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Statement of Translational relevance 

Lung cancer is the leading cause of cancer mortality worldwide. Patient outcome is closely 

linked to tumor stage at diagnosis and unfortunately, most lung cancer patients are diagnosed 

at late stages when a curative treatment is no longer possible. Using an integrative genome-

wide experimental method whereby hundreds of stage I patients from two independent lung 

cancer datasets were examined, we identified an epigenetic four-gene model with diagnostic 

value for detecting lung cancer. This DNA methylation signature was validated with a gene-

locus specific technique in three minimally and non-invasive independent cohorts. The 

combination of this highly sensitive and specific epigenetic model with standard clinical 

markers may help to improve lung cancer diagnosis and therefore decrease current mortality 

rates. 
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Abstract 

PURPOSE: Lung cancer remains as the leading cause of cancer-related death worldwide, 

mainly due to late diagnosis. Cytology is the gold standard method for lung cancer diagnosis in 

minimally-invasive respiratory samples, despite its low sensitivity. We aimed to identify 

epigenetic biomarkers with clinical utility for cancer diagnosis in minimally/non-invasive 

specimens to improve accuracy of current technologies. 

EXPERIMENTAL DESIGN: The identification of novel epigenetic-biomarkers in stage I lung 

tumors was accomplished using an integrative genome-wide restrictive analysis of two 

different large public databases.  DNA methylation levels for the selected biomarkers were 

validated by pyrosequencing in paraffin-embedded tissues and minimally-invasive and non-

invasive respiratory samples in independent cohorts.  

RESULTS: We identified nine cancer-specific hypermethylated genes in early-stage lung 

primary tumors. Four of these genes presented consistent CpG island-hypermethylation 

compared to non-malignant lung and were associated with transcriptional silencing. A 

diagnostic signature was built using multivariate logistic regression model based on the 

combination of four-genes: BCAT1, CDO1, TRIM58 and ZNF177. Clinical diagnostic value was 

also validated in multiple independent cohorts and yielded a remarkable diagnostic accuracy in 

all cohorts tested. Calibrated and cross-validated epigenetic model predicts with high accuracy 

the probability to detect cancer in minimally and non-invasive samples. We demonstrated that 

this epigenetic signature achieved higher diagnostic efficacy in bronchial fluids as compared 

with conventional cytology for lung cancer diagnosis. 

CONCLUSION: Minimally-invasive epigenetic biomarkers have emerged as promising tools for 

cancer diagnosis. The herein obtained epigenetic model in combination with current diagnostic 

protocols may improve early diagnosis and outcome of lung cancer patients. 
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Introduction 

Lung cancer is the main cause of death from cancer worldwide (1). Several factors are 

associated with the poor outcome of lung cancer patients. One of them is, despite recent 

advances, the scarcity of effective therapies achieving durable responses. Another —and even 

more important— factor is late diagnosis, since most lung tumors are detected at advanced 

stages of the disease (2). This is crucial, taking into account that survival rates drop 

substantially from early to late stages. 

In this context, the data reported by early observational studies and by the randomized 

National Lung Screening Trial (NLST) have shown that lung cancer screening with low-dose 

helical computed tomography (LDCT) is able to reduce lung cancer mortality, as significantly 

more cases can be detected in earlier stages (3). Last year the United States Preventive 

Services Task Force (USPSTF) issued the recommendation to implement annual lung cancer 

screening for smokers with the inclusion criteria of the NLST. Nevertheless, there are still a 

significant number of open questions and areas for optimization of the different aspects 

related to this screening strategy.  For example, there is a need for risk models and markers to 

improve the screening cost-benefit ratio by better selecting the screened population. 

Moreover, although the CT-based imaging is a very sensitive technique, its specificity is low, 

and it yields a large proportion of cases with indeterminate nodules, which may require further 

follow up or invasive procedures, which may turn out to be futile in the frequent case of these 

nodules being benign. Biomarkers for the correct classification of the indeterminate nodules 

and as an adjunct to the diagnostic procedure are a clear unmet clinical need (4,5).   

Epigenetic biomarkers, mainly DNA methylation, have emerged as one of the most promising 

approaches to improve cancer diagnosis and present several advantages as compared to other 

markers, such as gene expression or genetic signatures. DNA methylation alterations are 

covalent modifications that are remarkably stable and often occur early during carcinogenesis. 
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Additionally, DNA methylation can be detected by a wide range of sensitive and cost-efficient 

techniques even in samples with low tumor purity. This epigenetic modification can also be 

detected in different biological fluids which represents a promising tool for minimally and non-

invasive cancer detection (6). In recent years, different epigenetic candidates have been 

proposed, but none has reached the clinic yet, mainly due to the lack of large validation 

studies or the use of analytical methods difficult to standardize. Additionally, most studies 

were performed by single candidate-gene hypothesis-driven (7-11), although incipient 

genome-wide approaches are also appearing (12). Nowadays, high throughput epigenomic 

studies, that permit an unbiased data-driven research, have become a great tool for 

systematically dissecting the role of epigenetic variation in cancer with the potential of 

identifying novel and more robust biomarkers (13). 

