy of the spectra of 226Ra is 

observed when the RAD disk is sequentially measured over time. On the other hand, the 

counts of 226Ra (an alpha emitter) are misclassified in the beta multichannel until eight 

hours after the sample preparation.  

SQP[E] was monitored during the first 20 hours after sample treatment, but no 

significant differences were detected.  

We considered several hypotheses to explain the shifting of the spectrum and the 

misclassification issues.  

On the one hand, we considered that radionuclides retained in the RAD disk may slowly 

migrate to the cocktail during the first hours of sample preparation. This may explain the 

better detection after eight hours without α/β misclassification and with no shifting of the 

spectrum. However, this hypothesis was rejected after separately measuring the cocktail 

from a sample prepared 20 hours before after removing the RAD disk. The RAD disk was 

also measured with a fresh cocktail. The results show that radium isotopes and decay 

products remain in the RAD disk while 222Rn migrates to the cocktail. 

On the other hand, assuming that the radionuclides of interest do not migrate to the 

cocktail, the aforementioned issues may be attributed to a slow impregnation of the RAD 

disk by the cocktail. In this way, while the RAD disk is impregnated, the transference of 

energy from the radionuclide is retained in the filter and the cocktail improves, which 

explain the differences in both spectra position and α/β classification changes. This 

hypothesis was proved by impregnating the RAD disk just after sample filtration by sucking 

the cocktail trough the filter. The results obtained with this experiment just after sample 

preparation are equivalent to those obtained by the usual procedure after eight hours. 

Furthermore, part of the 210Pb retained on the RAD disk was eluted with the cocktail used 

to impregnate the RAD disk. 
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For the aforementioned reasons, the shifting and misclassification problems observed in 

the first hours after sample preparation may be explained by considering that the RAD disk 

needs a certain amount of time to become properly impregnated with cocktail. Hence, the 

evolution of the grade of RAD disk impregnation with cocktail interferes in the 

determination of radium. 

Figure 7 depicts the evolution of the shifting of the 226Ra spectra and its misclassification. 

The shifting is represented as the channel with the maximum number of counts, which 

increased during the first eight hours after the sample preparation. After that, the maximum 

in 226Ra spectrum remains constant. The misclassification is represented as the ratio 

between beta and alpha counts. This decreases within the first five hours after sample 

preparation and remains constant after that. 

 

Figure 7. Evolution of misclassification and shifting of the spectra for a sample that contains 226Ra. 

Furthermore, the folding and the position of the RAD disk into the counting vial has been 

evaluated and, regarding the folding of the RAD disk, it has to be positioned along the LS vial 

walls to achieve maximum efficiency. No effect of the vials position inside the scintillation 

spectrometer was observed. 

It was found that the complete elution of radium isotopes from the RAD disk can be 

performed by using basic ethylenediamine tetraacetic acid (EDTA) solutions. Though three 

different scintillation cocktails were tested, the volume required to achieve complete 

elution and concentration and media of EDTA required for this elution is not compatible 

with any cocktail. For this reason, to obtain a stable counting solution without phase 

separation, just an aliquot of the total volume used for the elution can be added into the 

counting vial to decrease the detection limit. 
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In addition, as lead isotopes are also retained in the RAD disk, the determination of 228Ra 

is affected by the presence of 210Pb, since both are beta emitters with close energies. 

For this reason, several elution solutions at different dihydrogen ammonium citrate 

(DHC) concentrations and pH values were tested to determine the selective extract lead 

isotopes from the RAD disk. The optimal elution conditions were established as 0.05 mol L-

1 of DHC at pH 5.75. In this way, radium isotopes, mainly 226Ra and 228Ra, were determined 

directly from the measurement of the RAD disk, while 210Pb is determined from the fraction 

eluted with DHC. The results obtained in spiked mixtures containing 226Ra, 228Ra and 210Pb 

for radium isotopes exhibit a bias of 10 % for both. However, for 210Pb, some samples have 

a bias higher than 30 %. Even the contribution of 210Bi—which increases in the eluted 

fraction from 210Pb after the extraction is subtracted—may provide an explanation for the 

high bias observed.  

For this reason, multivariate calibration by means of PLS models were applied for the 

determination of 226Ra, 228Ra in the RAD disk and 210Pb in the eluted fraction. To achieve this 

quantification, a calibration set with spectra of single radionuclides at different levels of 

activity concentration was used. The results obtained show that the bias for radium isotopes 

does not significantly change and remain around 10 %. However, the bias observed in 

mixtures of radionuclides for 210Pb decreases with this quantification method to 10 %. 

From all this investigation, the prospered procedure was based on selective extraction 

of radium and lead isotopes by means of a 3M EmporeTM Radium RAD disk. These 47 mm 

diameter filters are composed of crown ether covalently bounded to an inert substrate. In 

the optimized procedure, RAD disk are preconditioned by filtering 20 mL of 2 mol L-1 HNO3. 

Afterwards, an aliquot from 1 to 5 L of sample acidified to pH lower than 2 with HNO3 are 

filtered thought the RAD disk by using a vacuum filtering system. Lead isotopes are then 

eluted from the RAD disk. 7 mL of DHC 0.05 mol L-1 at pH 5.75 were collected in a 

polyethylene vial. This solution was mixed with 15 mL of Optifase HisafeTM III and measured 

in a Wallac QUANTULUS for 100 min after waiting two hours to avoid photoluminescence 

phenomena. Besides this, the RAD disk was transferred into another PE vial to which 20 mL 

of Hisafe III was added. This vial was measured for 100 min after waiting eight hours to 

ensure correct impregnation of the RAD disk with the cocktail, which prevents a bad 

alpha/beta classification and shifting of the spectra during the measurement.  

The detection limits of the procedure that uses 1 L of sample are 0.04 Bq kg-1, 0.06 Bq kg-

1 and 0.06 Bq kg-1 for 226Ra, 228R and 210Pb, respectively. 
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This procedure has been validated with reference materials and has been used for 

quantification of drinking-water samples. 

  

122  |  Validation of Radium Isotopes Determination by means of Radium RAD disk



 

 

 

 

 

 

 

 

 

 

 

 

6. PARTIAL LEAST SQUARES REGRESSION APPLIED 

TO LIQUID SCINTILLATION SPECTROMETRY 

DECOMBOLUTION 

  



 

 

  



 

 

Finally, the last step for the simultaneous determination of several isotopes from one 

single LS spectrum concerns the feasibility of PLS models to conduct this deconvolution. PLS 

models will be constructed by using LS spectra obtained by means of several procedures, 

such as those used to determine gross alpha and gross beta activities (described in the 

papers of Chapter 4) or those used to determine 226Ra, 228Ra and 210Pb using RAD disk 

(described in the papers of Chapter 5). A database of spectra of the radionuclides listed in 

the Directive 2013/51/EURATOM at three levels of activity concentration and at different 

quenching levels was created to construct PLS models.  

 

Simultaneous determination of specific alpha and beta emitters by LSC-PLS in 

water samples. J. Fons-Castells, J. Tent-Petrus, M. Llauradó. Journal of Environmental 

Radioactivity 166 (2017) pp. 195-201. 

 

This paper studies the feasibility of PLS regression based on LS spectra with alpha/beta 

separation. A set of calibration spectra that include three replicates at three different 

activity concentrations for seven radionuclides was used to quantify prepared mixtures of 

these radionuclides and inter-comparison materials. Furthermore, we tested quantification 

using a PLS model in the presence of a radionuclide that was not include in the calibration 

model.  

 

Effect of quenching on efficiency, spectra shape and alpha-beta discrimination in 

liquid scintillation spectrometry. J. Fons-Castells, V. Díaz, A. Badía, J. Tent-Petrus, M. 

Llauradó. Send for publication at Applied Radiation and Isotopes. 

 

Since PLS models are based on the shape of spectra, and because these are highly affected 

by quenching, an exhaustive study was performed on the effects of colour and chemical 

quenching on efficiency, spectrum shape and alpha/beta separation using different alpha 

and beta emitters. The main objectives of this study were, on one hand, to evaluate the 

changes in alpha and beta spectra and to thereby determine which families of radionuclides 

present the same behaviour. On the other hand, a database of spectra of the studied 

radionuclides at different quenching levels was created to construct PLS models by using 

quenched standards to quantify quenched samples. 
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6.1.  Simultaneous determination of specific alpha and beta emitters 

by LSC-PLS in water samples 

  



 

 

  



J. Fons-Castells et al. / Journal of Environmental Radioactivity 166 (2017) 195-201 

Simultaneous determination of specific alpha and beta emitters by LSC-PLS 

in water samples 

J. Fons-Castells *, J. Tent-Petrus, M. Llauradó 

Chemical Engineering and Analytical Chemistry Department, University of Barcelona, Di-

agonal 647, 08028 Barcelona, Spain 

*corresponding author: jordi.fons@ub.edu 

 

Abstract 

Liquid scintillation counting (LSC) is a commonly used technique for the determination of 

alpha and beta emitters. However, LSC has poor resolution and the continuous spectra for 

beta emitters hinder the simultaneous determination of several alpha and beta emitters 

from the same spectrum. In this paper, the feasibility of multivariate calibration by partial 

least squares (PLS) models for the determination of several alpha (natU, 241Am and 226Ra) 

and beta emitters (40K, 60Co, 90Sr/90Y, 134Cs and 137Cs) in water samples is reported. A set of 

alpha and beta spectra from radionuclide calibration standards were used to construct 

three PLS models.  

Experimentally mixed radionuclides and intercomparision materials were used to validate 

the models. The results had a maximum relative bias of 25% when all the radionuclides in 

the sample were included in the calibration set; otherwise the relative bias was over 100% 

for some radionuclides.  

The results obtained show that LSC-PLS is a useful approach for the simultaneous deter-

mination of alpha and beta emitters in multi-radionuclide samples. However, to obtain 

useful results, it is important to include all the radionuclides expected in the studied sce-

nario in the calibration set.  

Keywords: Alpha emitters, Beta emitters, Simultaneous quantification, Multivariant cali-

bration, Partial least squares   
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Introduction 

 

Liquid scintillation counting (LSC) is a 

meaningful technique for the determina-

tion of alpha and beta emitters. It has 

appropriate detection efficiency but poor 

resolution. This poor resolution hinders 

the simultaneous determination of dif-

ferent emitters in the same spectrum 

because of their spectra overlap. In the 

case of beta emitters this overlapping is 

unavoidable on account of their continu-

ous spectra. However, several authors 

have achieved quantification of different 

isotopes through the same LSC spectrum. 

The first approach purposed was based 

on the definition of two counting zones 

(windows) for the determination of two 

isotopes 3H and 14C (Okita et al., 1957). 

The high energy window was assumed to 

contain just counts of the high energy 

isotope. However, the low energy win-

dow contains counts of both the low and 

the high energy isotopes. The counts of 

the high energy window are used to 

quantify the high energy isotope and 

then these counts are used to subtract 

the contribution of the high energy iso-

tope in the low energy window (Okita et 

al., 1957).  

This technique was improved by consid-

ering two windows with contributions of 

both isotopes (the inclusion method). 

Nowadays, the inclusion method is used 

for the determination of several pairs of 

isotopes such as 55Fe and 59Fe (Viteri and 

Kohaut, 1997), 3H and 14C (Shaffer and 

Langer, 2007) or 32P and 33P (Nakanishi 

et al., 2009).  

Another method used to determine the 

composition of binary samples is based 

on the SIS (spectral index of the sample). 

The SIS is the center of mass of the spec-

tra and it is specific for a radionuclide in 

a constant level of quenching. In a binary 

sample the SIS is a linear combination of 

the SIS of pure radionuclide standards. 

This method was used to determine 35S 

and 32P (Noor et al., 1995), and 3H and 14C 

(Noor et al., 1996). 

A further evolution was based on the 

definition of three windows to determine 

two isotopes (three over two fitting and 

digital overlay technique). In general, by 

this technique several isotopes could be 

determined by using a number of win-

dows greater than the number of iso-

topes. The digital overlay technique also 

permits quench correction. This tech-

nique was described in patents (Rundt 

and Kouru, 1989, 1992). Although it al-

lows the quantification of radionuclide 

mixtures, it is typically used to correct 

quenching effects in single isotopic sam-

ples (Kim et al., 2006; Hueber-Becker et 

al., 2007). 

The advances in computation also per-

mitted the development of new tech-

niques. Some authors quantified several 

isotopes using the same spectra by de-

convolution techniques. Software was 
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developed and applied to deconvolute 

complex spectra from pure spectra 

standards taking into account the 

quenching of the sample and allowing 

determination of up to six isotopes 

(Kashirin et al., 2000; Malinovsky et al., 

2002). Pure spectra standards were used 

to resolve 85Sr, 90Sr and 90Y in complex 

mixtures by fitting (Altzitzoglou, 2008). 

Other approaches are based on fit the 

spectrum of the sample to a linear com-

bination of tailed Gaussian functions 

(Nebelung and Baraniak, 2007; Nebelung 

et al., 2009) or to a Fourier series 

(Remetti and Sessa, 2011; Remetti and 

Franci, 2012). 

Another approach to fulfill the aim of 

quantify several isotopes by the same 

scintillation spectra is based on multivar-

iate calibration methods. The use of par-

tial least squared (PLS) to avoid interfer-

ence phenomena and quantify individual 

isotopes in composite spectra has been 

studied for solid scintillation (Roig et al., 

1999) and for plastic scintillation (Bagan 

et al., 2011). For LSC, a model based on 

multi-way PLS with energy channels as 

the primary variable and cocktail sample 

ratio as the secondary variable was de-

veloped to determine the 235U/238U iso-

tope ratio (Mahani et al., 2012). 

There were also improvements in the 

data preprocess, such as the selection of 

channels to construct the PLS model se-

lected by means of an artificial neural 

network using a genetic algorithm (Ma-

hani et al., 2007). 

In this work the feasibility of multivari-

ate calibration by partial least squares 

(PLS) models based on LSC spectra with 

alpha beta discrimination is studied in 

order to determine simultaneously dif-

ferent alpha (natU, 241Am and 226Ra) and 

beta emitters (40K, 60Co, 90Sr/90Y, 134Cs 

and 137Cs) in water samples without ra-

diochemical separation. The isotopes 

were selected to cover a wide energy 

range of both alpha emissions (from 

4.20 MeV of 238U to 5.49 MeV of 241Am) 

and beta emissions (from 0.31 MeV of 
60Co to 2.28 MeV of 90Y). The PLS was 

based on a reduction of the variables by 

the use of new coordinate system per-

formed from new axes called latent vari-

ables (LV), which are linear combina-

tions of the original variables.In this 

study the original variables were counts 

in each channel of the multichannel ana-

lyzer (MCA). These LVs are chosen as the 

ones to explain the maximum correlation 

between original variables and the activi-

ty of each isotope. The weights for each 

variable to each LV are called loadings 

and the weights for each LV to each sam-

ple are called scores. 

Material and methods 

Detector 

An ultra-low level LSC spectrometer 

(1220 QUANTULUS, Wallac (Turku, Fin-

land)) with alpha-beta pulse shape ana-
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lyzer (PSA) and logarithmic amplification 

was used. The quenching control of the 

samples was performed by means of the 

Spectral Quench Parameter of the Exter-

nal Standard (SQP[E]) with a source of 
152Eu. 

Reagents 

High capacity scintillation cocktail Ultima 

Gold AB supplied by Perkin Elmer was 

used throughout the work. Radioactive 

solutions were prepared diluting a 

weighed amount of the following radio-

active liquid standards: 60Co 

73.9 ± 1.1 kBq g-1, 134Cs 37.0 ± 0.6 kBq g-1, 
natU 0.96 ± 0.03 kBq g-1, 226Ra 

0.89 ± 0.03 kBq g-1 and 236U 0.76 ± 0.02 

kBq g-1 supplied by Eckert & Ziegler (Va-

lencia, USA); 90Sr 4.07 ± 0.03 kBq g-1 

standard in secular equilibrium with 90Y 

supplied by Amersham International 

(Braunschweig, Germany); and 137Cs 849 

± 6 kBq g-1 and 241Am 43.9 ± 0.7 Bq g-1 

standard supplied by CERCA LEA (Paris, 

France). 40K solutions were prepared 

from dry salt supplied by Merck (Berlin, 

Germany). Its activity was calculated by 

applying the natural abundance of 40K 

and its semidisintegration period. All 

these solutions are traceable to NIST. 

Samples 

Radionuclide calibration standards 

For each radionuclide, three aliquots of 

500 mL were labeled at different activity 

levels by dilution of the standard with 

HNO3 1%. Table 1 shows the spiked ac-

tivity and its uncertainty with a coverage 

factor k = 2 for each sample. The spectra 

obtained from the analysis of these radi-

onuclide calibration standards were 

treated and used to construct the models. 

Linear combination of radionuclide cali-

bration standards spectra 

By means of linear combinations among 

radionuclide calibration standards spec-

tra, 57 simulated composite spectra were 

calculated. All the possible combinations 

of isotopes, from binary samples to a six 

isotope mixture were calculated.  

 

Table 1 
Massic activity of the 24 radionuclide calibration standards and their uncertainty. 

Radionuclide 
 

High activity 
(Bq kg-1) 

Intermediate activity 
(Bq kg-1) 

Low activity 
(Bq kg-1) 

40K 10.84 ± 0.54 8.49 ± 0.42 1.88 ± 0.09 
60Co 53.10 ± 1.59 26.83 ± 0.81 10.14 ± 0.30 

90Sr/90Y* 42.83 ± 0.64 21.43 ± 0.32 8.18 ± 0.12 
137Cs 41.99± 0.63 21.04 ± 0.32 6.62 ± 0.10 
natU** 

241Am 

10.40 ± 0.62 
12.74 ± 0.38 

5.19 ± 0.31 
6.23 ± 0.19 

2.24 ± 0.13 
1.25 ± 0.04 

134Cs*** 61.23 ± 1.84 30.32 ± 0.90 12.18 ± 0.36 
226Ra*** 10.00 ± 0.50 5.20 ± 0.26 0.90 ± 0.04 

* Activity of 90Sr (the samples also contains 90Y in secular equilibrium). 
** Activity of 234U + 238U (the sample also contains 234Th and 234mPa in secular equi-
librium). 
*** These standards were used to calibrate the models for the determination of qual-
ity control samples 
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Table 2 
Massic activity added for each radionuclide in mixtures of radionuclides, along with their uncertainty. 

Code 
 

40K 
(Bq kg-1) 

60Co 
(Bq kg-1) 

90Sr/90Y 
(Bq kg-1) 

137Cs 
(Bq kg-1) 

natU 
(Bq kg-1) 

241Am 
(Bq kg-1) 

134Cs 
(Bq kg-1) 

BETA 14.59±0.73 30.55±0.92 23.18±0.35 16.43±0.25 - - - 
MIX - - 23.85±0.36 16.38±0.25 6.12±0.37 5.42±0.16 - 

INTERF 13.57±0.68 29.99±0.90 23.06±0.35 16.34±0.25 6.32±0.38 5.22±0.16 20.46±0.61 

 
Each linear combination was performed 

by addition, using a random replicate of 

the intermediate activity solution for n 

isotope and subtracting n-1 blank spec-

tra. The actual activity for each isotope in 

each spectrum was obtained also by ad-

dition. 

These simulated spectra were used to 

make a preliminary test of the model and 

to estimate the minimum detectable ac-

tivity (MDA) for each isotope. 

Experimentally mixed radionuclides 

Three mixtures of radionuclides of 500 

mL were prepared with a massic activity 

near to the intermediate activity of the 

radionuclide calibration standards (Ta-

ble 1). The BETA mixture contained four 

beta emitters that covered a wide range 

of beta emissions (from 0.31 MeV of 60Co 

to 2.28 MeV of 90Y). The MIX mixture 

contained both alpha and beta emitters. 

The INTERF mixture contained the six 

radionuclides studied (40K, 60Co, 90Sr/90Y, 
137Cs, natU and 241Am) and 134Cs (0.66 MeV 

maximal energy), an intermediate energy 

beta emitter not included in the calibra-

tion set and used here as an interferent. 

Table 2 shows the spiked massic activi-

ties and uncertainties with a coverage 

factor k = 2 for each composite. 

The spectra obtained from the analysis of 

these mixtures of radionuclides were 

used to evaluate the bias of the PLS mod-

el. 

Quality control and intercomparison ma-

terials 

In order to verify the procedure to con-

struct the PSL models, an intercompari-

son exercise was done and a quality con-

trol material was analyzed. However, 

these materials contained other radionu-

clides than the used for model calibra-

tion, and hence, two new models had to 

be created.  

Table 3 
Massic activity of IAEA-TEL-2014-03 sample 03. 

 
IAEA-TEL-2014-03 sample 03 

 

Activity 
(Bq kg-1) 

Uncertainty 
(Bq kg-1) 

90Sr/90Y 24.5 0.2 

134Cs 26.3 0.2 

137Cs 19.6 0.1 

226Ra 17.9 0.1 

natU* 5.48 0.04 

241Am 20.0 0.1 
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The materials used were IAEA-TEL-

2014-03 sample 03, a spiked water quali-

ty control material with a known massic 

activity (see Table 3), and IAEA-TEL-

2015-03 sample 01, spiked water with an 

unknown activity of anthropogenic 

gamma emitters and 90Sr. 

Analytical procedure 

The analytical procedure used was based 

on evaporating to dryness a 100 mL ali-

quot of the sample. The precipitated ob-

tained is dissolved in 10 mL of deionised 

water acidified by HCl to pH = 1.5. After-

wards 8 mL aliquot of this dissolution is 

mixed with 12 mL of Ultima Gold AB in 

PE vials. The vial is counted with the ul-

tra-low level liquid scintillation spec-

trometer QUANTULUS 1220, after 2 h 

remaining in darkness to avoid photolu-

minescence phenomena. The vial was 

counted using α/β discrimination count-

ing mode after 2 h remaining in darkness 

to avoid photoluminescence phenomena. 

The calibration of PSA (Pulse Shape Ana-

lyzer) used in the alpha/beta discrimina-

tion was performed by means of a mis-

classification study with 236U as pure 

alpha emitter and 40K as pure beta emit-

ter (Fons et al., 2013). The optimal dis-

crimination was obtained at PSA value of 

100. In these conditions the interference 

was below 6% for both alpha and beta 

emitters. For all the samples analyzed the 

quenching remained constant and 

SQP[E] values were between 790 and 

800. This minimum variation did not 

affect the spectral response. However, for 

natural water samples, the presence of 

some metallic ions (Ni2+, Fe3+) or organic 

matter may cause quenching effects. In 

that case, the PLS model would have to 

be constructed with single radionuclide 

calibration standards at different levels 

of quenching. 

Data treatment 

The data treatment and PLS model were 

handled in MATLAB2009b version 

(MathWorks, Inc., Natick, MA, USA) using 

SIMPLS algorithm by means of Statistics 

Toolbox (Eigenvector Research). The aim 

of the PLS was to correlate a matrix of 

predictors (XBlock) with a matrix of 

measured activities of each radionuclide 

(YBlock) for the different samples. In 

order to achieve the best correlation and 

improve the prediction power of the 

model, several pretreatments had to be 

done. Radionuclide calibration standard 

spectra, for 40K, 60Co, 90Sr/90Y, 137Cs, natU 

and 241Am, were stored by rows in a ma-

trix (XBlock). Each row contained 2040 

variables, 1020 concerning the counts of 

the channels in beta spectrum and 1020 

concerning the counts of the channels in 

alpha spectrum. It should to be noted 

that in both alpha and beta spectrum the 

corresponding blank was subtracted. In 

order to minimize the computation time 

and to reduce the complexity of the mod-

el, the region of interest (ROI) for alpha 
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(454-915) and beta (75-895) spectra 

were selected. This procedure entails a 

reduction from 2040 to 1196 variables. 

Afterwards, each spectrum in the matrix 

was smoothed using a Savitzky-

Golayfilter with polynomial order 1 and a 

window width of 31. Before the PLS 

model construction this matrix was mean 

centered. At the end of this treatment, 

XBlock was a matrix of 54 rows, one for 

each radionuclide calibration standard 

spectra (6 radionuclides per 3 levels of 

activity per 3 replicates), and 1196 col-

umns (containing the counts of alpha and 

beta ROI). For each radionuclide calibra-

tion standard, the activities in the count-

ing vial of each radionuclide were stored 

by columns in another matrix (YBlock). 

Each row contained the activity of each 

radionuclide (40K, 60Co, 90Sr/90Y, 137Cs, 

natU and 241Am) for each spectrum. 

Since the analytical procedure entails a 

sample concentration, the activity in the 

vial was calculated from the values of 

massic activity concentration (Table 1) 

by means of Equation (1). YBlock was a 

matrix of 54 rows (one for each spectra) 

and 6 columns (containing the activity 

for each radionuclide). 

𝐴𝑣𝑖𝑎𝑙
𝑖 =

𝐴𝑠𝑎𝑚𝑝𝑙𝑒
𝑖 ∗ 𝑚𝑠𝑎𝑚𝑝𝑙𝑒 ∗ 𝑚𝑎𝑑𝑑

𝑚𝑑𝑖𝑠
 (1) 

where; 

Aivial is the activity of the radionuclide i 

introduced into the counting vial in Bq. 

Aistandard is the added activity of the radio-

nuclide i in the radionuclide calibration 

standards corrected at measure date in 

Bq kg-1. 

mstandard is the mass of radionuclide cali-

bration standard evaporated in kg. 

mdis is the mass of solution after the pre-

cipitate dissolution in kg. 

madd is the mass of the aliquot added in 

the vial in kg. 

The added activity for each linear combi-

nation is also a linear combination of the 

activities of the radionuclide calibration 

standards used to generate the spectrum. 

The same data treatment used for refer-

ence radionuclide spectra was applied 

for the linear combinations of reference 

radionuclide standards and the experi-

mentally mixed radionuclides. 

Optimization of the number of latent vari-

ables 

One of the critical points in a PLS model 

construction is the determination of the 

optimal number of latent variables (LVs) 

used to construct it. In this work, the 

criterion to select the number of LV was 

based on the root mean square error of 

cross validation (RMSECV). The number 

of LV was sequentially increased until the 

last addition did not improve the 

RMSECV. The cross validation was per-

formed by means of the ‘venetian blinds’ 

algorithm with seven data splits 

(Rubingh et al., 2006). 
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Fig. 1 shows the RMSECV for each radio-

nuclide against the number of LV. As can 

be seen this error decreased in few LV 

for some radionuclides but 6 LV were 

needed to reduce the RMSECV for all 

radionuclides below an acceptable 

threshold (0.1%). 

 

Fig. 1. Root mean square error of cross validation 
vs. latent variable number for each radionuclide. 
 

Selectivity ratio 

Selectivity ratio was calculated as the 

ratio between explained and residual 

variance of the spectral variables and 

proves useful to identify which variables 

are the most important in the discrimina-

tion of groups of samples (Rajalahti et al., 

2009). For this reason, selectivity ratios 

spectra for 90Sr/90Y, natU and 241Am are 

plotted in Fig. 2. As can be seen the most 

important predictors for this radionu-

clides did not overlap, and have high 

maximum values (over 200). For the al-

pha emitters, the most important varia-

bles for the discrimination exactly corre-

spond to the shape of their spectra. For 

90Sr/90Y the selectivity ratio spectrum 

matches with the channels of higher en-

ergy in beta spectrum and in the higher 

energy of alpha spectrum corresponding 

to the misclassified counts of 90Y. 

However, for the other beta emitters 

(40K, 60Co and 137Cs) the higher selectivity 

ratio was in all cases below 1, and they 

overlapped. For this reason a higher in-

terference for these beta emitters is ex-

pected than for 90Sr/90Y and the alpha 

emitters. In Fig. 3 shows the spectrum of 

selectivity ratio for 40K, 60Co and 137Cs. 

In summary, 40K, 60Co and 137Cs may be 

more affected by interference than 

90Sr/90Y, natU and 241Am. 

 

Fig. 2. Spectrum of selectivity ratio for 90Sr/90Y, 
natU and 241Am. 

 

Fig. 3. Spectrum of selectivity ratio for 40K, 60Co 
and 137Cs. 
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Fig. 4. Determined activity vs added activity for radionuclide calibration standards spectra (in black) and its 
linear combination (in red) for 40K (a), 60Co (b), 90Sr/90Y (c), 137Cs (d), natU (e), and 241Am (f).  
 

Results and discussion 

Validation with simulated spectra 

Before testing the PLS model with exper-

imentally mixed radionuclides, the model 

was tested with simulated composite 

spectra in order to evaluate the predic-

tion error and the minimum detectable 

activity (MDA). 

The activity of the six radionuclides stud-

ied was determined by the PLS model for 

each of the 54 simulated composite spec-

tra. Linear regressions represented on 

Fig. 4 show the relation between the 

added activity and the determined using 

the model for the six radionuclides stud-

ied. The black dots represent cross vali-

dation of the radionuclide calibration 

standards, and the red dots are from the 

linear combination of standards spectra. 

In Table 4 coefficient of determination of 

the calibration (R2), root mean square 

error of cross validation (RMSECV) and 

root mean square error of prediction of 

linear combination standards spectra 

(RMSEP) are shown. Coefficient of de-

termination of the linear regressions 

between determined and added activities 

were 0.99 or greater for all the radionu-

clides, so the model can determinate the 

activity of the radionuclide calibration 

standards used to create them. Further-

more, focusing the attention on RMSECV 

and RMSEP, we can see that clearly natU 

and 241Am are the radionuclides that 

were better explained by the model. Both 

have RMSECV around 0.1 and RMSEP 

below 0.2.  

For 90Sr/90Y, the other radionuclide pair 

that had a high and non overlapped se-

lectivity ratio values, and for 40K, the er-

ror for cross validation and for predic-

tion was higher than that obtained for 

the alpha emitters.  

Table 4 
R2 of the calibration, RMSECV and RMSEP for each 
radionuclide. 

Radionuclide R2 RMSECV RMSEP 
40K 0.990 0.336 0.882 
60Co 0.997 0.865 1.328 

90Sr/90Y 0.999 0.457 0.633 
137Cs 0.993 1.092 1.574 
natU 0.999 0.119 0.175 

241Am 0.999 0.086 0.160 
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For 60Co and 137Cs, the errors for cross 

validation (around 1) and prediction of 

linear combination of standard spectra 

(around 1.5) were the highest. For this 

reason, it was expected that there would 

be more interference in the quantifica-

tion of mixtures of radionuclides for 60Co 

and 137Cs. 

Minimum detectable activity 

In order to estimate the minimum de-

tectable activity (MDA) for each radionu-

clide, the 57 linear combination of stand-

ard spectra were quantified by the mod-

el. The MDA for each radionuclide was 

established as the arithmetical mean plus 

two times the standard deviation of the 

determined activity for the radionuclide 

considered in the linear combination of 

standard spectra which was not actually 

present. To illustrate this, in Fig. 5, a 

wide view of Fig. 4c is plotted. The varia-

bility on activity determined of 60Co in 

linear combinations that did not contain 

such radionuclide (e.g. linear combina-

tion of radionuclide calibration standard 

spectra of 40K + 137Cs + 241Am), was used 

to estimate the MDA. 

Table 5 shows the MDA estimated follow-

ing the aforementioned criteria in the 

vial and in the sample, taking into ac-

count the concentration pretreatment of 

the samples.  

 

 

Fig. 5. Wide view of Fig. 4c: the determined activi-
ty vs added activity for reference radionuclide 
calibration standards (black) and its linear combi-
nation (red) for 60Co. 

Validation with experimentally mixed 

radionuclides 

After estimation of the MDA, the three 

mixtures of radionuclides (BETA, MIX 

and INTERF) were analyzed in triplicate, 

following the same procedure as for the 

reference standards. The spectra ob-

tained from this analysis were pretreated 

in the same way as the reference radio-

nuclide calibration standards, and the 

activities of the mixtures were deter-

mined using the PLS model described 

above. 

Table 5 
MDA in the vial and in the sample for each radio-
nuclide for model A. 

 
MDA MDA 

 
(Bq/vial) (Bq/kg) 

40K 0.074 0.92 
60Co 0.123 1.54 

90Sr/90Y 0.034 0.42 

134Cs - - 
137Cs 0.095 1.19 

natU 0.023 0.28 

241Am 0.013 0.15 
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Table 6 
Activity added in the vial, activity determined with model based on measurement of the mixture and relative bias 
for each mixture and radionuclide. 

 
BETA MIX INTERF 

 
Added 

(Bq kg-1) 
Predicted 
(Bq kg-1) 

Rel. 
Bias 

Added 
(Bq kg-1) 

Predicted 
(Bq kg-1) 

Rel. 
Bias 

Added 
(Bq kg-1) 

Predicted 
(Bq kg-1) 

Rel. 
Bias 

40K 14.6 ± 0.7 16.2 ± 0.7 11.0% - < 0.9 - 13.6 ± 0.7 12.3 ± 0.4 -9.1% 

60Co 30.6 ± 0.9 34.2 ± 0.7 12.0% - < 1.5 - 30.0 ± 0.9 30.4 ± 0.9 1.7% 

90Sr/90Y 23.2 ± 0.4 22.1 ± 0.6 -4.6% 23.9 ± 0.4 23.8 ± 0.3 0.4% 23.1 ± 0.4 23.8 ± 1.2 3.7% 

134Cs - - - - - - 20.5 ± 0.6 - - 
137Cs 16.4 ± 0.3 20.4 ± 1.0 24.4% 16.4 ± 0.3 20.1 ± 0.8 23.5% 16.3 ± 0.3 35.2 ± 1.0 115.8% 

natU - < 0.3 - 6.1 ± 0.4 6.0 ± 0.2 -0.7% 6.3 ± 0.4 5.9 ± 0.1 -6.4% 

241Am - < 0.2 - 5.4 ± 0.2 5.3 ± 0.1 -1.3% 5.2 ± 0.2 5.1 ± 0.2 -2.3% 

 

In Table 6 the activity added into the vial, 

the activity determined from the meas-

ured spectra by means of PLS model and 

the relative bias for each mixture and 

each radionuclide is shown. For the activ-

ity added, the uncertainty with a cover-

age factor k = 2 is given. For the deter-

mined activity the uncertainty corre-

sponds to standard deviation between 

the three replicates analyzed. 

As can be seen in Table 6, the maximum 

relative bias for 40K and 60Co was around 

10% in all the mixtures. For 137Cs the 

relative bias was around 25% for BETA 

and MIX mixtures. For the mixture IN-

TERF, which contains 20 Bq kg-1 of 134Cs, 

the relative bias of 137Cs was higher than 

100%. Paying attention to the deter-

mined activity of 137Cs in the INTERF 

mixture (35.2 ± 1.0 Bq kg-1), we can see 

that there is no significant difference 

between it and the sum of 134Cs and 137Cs 

(36.7 ± 1.3 Bq kg-1). Hence, it can be de-

duced that all the contribution of 134Cs is 

miss-classified as 137Cs, and it does not 

affect the quantification of the other ra-

dionuclides in the mixture. 

In the case of 90Sr/90Y the relative bias 

was below 5% in the three mixtures. It 

should be noted that this better quantifi-

cation for 90Sr/90Y compared to 40K and 

60Co is caused by the high energy 90Y that 

is counted in a region without inter-

ferents. For this reason, even in a mixture 

with an interferent not include in the 

calibration set, the error in the quantifi-

cation of 90Sr/90Y remains below 5%. 