Bronchoscopic examination and pathological assessment of cytological specimen is the most 

currently used diagnostic method. However, almost half of the cases remain occult, especially 

in peripherally located tumors (14).  This leads to additional invasive procedures, such as 

surgical lung biopsy or transthoracic needle biopsy associated with significant morbidity (15). 

The implementation of molecular biomarkers, including epigenetic and gene expression 

classifiers, in bronchial aspirates or sputum represents a promising approach to improve the 

accuracy of minimally and non-invasive neoplasm diagnosis (16,17). This kind of biomarkers 

can also be used to develop clinical tools such as nomograms, which allow calculating the 

probability of a clinical event. These predictive models can increase the individualized risk 

assessment compared with risk groups leading to a more personalized medicine (18). 

Here, we have identified and validated a signature of DNA methylation biomarkers already 

present in early stage lung cancer and globally absent in normal tissue.  For this purpose, we 

used two different datasets: the CURELUNG FP7 Consortium and the Cancer Genome Atlas 

(TCGA). Subsequently, we tested by pyrosequencing the selected biomarkers in several 
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independent case-control datasets (formalin-fixed paraffin-embedded tissues, bronchial 

aspirates, bronchioalveolar lavages and sputum samples). This study provides a novel 

epigenetic predictive model that may help to improve lung cancer diagnosis. 

Materials and methods  

Study design and participants 

This is a collaborative and retrospective study including data from publicly available datasets, 

formalin-fixed paraffin-embedded (FFPE) tissues, bronchial aspirates/lavages and sputum 

samples obtained from lung cancer patients and cancer free individuals, as they arrived to the 

laboratory and passed the technical quality checks. Genome-wide DNA methylation data for 

the discovery cohort (Infinium 450K array)  was downloaded from our previous published lung 

cancer dataset deposited at the Gene expression omnibus (GSE39279) (19) or from the TCGA 

data repository (lung adenocarcinoma LUAD or Lung squamous cell carcinoma LUSC). The 

Biologic validation of the selected methylation biomarkers was conducted by pyrosequencing 

in four independent cohorts. Lung validating cohorts were obtained from different institutions 

in Spain. i) A total of 201 FFPE samples were obtained from Health Institute Carlos III (ISCIII), 

Madrid and Centre for Applied Medical Research/ Hospital of the University of Navarre, 

(CIMA/CUN) Pamplona. Regarding minimally invasive samples, ii) 80 Bronchial aspirates and iv) 

98 sputums were obtained from Catalan Institute of Oncology and Bellvitge University 

Hospital, Barcelona. iii) 111 Bronchioalveolar lavages came from CIMA, Pamplona and Hospital 

of Talavera de la Reina, Talavera de la Reina. All DNA extractions form different specimens 

were developed and run by the same technicians to avoid interlaboratory variation. 

The study was approved by the corresponding institutional review board and patients signed 

up the informed consent to participate. The main clinic-characteristics of the different cohorts 
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are described in table 1 or have been also described previously, as is the case for the discovery 

cohort (Table 1).  

Procedures 

Preparation of lung specimens 

DNA was extracted from minimally and non-invasive specimens using a standard phenol 

chloroform extraction method. DNA from FFPE tissue blocks was extracted from two 

sequential unstained sections, each 10 µm thick. For each sample of tumor tissue, subsequent 

sections were stained with hematoxylin and eosin for histological confirmation of the presence 

(>50%) of tumor cells. Unstained tissue sections were deparaffinized, and DNA was extracted 

using the same protocol as for minimally invasive specimens. Extracted DNA was checked for 

integrity and quantity with 1.3% agarose gel electrophoresis and picogreen quantification, 

respectively. Bisulfite conversion of 500 ng of DNA for each sample was performed according 

to the manufacturer’s recommendation.  

Data prefiltering  

DNA methylation status of 450,000 CpG sites by using the Infinium 450K Methylation array was 

available at (19). Methylation score of each CpG was represented as beta (β) value and were 

previously normalized for color bias adjustment, background level adjustment and quantile 

normalization across arrays. Probes and sample filtering involved a two-step process for 

removing SNPs and unreliable betas with high detection p-value p>0.001. Sex chromosome 

probes were also removed. After the filtering, the remaining 409,219 CpGs were considered 

valid for the study. Stage I patients were selected coming up to 237 lung tumor patients and 25 

histologically non-tumor lung tissue samples (Fig. 1). 

Data filtering for hypomethylated CpGs in non-tumoral tissues 
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The choice of region to be studied is one of the critical challenges to establishing a DNA 

methylation biomarker that is clinically useful. The investigated region should ideally fulfill the 

following criteria: first, the region should be unmethylated in non-tumor cases and methylated 

in lung cancer cases; and second, the methylation levels of this region should clearly allow the 

classification of a sample as non-cancerous or cancerous (20,21). We set thresholds to select 

homogeneous unmethylated CpGs in non-tumor cases; 1) Average and median of beta values 

lower than 0.1 and 2) the percentil 90 for beta values of control donors lower than 0.2. Using 

these restrictive thresholds we obtained 133,444 filtered CpGs. 