For alpha emitters natU and 241Am, the 

relative bias was around 5%. Weak inter-

ference between alpha and beta emitters 

is reported due to the optimization of the 

PSA and because of the interference of 

90Y in alpha spectrum does not overlap 

with alpha peaks. The interference be-

tween both emitters is also weak for two 

reasons. The first one is the significant 

difference in the energy emission, close 

to 1 MeV, greater than the resolution at 

full width at half maximum of Quantulus 

1220 (about 300 keV at best) for alpha 
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peaks (Quantulus 1220 Instrument Man-

ual, 2002). The other reason is the im-

provement of the quantification by 

means of multivariate calibration instead 

of the classical window counting. Regard-

ing MDA, the activity determined for the 

radionuclides that are not actually pre-

sent in a mixture (natU and 241Am in BETA 

mixture and 40K and 60Co for MIX mix-

ture) were in all cases below the MDA 

and are reported in Table 6 as <MDA. 

This confirms that the method used to 

estimate the limit of detection is useful 

for our purpose. 

Validation with quality control samples 

Another two models were constructed 

following the procedure described above 

in order to be tested with natural sam-

ples. The first one includes 134Cs in order 

to solve the problem of misclassification 

between 134Cs and 137Cs, observed in ex-

perimentally mixed radionuclides. The 

new model was constructed with 7 LV 

and the detection limits were slightly 

higher. This model was tested in an in-

tercomparison (IAEA-TEL-2015-03 sam-

ple 01). The activities for each radionu-

clide reported by the organizer, deter-

mined using the PLS model and the per-

formance statistics of the intercompari-

son are shown in Table 7. For the other 

radionuclides the activities determined 

were in all the cases below the detection 

limit. The relative bias between the activ-

ity determined using the PLS model and 

the value reported by the organizer was 

below 15% for 90Sr/90Y, 134Cs and 137Cs. 

To determine the activity in the quality 

control material IAEATEL- 2014-03 sam-

ple 03, a third model was constructed 

using the reference radionuclide calibra-

tion standards of 90Sr/90Y, 134Cs, 137Cs, 
natU and 241Am. Furthermore, spectra of 
226Ra were included in the model calibra-

tion. It has to be pointed out that samples 

have to be strictly measured just after 2 h 

of sample treatment. Otherwise, the in-

growth of the progeny of 226Ra may inter-

fere with the measurement. 

Although, it is important delay the meas-

urement 2 h after sample treatment to 

avoid photoluminescence phenomena.

Table 7 
Activity determined and reported by the organizer and performance statistics for IAEA-TEL-2015-03 sample 
01. 

 
Organizer  Predicted Perfomance statistics 

 

Activity 
(Bq kg-1) 

Uncertainty 
(Bq kg-1) 

Activity 
(Bq kg-1) 

Uncertainty 
(Bq kg-1) Rel. Bias Robust SD z-score 

90Sr/90Y 29.6 0.8 34.1 3.4 15 % 3.0 1.5 

134Cs 30.0 0.9 31.9 3.2 6 % 1.8 1.1 

137Cs 30.1 0.9 32.9 3.3 10 % 1.0 2.8 
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Table 8 
Activity determined and certified by the organizer 
and relative bias for the quality control material 
IAEA-TEL-2014-03 sample 03. 

 
IAEA-TEL-2014-03 sample03 

 

Certified 
(Bq kg-1) 

Predict 
(Bq kg-1) Rel. Bias 

90Sr/90Y 24.5 ± 0.2 22.60 ± 2.3 -8 % 

134Cs 26.3 ± 0.2 31.6 ± 3.2 20 % 

137Cs 19.6 ± 0.1 15.2 ± 1.5 -22 % 

226Ra 17.9 ± 0.1 15.2 ± 1.5 -15 % 

natU* 
5.48 ± 
0.04 6.3 ± 0.6 14 % 

241Am 20.0 ± 0.1 17.0 ± 1.7 -15 % 
*sum of 234U and 238U 

In this case, the model was constructed 

with 6 LV and the detection limits ob-

tained were comparable with the ob-

tained for the other models.  

The activities determined with the PLS 

model, the values certified by the organ-

izer and the relative bias are shown in 

Table 8. 

For this sample, the precision of the 

models calculated as relative bias for all 

the radionuclides is around 20%. 

Conclusions 

A PSL model for LSC spectrawas pro-

posed for the determination of 40K, 60Co, 
90Sr/90Y, 137Cs, natU and 241Am. The 6 LV 

model was validated with simulated 

composite spectra and good correlations 

between the added activity and activity 

determines using the PLS model was 

obtained (correlation coefficient above 

0.99). By evaluating the variability on the 

activity determined for a radionuclide in 

linear combinations that do not contain 

this radionuclide, the MDAs were esti-

mated. This estimation proved useful for 

our purpose since prediction of radionu-

clides not included on a mixture was al-

ways below the MDA. The influence of 

interferents was also tested by measur-

ing a sample with all the radionuclides 

included in the model and 134Cs. In this 

case the prediction relative bias for all 

the radionuclides excluding 137Cs was not 

change. For 137Cs the relative bias goes 

over 100% because all the 134Cs was mis-

classified as 137Cs. For this reason, it is 

important include all the expected radio-

nuclides for the studies scenario in the 

calibration set. 

With the same procedure two other 

models were constructed and validated 

with an intercomparision exercise and a 

quality control material. As is expected, 

the increased number of radionuclides in 

the sample decreased the precision of the 

method. However, the bias obtained for 

these reference materials was for all the 

radionuclides below 25%. For the tested 

cases, the PLS model allowed relative 

bias for natU, 241Am, 226Ra and 90Sr/90Y 

was below 15%, around 10% for 40K and 

60Co and near to 25% for 137Cs. However, 

these results may be affected by the 

number of alpha or beta emitters and 

their proportions in the sample. 
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Abstract 

Liquid scintillation spectrometry (LSS) is a meaningful technique for the determination of 

alpha and beta emitters. However, this technique is highly affected by quenching phenom-

ena, which reduce the counting efficiency, shift the spectra to low energies and may cause 

misclassification problems. In this paper, a selection of chemical and colour quench agents 

was evaluated to study the influence of alpha and beta energy and quenching effect on the 

detection efficiency, the shape of the spectra and the α/β misclassification.  

Keywords: Chemical quenching, Colour quenching, Liquid scintillation spectrometry,  

Alpha-beta separation.  
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Introduction 

Liquid scintillation spectrometry (LSS) is 

one of the most commonly used tech-

niques for the determination of alpha 

and beta emitters due to its high efficien-

cy. LSS involves mixing the radioactive 

sample with a scintillation cocktail, 

which is able to convert the nuclear de-

cay energy into light pulses which are 

detected by photomultiplier tubes (PMT). 

Modern scintillation cocktails are based 

on a safe solvent, usually diisopropyl 

naphthalene (DIN), which absorb the 

energy emitted by the radionuclides con-

tained in the sample. In the cocktail there 

are other substances, commonly called 

solutes or fluor, which modulate the en-

ergy of the activated solvent molecules to 

adequate the final emitted light pulse to 

the PMT sensibility region, usually 2,5-

diphenyloxazole  (PPO) and 1,4-bis-2-(5-

phenyloxazolyl)benzene (POPOP). More-

over, some cocktails contain solutes that 

strengthen the differences between the 

light pulse of alpha and beta events, in 

order to facilitate the α/β separation. 

Pulse-shape discrimination (PSD) is the 

common method used for the counters 

for α/β separation and is commonly 

based on the relation between early and 

delayed component of the light pulse or 

in the length of the pulse. 

There are different phenomena that hin-

der the energy transference between the 

particle emitted and the photons detect-

ed by the PMT, known as quench. The 

quenching phenomena which highly af-

fect in liquid scintillation measurement 

are chemical and colour quenching. 

Chemical quenching is the most common 

mechanism and is caused by the pres-

ence of chemical substances in the sam-

ple, including its solvent. These sub-

stances obstruct the energy transference 

between the radioactive emission and 

the fluor and hence, reduce the efficiency 

of photon emission. Colour quenching is 

caused by the presence of coloured sub-

stances in the sample which may absorb 

the photons emitted by the fluorine be-

fore they can be detected by the PMT. In 

general, both quenching mechanism, 

reduce the number of photons detected 

by the PMT and consequently the appar-

ent energy of the emission (the spectrum 

shifts to lower energies). Furthermore, 

this phenomena can also reduce the 

count rate of the samples and hence the 

counting efficiency. In addition, previous 

studies (Pates, J.M., et al., 1994; Pujol, Ll. 

& Sánchez-Cabeza, J.A., 1997; Salonen, L., 

2006; Stojkovic, I., 2015) have shown 

that quenching also affects the degree of 

α/β misclassification which is a conse-

quence of different manners of its influ-

ence on early and delayed components of 

the light pulse. 

For these reasons, in LSS efficiency is 

commonly determined using a quenching 

curve which describes, for a specific ra-

dionuclide, the relation between an in-
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strumental parameter of quenching and 

the counting efficiency. Quenching curves 

are prepared measuring a set of liquid 

scintillation standard sources with dif-

ferent amounts of quenching agent either 

chemical or coloured (Cassette, P., 2016). 

In the latest years, methods for the sim-

ultaneous determination of several alpha 

and beta emitters by deconvoluting liq-

uid scintillation spectrum have been de-

veloped. One of the methods used for 

deconvolution is fitting the spectrum of 

the sample to a linear combination of 

experimental standard spectra 

(Altzitzoglou, T., 2008), to a tailed Gauss-

ian functions (Nebelung, C., et al., 2009) 

or to a Fourier series (Remetti, R. & 

Franci, D., 2012). Furthermore, other 

authors use methods based on multiline-

ar calibration as PLS model construction 

(Mahani, M., et al., 2008; Fons-Castells, J., 

et al., 2017). These methods work on 

quenching controlled conditions, but the 

presence of a quenching source in the 

sample jeopardizes the veracity of the 

results. For all these reasons, understand 

and model the influence of quenching on 

efficiency, spectrum shape and α/β mis-

classification is a key point in simultane-

ous determination of alpha and beta 

emitters by LSS in changing quenching 

conditions. 

To fulfil this aim, the influence of chemi-

cal and colour quenching on the efficien-

cy, the spectrum shape and the α/β mis-

classification has been studied for differ-

ent radionuclides. 

In this paper different chemical and col-

our quenching agents were tested to 

identify different behaviours and select 

an agent of each type to perform the 

quenching curves. Then, the selected 

agents were used to perform chemical 

and colour quenching curves for seven 

radionuclides. A wide energy range of 

beta emitters were covered with 3H (18.6 

keV [100 %]), 60Co (317.3 keV [99.9 %]), 
137Cs (514.0 keV [94.4 %]), 40K (1131.1 

keV [89.3 %]) and 90Sr/90Y (545.9 keV 

[100 %] / 2278.7 keV [99.98 %]). 241Am 

(5.49 MeV) was selected as alpha emitter 

and natU as a mixture of alpha and beta 

emitters. The influence on the efficiency, 

the spectrum shape and the α/β misclas-

sification has been studied for all the 

radionuclides for chemical and colour 

quenching. Furthermore, the influence of 

quenching on the optimal PSD was eval-

uated using 241Am and 90Sr/90Y as cali-

bration standards.  

Materials and methods  

The quenching agents studied were: col-

oured solutions from inorganic salts 

(CuSO4·5H2O, NiNO3·6H2O and FeCl3), 

organic inks (bromocresol green and 

methyl red) and uncoloured organic sub-

stances (nitromethane, dimetil keton, 

nitric acid). 

The samples were measured with Ultima 

Gold AB (Perkin Elmer) as liquid scintil-
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lation cocktail in 20 mL polyethylene 

vials (Perkin Elmer) in a Wallac Quantu-

lusTM 1220 counter with α-β separation 

mode for 100 minutes. The Pulse Shape 

Analyser (PSA) was set as 100, which is 

the optimal PSA established in the labor-

atory for the simultaneous determination 

of gross alpha and gross beta using 236U 

and 40K as standards (Fons, J., et al., 

2013). The quenching index in Quantu-

lusTM 1220 is SQP[E] (External Standard 

Quench Parameter) and is based on the 

shifting of the spectra of Compton elec-

trons produced by a gamma source of 
152Eu. SQP[E] is defined as the 99.5 % of 

the endpoint of this external source. 

Selection of a quenching agent for chemi-

cal and colour quenching 

Five concentrations for each quenching 

agent (5 coloured and 3 uncoloured) 

were assayed by duplicate. The quench-

ing standards were prepared mixing dif-

ferent volumes of each quenching agent 

with water acidified with HCl at pH 1.5 

until 8 mL and spiking with 30 Bq of 3H. 

The amount of quenching agent added 

were: for the coloured solutions of inor-

ganic salts from 1 to 7 ml of 0.1 mol L-1 

solution, for organic inks from 1 to 7 mL 

of 0.01 mol L-1 solution, from 25 µL to 

200 µL of nitromethane, from 1 to 7 mL 

of dimethyl ketone and from 0.5 to 2 mL 

of nitric acid (50 %). Counting vials are 

then completed with 12 mL of Ultima 

Gold AB as scintillation cocktail. From 

these experiments the differences be-

tween chemical quenching agents and 

colour quenching agents were evaluated. 

Evaluation of efficiency, spectrum shape 

and α/β misclassification 

The selected quenching agents were ni-

tromethane and FeCl3 for chemical and 

colour quenching respectively because 

are the ones which cover a wider range 

of SQP[E]. For each one of the studied 

radionuclides (3H, 40K, 60Co, 90Sr/90Y, 

137Cs, natU and 241Am), chemical and col-

our quenching curves were prepared 

following the procedure explained above, 

using the selected quenching agents. For 

all the samples analyzed efficiency, spec-

trum shape and α/β classification were 

studied. 

PSA optimization in changing quenching 

conditions 

90Sr/90Y and 241Am samples used to per-

form quenching curves, were also meas-

ured at different PSA values to achieve 

misclassification curves at different 

quenching levels for both, colour and 

chemical quench. 

Data treatment 

All the spectra obtained were treated in 

MATLAB2009b version (MathWorks, 

Inc., Natick, MA, USA). From each one 

was calculated the count rate in alpha 

multichannel analyser (α-MCA) and in β-

MCA, and also the global count rate to 

evaluate the role of quenching on the 
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efficiency. The ratio between beta counts 

and alpha counts was also calculated as a 

parameter to control the α/β classifica-

tion. 

To analyze the shifting of the spectra, the 

mass centre of spectrum (MCS) was cal-

culated for all spectra. It was calculated 

as the weighted mean of the channels of 

the spectrum with their count rate as 

weights. 

𝑀𝐶𝑆 =
∑ 𝑖 ∗ 𝑐𝑝𝑚𝑖
1024
𝑖

∑ 𝑐𝑝𝑚𝑖
1024
𝑖

(1) 

where i are the channels of the MCA and 

cpmi are the count rate for each channel. 

The charts in which efficiency, shifting of 

spectra and α/β separation is represent-

ed in function of SQP[E] for all the radio-

nuclides studied are provided in supple-

mentary material (SM) from Fig. 1S to 

Fig. 21S. The spectra of 40K, 60Co, 90Sr/90Y 

137Cs, natU and 241Am for different concen-

trations of FeCl3 and nitromethane are 

also provided in supplementary material 

from Fig. 22S to Fig. 32S. 

The calculation of quenching curves was 

performed using QUENCH software, 

which is specifically designed for the 

determination of quenching curves with 

uncertainties (Cassette, P., 2016). This 

software fits logarithmic or polynomial 

functions to experimental data with un-

certainties in both quenching and effi-

ciency. Since the program allows to cal-

culate quenching and efficiency with un-

certainties by interpolating, we use it to 

plot the quenching curves with its uncer-

tainty. 

Results and discussion 

Selection of a quenching agent for chemi-

cal and colour quenching 

Influence of quenching on efficiency and 

spectrum shape of 3H were evaluated for 

different colour agents. In Fig. 1, efficien-

cy (a) and mass centre of spectrum (b) of 

3H in front of SQP[E] are represented for 

all colour quenching agents. 

 

Fig. 1. Efficiency (a) and mass centre of spectrum (b) of 3H in front quenching (SQP[E]) for five colour quench-

ing agents studied. 
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Cu2+ solution (blue) does not undergone 

quenching due to it does not absorb light 

in the wavelength emitted by the scintil-

lator. The SQP[E] for all the standards 

solution was 805 ± 2 while its efficiency 

28.5 ± 0.4 %, regardless of the 

Cu2+concentration. Ni2+ (green) and me-

thyl red (red) solutions cause an inter-

mediate grade of quenching. In both cas-

es SQP[E] is in the range between 800 

and 750, and the efficiency between 30 

and 20 %. When the concentration of 

quenching agent increases, both SQP[E] 

and efficiency of 3H decrease. Bromocre-

sol green and Fe3+, both yellow solutions, 

follow the same pattern than Ni2+ and 

methyl red but its range of SQP[E] is 

larger from 800 to 680 for bromocresol 

green and from 800 to 550 for Fe3+. This 

is because the absorption of yellow solu-

tions is in the wavelength range of emis-

sion of the scintillator. Spite of that, as 

the Fig 1a shows, the tendency of effi-

ciency of 3H in front of SQP[E] is the same 

for all the colour quenching agents, re-

gardless the covered range of SQP[E]. 

Similarly, in Fig. 1b it is seen that effect of 

all the colour quenching agents tested in 

the mass centre of the spectrum follows 

the same tendency. When SQP[E] de-

creases the spectrum of 3H shifts to lower 

energies and hence MCS decreases.  

In the same way, the influence of quench-

ing on efficiency and spectrum shape of 
3H were evaluated for different chemical 

agents. In Fig. 2 efficiency (a) and mass 

centre of spectrum (b) of 3H in front of 

SQP[E] are represented for three chemi-

cal quenching agents. 

The observed range of SQP[E] is between 

800 and 730 for dimethyl keton and ni-

tric acid, while it goes from 800 to 580 

for nitromethane. Chemical agents addi-

tion results with the same tendency for 

both, efficiency and MCS dependence on 

SQP(E) as colour quenching agents in-

duce. 

Since FeCl3 and CH3NO2 are the quench-

ing agents which cover the wide range of 

SQP[E], they were selected as agents to

 

Fig. 2. Efficiency (a) and mass centre of spectrum (b) of 3H in front of quenching (SQP[E]) for three chemical 

quenching agents studied. 
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perform colour and chemical quenching 

curves, respectively. 

In Fig. 3, quenching curves of FeCl3 and 

CH3NO2 were plotted to show the differ-

ent tendencies between colour and 

chemical agents. 

Fig. 3. Efficiency quenching curves for FeCl3 and 

CH3NO2 with an enlargement of low SQP[E] values.  

As illustrates Fig. 3, two different 

tendencies can be observed when colour 

and chemical quenching are compared. 

As it can be seen, at high values of SPQ[E] 

(low quenching effect), colour and chem-

ical quenching cannot be differentiated. 

However, at low values of SQP[E] (high 

quenching effect) the coloured substanc-

es decrease the counting efficiency more 

than the non coloured. This reflects that 

colour and chemical quenching cause 

different effect on efficiency for low en-

ergy beta emitters and may cause differ-

ent effects on the other parameters stud-

ied. Consequently, colour and chemical 

quenching were studied separately for 

different radionuclides, using FeCl3 and 

CH3NO2 for colour and chemical quench-

ing respectively. 

Fig. 4. Efficiency in function of SQP[E] for colour and chemical quenching for 137Cs (a), 40K (b), natU and 241Am 

(d). 
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Evaluation of efficiency, spectrum shape 

and α/β misclassification 

Efficiency 

In Fig. 4, quenching curves (efficiency in 

function of SQP[E]) for colour and chemi-

cal quenching are represented for 137Cs 

(a), 40K (b), natU(c) and 241Am (d). In this 

case total efficiency (without considering 

alpha and beta separation) was consid-

ered. 

As can be seen in Fig. 4a, for 137Cs an in-

termediate energy beta emitter (514.0 

keV [94.4 %]), the efficiency decreases 

with the increase of quenching for both, 

chemical and colour quenching, but this 

effect is more pronounced in lowest 

SQP[E] values for colour agent, in the 

same way as the observed for 3H (Fig. 3). 

On contrary, for high energy beta emit-

ters like 40K (1131.1 keV [89.3 %]) the 

efficiency just slightly decreases with 

quenching and no significant differences 

were observed between chemical and 

colour quenching. For 241Am (a 5.49 MeV 

alpha emitter), either chemical or colour 

quenching do not cause a decrease on the 

total efficiency. As can be seen in Fig. 4d, 

constant efficiency in the studied range 

of SQP[E] is observed for both, colour 

and chemical quenching. Finally, as Fig. 

4c shows, for natU, which is a mixture of 

alpha and beta emitters the pattern ob-

served is close to the observed for high 

beta emitters. No differences between 

colour and chemical quenching were 

observed and both cause a slight de-

crease of efficiency at low values of 

SQP[E]. 

Spectrum shape 

In Fig. 5, mass centre of spectrum (MCS) 

in function of SQP[E] for colour and 

chemical quenching is represented for 
3H, a low beta emitter (a), 90Sr/90Y a mix-

ture of medium an high beta emitters (b) 

and 241Am an alpha emitter. Fig. 5 d 

shows MCS for 90Sr/90Y, 40K, 137Cs and 

60Co in front of SQP[E] without distin-

guish between colour and chemical 

quenching. As it can be seen in Fig. 5a 

and 5b, for beta emitters there is no sig-

nificant difference in the shifting of the 

spectra between colour and chemical 

quenching. For low energy beta emitters 

(3H), the MCS decreases with increasing 

quenching in the same way as efficiency. 

For intermediate and high energy beta 

emitters, this decrease follows a linear 

behaviour between MCS and SQP[E].  

In Fig. 5d, a comparison of different me-

dium and high energy beta emitters 

(90Sr/90Y [545.9 keV/2278.7 keV], 40K 

[1131.1 keV], 137Cs [514.0 keV] and 60Co 

[317.3 keV]) shows that in all cases MCS 

decreases linearly with the decrease of 

SQP[E] in the studied range. 
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Fig. 5. Mass centre of spectrum shift in channels in front of SQP[E] for colour and chemical quenching for 3H 

(a), 90Sr/90Y (b), 241Am (c) and comparison of medium and high energy beta emitters (d).  

On the contrary, for alpha emitters 

(241Am), different behaviour for colour 

and chemical quenching is observed. In 

both cases, MCS decreases linearly with 

the decrease of SQP[E] but with different 

slope for colour and chemical quenching 

(Fig. 5c). For alpha emitters, the influ-

ence of quenching on the shifting of the 

spectra is higher for colour than for 

chemical quenching. 

The difference observed between alpha 

and beta emitters regarding the influence 

of quenching type in the shifting of spec-

tra can be explained considering the way 

in which SQP[E] is measured.  

SQP[E] is defined as the 99.5 % of the 

endpoint of the Compton spectra of an 

external gamma source, usually 152Eu or 

226Ra. The inelastic scattering of the 

gamma photons by electrons of the at-

oms in the counting vial provides a 

source of electrons with continuous en-

ergy in the counting solution, which con-

form the Compton spectra. In this way, 

SQP[E] informs about the shifting (99.5 

% of the endpoint) of an spectra of in-

termediate energy electrons, and hence it 

is expected to correlate linearly with the 

shifting (MCS) of medium high energy 

beta emitters, regardless the type of 

quenching. For alpha emitters the way in 

which colour or chemical quenching af-

fect the shifting is not the same than the 

observed for beta emitters or Compton 

electrons, and for this reason, the behav-
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quench is significantly different as shown 

Fig. 5c. 

Furthermore, other changes in the shape 

of spectrum can occur when quenching is 

increased. 137Cs is an intermediate ener-

gy beta emitter (Emax 514 keV) and its 

identification is further determined by 

the monoenergetic conversion electron 

peak of 137mBa at 625 keV (Kaihola, L., 

2006). The influence of quenching on the 

spectra of this monoenergetic peak is 

dependant from the type (colour or 

chemical) of quenching. Fig. 6 shows 

spectra of 137Cs at different quench levels 

for colour (a) and chemical (b) quench-

ing. 

As illustrates Fig. 6, not only MCS chang-

es between colour and chemical quench-

ing, but also spectrum shape. At high 

levels of quenching (SQP[E] below 600) 

the monoenergetic peak disappears 

when quenching is caused by a coloured 

agent, but remains visible when it is 

caused by a chemical agent. This fact 

occurs because colour quenching aggra-

vates more the resolution than chemical 

quenching. This may be explained with 

the fact that chemical quenching induces 

a loss of energy from the excited solvent 

in a non-radiative process and hence 

production of fewer photos per disinte-

gration, which further causes the loss of 

efficiency in the photons detected by the 

PMT. This loss of photons emission main-

ly depends on the concentration of the 

chemical agent in the counting solution 

and as it is homogeneous, the loss of effi-

ciency is also constant. On the contrary, 

in colour quenching, photons emitted by 

the fluors are absorbed by coloured sub-

stances in the sample. The number of 

photons detected by the PMT depends on 

the optical path length between the point 

where the disintegration occurs and the 

wall of the vial. Since disintegration may 

occur in the centre or close to the wall of 

the vial, disintegrations with the same 

energy may be detected with different 

energy depending on the place where 

they occur. For this reason, and due to 

the random distribution of disintegra-

tions along the counting vial, colour 

quenching may cause significant loss of 

resolution (ten Haff, F.E.L., 1972).

 

Fig. 6. Spectra of 137Cs at different quench levels for colour (a) and chemical (b) agents. The values of the leg-

end are the SQP[E] level for each spectra. 
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This loss of resolution can be also ob-

served for the alpha peak of 241Am, 

please find in supplementary material 

figures 31S and 32S. 

α/β misclassification 

For all the radionuclides studied, the 

ratio between the counts in the β-MCA 

and the α-MCA was represented as func-

tion of SQP[E] and in all the cases the 

pattern observed was similar. All the 

samples were measured at PSA value of 

100 which was optimized using 236U and 

40K as calibration standards. At this PSA 

level, the misclassification was the mini-

mum achievable, and it was around 5 %. 

As an example, in Fig. 7 the ratio between 

the counts in the β-MCA and the α-MCA 

measured at PSA 100 is represented as 

function of SQP[E] for colour and chemi-

cal quenched standards of natU.  

 

Fig. 7. Ratio between β and α counts as function of 

SQP[E] for colour and chemical quench in natU 

standards. 

Similar effects to the ones illustrated in 

Fig. 7 were observed for all radionuclides 

studied, where it can be seen that small 

changes in SQP[E] do not significantly 

affect α/β classification. When there are 

greater changes in SQP[E] two different 

patterns where observed for colour and 

chemical quenching respectively. The 

β/α ratio increases markedly when 

SQP[E] decreases in colour quenched 

samples since alpha counts of 234U and 

238U are being counted in the β-MCA. On 

the contrary, for chemical quenching this 

misclassification occurs at low values of 

SQP[E] (below 650) and just in a moder-

ate way.  

In Fig. 8, spectra of natU with different 

degrees of quenching are shown. Each 

spectrum corresponds to a characteristic 

point in Fig. 7 where are highlighted with 

letters. 

It has to be noted that in this context 

non-quenched refers to samples pre-

pared without any quenching agent apart 

from the 8 mL of acidified water. 

When we compare a non-quenched sam-

ple (Fig. 8a) with all the quenched sam-

ples (Figures 8b, 8c and 8d), it can be 

seen that the spectra shifts to lower 

channels and the counts corresponding 

to 234U and 238U were classified in β-MCA 

instead of α-MCA. 
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Fig. 8. Spectra in α-MCA and β-MCA of natU for non quenched (a), moderately colour quenched (b), highly 

chemical quenched (c) and highly colour quenched. 

At the same value of SQP[E] (~600) (Fig-

ures 8b and 8c) colour quenching aggra-

vates more the interference than chemi-

cal quenching.  

As it was said before, the results showed 

above were obtained measuring at the 

same value of PSA. In order to find how 

the optimal PSA and the minimum inter-

ference are affected for changing quench-

ing conditions, misclassification study for 
90Sr/90Y and 241Am were performed at 

different PSA values (from 70 to 130) 

and different quenching conditions 

(SQP[E] 800 from to 550) for colour and 

chemical quenching. 

The results obtained are shown in Fig. 9 

where optimal PSA and total interference 

are represented in function of SQP[E]. 

In general, when SQP[E] decreases 

(quenching increase) the optimal PSA 

(PSA value with the lower total interfer-

ence) decreases, and total interference at 

optimum PSA increases. For chemical 

quench, at low quenching region (SQP[E] 

from 700 to 800) the total interference at 

the optimal PSA remains constant below 

10 %. On the contrary, for colour quench-

ing, the total interference at the optimal 

PSA increase from SQP[E] 800.  

When chemical and colour quenching are 

compared, it can be observed that colour 

quench modifies in a higher degree opti-

mum PSA and total interference than 

chemical quenching. 

In supplementary material figures S33 

and S34, interactive 3 dimensions 

MatlabTM figures are provided. There, 

total interference is represented as func-

tion of PSA and SQP[E] for colour and 

chemical quenching. 
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Fig. 9. Optimal PSA and total interference as function of SQP[E] for chemical (a) and colour (b) quenching. 

Conclusions 

From a set of quenching agents, FeCl3 

solutions and nitromethane have been 

selected to perform colour and chemical 

quenching curves respectively since they 

cover a width range of SQP[E]. 

The efficiency is highly affected by 

quenching for low energy beta emitters, 

and just moderately affected for high 

energy beta emitters. In the case of alpha 

emitters, quenching does not clearly af-

fect the efficiency. For radionuclides af-

fected, colour quench reduce more the 

efficiency than chemical quenching at 

low values of SQP[E]. 

Regarding the spectrum shape, when 

quench increases spectrum shifts to low-

er energies in all the examined cases. For 

beta emitters the correlations between 

SQP[E] and MCS are linear and equal for 

chemical and colour quench. On the con-

trary, for alpha emitters two different 

behaviours for chemical quenching and 

colour quenching were observed. This 

can be explained because SQP[E] is a 

quench parameter based on the shifting 

of the spectrum of Compton electrons 

generated by the external source, which 

are more representative of beta emis-

sions than alpha emissions. In general, 

MCS may be an appropriate parameter to 

follow the shape of the spectra. However, 

each radionuclide and each type of 

quenching (chemical or colour) have to 

be evaluated because complex phenome-

na on the shape of spectrum may occur 

mainly due to the loss of resolution at 

high quenching levels. 

Finally, regarding α/β separation; when 

quenching of the sample increases, alpha 

emissions are more susceptible to be 

classified in the β-MCA. For low energy 

beta emitters (3H) this cannot be ob-

served since there are no misclassified 

counts in α-MCA. For high energy beta 

emitters (40K, 60Co 90Sr/90Y and 137Cs) the 

misclassified counts in α-MCA decrease 

with the increased quenching. For alpha 

emitters (241Am) the counts misclassified 

in the β-MCA increase with the increas-

ing quenching. With increasing quench-

ing level the optimal PSA decreases and 

the total interference measured at this 

optimal PSA increases. 
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In all the studied cases, colour quenching 

modifies in a higher degree α/β classifi-

cation than chemical quenching. 

In brief, at the same SQP[E] value, at high 

quenching levels (SQP[E] below of 600), 

colour quenching has more influence on 

efficiency reduction, shifting of the spec-

tra and α/β separation than chemical 

quenching. At low quenching levels 

(SQP[E] from 700 to 800) colour and 

chemical quenching have similar effects 

on the evaluated parameters. 

For these reasons, the nature of the 

quenching in real samples has to be 

properly studied in order to set up the 

PSD, select a quenching agent to perform 

quenching curves and, if necessary, cor-

rect the shifting of the spectra. 
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6.3.  Discussion 

From the results obtained in the two scientific papers in this chapter, it must be noted 

that the determination of specific radionuclides from spectra obtained by determining gross 

alpha and gross beta activities using PLS models provides satisfactory results. 

However, when attempting to quantify samples that contain a radionuclide that is not 

included in the calibration set, the results obtained using PLS models may not be correct for 

all radionuclides. It is therefore necessary, as much as possible, to include in the calibration 

set all the expected radionuclides in the studied sample. 

This fact is illustrated with the results obtained from a spiked sample that was quantified 

by using two different PLS models: one that contains all the radionuclides present in the 

sample (A), and another from which one radionuclide is missing (B).  

Table 3 shows these results. The activities are presented in Bq kg-1, and the relative bias 

in %. 

Table 3. Added and predicted activity for two models together with its bias. 

RN Added 

 

Predicted 
model A 

Predicted 
model B 

Bias model 
A 

Bias model 
B 

40K 13.6 ± 0.4 13.0 ± 0.4 12.3 ± 0.4 -4.4 % -9.1 % 

60Co 30.0 ± 0.9 30.5 ± 0.9 30.4 ± 0.9 1.7 % 1.7 % 

90Sr/90Y 23.1 ± 0.4 23.7 ± 1.1 23.8 ± 1.2 2.6 % 3.7 % 

134Cs 20.5 ± 0.6 19.9 ± 0.8 - -2.9 % - 
137Cs 16.3 ± 0.3 15.8 ± 0.7 35.2 ± 1.0 -3.1 % 115.8 % 

natU 6.3 ± 0.4 6.0 ± 0.1 5.9 ± 0.1 -4.8 % -6.4 % 

241Am 5.2 ± 0.2 5.2 ± 0.2 5.1 ± 0.2 -0.7 % -2.3 % 

 

The studied sample was spiked with different radionuclides. Model A was constructed 

with all radionuclides, and Model B was constructed with all except 134Cs. As a result, in the 

prediction of Model B, 134Cs is misclassified as 137Cs; hence, a bias higher than 100 % is 

obtained. 

The model construction was validated with reference materials to obtain satisfactory 

results. 

The limits of detection for each radionuclide in a model was established as the 

arithmetical mean plus two times the standard deviation of the determined activity for the 

radionuclide considered in the standards, which did not contain this radionuclide.  
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In addition, critical issues regarding the determination of specific radionuclides from 

liquid scintillation spectra using PLS models include efficiency, the shape of the spectrum 

(characteristic of radionuclide of interest) and the α/β separation. 

It is known two clearly different behaviours can be observed in liquid scintillation-

quenching agents. The first step in this study was to select one agent to study colour 

quenching and another to study chemical quenching from a set of quenching agents. FeCl3 

and nitromethane were considered for the study of colour and chemical quenching, 

respectively. 

As seen in the study of the quenching effect on efficiency, shape of the spectrum and α/β 

separation, these effects exhibit different degrees depending on the type of agent: chemical 

or colour. On the one hand, it has been observed that the efficiency of low-energy beta 

emitters greatly decreases with quenching, while for high-energy beta emitters this effect is 

moderate. For alpha emitters there is not observed a clear quenching effect on the efficiency. 

For beta emitters at the same SQP[E] value, colour quenching reduces the efficiency more 

than chemical quenching. 

Regarding the spectrum shape, both, alpha and beta emitters are affected. The spectrum 

of alpha and beta emitters shifts to lower energies for both colour and chemical quenching. 

Finally, with regard to α/β separation, when quenching increases, the optimal PSA 

decreases and total interference at that PSA value increases. These effects are more 

significant for colour quenching than for chemical quenching. Figure 8 shows the variation 

of interference at several PSA values in a range of quenching levels for colour (a) and 

chemical quenching (b). 

 

Figure 8. Variation of interference at several PSA values in a range of quenching levels for colour (a) 
and chemical quenching (b). 

For all of these reasons, when an attempt to determine specific radionuclides is made in 

samples which matrix cause high quenching levels, it is necessary to use libraries that 
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contain standard spectra of the radionuclides expected in the sample using different levels 

of colour and chemical quenching. 

In this way, calibration sets must be constructed using the spectra of the expected 

radionuclides at the SQP[E] levels closer to those observed in the sample. It may be 

interesting also to include SQP[E] spectra in the calibration set that are used for the 

construction of PLS models. 

Finally, the work conducted facilitates the construction of a database of 3H, 40K, 60Co, 
90Sr/90Y, 137Cs, natU and 241Am for colour and chemical quenching.  