 Differentially methylated CpG identification between tumor and non-tumor samples 

Differentially methylated CpGs between tumor and non-tumor groups were identified using 

the following procedure: for each probe/CpG, the sets of methylation β values T (belonging to 

the tumor samples: first group) and NT (belonging to the non-tumor lung tissue samples: 

second group) were compared. The following three measures were calculated:  

1) Differences in average beta-values between groups higher than a set threshold. 

 (MD = |μT – μNT|>0.20)  

2) Multiple testing correction p-value with 95% of confidence to assign significant 

differentially methylated sites.   

False discovery rate (FDR) with adjusted p-value < 0.05. 

3) To maximize differences between tumor and non-tumor group. Difference between 

quartile 1 in tumor group and quartile 3 in non-tumor should be higher that a selected 

cut-off.   P25 (tumor)-P75 (nom-tumor)>0.1 

To identify early-stage cancer-related epigenetic markers with diagnostic value for both 

subtypes together, these three criteria (1,2,3) were evaluated in three distinct comparisons 

based on histological subtypes.  
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a) Comparison: Adenocarcinoma (ADC) group (n:181) vs non-tumor group (n:25). 

Identified 29 differentially methylated CpGs (DMCpGs) specific for ADC 

(Supplementary table1A).  

b) Comparison: Squamous cell carcinoma (SCC) group (n:56) vs non-tumour group (n:25). 

Identified 78 DMCpGs specific for SCC (Supplementary table 1B). 

c) Comparison: Lung cancer (ADC and SCC)) (n:237) vs non-tumor group (n:25). Identified 

24 significant DMCpGs when both groups are analyzed together (Supplementary table 

1C).  

Differentially methylated CpGs were selected using an integrative approach to rank the 

Infinium probes based on their methylation status and the fulfillment of all the criteria (1,2,3) 

and in the three different comparisons (a,b,c). Finally, Venn diagram analysis output final 12 

common CpGs corresponding to 9 genes ranked by averaged z-score (Supplementary Fig. 1 and 

supplementary table 2). 

Pyrosequencing 

Pyrosequencing analyses to determine CpG methylation status were developed as previously 

described (19) to validate the results obtained from the arrays. Briefly, a set of primers for PCR 

amplification and sequencing were designed using a specific software pack (PyroMark assay 

design version 2.0.01.15). Primer sequences were designed to hybridize with CpG-free sites to 

ensure methylation-independent amplification (Supplementary Table 2A). DNA was converted 

using the EZ DNA Methylation Gold (ZYMO RESEARCH) bisulfite conversion kit following the 

manufacturer’s recommendations and used as a template for subsequent PCR step. PCR was 

performed under standard conditions with primers biotinylated to convert the PCR product to 

single-stranded DNA templates. We used the Vacuum Prep Tool (Biotage, Sweden) to prepare 

single-stranded PCR products according to manufacturer’s instructions. PCR products were 

observed at 2% agarose gels before pyrosequencing. Pyrosequencing reactions and 
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methylation quantification were performed in a PyroMark Q24 System version 2.0.6 (Qiagen) 

using appropriate reagents and protocols, and the methylation value was obtained from the 

average of the CpG dinucleotides included in the sequence analyzed, with a minimum of 3 

valid CpGs per primer. Only those average methylation values within the region analyzed with 

coefficient of variation lower than 1 were accepted as valid. Controls to assess correct bisulfite 

conversion of the DNA were included in each run, as well as sequencing controls to ensure the 

fidelity of the measurements.  

Statistical analysis 

Data were summarized by mean, standard deviation, median and first and third quartiles in 

the case of continuous variables and by relative and absolute frequencies in the case of 

categorical variables. Differences in expression values and methylation levels among groups 

were assessed using the non-parametric Wilcoxon rank sum test. Receiver Operating 

Characteristic (ROC) curves were used to assess the predictive capacity of each marker. Area 

under the curve (AUC) was computed for each ROC curve, and 95% confidence intervals (CI) 

were also estimated by bootstrapping with 1000 iterations. A predictive model for each 

sample type was built including all selected markers in a multivariable logistic regression 

model. ROC curves and AUC were also computed for the predictive models. Calibration of the 

models was assessed by plotting predicted vs. observed values obtained by bootstrap 

resampling of the original data. Internal validation of the models was performed using 10-fold 

crossvalidation. The final predictive models were represented in nomograms to facilitate their 

use by clinicians. Sensitivity and specificity were estimated at the optimal cut-off point 

according to Youden’s criterion. Additionally, the sensitivity and specificity curves were 

estimated for the whole range of predictions of the model to allow for personalized decisions 

in different clinical scenarios.  Globally, a two-tailed p-value of less than 0.05 was considered 

to indicate statistical significance. P-values were adjusted for multiple comparisons using the 
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FDR procedure by Benjamini and Hochberg. All statistical analyses were performed using R 

software (version 3.2.0) and the pROC R-package (version 1.7.3). 

Results 

Identification and validation of cancer-related methylated genes  

The discovery cohort consisted of 237 stage I non-small cell lung primary tumors (NSCLC) and 

25 non-tumoral matched lung tissues from the CURELUNG FP7 publicly available dataset (19). 

Differentially DNA methylated CpGs (DMCpGs) were identified by genome-wide DNA 

methylation analysis. In this cohort (Table 1A), lung ADC (n=181, 76.3%) was the most frequent 

histological subtype, followed by SCC (n=56, 23.6%). In order to obtain highly cancer-specific 

biomarkers, we focused our analysis in those regions deeply hypomethylated in non-tumoral 

tissues.  After data filtering and analysis with restrictive criteria (Supplementary Fig. 1, 

Supplementary Table 1 and 2), we obtained 12 significant DMCpGs common to both subtypes 

of NSCLC corresponding to 9 different genes. In cancer cells, hypermethylation in CpG islands 

(CGI) is a principal epigenetic mechanism for gene regulation that has been proposed as a 

relevant biomarker with diagnostic value (22). Therefore, the top 5 hypermethylated CGI-

containing genes were selected as candidate biomarkers for further validation in NSCLC: 

BCAT1, CDO1, TRIM58, ZNF177 and CRYGD (For extended explanation see materials, Fig. 1A 

and Supplementary Table 2B).  

To confirm these results, we evaluated the DMCpGs of the 5 selected biomarkers in an 

independent cohort (350 stage I NSCLC patients; 62 non-tumoral lung samples) from TCGA 

public database. The clinical characteristics of this cohort (Table 1B) resembled the previous 

discovery cohort, including 217 (62.1%) ADCs and 133 (37.9%) SCCs. As expected, the 

methylation levels of the 5 selected genes were similar to the discovery cohort with difference 

in median values for each gene (∆BCAT1: 59%; ∆CDO1: 40%;   ∆TRIM58: 50%;   ∆ZNF177: 46%;   ∆CRYGD: 
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40%) and all with p-values lower than 0.001 (Fig. 1B). In addition, no significant differences 

were found between ADCs and SCCs (Supplementary Fig. 2A). These data confirmed our 

previous results, suggesting that the methylation of the 5 selected biomarkers is a common 

feature for both NSCLC subtypes despite their differences at histological and molecular level. 

Epigenetic silencing of the cancer-specific hypermethylated genes in lung cancer primary 

tumors 

Gene expression analysis from the TCGA cohort samples showed a significantly decreased 

expression in BCAT1, CDO1, TRIM58 and ZNF177 (Fig. 1C). However, no expression values were 

detected for CRYGD and this gene was discarded for future analysis. Interestingly, expression 

results were also obtained for ADCs and SCCs separately (Supplementary Fig. 2B). Moreover, 

promoter hypermethylation of multiple consecutive CpGs is recognized as an important 

mechanism by which genes may be silenced in both physiologically and pathological conditions 

(23). This mechanism for gene silencing has also been shown to play a relevant functional role 

in the development and progression of many common human tumors (24). In this regard, 

analyzing the CURELUNG and TCGA datasets, we observed a similar methylation pattern 

between the significant DMCpGs of the selected biomarkers and their surrounding CpGs 

(Supplementary Fig. 3). These results reinforced the role of DNA methylation in the functional 

regulation of BCAT1, CDO1, TRIM58 and ZNF177. Importantly, the data obtained suggest that 

the methylation values of these four genes represent an epigenetic signature that may be 

relevant in early steps of lung carcinogenesis. 

Diagnostic utility of the epigenetic signature to detect lung cancer in primary tumors 

Once the epigenetic signature was established (BCAT1, CDO1, TRIM58 and ZNF177), we 

evaluated the ability of each individual biomarker of the four-gene panel to detect lung cancer 

in primary tumors by using pyrosequencing. This technique is a suitable approach in a clinical 

setting because it represents a quantitative and reproducible method able to detect multiple 
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CpGs not only in FFPE tissues but also in minimally and non-invasive samples as biological 

fluids. Therefore, an independent cohort of FFPE primary tumors (122 stage I NSCLC and 79 

non-malignant lung samples) was recruited and DNA methylation levels for all selected genes 

were determined by pyrosequencing. Clinical characteristics for this cohort are described in 

Table 1C. The four biomarkers had significantly higher levels of DNA methylation in tumor 

samples as compared to non-tumoral controls (Fig. 2A). Next, receiver operating 

characteristics (ROC) analysis was performed to assess the diagnostic value of each individual 

biomarker to detect lung cancer. Importantly, all the genes of the signature showed significant 

areas under the ROC curve (AUC) greater than 0.8 (AUCBCAT1=0.94, AUCCDO1=0.84, 

AUCTRIM58=0.97 and AUCZNF177=0.94), suggesting a great accuracy of these biomarkers for 

NSCLC diagnosis (Fig. 2B). Similarly, when samples were classified based on histological 

subtypes (ADC and SCC), we observed for all the biomarkers significant differences in 

methylation status (Supplementary Fig. 4A) and AUCs close to 1.0 (Supplementary Fig. 4B and 

4C). These results confirmed the diagnostic value of evaluating DNA methylation levels by 

locus-specific PCR based techniques, such as pyrosequencing.  