 

  

Partial Least Square Regression Applied to Liquid Scintillation Spectrometry Decombolution  |  161



 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

7. VALIDATION OF THE STRATEGY FOR ALPHA AND 

BETA EMITTERS DETERMINATION. GLOBAL 

DISCUSSION OF THE RESULTS 

  



 

 

  



This section presents a strategy for the determination of the radionuclides included in 

Annex III of the Directive 2013/51/EURATOM for protection of the health of the general 

public with regard to radioactive substances in water intended for human consumption.  

The strategy presented includes all of what is explained in previous chapters. Among the 

methodologies used are the determination of gross alpha and gross beta activities by 

LSSconc., which is described in Chapter 4, and the determination of 226Ra, 228Ra and 210Pb 

described in Chapter 5. These spectra are treated by means of the multivariate calibration 

described in Chapter 6.  

It has to be mentioned that the determination of 222Rn is not considered in this strategy 

for two reasons. On one hand, several rapids methods for 222Rn determination already exist: 

e.g., direct measurement of the sample by two-phase LSS methods. On the other hand, the

potential interference of 222Rn in the determination of other radionuclides can be easily 

removed from water samples by heating and stirring because it is a gas. Hence, to 

accomplish the directive, an independent analysis of 222Rn should also be performed.  

7.1.  Summary of methodologies 

The methodologies selected for the strategy of determination of the alpha and beta 

emitters are the following: 

 High-resolution gamma spectrometry: Has been used as a screening methodology

to control the presence of gamma emitters such as 241Am, 134Cs and 137Cs. The

procedure entails a direct measurement of the sample in a 500 mL geometry

using both calibrations in energy and in efficiency established in the routine

protocols of the laboratory. The measurement was performed in a high-purity

germanium detector CANBERRA BEGe 3830. If suspended matter was observed

in the sample, a filtration step was performed. As the objective is to obtain rapid

methods the counting time was always lower than 24 hours, and usually between

one and six hours.

 Concentration method with LSS measurement (LSSconc.): This procedure was used

to determine gross alpha and gross beta activities and screening parameters

included in the Directive 2013/51/EURATOM. Furthermore, the alpha and beta

spectra obtained were used to determine specific radionuclides by means of PLS
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models. In this procedure, 100 mL of the sample were evaporated to dryness. 

When the precipitate obtained is cooled at room temperature, it was dissolved in 

10 mL of deionised water acidified by HCl to pH 1.5. An aliquot of 8 mL of the 

concentrated sample was mixed with 12 mL of the scintillation cocktail (Ultima 

Gold AB) in low-diffusion polyethylene vials. After two hours of waiting for 

photoluminescence extinction, the sample was measured in a Wallac 

QUANTULUS 1220 for 400 minutes by using the alpha-beta counting mode. The 

instrumental parameter PSA (pulse shape analyser) used to separate between 

alpha and beta events was optimized by means of interference studies using 236U 

as a pure alpha emitter and 40K as a pure beta emitter.  

 Direct method with LSS measurement (LSSdir.): This procedure is based on a direct

measurement by LSS of a vial prepared with 8 mL of sample mixed with 12 mL

of the scintillation cocktail. The water sample was previously stirred for 2-3

minutes to remove 222Rn. The counting vial is measured for 400 minutes in the

same conditions described for LSSconc. method. This method is based on the

procedure for the determinations of 14C in water samples ISO 13162. Since the

steps of acidification and concentration of the sample were removed, this

procedure allows the determination of 3H and 14C by means of a multivariate

calibration using PLS models.

 Selective extraction using radium RAD disk and measurement by LSS: In this

procedure, selective extraction of radium and lead isotopes is performed by

means of a 3M EmporeTM Radium RAD disk. These 47 mm diameter filters are

composed of crown ether that is covalently bound to an inert substrate. In the

optimized procedure, RAD disks are preconditioned by filtering 20 mL of 2 mol L-

1 HNO3. Afterwards, an aliquot from 1 to 5 L of sample acidified to pH lower than

2 with HNO3 are filtered through the RAD disk using a vacuum filtering system.

Lead isotopes are then eluted from the RAD disk by using 7 mL of dihydrogen

ammonium citrate (DHC) 0.05 mol L-1 at pH 5.75, which were collected in a

polyethylene vial. 5 mL of this solution was mixed with 15 mL of Optifase

HisafeTM III and measured in a Wallac QUANTULUS for 100 min after waiting two

hours to avoid photoluminescence phenomena. Besides this, the RAD disk was

transferred into another PE vial to which 20 mL of Hisafe III was added. This vial

was measured for 100 min after waiting eight hours to ensure correct
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impregnation of the RAD disk with the cocktail, which prevents bad alpha-beta 

classification and shifting of the spectra during the measurement. 

 

The experimental work conducted in the framework of this thesis has been conducted in 

the laboratory of environmental radioactivity of the University of Barcelona (LRA-UB) 

accredited by the National Accreditation Body under ISO/IEC 17025 with ENAC 

accreditation number LE/1117. Gamma spectrometry and simultaneous determination of 

gross alpha and gross beta emitters by LSSconc. are in the scope of this accreditation, 

Furthermore, 226Ra, 228Ra and 210Pb determination using RAD disk and LSS measurement is 

in process of accreditation.  

 

7.2.  PLS Model construction 

7.2.1. Spectra database 

To test the feasibility of PLS models to predict the activity of the studied radionuclides, a 

database of spectra from LSSconc., LSSdir. and RAD disk methodologies was constructed. 

Furthermore, γ-spectrometry measurements of the radionuclides with gamma emissions 

were also conducted.  

For LSSconc. models, 33 single radionuclide standard solutions were prepared and 

analysed by triplicate. The radionuclides used to prepare these standard solutions are 40K, 
60Co, 90Sr/90Y, 134Cs, 137Cs, 210Pb, 226Ra, 228Ra, natU, 239+240Pu and 241Am at three levels of 

activity concentration.  

For LSSdir. models, 39 single radionuclide standard solutions were prepared and analysed 

by triplicate. The radionuclides used to prepare these standard solutions are 3H, 14C, 40K, 

60Co, 90Sr/90Y, 134Cs, 137Cs, 210Pb, 226Ra, 228Ra, natU, 239+240Pu and 241Am at three levels of 

activity concentration.  

For RAD disk models, nine single radionuclide standard solutions were prepared and 

analysed by triplicate. The radionuclides used to prepare these standard solutions are 210Pb, 
226Ra and 228Ra at three levels of activity concentration and per triplicate. It has to be pointed 

out that, for this method, two different vials were prepared for each sample. One containing 

the fraction eluted with DHC (lead fraction) and another containing the RAD disk with 

radium isotopes. 
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Table 4 shows the three levels of activity concentration analysed for the radionuclides 

studied. 40K is included in the study because, though it is not included in the directive 

concerning drinking water, it is a radionuclide that can be found in natural water samples, 

and its presence may interfere with the quantification of other radionuclides if it is not 

considered in the calibration set. 

Table 4. Activity concentration for the levels studied for each 
radionuclide. (H) high, (O) intermediate and (L) low activity 
concentration. 

For both LSS methods (LSSconc. and LSSdir.) two spectra were obtained for each replicate 

of the sample (alpha and beta). For the RAD disk method, the spectra used to construct the 

PLS models are the alpha and beta of the RAD disk fraction and the beta of the fraction eluted 

with DHC. The SQP[E] spectra for each measurement were used to select the level of 

quenching of the standards used to construct the PLS model to quantify each sample. Figure 

9 shows the scheme of the database of spectra used to construct PLS models for 

simultaneous determination of several alpha and beta emitters. 

Activity (Bq kg-1) 

Radionuclide (H) (O) (L) 

3H 100 50 25 

14C 100 50 25 

40K 10 5 2 

60Co 50 25 10 

90Sr/90Y 50 25 10 

134Cs 50 25 10 

137Cs 50 25 10 

210Pb 10 5 1 

226Ra 10 5 1 

228Ra 10 5 1 

234+238U 10 5 1 

239+240Pu 10 5 1 

241Am 10 5 1 
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Figure 9. Scheme of the database of spectra used for PLS models construction. 

7.2.2. Data pre-treatment 

The procedure to construct a PLS model consists of selecting from the database the 

spectra of the radionuclides of interest (taking into account the results obtained in other 

methodologies). The SPQ[E] of each measurement is considered to select the database that 

will be used to quantify each sample. After this, the region of interest (ROI) is selected 

depending on the methodology and the radionuclides included in the model. The ROI for 

each standard (alpha and beta for LSS and beta region of eluted fraction for RAD disk 

method) are joined in the same vector, and then all the standards are stored in a matrix. The 

matrix obtained was then smoothed using a Savitzky-Golay filter and mean centred. This is 

the calibration set or X-Block.  

As an example, the construction of a PLS model with LSSconc. spectra for 40K, 60Co, 90Sr/90Y, 

137Cs, natU and 241Am is described. 

To include the information of the alpha and beta spectra in the same vector, the channels 

of each of the spectra containing information have been selected. For this, the ROI is selected 

as all channels except those that do not contain accounts in 95 % of the spectra. It has been 

found that the ROI that provide information and with which we work are between channels 

545 and 915 for the alpha spectrum and between channels 75 and 895 for the beta 

spectrum. Figure 10 shows the alpha spectrum (red) and the beta spectrum (blue), both of 

which correspond to a 90Sr sample in a secular equilibrium with 90Y, where the window is 
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selected for each spectrum. It should be pointed out that the signal that appears in the α-

MCA is due to interference caused by 90Y (high-energy beta emitter 2.28 MeV).

Figure 10. Beta and alpha spectra of 90Sr/90Y. The shaded region indicates the selected ROI. 

When alpha and beta ROI are selected, both are joined in a same vector. For this purpose, 

the matrix that contains beta ROIs of all the selected standards is enlarged in the direction 

of the rows, adding as new columns the matrix that contains alpha ROIs. Figure 11 shows 

a graphic representation of the matrix enlarged in the rows direction for each studied 

radionuclide.  

Figure 11. Graphic representation of the matrix enlarged in the rows direction which contains 
alpha and beta ROI for a replicated of a standard of high activity for the six radionuclides. 

The matrix was the smoothed and mean centred. The smoothing was performed by 

means of Savitzky-Golay filter with polynomial order 1 and a window width of 31 channels. 
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In other words, groups of 31 points of each spectrum were interpolated into a line, and this 

interpolation was used to obtain the new, smoothed vector. With this process, small 

variations in the spectra caused by instrumental noise are neglected in subsequent 

calculations. The mean centring process consists of subtracting from each spectrum the 

mean of the entire matrix on the rows direction following the next equations: 

𝑋𝑖𝑘
∗ = 𝑋𝑖𝑘 − 𝑋𝑘̅̅̅̅  (7.1) 𝑋𝑘̅̅̅̅ =

∑ 𝑋𝑖𝑘
𝐾
𝑘=1

𝐾
 (7.2) 

where 

Xik and Xik*  are the original and the mean-centred vectors of spectra, respectively;

𝑋𝑘̅̅̅̅    is a row vector composed of the mean of each column; and

K   is the number of rows of the X-Block. 

Although this procedure does not entails a large improvement of the prediction of the 

model, it is a necessary step before the PLS model construction. Figure 12 is a graphic 

representation of the X-Block matrix, which contains alpha and beta spectra from 54 

standard solutions (three replicates at three activity concentrations for six radionuclides). 

Figure 12a shows original data while Figure 12b shows the smoothed and mean-centred 

matrix.  

Figure 12. Original matrix which contains 54 standard solution spectrum (a) and smoothed and
mean-centered matrix (b). 

On the other hand, the activity for each radionuclide in each of the spectra obtained was

calculated following Equation (7.3). In this way, a second matrix (Y-Block) with 54 rows 

(one for each spectrum) and six columns (one for each radionuclide) was obtained: 
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𝐴𝑣
𝑖 =

𝐴𝑚
𝑖 ∗ 𝑚𝑚 ∗ 𝑚𝑣
𝑚𝑑𝑖𝑠

 (7.3) 

where 

𝐴𝑣
𝑖    is the activity of the radionuclide i in the counting vial in Bq;

𝐴𝑚
𝑖  is the activity of the radionuclide i in the standard at measurement date in Bq kg-1;

𝑚𝑚  is the mass of sample in kg;

𝑚𝑑𝑖𝑠is the mass after dissolution of the sample evaporated to dryness in kg; and

𝑚𝑣    is the mass of solution added into the counting vial in kg.

In this way the X-Block matrix (which contains the alpha and beta spectrum of the 

standards of the radionuclides of interest) and the Y-Block matrix (which contains the 

activity corresponding to the X-Block spectra) were obtained and can be used to construct 

a PLS model. This PLS model makes it possible to quantify the activity concentration of 

samples that contain mixtures of 40K, 60Co, 90Sr/90Y, 137Cs, natU and/or 241Am. 

7.3.  Strategy 

It was seen that even the determinations of specific alpha and beta emitters by LSS-PLS 

are accurate when the target radionuclides are included in the PLS model, this is highly 

affected by interferents not included on it. Furthermore, including radionuclides that are 

not in the sample in the PLS model makes it unnecessarily more complex. For these reasons, 

a strategy was defined to screen and select the radionuclides that have to be included in the 

calibration step for PLS model construction. Figure 13 is a flowchart for the application of 

the different methodologies studied and the PLS model construction. For each methodology, 

the volume of sample analysed is shown at the top left, the time of preparation is shown on 

the lower left side, and the counting time is shown on the lower right side. 
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Figure 13. Application flowchart of the different studied methodologies and PLS model construction. 

Firstly, gross alpha and beta determination is performed by means of the LSSconc. method. 

If gross alpha and gross beta activities are below 0.1 Bq L-1 and 1.0 Bq L-1 respectively, it can 

be assumed that no further analysis has to be performed because the indicative dose is 

below 0.1 mSv y-1, as recommend the Directive 2013/51/EURATOM. Otherwise, the sample 

has to be measured following the other three methodologies: high-resolution gamma 

spectrometry, selective extraction using radium RAD disk and measurement by LSS, and the 

direct method with LSS measurement (LSSdir.). The presence of 60Co, 134Cs, 137Cs and 241Am 

in the sample is assessed by high-resolution gamma spectrometry. In the same way, 210Pb, 
226Ra and 228Ra are assessed by extraction with the RAD disk and the LSS measurement. 

From the results obtained, a PLS model is constructed by using the standard spectra of the 

LSSdir. method. The radionuclides that have to be included in the model are all those detected 

by the aforementioned methodologies plus 3H, 14C, 40K, 90Sr/90Y, natU and 239+240Pu. By means 

of this model, 3H and 14C can be quantified. Furthermore, 40K, 90Sr/90Y natU and 239+240Pu can 

be detected, but they will be quantified by using the PLS model constructed with LSScon. 

method spectra, due to its lower detection limits. Table 5 summarizes the data shown in 

Figure 13, which graphically depicts the methodology by which each radionuclide has been 

determined.

Determine: 60Co, 
134Cs, 137Cs and 

241Am

Determine: 226Ra, 
228Ra and 210Pb

Determine:
3H and 14C

γ Spectrometry

500 mL

5 min / 4 hrs

RAD disk

1000 mL

1 hr / 10 hrs

LSCdir.

8 mL

5 min/ 6 hrs

LSCconc.

80 mL

1,5 hrs / 6 hrs

PLS model construction
with all the determined
RN’s + natU, 40K, 90Sr/90Y
and 239+240Pu

α < 0.1 Bq L-1

β < 1.0 Bq L-1

Determine:
natU, 40K, 

90Sr/90Y and 
239+240Pu

Yes

No

Indicative Dose
< 0,1 mSv y-1
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Table 5. Radionuclides studied together with the methodology used to determine them. 

Radionuclides Methodology 

60Co, 134Cs, 137Cs and 241Am γ Spec. 
226Ra, 228Ra and 210Pb RAD disk 

3H and 14C LSSdir.-PLS 

40K, 90Sr/90Y, natU and 239+240Pu LSSconc.-PLS 

It has to be pointed out that the determination of 222Rn is neglected in the flowchart of 

the strategy even though it is a parameter that has to be determined to accomplish the 

directive because it can be independently determined.  

7.4.  Application to natural samples 

7.4.1. LSSdir.-PLS: Tritium determination on environmental water 

samples (PVRA) 

Direct measurement by liquid scintillation spectrometry methodology (LSSdir.) was used

to determine the 3H activity concentration of several water samples in the framework of 

PVRA around NPP of Vandellós II in the period between 2012 and 2015. Different 

matrices—such as marine water, superficial water, underground water and drinking 

water—were analysed by means of both the accredited method used in the laboratory 

based on a distillation process, and by LSSdir. with PLS quantification. Then the results 

obtained for both methods were compared. 

The accredited method consists of taking an aliquot of 300 mL of water sample, basifying 

it with 2 g of NaOH and adding 75 mg of KMnO4 for continental water samples and 100 mg 

for marine water. The sample is then introduced into a distillation system, heated until the 

boiling point and refluxed for 60 minutes to ensure a homogeneous distribution of hydrogen 

isotopes. After that, the sample is distilled; the first 30 mL is discarded and then 150 mL is 

collected. An aliquot of 8.6 mL of the distilled sample is mixed with 11.4 mL of Optiphase 

Hisafe III scintillation cocktail. The sample is measured for 24 hours by LSS considering a 

quenching curve. 

The PLS model used to quantify the LSSdir. measurements was constructed by using a 

calibration set and the standards of 3H, 14C and 40K, which are the radionuclides expected in 

these samples. Table 6 presents the results of 3H obtained by both methods with their 

uncertainties. No replicate from either method was analysed. 
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Table 6. 3H activity concentration for ten natural samples measured by 

distillation and LSSdir.-PLS method. 

 Distillation method LSSdir.-PLS method  

CODE 
Activity 

Bq kg-1 

Uncert. 

Bq kg-1 

Activity 

Bq kg-1 

Uncert. 