Validation of the epigenetic signature for lung cancer diagnosis using minimally-invasive 

respiratory samples: bronchial aspirates (BAS) and bronchioalveolar lavages (BAL)  

One of the most important aspects for early diagnostics is to identify markers associated with 

cancer using minimally-invasive methods for sample collection (25). In line, we collected an 

independent cohort of BAS from patients diagnosed with lung cancer (n= 51) and cancer-free 

patients (n= 29) (Table 1D). This cohort included different lung cancer subtypes, especially ADC 

and SCC. We compared by pyrosequencing the median methylation levels and generated ROC 

curves to assess the performance of each marker independently. Airways fluids from lung 

cancer patients presented significant differences in DNA methylation levels and high AUCs for 

all four genes (Fig. 3A and 3B). Combination of BCAT1, CDO1, TRIM58 and ZNF177 in a logistic 
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regression model yielded a significant AUC of 0.91 (95% CI [0.83, 0.98] p<0.001, Fig. 3C). 

Calibration of the model showed no evident deviations from the ideal identity slope (data not 

shown). Internal validation of the AUC estimate for this model yielded optimism corrected AUC 

of 0.90, showing high generalization of the predictive capacity of the model for future samples. 

There were also no evident differences in prediction accuracy among early and late tumor 

stages.  

A visual representation of the methylation profile for the genes included in the model is 

provided as a heatmap (Supplementary Fig. 5A). A nomogram based on the results of this 

model is proposed as a predictive tool for clinical diagnostic use. Results of the nomogram 

provide an individual probability (0%-100%) for suffering lung cancer for each patient 

(Supplementary Fig. 5B and materials and methods). Evaluation of the full range of predictions 

of the model shows that shifting the cut-off to POC=30% would yield a sensitivity of 100% and 

a specificity of 65.4% and shifting the cut-off to POC=80% would yield a sensitivity of 71.4% 

and a specificity of 92.3%. Sensitivity and specificity at the optimal cut-off (Probability Of 

Cancer; POC= 63%) were 84.6% and 81.0% respectively (Fig. 3D). It is important to point out 

that current protocols for lung cancer diagnosis are based mainly in bronchioalveolar cytology 

and further lung biopsy. There are cases where the cytology is doubtful or inconclusive. 

Moreover, there are a notable number of cases where cytology and biopsy are negative for 

cancer cells, but there is high suspicion of cancer. Our results not only improve the overall 

prediction accuracy of BAS cytology in this cohort (sensitivity=43.8%, specificity=100%), but 

also permit a flexible and personalized approach for the clinicians in every possible scenario by 

simply adapting the cut-off value of the probabilistic model.  In this sense, in our cohort 24 of 

51 tumor samples were misinterpreted as non-tumoral by the cytology test. However, using 

our predictive epigenetic model, 19 out of the 24 false negative cytologies (79%) would have 

been considered as positive setting our threshold at 50% probability of cancer (Supplementary 

table 3). Of note, the majority of them (16 of 24) with a predicted probability of cancer higher 
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than 80%. Also three of them were classified as borderline non-tumor, with a predicted 

probability of cancer between 40% and 50%. In these three doubtful cases, clinical patient 

manage would require further additional studies. This led us to propose our epigenetic 

signature as a useful clinical diagnostic tool in BAS specimens, especially in doubtful cases.  

Additionally, we evaluated DNA methylation levels in BAL from patients with lung cancer 

(n=82) as compared to non-malignant lung diseases (n=29) (Table 1E). The methylation levels 

of those four markers were significantly higher in BAL fluid from cancer patients than non-

cancer patients (Fig. 4A). AUCs were significant for all four genes with the following values 

AUCBCAT1=0.80, AUCCDO1=0.65, AUCTRIM58=0.72 and AUCZNF177=0.66 (Fig. 4B). Combination of 

the four genes in a logistic regression model achieved a significant AUC of 0.85 (95% CI [0.78, 

0.93] p < 0.001), with an optimism-corrected value of 0.83 (Fig. 4C). Evaluation of the full range 

of predictions of the model is also shown (Fig. 4D). As in the case with BAS specimens, our 

epigenetic signature with diagnostic value may be highly valuable for doubtful patients with 

negative cytology.  

Validation of epigenetic biomarkers in non-invasive sputum samples 

Finally, the methylation level of these 4 markers was examined in additional non-invasive 

samples. Sputums samples from 72 lung cancer patients and 26 cancer-free individuals were 

considered for evaluation (Table 1F). Methylation levels were significantly higher in individuals 

with lung cancer for all the genes tested, except for CDO1 (Fig. 5A). Individual AUC values were 

AUCBCAT1=0.92, AUCCDO1=0.67, AUCTRIM58=0.67 and AUCZNF177=0.69 (Fig. 5B). The multivariable 

logistic regression model yielded an AUC value of 0.93 (95% CI [0.86, 1.0], p<0.001) (Fig. 5C). 

Sensitivity and specificity for the different threshold values of the model are depicted (Fig. 5D). 