Bq kg-1 

Bias 

% 

Mar. 2012 407.5 27.3 367.3 36.7 -10 % 

Mar. 2013 69.1 4.7 66.6 6.7 -4 % 

Sup. 2012 3.07 0.62 3.55 0.70 16 % 

Sup. 2013 < 1.88 - < 3.15 - - 

Sup. 2014 10.10 1.01 8.90 0.89 12 % 

Sup. 2015 < 1.66 - < 3.15 - - 

Und. 2012 3.75 0.67 3.25 0.64 -13 % 

Und. 2013 2.63 0.60 < 3.15 - - 

Und. 2014 4.91 0.80 3.59 0.72 -27 % 

Und. 2015 < 1.65 - < 3.15 - - 

Dri. 2014 7.85 0.81 7.85 0.79 0 % 

Dri. 2015 6.63 1.49 6.02 0.60 -9 % 

  

When the 3H activity concentration determined by both methods are compared, it can be 

seen that, in general, the bias obtained around 10 %. Just for the water samples near the 

AMD (Sup. 2012, Und. 2012 and Und. 2014), the bias observed is higher and in some cases 

near to 30 %. This may be explained by the high variability of the results near the MDA, 

which could be controlled by measuring replicates. It has to be pointed out that the MDA for 

the accredited method is lower than the value obtained with the LSSdir.-PLS method. For this 

reason, some samples (just Und. 2013 on the studied set) may present a 3H activity 

concentration that is below the MDA for the new proposed method but can be detected by 

the distillation method. For the LSSdir, method, the activity concentration of 40K is below the 

AMD (0.35 Bq kg-1) for all the samples except the marine ones. The 40K activity concentration 

for these samples is 8.6 ± 0.9 Bq kg-1 and 7.7 ± 0.8 Bq kg-1 for Mar. 2012 and Mar. 2013, 

respectively. Finally, for the entire set of samples, the activity concentration of 14C was 

below the detection limit (0.39 Bq kg-1). 

7.4.2. Natural radionuclides in environmental water samples 

The results of a set of natural drinking water samples analysed using RAD disk 

methodology (included in the paper, “Simultaneous determination of 226Ra, 228Ra and 210Pb in 
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drinking water using 3M EmporeTM RAD disk by LSC-PLS”) and LSCconc.-PLS (included in the 

paper “Simultaneous determination of gross alpha, gross beta and 226Ra in natural water by 

liquid scintillation counting”) are discussed in this section. The natural water samples 

analysed in the context of this thesis contain only natural radionuclides. 

The selected samples are a set of five natural water sources that have potential for use 

as drinking water. Gross alpha and gross beta activities were determined by means of the 

procedure explained in section 4. The results obtained by the LSSconc. method are listed in 

Table 7, and gross alpha was compared with a reference value obtained by summing the 

contribution of 234U, 235U, 238U, 224Ra, 226Ra and 210Po determined by alpha spectrometry.  

Table 7. Gross alpha and gross beta activities for the set of five natural samples. 

LSS method 

(Bq kg-1) 
Reference Bias 

Code Gross α Gross β Gross α Gross α 

S1 1.29 ± 0.45 0.78 ± 0.06 1.39 ± 0.18 - 7 % 

S2 6.28 ± 0.62 5.52 ± 0.29 6.2 ± 0.58 1 % 

S3 0.18 ± 0.06 0.33 ± 0.07 0.19 ± 0.03 -2 % 

S4 < 0.03 < 0.10 0.04 ± 0.01 - 

S5 0.10 ± 0.08 0.29 ± 0.07 0.10 ± 0.02 -1 % 

Following the criterion of the directive, according to which gross alpha and gross beta 

activities may be indicative of the ID, it can be seen that S2 overtakes the derived activity 

concentration regarding gross beta (1.0 Bq L-1) and that samples S1, S2 and S3 exceeds the 

limit of gross alpha (0.1 Bq L-1).  

Nevertheless, all the samples were analysed using the RAD disk method for the 

determination of 226Ra, 228Ra and 210Pb, and the spectra obtained from the analysis of gross 

alpha and gross beta activities were deconvoluted to quantify natU and 40K. 

Table 8 reports the results obtained applying the strategy and reference values. The 

reference values for the different natural radionuclides were determined by accredited 

methods using α spectrometry for 226Ra and natU, by extraction with specific resin and LSS 

determination for 210Pb, and by atomic-absorption spectrometry for 40K considering the 

natural abundance. 
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For all the samples, the results obtained from applying the proposed strategy are 

consistent with those obtained via reference procedures. A bias below 15 % was obtained 

in all the cases.  

Table 8. 210Pb, 226Ra and natU activity concentration for five natural water samples using the proposed 
strategy and reference procedures. 

 
Strategy 

(Bq kg-1) 

Reference 

(Bq kg-1) 

Bias 

(%) 

Code 210Pb 226Ra natU 210Pb 226Ra natU 210Pb 226Ra natU 

S1 <0.02 0.51 0.80 0.028 0.55 0.78 - -7 3 

S2 0.13 0.19 6.10 0.11 0.16 5.90 13 15 3 

S3 <0.02 <0.02 0.18 <0.0003 0.005 0.16 - - 13 

S4 <0.02 <0.02 <0.03 0.001 0.002 0.032 - - - 

S5 <0.02 0.08 0.09 0.001 0.070 0.082 - 14 4 

 

For 210Pb, S2 has activity above the detection limit, and the other samples were below 

0.02 Bq kg-1. 226Ra was found in a range below the detection limit (0.02 Bq kg-1) to 0.51 Bq 

kg-1, and natU was found below the detection limit (0.03 Bq kg-1) to 6.1 Bq kg-1.  

Regarding 228Ra and 40K, the activity concentration in all the samples was below the 

limits of detection of 0.03 Bq kg-1 and 0.9 Bq kg-1, respectively. 

From the results obtained by applying Equation 2.5 it can be seen that the ID of S3, S4 and 

S5, considering a consumption of 730 L per year, is below 0.1 mSv y-1, while S1 (mainly by 

226Ra contribution) and S2 (mainly for natU contribution) exceed this value.  

7.4.3. Artificial radionuclides in environmental water samples  

Since no artificial radionuclides were observed in the natural water samples analysed, 

the application of the proposed strategy for their determination was evaluated by means of 

quality control materials and inter-comparison exercises. This section discusses the results 

obtained by applying the strategy explained in Section 7.3 for IAEA-TEL-2014-03 Sample 

03 and IAEA-TEL-2015-03 Sample 01. 

Regarding the inter-comparison of IAEA-TEL-2015-03, Sample 01 is a spiked water 

sample for which the organizer requests the activity of anthropogenic gamma emitters and 

90Sr. First, a high-resolution gamma spectrometry measurement was performed to 

determine the caesium isotopes activity concentration. 134Cs and 137Cs were determined and 

no further gamma emitters were detected. After this, a PLS model for LSSconc. method was 
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constructed by using 134Cs, 137Cs and 90Sr/90Y spectra as standards. The results obtained for 

γ spectrometry and LSSconc.-PLS are shown in Table 9. 

Table 9. Activity concentration of the inter-comparison exercise IAEA-TEL-2015 Sample 01 obtained 
by γ spectrometry and LSSconc.-PLS compared with that given by the organizer. The values obtained 
by following the proposed strategy are highlighted in shading. 

RN γ-Spec. 

(Bq kg-1) 

LSSconc.-PLS 

(Bq kg-1) 

Organizer 

(Bq kg-1) 
Statistics performance 

Relative 

Bias 

Robust 

SD 

z-

score 

90Sr - 34.1 ± 3.4 29.6 ± 0.8 7.4 % 3 0.7 

134Cs 28.5 ± 2.2 31.9 ± 3.2 30.0 ± 0.9 -5.0 % 1.8 0.8 

137Cs 30.2 ± 2.4 32.9 ± 3.3 30.1 ± 0.9 0.3 % 1 0.1 

From these results, which are partially shown in the paper “Simultaneous determination 

of specific alpha and beta emitters by LSC-PLS in water samples”, from Chapter 5, two 

conclusions can be derived. On one hand, γ spectrometry makes it possible to determine 

gamma emitters with low bias, and, furthermore, makes it possible to identify the gamma 

emitters that must be included in the PLS model to achieve a more realistic scenario. On the 

other hand, the LSSconc.-PLS method, is not only useful for the determination of 90Sr/90Y but 

also allows for the quantification of 134Cs and 137Cs with a low uncertainty.  

Regarding the quality-control material IAEA-TEL-2014-03 Sample 03, the organizer 

reports the radionuclides present in the sample and its activity concentrations. However, 

the strategy described in Section 7.3 was applied to this sample, as no information about 

the sample was given. Gross alpha and gross beta activities were evaluated as 

35.5 ± 2.5 Bq kg-1 and 81 ± 5 Bq kg-1, respectively. After this, γ spectrometry measurement 

was performed and 134Cs, 137Cs and 241Am were determined. 40K, 60Co, 210Pb, and 228Ra (via 

228Ac) were not detected. 226Ra (via 214Pb) was detected, but since no secular equilibrium 

was reached when the measurement was performed, 226Ra was underestimated. The RAD 

disk methodology was applied to determine 226Ra and to evaluate the presence of 228Ra and 

210Pb. Values of 18.6 ± 0.6 Bq kg-1 and 9.4 ± 0.5 Bq kg-1 were determined for 226Ra and 210Pb, 

respectively, while for 228Ra, the results were below the detection limit. With this 

information, the PLS model using spectra of LSSdir. was constructed to quantify 3H and 14C. 

The radionuclides included in the model are all the listed in Table 4 except for 60Co and 

228Ra, which are excluded because they were discarded by other methodologies. 3H and 14C 

were below the detection limit, as was 40K. Regarding 239+240Pu, its activity concentration 

was determined to be above the detection limit. However, the activity concentration of 
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239+240Pu (3.2 ± 0.6 Bq kg-1) and that of 241Am (14.5 ± 1.5 Bq kg-1), determined by LSSdir.-PLS 

method, were around the activity concentration of 241Am determined by γ spectrometry. 

This fact suggests, as is the case with 134Cs and 137Cs in “Simultaneous determination of 

specific alpha and beta emitters by LSC-PLS in water samples”, there is an interference of 
241Am in the determination of 239+240Pu, both with close energy on its characteristic alpha 

emission (5.49 MeV and ~ 5.25 MeV, respectively). For this reason, 239+240Pu was excluded 

from the PLS model construction. With the new PLS model, the 241Am activity concentration 

determined by γ spectrometry and that determined by LSSdir.-PLS were concordant. 

Since 40K may be determined with lower detection limits with LSSconc. method, it was 

included in the LSSconc.-PLS model. Thus, the radionuclides included in LSSconc.-PLS model 

are the following: 40K, 90Sr/90Y, 134Cs, 137Cs, 226Ra, natU and 241Am. By means of this model, the 

spectrum previously used to determine gross alpha and gross beta activities was analysed. 

Table 10 shows the results obtained by the four studied methodologies. The methodology 

used to determine each radionuclide is highlighted in shading. Table 10 also includes the 

relative bias between the shaded value and the value reported by the organizer. 

Table 10. Activity concentration of the quality control material IAEA-TEL-2014-03 Sample 03 
obtained following the proposed strategy compared with that given by the organizer. The results 
with which relative bias was calculated are highlighted in shading. 

RN 
γ-Spec. 

(Bq kg-1) 

RAD disk 

(Bq kg-1) 

LSSdir.-PLS 

(Bq kg-1) 

LSSconc.-PLS 

(Bq kg-1) 

Organizer 

(Bq kg-1) 

Relative 

Bias (%) 

3H - - < 5.2 - - - 
14C - - < 3.8 - - - 
40K < 10.7 - < 3.6 < 0.4 - - 
60Co < 0.3 - - - - - 

90Sr/90Y - - 19.3 ± 2.9 22.6 ± 2.3 24.5 ± 0.2 -8 % 

134Cs 23.2 ± 0.4 - 35.2 ± 5.3 31.6 ± 3.2 26.3 ± 0.2 -12 % 

137Cs 19.3 ± 0.3 - 12.8 ±1.9 15.2 ± 1.5 19.6 ± 0.1 -2 % 

210Pb 12.0 ± 2.7  9.4 ± 0.5 7.6 ± 1.2 9.1 ± 0.9 - - 
226Ra 8.2 ± 0.41 18.6 ± 0.6 15.5 ±2.3 15.2 ± 1.5 17.9 ± 0.1 4 % 

228Ra < 1.62 < 0.03 - - - - 
natU3 - - 7.1 ± 1.1 6.3 ± 0.6 5.48 ± 0.04 14  % 

239+240Pu - - - - - - 
241Am 21.3 ± 0.3 - 21.1 ±3.2 17.0 ± 1.7 20.0 ±0.1 -6 % 

1 Via 214Bi (609.31 keV, not in secular equilibrium) 
2 Via 228Ac (911.21 keV) 
3 Sum of 234U and 238U 
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These results—partially shown in the paper, “Simultaneous determination of specific 

alpha and beta emitters by LSC-PLS in water samples” (LSSconc.-PLS method) and in the paper, 

“Simultaneous determination of 226Ra, 228Ra and 210Pb in drinking water using 3M EmporeTM 

RAD disk by LSC-PLS” (RAD disk method)—illustrate the usefulness of the proposed 

strategy.  

3H and 14C were found below the detection limit by the LSSdir.-PLS method. 

40K was found below the detection limit for all the methodologies used, but the result 

reported is that obtained by LSScon.-PLS, which provides the lower detection limit.  

60Co was below the detection limit for γ spectrometry and hence was not included in the 

LSSdir and LSSconc. PLS models.  

90Sr/90Y and natU were detected by both the LSSdir.-PLS and LSSconc.-PLS. However, since 

the LSSconc.-PLS method has lower detection limits and uncertainty, the results of both 

radionuclides were given by this method.  

134Cs, 137Cs and 241Am were determined by γ spectrometry and were included in PLS 

models to consider the radionuclides present in the sample.  

Finally, 210Pb, 226Ra and 228Ra were determined by means of RAD disk methodology, 

although they may be also determined by γ spectrometry, LSSdir.-PLS or LSSconc.-PLS 

methods. This selection was made because RAD disk is the method with the higher 

selectivity and the lowest limit of detection. Furthermore, the determination of 226Ra via 

214Bi by γ-spectrometry must meet some requirements. On one hand, the sample should not 

contain unsupported 222Rn, because 214Bi is in equilibrium with 222Rn; hence, 226Ra will be 

overestimated. On the other hand, the counting geometry must be sealed to avoid 222Rn 

releases, and one must wait until secular equilibrium between 226Ra and 222Rn has been 

achieved. This requirement makes 226Ra via 214Bi by γ-spectrometry a slow procedure.  

Is has to be noted that the results obtained by the LSSconc. and LSSdir methods for 

radionuclides such as 134Cs, 137Cs, 210Pb, 226Ra and 241Am are also concordant with that 

provided by the organizer.   

In less than 24 hours, 

7.5.  Further applications 

The proposed strategy makes it possible to determine even 13 radionuclides from a 

sample of 1.5 L in less than 24 hours. Furthermore, the strategy makes it possible to 

significantly reduce the reagents used because the methods used entail a minimum 
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radiochemical separation. For all these reasons, the proposed strategy has been shown to 

be rapid screening method. 

The analytical procedures used, together with PLS models quantification, realize a rapid 

determination of alpha and beta emitters in waters. For this reason, the quantification of LS 

spectra by means of PLS in other matrices, such as soil lixiviates or urine samples, should 

be explored in situations that require rapid screening methods as emergency events. 
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8. CONCLUSIONS 

  



 

 

  



 

 

From the research conducted in the present doctoral thesis, the following conclusions 

can be inferred:  

Regarding the determination of gross alpha and gross beta activities by LSS, 

1. A procedure for the rapid determination of gross alpha and gross beta activities 

by LSS has been optimized and validated for the measurement of water samples.  

2. The activity of 226Ra can be simultaneously estimated by means of a second 

measurement of the counting vial after six days of sample treatment.  

3. The validated procedure provides results that are comparable with the classical 

methods—like evaporation and co-precipitation methods—for gross alpha 

determination and summation of alpha emitters. 

Regarding the determination of 226Ra, 228Ra and 210Pb by RAD disk extraction and LSS 

measurement, 

4. A procedure for rapid determination of 226Ra, 228Ra and 210Pb using Radium RAD 

disk and LSS was developed and validated.  

5. Direct measurement of Radium RAD disk by LSS may be performed under some 

conditions. The most important of them is to ensure a good impregnation of the 

filter to avoid α/β separation issues and shifting of the spectra. To achieve this 

impregnation of the RAD disk, there is need to wait eight hours or to force this 

impregnation by sucking the scintillation cocktail trough the RAD disk. 

6. To achieve an appropriate determination of 228Ra and to avoid interference 

between 210Pb and 228Ra, DHC can be used to selectively elute 210Pb from the RAD 

disk in order to separately measure lead and radium isotopes. 

Regarding the PLS models for LS spectra deconvolution, 

7. The studies conducted to test the feasibility of PLS models for LS spectra 

deconvolution have proven that this is a valid procedure for the determination 

of several radionuclides from LS spectra. However, it must be noted that, to 

obtain reliable results, it is critical to include in the calibration set all the 

radionuclides expected in the studied scenario. 

8. PLS models have been proved valid for the quantification of specific 

radionuclides from LS spectra not only for procedures that determine global 
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alpha and beta activities but also for procedures that entail a radiochemical 

separation, such as RAD disk extraction.  

9. The quantification of LSS by means of PLS in other matrices should be explored 

for situations that require rapid methods such as accidental events. 

Regarding quenching effects in efficiency, spectrum shape and α/β separation, 

10. The efficiency is highly affected for low-energy beta emitters and just moderately 

for high-energy beta emitters, while alpha emitters are not clearly affected.  

11. Colour quenching modifies α/β classification in to a higher degree than chemical 

quenching.  

12. The nature of quenching in real samples must be properly studied to select the 

best quenching agent to perform the quenching curves and hence to set up the 

PSD, correct the efficiency, and, if necessary, correct the shifting of the spectra.  