This result suggests that our markers may be of high value to detect lung cancer even in non-

invasive specimens as sputum.  
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Discussion 

Lung cancer is the leading cause of cancer-related death worldwide with 1.3 million deaths 

annually, following data from the World Health Organization (WHO) in 2011. Late diagnosis in 

lung cancer is one of the main reasons that explain the extremely high mortality of this 

disease.  On one hand, screening by means of low-dose helical computed tomography (LDCT) 

has shown to reduce mortality in a large randomized trial (26), however the positive predictive 

value is still low. On the other hand, low sensitivity associated with minimally invasive 

cytologies is also a current hurdle for the accurate diagnosis of lung cancer. Thus, lung cancer 

diagnosis using minimally and non-invasive strategies is a major challenge to improve survival 

and its refinement is urgently needed to ameliorate the overall mortality figures for lung 

cancer worldwide. Here, we have searched for powerful biomarkers by using the two largest 

publicly available databases (FP7 Curelung and TCGA) (19) with high-throughput data coming 

from Infinium 450k arrays. Only stage I cancer cases were selected in order to identify the 

molecular changes associated to earlier steps of cancer evolution. We developed an 

integrative approach in order to identify the most discriminative marks leading to a final 

epigenetic signature consisting of top four selected genes: CDO1, BCAT1, TRIM58 and ZNF177. 

We conducted several validation steps using minimally and non-invasive cohorts to define a 

consistent epigenetic model useful for early lung cancer diagnosis valid for both major 

histological subtypes. This signature yielded a notably high specificity, one of the Achilles heels 

of LDCT and other methylation biomarkers (27,28) and also improved sensitivity, which is 

generally limited when using cytology for early lung cancer diagnosis.  

 

The current results highlight the relevance of DNA methylation changes in the natural history 

of lung cancer. CpG island hypermethylation of MGMT and GSTP1 has already proven useful 

for the chemotherapy response prediction in gliomas (29-31) and the screening of prostate 
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cancer, respectively (32,33). DNA methylation biomarkers have been proposed as promising 

candidates for early diagnosis (20,21) for several reasons: they are covalent and stable marks 

and they occur as early events in carcinogenesis, even in pre-tumoral stages such as 

adenomatous hyperplasia of the lung (34). Great efforts have been undertaken in identifying 

suitable DNA methylation markers to improve lung cancer diagnosis. However, only one 

biomarker —SHOX2 methylation— has been commercialized to date (35,36), although is not 

routinely used in the clinic.  

 

It is noteworthy to explain that cancer-specific DNA methylation in our selected biomarkers 

correlated with gene silencing in lung primary tumors. This fact suggests a potential functional 

role with biological implications in early stages of this pathological process (37). To our 

knowledge, there is a recent study addressing this issue with a different approach, taking 

benefit of the TCGA database: Wrangle et al. recently identified a three-gene panel (CDO1, 

HOXA9 and TAC1) for detecting NSCLC (12). They focused on re-expressed genes after 

treatment with demethylating agents and used TCGA as the only database incorporating all-

stage tumors, not only stage 1, among other differences.  Interestingly, despite using different 

strategies, CDO1 methylation was common for both studies. On the other hand, a study 

combining microRNA and gene expression arrays in three lung squamous cell carcinoma 

patients has also identified methylation-deregulated CDO1 (38). CDO1, cysteine dioxygenase 

type 1, has been postulated as a tumor suppressor gene silenced by promoter methylation in 

multiple human cancers, including breast, esophagus, lung, bladder and stomach (39). For the 

other genes, BCAT1 (Branched Chain Amino-Acid Transaminase 1) is a cytosolic enzyme that 

promotes cell proliferation though aminoacid catabolism (40) and high frequency of 

methylation on BCAT1 promoter in colorectal cancer has been reported (41). ZNF177 is a zinc 

finger transcription factor that has been reported to be methylation-silenced in gastric cancer 

cell lines (42). TRIM58, tripartite motif containing 58, is an E3 ubiquitin ligase superfamily 
 

http://clincancerres.aacrjournals.org/


19 
 

member that has already been patented as a potential epigenetic marker for detecting 

neoplastic cells originating from lung tissue of NSCLC patients (PCT/EP2012/061852). 

Moreover, it has also been reported hypermethylation of Trim58 promoter in hepatocytes 

derived from hepatitis B virus-related hepatocellular carcinoma (43). It is also worthy to 

indicate that we were very stringent in the selection of those genes, so alternative analyses 

from the same dataset may identify new DNA methylation biomarkers for lung cancer 

diagnosis in the future. 

 

The diagnostic value of the epigenetic signature was first validated by pyrosequencing in FFPE 

samples from non-small cell lung primary tumors. Results from our four-gene methylation 

signature presented high diagnostic accuracy and were extremely similar to those obtained 

from public databases. Importantly, we analyzed a total of 79 non-tumoral control tissues, and 

DNA methylation was almost negligible in the vast amount of samples, thus confirming 

previous results and encouraging the potential of the selected markers. Of note, in the study 

by Wrangle et al., the methylation status was assessed by using the MSP technique, in a 

smaller number of FFPE non-tumoral samples (12). We chose pyrosequencing, as targeted-

region validation technique, because is an affordable and quantitative method that 

counterbalances some weaknesses of previous and extensively used methods, due to its easy 

standardization and lower false positive rate (44). Moreover, it is a robust and quantitative 

method able to detect multiple CpGs not only in FFPE tissues but also in minimally and non-

invasive samples as biological fluids with potential use in daily basis clinical settings.  

 

The performance of the epigenetic model in these types of specimens, such as BAS, BAL and 

sputum was outstanding despite the limited number of tumoral cells compared to FFPE 

samples. The improvement of the diagnosis of lung cancer patients represents a major 

challenge. Our epigenetic model provides a balanced and flexible approach able to cater to 
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both extreme scenarios: the high sensitivity and low specificity of low dose CT in screening 

programs and the high specificity and low sensitivity of cytology (45,46) in respiratory 

specimens routinely used for lung cancer diagnosis. Our signature improves the predictions of 

cytology by providing a method for continuous predictions. Cytology is a useful dichotomized 

classifier producing two types of predictions: 100 % positive or 0% positive (100% negative). 

Therefore, the final output will be either a complete success or a total failure. In contrast, our 

signature based in a logistic regression model, represented by a nomogram, thus being able to 

produce a continuous range of predictions between 100% positive and 0% positive (47). That 

way, not all predictions are a complete success or a total failure, uncertainty can be measured 

for each prediction and errors are almost always lower (48). A clinician could take different 

actions according to the (un)certainty of the predictions, maybe performing additional tests in 

borderline cases. In a virtual situation where our model predicts two negative samples with 

different probability of being positive: such as 5% and 49%, the bimodal classifier predictor 

(cytology) would have output only absolute responses: negative and negative. Therefore, no 

information about uncertainty and chances of being positive for patient 1 (very low) and 

patient 2 (almost 50%) would have been delivered. The combination of current diagnostic 

protocol with new epigenetic nomograms will be of great help for diagnosis of lung cancer and 

consequently improving the outcome of lung cancer patients (49).  

 

In summary, we have identified and independently validated a powerful epigenetic signature 

diagnosis of lung cancer in minimally and non-invasive samples. Genome-wide DNA 

methylation analyses led us to identify 4 candidates that have been tested not only in publicly 

available datasets, but also in extensive and independent cohorts of respiratory samples. The 

herein identified epigenetic model, once it will be validated in intended of use samples such as 

in patients with suspicious indeterminate lung nodules, might be extremely helpful to solve 

these clinical issues with current diagnostic protocols and define more precise screening 
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programs for lung cancer. In addition, novel and more sensitive methods, currently in 

development, such as Methyl-Beaming or droplet digital PCR (50) could enhance their 

diagnostic value for the management of suspicious lung nodules in the clinic or within a 

program of lung cancer screening. 
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Table 1. Clinical characteristics of the invasive [Discovery (A), Validation (B) and Paraffin (C)] and minimally invasive [BAS (D), BALs (E) and Sputum (F)] cohorts.                                  

PATIENTS A. DISCOVERY COHORT B. TCGA VALIDATION COHORT C. PARAFFIN COHORT
  Tumor (n=237) Non-tumoral (n=25) Tumor (n=350) Non-tumoral (n=62) Tumor (n=122) Non-tumoral (n=79)
Age (years) 68 (38-90) 63.5 (39-86) 66.9 (33-90) 66.9 (40-86) 63.8 (40-80) 62.5 (42-85)
Gender  
     Male 131 (55.3%) 20 (80%) 190 (54.1%) 36 (58.0%) 108 (88.5%) 66 (83.5%)
     Female 106 (44.7%) 5 (20%) 160 (45.9%) 26 (42.0%) 14 (11.5%) 13 (16.5%) 
Smoking history  
     Current or former smoker 190 (80.1%) 24 (96%) 313 (89.4%) 55 (89.4%) 70 (57.4%) 71 (89.9%)
     Nonsmoker 25 (10.5%) 1 (4%) 32 (9.1%) 2 (9.1%) 36 (29.5%) 8 (10.1%)
     Unknown 22 (9.4%) 0 (0%) 5 (1.5%) 5 (1.5%) 16 (13.1%) 0 (0%)
Stage  
     I 237 (100%) 350 (100%)  122 (100%)
Histology  
     Adenocarcinoma 181 (76.4%) 217 (62.1%)  62 (50.8%)
     Squamous cell carcinoma 56 (23.6%) 133 (37.9%)  60 (49.2%)
Pack-years  40 (0-180) 54.4 (0-184) 46.7 (1-94.5) 46.4 (5-192) 35.9 (0-130) 46.7 (0-141)
 
Data are average (range) or number (%).  

PATIENTS D. BAS COHORT E.     BALs COHORT F.     SPUTUM COHORT
  Lung cancer patient  