Regarding the strategy for applying the developed methodology, 

13. A strategy has been proposed to sequentially determine the radionuclides 

included in the Annex III of the Directive 2013/51/EURATOM, which combines 

the procedures developed in this thesis and other classical measurements like γ 

spectrometry. 

14. This strategy, either entire or partially, satisfactorily determined the activity of 

specific radionuclides in water samples of PVRA, sources with potential use as 

drinking water, and spiked quality-control materials.  

15. The proposed strategy makes it possible to determine even 13 radionuclides in 

a rapid way (less than 24 hours) with a minimum radiochemical separation 

which entails a significant reduction of the used reagents. 
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Estructura de la tesi 

Aquesta tesi s’estructura en 8 capítols. En el primer es descriu la estructura de la tesis i 

s’esmenten els articles científics que inclou. En el segon capítol s’introdueix la radioactivitat 

en el medi ambient, així com la Directiva per a les aigües de consum 2013/51/EURATOM, 

que recull els radionúclids objecte d’estudi en aquesta tesi. En el tercer capítol, es 

resumeixen els objectius de la present tesi. 

Els resultats de la tesi es presenten com a compendi d’articles en els següents tres 

capítols. En el quart capítol es presenten dos articles en relació amb la optimització y 

validació del procediment per a la determinació dels índex d’activitat alfa i beta per 

espectrometria d’escintil·lació líquida. En el cinquè, es recullen dos articles més en relació 

al desenvolupament i validació de la determinació de 226Ra, 228Ra i 210Pb en aigua de beguda 

mitjançant extracció en fase sòlida amb 3M Empore Radium RAD disk. Després en el capítol 

6, s’inclouen dos articles més, un relacionat amb l’estudi de viabilitat d’aplicació de models 

PLS a la deconvolució d’espectres de LSS, i el segon un estudi dels efectes sobre el 

desplaçament dels espectres, la eficiència i la separació alfa-beta de l’esmorteïment químic 

i el de color. 

En el capítol set, es discuteixen de forma global els resultats recollits en tota la tesi. A 

més, es descriu una estratègia per a l’aplicació de les metodologies desenvolupades en el 

transcurs de la tesi per a la determinació de múltiples emissors alfa i beta. Finalment, el 

vuitè capítol conté les principals conclusions extretes de la present tesi.  

 

Llistat d’articles científics presentats en aquesta tesi: 

1- Simultaneous determination of gross alpha, gross beta and 226Ra in natural water 

by liquid scintillation counting. 

Autors: J. Fons, D. Zapata-García, J. Tent, M. Llauradó 

Revista: Journal of Environmental Radioactivity 125 (2013). pp. 56-60  

 

2- A comparative experimental study of gross alpha methods on natural waters. 

Autors: Montaña, M.; Fons, J.; Corbacho, J.A.; Camacho, A.; Zapata-García, D.; Guillén, J.; 

Serrano, I.; Tent, J.; Baeza, A.; Llauradó, M.; Vallés, I. 

Revista: Journal of Environmental Radioactivity 118 (2013). pp. 1-8 
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3- On the direct measurement of 226Ra and 228Ra using 3M EmporeTM RAD disk by liquids 

scintillation spectrometry. 

Autors: J. Fons-Castells, M. Vasile, H. Loots, M. Bruggeman, M. Llauradó, F. Verrezen 

Revista: Journal of Radioanalytical and Nuclear Chemistry 309 (2016). pp. 1123-1131. 

 

4- Simultaneous determination of 226Ra, 228Ra and 210Pb in drinking water using 3M 

EmporeTM RAD disk by LSC-PLS. 

Autors: J. Fons-Castells, J. Oliva, J. Tent-Petrus, M. Llauradó 

Revista: Applied Radiation and Isotopes 124 (2017). pp. 83-89 

 

5- Simultaneous determination of specific alpha and beta emitters by LSC-PLS in water 

samples. 

Autors: J. Fons-Castells, J. Tent-Petrus, M. Llauradó  

Revista: Journal of Environmental Radioactivity 166 (2017). pp. 195-201 

 

6- Effect quenching on efficiency, spectra shape and alpha-beta discrimination in liquid 

scintillation spectrometry. 

Autors: J. Fons-Castells, V. Díaz, A. Badía, J. Tent-Petrus, M. Llauradó 
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Introducció 

La radioactivitat es un fenomen espontani mitjançant el qual, nuclis inestables decauen 

a nuclis de major estabilitat emetent radiació. Aquesta radiació comporta un alliberament 

d’energia, causat per la reorganització interna del nucli per tal d’assolir una relació entre 

neutrons i protons estable. Les radiacions poden esser classificades com a alfa, beta, gamma 

o neutrons. En el context d’aquesta tesi s’estudiaran les emissions alfa i beta,  i s’emprarà 

espectrometria gamma per a la determinació d’alguns radionúclids. 

Les partícules alfa son, nuclis d’heli que son generalment, alliberats per nuclis amb un 

nombre de protons massa elevat respecte els neutrons. L’energia de les partícules alfa es 

característica de l’emissor. Atesa la seva gran massa i càrrega, les partícules alfa 

interaccionen fortament amb la matèria fet que comporta un important perill per a la salut 

si son incorporades a l’organisme. 

Com a partícula beta s’entenen tant electrons com la seva antipartícula, els positrons, En 

el procés d’emissió a part d’un electró s’emet alhora, un antineutrí. Com l’energia alliberada 

en la reorganització nuclear es comparteix entre l’electró i l’antineutrí, l’energia de l’electró 

pot anar des de 0, quan total l’energia es depositada sobre l’antineutrí, fins a una energia 

màxima (característica de l’emissor) quan tota es depositada sobre l’electró. De forma 

anàloga succeeix amb l’emissió de les antipartícules (positrons i neutrins). Les partícules 

beta tenen un major poder de penetració que els alfa.  

Respecte a les emissions gamma, es tracta de radiació electromagnètica d’alta energia 

emesa per el nucli inestable. Aquest radiació es característica del radionúclid emissor. Ates 

el seu comportament com a radiació, les emissions gamma tenen un alt poder de penetració. 

La magnitud per a la mesura de la radioactivitat es la activitat i en el sistema 

internacional s’expressa en Becquerels (Bq) que són equivalents a desintegracions per 

segon (s-1). L’activitat d’una font radioactiva depèn del nombre de nuclis i de la constat de 

desintegració del nucli en qüestió (λ), que és característica d’aquest i fa referencia a la 

probabilitat de desintegració en un període determinat de temps.  

No sempre els radionúclids decauen a nuclis estables, i en ocasions aquest donen com a 

producte de desintegració altres radionúclids. Quan això succeeix es parla d’una cadena 

radioactiva. La relació que pot haver-hi entre RN pares i els seus descendents depèn de la 

relació entre les seves constant de desintegració. Quan la del pare es molt inferior a la del 

descendent (superior a quatre ordres de magnitud), es pot assolir el que s’anomena 

equilibri secular. Quan aquest s’assoleix, l’activitat del fill s’iguala amb la del pare, Si la 

constant de desintegració del pare es inferior a la del fill però en menys de quatre ordres de 
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magnitud s’assoleix equilibri transitori, on l’activitat del pare i la de fill decauen amb la 

constant del pare. Quan la constant del pare es superior a la del fill s’arriba a una situació de 

no equilibri.  

Radioactivitat en l’ambient 

Les fonts de radioactivitat poden classificar-se com a naturals i artificials. Existeixen 

diversos tipus de radioactivitat natural, els raigs còsmics, els radionúclids cosmogènics i els 

radionúclids primordials.  

Els raigs còsmics es composen de partícules carregades d’alta energia. Aquest en entrar 

en contacte amb l’atmosfera terrestre poden donar a lloc reaccions nuclears amb els àtoms 

constituents de les capes altes de l’atmosfera produint el que s’anomena radionúclids 

cosmogènics.  

Els radionúclids primordials son aquells que han estat a la terra des de els seus orígens. 

Alguns d’aquest radionúclids formen part de les cadenes de desintegració naturals, les mes 

importants de les quals son les que s’inicien amb 232Th, 238U i 235U. L’altra seria natural, que 

s’inicia amb 241Pu ha decaigut totalment des de la formació de la terra i actualment només 

se’n poden trobar els últims dos isòtops.  

Es important senyalar que les industries que empren com a matèries primes materials 

que contenen radionúclids naturals (anomenades industries NORM), son susceptibles de 

generar productes on aquests han quedat en major concentració.  

Quan es parla de radioactivitat artificial es fa referència aquella produïda per l’activitat 

humana. Em algunes ocasions els radionúclids poden esser l’objectiu que es busca, com 

quan es sintetitzen radionúclids amb finalitats mèdiques. En altres, la radioactivitat es un 

subproducte d’allò que realment es busca com es el cas de les centrals nuclear, on l’energia 

alliberada per la reacció de fissió de l’urani o el plutoni s’aprofita per a generar energia 

elèctrica.  

Per tal d’assegurar que l’impacte de les centrals nuclears no te efectes sobre l’esser humà 

i el medi ambient, es realitzen plans de vigilància al voltant de les centrals nuclears, que 

solen consistir en mesures gamma així com la presa de mostra de diferents tipus de matriu 

per el posterior anàlisis al laboratori. A nivell espanyol el CSN (Consejo de Seguridad 

Nuclear) s’encarrega d’establir els requisits del plans de vigilància radiològica ambiental. 

A banda dels usos civils també cal afegir els usos militars que han tingut i tenen cert 

impacte sobre la dosis rebuda per la població. 
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A l’octubre de 2013 el consell de la Unió Europea va publicar la directiva 

2013/51/EURATOM en la que s’estableixen els requisits per a la protecció de la salut del 

públic en general en relació a les substàncies radioactives en aigües de consum humà. 

Aquesta directiva, que substitueix la directiva 98/83/CE del Consell, estableix valors 

paramètrics, freqüències y característiques del mètodes per al seguiment de les substancies 

radioactives.  

Els paràmetres regulats son la concentració d’activitat de 3H, de 222Rn i la dosis indicativa 

(ID). Els valors paramètrics són 100 Bq L-1 tant per 3H com per 222Rn i 0,1 mSv any-1 per a la 

ID. La dosi indicativa s’ha de calcular segons la directiva 96/29/EURATOM per a un consum 

de 730 L per any.  

La directiva permet avaluar paràmetres e garbellat per tal d’assegurar que la ID es 

compleix, un d’aquest mètodes consisteix en la determinació dels índex d’activitat alfa i beta 

total, que han de trobar-se per sota de 0.1 Bq L-1 i 1.0 Bq L-1, respectivament.  

Aquest paràmetres es poden determinar per espectrometria d’escintil·lació líquida, que 

va ser una de les primeres tècniques emprades per a la determinació de radioactivitat. 

L’espectrometria d’escintil·lació líquida (LSS) es basa en la mescla de la mostra amb una 

mescla de substancies orgàniques (còctel escintil·lador) capaç de captar l’energia d’una 

partícula emesa en el si d’aquesta solució i emetre-la de nou com a pols lumínic. Aquest pols 

lumínic es detectat pels fotomultiplicadors i classificat segons la seva intensitat (nombre de 

fotons). La intensitat dels polsos es relaciona amb la energia de la partícula que els ha 

produït i el seu nombre amb el nombre de desintegracions que s’han produït en l’interior 

del vial de comptatge. D’aquesta forma, es pot obtenir un espectre on es representen els 

canals (energia) respecte el nombre de comptes enregistrats.  

Paràmetres que cal tenir en compte a l’hora de realitzar mesures de mescles d’0emissors 

α i emissors β per LSS són l’esmorteïment i el paràmetre instrumental per a la separació 

α/β. 

L’esmorteïment lumínic es un terme on s’engloben els fenòmens que interfereixen en la 

transferència d’energia de la partícula a mesurar, des de que es emesa fins que el pols 

lumínic es detectat per el fotomultiplicador.  

Els tipus d’esmorteïment que més afecten a LSS i que s’estudien en aquest atesi son 

l’esmorteïment químic i el causat pel color. L’esmorteïment químic interfereix en la 

transferència d’energia entre el solvent excitat i els diferents soluts que componen el còctel, 

de forma que part de l’energia no arriba a ser emesa en forma de llum i per tant no es detecta 

en el fotomultiplicador. L’esmorteïment de color es aquell que, a causa d’una coloració en la 
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solució de comptatge, interfereix absorbint fotons emesos i d’aquesta forma atenuant la 

intensitat dels polsos produïts. 

Respecte a la separació α/β, aquesta es realitza mitjançant un paràmetre instrumental 

(SQP[E]) per a l’equip que s’utilitza en aquesta tesi (Quantulus 1220) que permet diferencia 

entre polsos produïts per partícules α i els produïts per partícules β, gràcies a la diferencia 

en la seva durada. 

La determinació dels índex d’activitat alfa i beta total per escintil·lació líquida mitjançant 

LSS proporciona espectres que son integrats en unes finestres determinades per quantificar 

els esmentats índex. Tot i això, la informació espectroscòpia obtinguda permetria en alguns 

casos determinar radionúclids individuals en comptes de paràmetres globals. Amb aquest 

objectiu des dels orígens de la LSS s’han desenvolupat mètodes per a la separació dels 

senyals de diferents radionúclids en el mateix espectre d’escintil·lació líquida. Aquest 

mètodes es poden separar entre els clàssics i els avançant, que es diferencien bàsicament 

per la potència computacional necessària per portar-los a terme. 

Dintre dels mètodes clàssics englobem els mètodes de exclusió, inclusió, inclusió amb 

creixement de descendents i espectre complert.  Els tres primers en basen en definir tantes 

finestres com radionúclids conté la mostra (màxim tres) i determinar-ne la eficiència de 

cadascun dels radionúclids implicats. En la tècnica de l’espectre complert (només útil per a 

mescles de dos radionúclids), s’utilitza el centre de masses de l’espectre per tal de 

determinar la proporció de cada radionúclid en la mescla.  

Dintre del que anomenem mètodes avançats englobem el mètode del valor mes probable, 

mètodes de desconvolució mitjançant espectres patró, funcions gaussianes o series de 

Fourier i mètodes de calibratge multivariant. El mètode del valor més probables es basa en 

definir múltiples finestres (fins a una finestra per canal) i igualar les comptes de cadascuna 

amb la contribució de cadascun dels radionúclids, obtenint-se múltiples equacions (tantes 

com finestres) amb tantes incògnites com radionúclids. Es defineix una funció error que 

empresa la diferencia entre la suma de contribucions individuals i el valor mesurat a cada 

finestra i es defineix el valor més probable com el corresponent a aquell que proporciona el 

mínim en aquesta funció. La desconvolució d’espectres tracta de comparar sumes  espectres 

individuals, o funcions teòriques d’espectres individuals—com gaussianes per emissors 

alfa, gaussianes modificades per emissors beta, o series de Fourier—a l’espectre mesurat. 

Finalment el calibratge multivariant es vasa en l’aplicació de models quimiometrics, 

bàsicament PLS, per a la determinació de mescles de radionúclids. 
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Els regressió PLS es un mètode de estadístic que  es basa en construir un nou sistema de 

variables, anomenades variables latents (LV) que contenen la major part de la informació 

espectroscòpica en un nombre molt inferior de variables. L’objectiu serà en el nostre cas, 

predir una matriu Y que conté les activitats dels diferents radionúclids d’interès, a partir 

d’una matriu X que conte la informació dels espectres de les mostres a analitzar. Per poder 

fer això, anteriorment s’ha d’haver creat un model PLS mitjançant un conjunt d’espectres 

patró (o de calibratge) obtinguts a partir de la mesura de mostres de concentració coneguda. 

 En aquesta tesi s’estudia la viabilitat de l’ús dels models PLS per a la determinació 

simultània de diversos emissors alfa i beta a partir d’espectres d’escintil·lació líquida. 

 

Objectius 

L'objectiu principal d'aquesta tesi és desenvolupar i aplicar una estratègia per a la 

determinació ràpida i simultània d'emissors alfa i beta en mostres d'aigua. Els radionúclids 

en els que es centrarà l’estudi en aquesta tesi són els inclosos en la Directiva Europea 

2013/51/EURATOM. 

Aquest objectiu general s'ha dividit en objectius específics que es detallen a continuació: 

 

 Desenvolupament i validació de metodologies ràpides, no només per a la 

determinació del contingut total d'emissors alfa i beta, sinó també radionúclids 

específics basats principalment en mesures per LSS (Espectrometria d’escintil·lació 

líquida). 

 Estudi de viabilitat i implementació d'eines quimiomètriques per a la deconvolució 

i quantificació d'emissors alfa i beta específics a partir dels espectres obtinguts 

mitjançant metodologies ràpides per LSS. 

 Descripció d’una estratègia per determinar de forma seqüencial diversos emissors 

alfa i beta i aplicació de l'estratègia proposada en mostres d’aigua susceptibles de 

esser considerades aigües de beguda i mostres d’aigua del pla de vigilància al voltant 

de la central nuclear de Vandellós. 

Desenvolupament i validació de metodologies ràpides 

Les metodologies analítiques estudiades foren la determinació simultània dels índex 

d’activitat alfa i beta total pel mètode de concentració i la mesura per espectrometria 

d’escintil·lació líquida (LSSconc.), la mesura directa de les activitats alfa y beta mitjançant 

espectrometria d’escintil·lació líquida (LSSdir.). Aquest procediment es una modificació del 
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primer mètode en el que s’elimina l'etapa de concentració per tal de mesurar 14C i 3H que 

son volàtils en les condicions del primer mètode. Finalment la determinació de 226Ra, 228Ra 

i 210Pb per extracció amb disc 3M Radium RAD i posterior mesura per LSS. D'altra banda, 

també es va incloure en l'estratègia de quantificació la mesura per espectrometria gamma 

d’alta resolució com a mètode de cribratge. 