(n=51) 
Cancer-free donor 

(n=29) 
Lung cancer patient  

(n=82) 
Cancer-free donor 

(n=29) 
Lung cancer patient  

(n=72) 
Cancer-free donor 

(n=26) 
Age (years) 65.6 (47-85) 64.0 (35-87) 62.1 (38-83) 57.5 (30-82) 65.1 (40-83) 52.7 (29-69)
Gender  
     Male 46 (90.2%) 16 (55.2%) 66 (80.4%) 19 (65.5%) 62 (86.1%) 17 (65.4%)
     Female 5 (9.8%) 10 (34.5%) 16 (19.6%) 9 (31.0%) 7 (9.7%) 9 (34.6%)
     Unknown 0 (0%) 3 (10.3%) 0 (0%) 1 (3.5%) 3 (4.2%)
Smoking history  
     Current or former smoker 45 (88.2%) 16 (55.2%) 42 (51.2%) 15 (51.7%) 62 (86.1%) 20 (76.9%)
     Nonsmoker 4 (7.8%) 8 (27.6%) 39 (47.5%) 12 (41.3%) 7 (9.7%) 6 (23.1%)
     Unknown 2 (4.0%) 5 (17.2%) 1 (1.3%) 2 (7%) 3 (4.2%) 0 (0%)
Stage  
     I 5 (9.8%) 17 (20.7%)  12 (16.7%)
     II 6 (11.8%) 8 (9.8%)  13 (18.0%)
     III 21 (41.2%)  20 (24.4%)  23 (32.0%)  
     IV 18 (35.3%) 18 (22.0%)  19 (26.4%)
    Unknown 1 (1.9%) 19 (23.1%)  5 (6.9%)
 Histology  

     Adenocarcinoma 17 (33.3%) 25 (30.5%)  38 (52.7%)
     Squamous cell carcinoma 19 (37.3%) 40 (48.8%)  24 (33.3%)
     Large cell carcinoma 2 (4.0%) 2 (2.4%)  2 (3%)
     Small cell carcinoma 2 (4.0%) 12 (14.6%)  5 (7%)
    NSCLC (NOS) 11 (21.4%) 3 (3.7%)  3 (4%)
Pack-years 49.6 (0-120) 32.4 (0-100) 45.5 (0-120) 26.3 (0-90) 49.1 (0-120) 24.1 (0-114)
 
Data are average (range) or number (%).NSCLC (NOS): Non-small cell lung cancer. Not otherwise specified 
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Figure Legends 

Figure 1. Epigenetic signature in lung primary tumor patients using genome-wide DNA 

methylation datasets. (A) DNA methylation levels of selected genes (Branched Chain 

Aminoacid Transaminase 1 -BCAT1-, Cysteine Dioxygenase type 1 -CDO1-, Tripartite Motif 

Containing 58 -TRIM58-, zinc finger protein 177 -ZNF177- and Crystallin, Gamma D -CRYGD-) in 

primary tumor samples from patients with lung cancer and non-tumoral  specimens using our 

FP7 Curelung dataset. (B) Validation of DNA methylation values using public available dataset 

from The Cancer Genome Atlas database (TCGA). (C) Expression values for the gene candidates 

using the TCGA database. P values for all the analyses were calculated using the two-sided 

Mann–Whitney U test. NT (light grey circle dots) stands for non-tumoral and T (dark grey 

square dots) for tumor. *** correspond to p<0.001. 

Figure 2. Epigenetic signature in paraffin samples using pyrosequencing. (A) DNA methylation 

levels of candidate genes in paraffin-embedded sections from patients with lung cancer and 

control donors. P values for all the analyses were calculated using the two-sided Mann–

Whitney U test. NT (light grey circle dots) stands for non-tumoral and T (dark grey square dots) 

for tumor. *** correspond to p<0.001. (B) ROC curves and area under the curve (AUC) with 

95% confidence intervals for the candidate genes.  

Figure 3. Epigenetic signature in bronchial aspirates using pyrosequencing. (A) DNA 

methylation levels in bronchial aspirates from patients with lung cancer and control donors. NT 

(light grey circle dots) stands for non-tumoral and T (dark grey square dots) for tumor. P values 

for all the analyses were calculated using the two-sided Mann–Whitney U test. *** 

corresponds to p<0.001. (B) ROC curves and areas under the curve (AUC) for the selected 

genes. (C)  The area under the curve (AUC) for the combined signature using a logistic 

regression model (D) Sensitivity and specificity profiles for the different possible cut-off values 

of the results from the logistic regression model.  
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Figure 4. Epigenetic signature in bronchioalveolar lavages using pyrosequencing. (A) DNA 

methylation levels in bronchioalveolar lavages from patients with lung cancer and control 

donors. NT (light grey circle dots) stands for non-tumoral and T (dark grey square dots) for 

tumor. P values for all the analyses were calculated using the two-sided Mann–Whitney U test. 

*** corresponds to p<0.001; * p<0.05. (B) ROC curves and areas under the curve (AUC) for the 

selected genes. (C) The area under the curve (AUC) for the combined signature using a logistic 

regression model (D) Sensitivity and specificity profiles for the different possible cut-off values 

of the results from the logistic regression model.  

Figure 5. Epigenetic signature in sputum samples using pyrosequencing. (A) DNA methylation 

levels in sputums from patients with lung cancer and control donors. NT (light grey circle dots) 

stands for non-tumoral and T (dark grey square dots) for tumor. P values for all the analyses 

were calculated using the two-sided Mann–Whitney U test. *** corresponds to p<0.001; ** 

p<0.01 and * p<0.05. (B) ROC curves and areas under the curve (AUC) for the selected genes. 

(C) The area under the curve (AUC) for the combined signature using a logistic regression 

model (D) Sensitivity and specificity profiles for the different possible cut-off values of the 

results from the logistic regression model.  
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