La determinació de 222Rn, que també esta inclòs en la Directiva Europea, no s’ha 

considerat en la present tesi per dues raons. D’una banda, existeixen diversos mètodes 

ràpids per a la determinació de 222Rn, i per altra, la interferència que podria causar el 222Rn 

en la determinació d’altres radionúclids es pot eliminar fàcilment eliminant el radó de la 

mostra mitjançant agitació o escalfament, ja que es un gas.    

Estudi de viabilitat de mètodes quimiométric per a la deconvolució d’espectrs LS 

Per tal de comprovar la viabilitat dels models de PLS per predir l'activitat dels 

radionúclids esmentats anteriorment, es va construir una base de dades amb els espectres 

de obtinguts mitjançant els procediments de LSSconc., LSSdir. i extracció amb RAD disk. S'han 

considerat diferents radionúclids, nivells d'activitat i el nivell d’esmorteïment.  

L'aplicació de l'estratègia proposada 

L'estratègia proposada es basa en un conjunt de les metodologies analítiques que 

proporcionen informació diferent de la mostra que es combina per quantificar diversos 

emissors alfa i beta. Aquesta estratègia s'ha aplicat a diferents tipus de problemàtiques reals 

com la determinació de triti en mostres d'aigua naturals dintre del pla de vigilància 

radiològica ambiental de Vandellós II (PVRA), radionúclids naturals en l'aigua del medi 

ambient, i les mostres naturals traçades amb radionúclids artificials que simulen una 

contaminació accidental. 

 

Validació de la determinació dels índex d’activitat alfa i beta 

Dels resultats obtinguts en els dos articles científics que componen aquest capítol, cal 

destacar que s’ha descrit el desenvolupament de la metodologia analítica per a la 

determinació simultània dels índex d’activitat alfa y beta total així com la determinació de 

226Ra mitjançant una segona mesura del vial aprofitant l’augment d’activitat degut al 

creixement 222Rn i els seus descendents. Aquesta metodologia s’ha validat i comparat amb 

altres tècniques clàssiques per a la determinació de l’índex d’activitat alfa total com son el 
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procediment d’evaporació i determinació per comptador proporcional i el de coprecipitació 

i mesura per escintil·lació solida de ZnS o comptador proporcional. 

A més, s’ha desenvolupat un model matemàtic que permet estimar l’activitat de 226Ra 

realitzant una segona mesura del vial transcorreguts un mínim de sis dies després del 

tractament de la mostra. Aquest mateix model permet determinar l’índex d’activitat alfa 

total sense la contribució del 222Rn i els seus descendents de vida curta, tal i com indica la 

directiva. Les premisses per la correcta aplicació d’aquest model son: 

 Tot el 222Rn ha hagut d’esser eliminat de la mostra durant el tractament i cal esperar 

dues hores perquè els seus descendents emissors alfa de vida curta (218Po, 214Pb i 
214Po) decaiguin. 

 El vial de comptatge ha de esser un sistema tancat del qual no es pugui escapar el 
222Rn 

 El procediment descrit nomes pot ser aplicat per a estimació de 226Ra en mostres 

que no continguin altres radionúclids susceptibles de causar creixement en 

l’activitat alfa del vial com 228Ra.  

Aquest procediment s’ha comparat amb els d’evaporació y mesura per comptador 

proporcional i el de coprecipitació i mesura per escintil·lació sòlida de ZnS o comptador 

proporcional. 

El procediment de evaporació i mesura per comptador proporcional es basa en la 

concentració de la mostra fins a sequedat sobre una planxeta d’acer inoxidable. Degut al 

baix poder de penetració de les partícules alfa respecte a les partícules beta les partícules la 

quantitat de precipitat en la planxeta ha de ser menor (de l’ordre de mg cm-2 quan per a la 

mesura del beta total pot ser de 25 mg cm-2), per tal de disminuir la autoabsorció.  

En el procediment de coprecipitació s’afegeixen a la mostra portadors de bari i ferro i es 

precipiten com a BaSO4 i Fe(OH)3 afegint medi basic. Els isòtops de radi coprecipiten amb el 

BaSO4 mentre que altres elements com actínids i poloni s’absorbeixen en les partícules de 

Fe(OH)3. El precipitat es filtra, s’asseca i posteriorment pot esser mesurat per escintil·lació 

líquida o comptador proporcional. 

La comparació dels tres mètodes s’ha dut a terme a partir de les anàlisis de mostres 

traçades amb diferents emissors alfa i de mostres naturals de les quals se n’ha determinat 

el contingut total d’emissors alfa.  
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S’ha demostrat que no hi ha diferencies significatives entre els tres mètodes i que aquest 

proporcionen resultats equivalents a la suma d’emissors alfa mesurats per tècniques 

selectives com la espectrometria alfa. 

 

Validació de la determinació de 226Ra, 228Ra i 210Pb mitjançant RAD disks 

A partir dels resultats obtinguts en els dos articles científics que componen aquest 

capítol, es destaca que s’ha pogut validar un mètode per a la determinació simultània de 

226Ra, 228Ra i 210Pb mitjançant la extracció en fase solida emprant RAD disks i amb la 

posterior mesura per escintil·lació liquida.  

En el primer article s’estudia la viabilitat de mesurar directament el RAD disk a l’interior 

del vial d’escintil·lació líquida i s’observa que aquet fet comporta certs problemes. Per una 

banda, quan es mesura de forma seqüencial el RAD disk al llarg del temps, s’observa que 

l’espectre de 226Ra es va desplaçant cap a canals de major energia. D’altra banda les comptes 

corresponents al 226Ra (emissor alfa) es classifiquen majoritàriament com a beta just 

després del tractament de mostra i no es classifiquen correctament fins passades 8 hores 

de la preparació del vial. Aquest fet es deu a que el RAD disk no està completament 

impregnat amb el còctel escintil·lador fins passat aquets temps, i per tant la variació en la 

impregnació interfereix en la detecció de la radiació emesa per el radi retingut en el RAD 

disk i el còctel. 

S’ha observat que per tal de evitar aquest problema es pot, per una banda esperar les 8 

hores necessàries per assolir una correcta impregnació del RAD disk amb còctel o per l’altra, 

forçar la impregnació filtrant el còctel escintil·lador.  

Es va comprovar que l’elució complerta dels isòtops del radi del RAD disk es possible 

amb solucions d’EDTA en medi basic, però el volum necessari per assolir la elució complerta 

i la concentració d’EDTA necessària no son compatibles amb el còctel. Per aquet motiu, per 

poder obtenir una solució de comptatge estable i sense separació de fases calia prendre 

només una alíquota del volum emprat per a la elució, de forma que s’augmenta el límit de 

detecció. 

A mes, com els isòtops de plom també es retenen en el RAD disk, la determinació de 228Ra 

es veu afectada per la presencia de 210Pb, ja que ambdós son emissors beta amb una energia 

pròxima. 
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D’altra banda, si la elució es realitza amb DHC, es poden eluir selectivament els isòtops 

de plom del RAD disk, fet que permet la determinació de 210Pb i evita la interferència 

d’aquest sobre el 228Ra. 

A més, quan s’empra el calibratge multivariant amb models PLS per a la quantificació 

dels espectres obtinguts de la mesura del RAD disk i el vial preparat amb la solució d’elució 

s’aconsegueixen resultats sense interferència entre els radionúclids. Aquest procediment 

ha estat validat en front a materials de referencia i s’ha emprat per a la quantificació de 

mostres d’aigua de beguda amb resultats satisfactoris. 

 

Regressió per mínims quadrats parcials (PLS) aplicada al tractament d’espectres 

d’escintil·lació líquida 

Dels resultats obtinguts en els dos articles científics que componen aquesta capítol, cal 

destacar que la determinació de radionúclids específics a partir d’espectres obtinguts amb 

el procediment de determinació dels índex d’activitat alfa total i beta total mitjançant 

models PLS proporciona resultats satisfactoris. 

Malgrat això, s’ha observat que, quan s’intenta quantificat mostres que contenen un 

radionúclid que no esta inclòs en el set de calibratge, la predicció realitzada per els models 

pot no ser correcta per a tots els radionúclids. Es per això que cal, en la mesura del possible, 

incloure en el set de calibratge tots els radionúclids que s’espera trobar en la mostra. 

A més, aspectes de vital importància en la determinació de radionúclids específics a 

partir d’espectres d’escintil·lació líquida mitjançant l’ús de models PLS són, la eficiència, la 

forma de l’espectre (característics del radionúclid a determinar) així com la separació α/β.  

Com s’ha vist en l’estudi de l’efecte de l’esmorteïment en l’eficiència, la forma de 

l’espectre i la separació α/β, aquest presenta diferent comportament depenent del tipus 

d’agent, químic o de color. S’han considerat FeCl3 i nitrometà per estudiar l’esmorteïment 

de color i químic respectivament. Per una banda s’ha observat que la eficiència dels 

emissors beta de baixa energia disminueix de forma intensa amb l’esmorteïment, mestres 

que els d’alta energia ho fa de forma més gradual. Per als emissors alfa no s’observa un clar 

efecte de l’esmorteïment sobre la eficiència. Per aquells radionúclids afectats, 

l’esmorteïment de color redueix mes la eficiència que el químic per a un mateix valor 

d’SQP[E]. 
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Respecte a la forma de l’espectre, s’ha observat que tant emissors alfa com beta es veuen 

afectats, desplaçant-se el seu espectre a menors energies tant per l’esmorteïment químic 

com pel de color.  

Finalment, respecte a la separació α/β s’ha observat que al incrementar el nivell 

d’esmorteïment, el PSA òptim disminueix i que la interferència total en aquest valor de PSA 

augmenta. Aquests efectes son més acusats per a l’esmorteïment de color que per al químic.  

Per totes aquestes raons, quan es pretengui determinar radionúclids específics en 

mescles de radionúclids en matrius que puguin presentar un nivell elevat d’esmorteïment, 

caldrà disposar de llibreries que continguin espectres patró dels radionúclids que s’esperen 

en la mostra a diferents nivells d’esmorteïment emprant agents químics i de color.  

D’aquesta forma es crearan sets de calibratge amb els radionúclids esperats i amb els 

nivells de SQP[E] més pròxims als observats per a la mostra. Pot esser també interesant 

incloure els espectres de SQP[E] en els espectres emprats per a la construcció de models 

PLS. 

 

Resultats i discussió. Validació de l’estratègia per a la determinació d’emissors alfa 

i beta  

A partir de les metodologies validades en aquesta tesi d’altres, s’ha proposat una 

estratègia per a la determinació dels radionúclids que es contemplen a l’annex III de la 

directiva 2013/51/EURATOM.  

Entre les metodologies emprades hi ha la determinació dels índex d’activitat alfa i beta 

total per LSS (descrit en el Capítol 4), la determinació de 226Ra, 228Ra i 210Pb mitjançant 

extracció amb RAD disk (descrit en el Capítol 5). Els espectres obtinguts per aquestes 

metodologies es quantifiquen per calibratge multivariant explicat al Capítol 6. 

Les metodologies emprades son; 

 Espectrometria gamma d’alta resolució: en la nostra estratègia s’empra com a 

mètode de garbellat der identificar la presencia de 241Am, 134Cs i 137Cs. El 

procediment es bases en mesurar directament la mostra en una geometria de 

500 mL. 

 Mètode de concentració i mesura per LSS (LSSconc.): Aquest procediment s’empra 

per a la determinació dels índex d’activitat alfa total i beta total. A més l’espectre 

obtingut s’empra per a la quantificació de radionúclids específics mitjançant 

models PLS. El procediment es basa en evaporar una alíquota de 100 mL a 
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sequedat. Aquest precipitat es dissol en 10 mL d’aigua acidificada amb HCl a 

pH=1,5. Una alíquota de 8 mL de la mostra així preparada es mescla amb 12 Ml 

de còctel (Ultima Gold AB) i es mesura en un Quantulus 1220 surant 400 min.  

 Mètode directe de mesura per LSS (LSSdir.): Aquest procediment es basa en la 

mesura directa per LSS del vial preparat amb 8 mL de la mostra sense tractar 

amb 12 mL de Ultima Gold AB. Aquest vial es mesura en un Quantulus 1220 

surant 400 min. 

 Extracció mitjançant RAD disk amb mesura per LSS: En aquest procediment cal 

condicionar el RAD disk amb 20mL de HNO3 2 mol L-1 . Després, una alíquota 

des de 1 fins a 5 L de mostra acidificada es filtra a través del RAD disk. Els isòtops 

de plom s’elueixen del Rad disk mitjançant 7 mL de DHC 0,05 mols L-1 a pH 5,75. 

Una alíquota de 5 mL d’aquest eluat es mescla amb 15 mL de Optifase Hisafe III i 

es mesura en un Quantulus 1220 durant 100 minuts. D’altra banda, el RAD disk 

es transfereix en un altre vial de comptatge al que s’afegeixen 20 mL de Optifase 

Hisafe III que es mesura en un Quatulus durant 100 min. 

En l’estratègia proposada es mesura primerament els índex d’activitat alfa i beta total 

per LSSconc.. Si els valors obtinguts son inferiors a 0,1 i 1,0 per a l’índex alfa i l’índex beta 

respectivament, es consideres que la ID esta per sota de 0,1 mSv any-1 tal i com recomana la 

directiva 2013/51/EURATOM. En cas contrari es passa a mesurar per espectrometria 

gamma, LSSdir. i emprant l’extracció amb RAD disk. A partir dels resultats obtinguts amb 

aquestes metodologies es pot determinar la presència de 60Co, 134Cs, 137Cs i 241Am 

(espectrometria γ), 3H i 14C (LSSdir.) i 226Ra, 228Ra i 210Pb (RAD disk).  

A partir d’aquesta informació i de l’espectre LSSconc., es construieix un model PLS amb els 

radionúclids identificats més aquells que no es poden identificar amb els mètodes emprats 

com 40K, 90Sr/90Y i 239+240Pu. 

 

Emprant de forma total o parcial aquesta estratègia s’ha determinat el 3H en mostres 

d’aigua del PVRA al voltant de la central nuclear de Vandellòs, radionúclids naturals en 

mostres d’aigües susceptibles d’esser emprades com a aigua de beguda i radionúclids 

naturals i artificials en mostres d’interlaboratoris i materials de referència, amb resultats 

satisfactoris.  
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Conclusions 

De la recerca realitzada en aquesta tesi doctoral se’n poden extreure les següents 

conclusions:  

En relació amb la determinació dels índex d’activitat alfa i beta total per LSS, 

1. S’ha optimitzat i validat el procediment per a la determinació dels índex 

d’activitat alfa i beta total per a mostres d’aigua. 

2. L’activitat de 226Ra es pot determinar de forma simultània mitjançant una segona 

mesura del vial de comptatge transcorreguts sis dies del tractament de mostra. 

3. El procediment validat proporciona resultats comparables amb mètodes 

clàssics—com els mètodes d’evaporació i coprecipitació—per a la determinació 

de l’índex alfa total així com amb el sumatori d’emissors alfa determinats per 

tècniques especifiques. 

En relació amb la determinació dels índex d’activitat alfa i beta total per LSS, 

4. S’ha desenvolupat i validat un procediment per a la determinació ràpida de 226Ra, 
228Ra i 210Pb mitjançant extracció amb RAD disk i mesura per LSS. 

5. La mesura directa del RAD disk pot portar-se a terme tenint en compte certes 

consideracions. La mes important es assegurar una correcta impregnació del 

RAD disk per tal evitar la interferència α/β i el desplaçament de l’espectre. 

6. Per assolir una correcta determinació de 228Ra, evitant interferències de 210Pb, es 

pot emprar DHC per eluir els isòtops de 210Pb del RAD disk i així mesurar de 

forma separada els isòtops de radi i els de plom. 

En relació a els models PLS per a la deconvolució d’espectres d’escintil·lació líquida, 

7. Els estudis realitzats per comprovar la viabilitat dels models PLS per a la 

desconvolució d’espectres d’escintil·lació líquida han confirmat que aquest es un 

mètode vàlid per a la determinació de diversos radionúclids a partir d’un 

espectre LS. 

8. Els models PLS son vàlids per a la determinació de mescles de radionúclids no 

només a partir d’espectres obtinguts per mètodes que determinen paràmetres 

d’activitat globals, sinó que també ho son per a aquells que comporten una 

separació radioquímica com l’extracció mitjançant RAD disk. 

208  |  Annex I: Summary in Catalan



 

 

9. La quantificació de LSS mitjançant PLS en matrius diferents a l’aigua ha de ser 

avaluada per poder donar resposta a situacions que requereixen mètodes ràpids 

com una situació accidental. 

En relació amb els efectes de l’esmorteïment sobre la eficiència, la forma de l’espectre i 

la separació α/β, 

10. La eficiència dels emissors beta de baixa energia es veu molt afectada metres que 

la dels d’alta energia només moderadament. Pel que fa a els emissors alfa, no 

s’observa un clar efecte sobre la eficiència.  

11. L’esmorteïment degut al color afecta a la separació α/β en major grau que 

l’esmorteïment químic.  

12. Cal estudiar adequadament la naturalesa de l’esmorteïment en mostres reals per 

tal de poder seleccionar el millor agent esmorteïdor per realitzar corbes 

d’esmorteïment i per tant poder optimitzar el PSD, corregir la eficiència i, en cas 

necessari, corregir el desplaçament de l’espectre. 

En relació a l’estratègia d’aplicació dels mètodes desenvolupats, 

13. S’ha proposat una estratègia per a la determinació seqüencial de els radionúclids 

inclosos a l’Annex III de la Directiva 2013/51/EURATOM, que combina els 

procediments desenvolupats en aqueta tesi i d’altres com la espectrometria γ. 

14. S’ha emprat aquesta estratègia tant de forma total com parcial, per a la 

determinació de radionúclids específics en mostres del PVRA, mostres d’aigua 

amb un us potencial com a aigua de beguda i materials de control de qualitat 

traçats. 

15. L’estratègia proposada permet la determinació de fins a 13 radionúclids en una 

mostra de 1,5 L amb menys de 24 hores. El fet de minimitzar les separacions 

radioquímiques permet reduir l’ús de reactius. 
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