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ABSTRACT  

 

In an industry such as the insurer, highly atomized and competitive, where price 

comparison engines allow customers to have greater control over information in decision-

making; insurance companies are investing great part of their efforts to find new formulas 

that improve customer loyalty. In that sense, using Big Data generated from social 

networks such as Facebook, Twitter or YouTube, to know the policyholder’s personality, 

can be used as a strategy that allow companies to compete through personalized service 

and more competitive premiums. In this study, I analyze the framework to introduce 

personality as an explanatory variable in Generalized Linear Models for claims count and 

try to found out any empirical evidence of the relation between personality traits and 

insurance claims. 

 

KEYWORDS: Big Data, social networks, Big Five personality traits, computational 

social science, insurance claim counts. 
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1. INTRODUCTION 

 

 Over the past decades, the auto insurance industry has had little changes in the way 

premiums are calculated. Traditionally, the historical claims data, specific information of 

the good to insure and policyholder characteristics have been the variables used as the 

main information to model a set of risks and determine the insurance premium. Several 

reasons can explain this lethargy of the companies, the main one is that the business model 

has worked all over that period: the technical methodology is proven and accepted by the 

regulation institutions.  

 

This perspective is bound to evolve, insofar as other factors (variables) that have not been 

considered, are incorporated to the analysis. And this seems to be possible due to new and 

massive information that was not available time ago. Along with technology evolution, 

digital information has also grown and exponentially: Big Data1. Evidently, to the extent 

that technology has developed, industry has been incorporating it into its processes; but 

now, it is about implementing these new data.  

 

And, in fact, it is being done. Some insurance companies have begun to take advantage 

of the Internet of Things (IoT) to monitor drivers’ skills and habits. With telematic devices 

plug in the vehicle, insurers receive valuable information and analytics about 

policyholders’ specific behaviors when driving. So, instead of paying for collision 

coverage even when the vehicle is parked in the garage, policyholders would only pay for 

it when the car’s being driven. 

 

But telematic devises are not the only source of new information. Social networks’ 

information can be used to accurately predict a range of highly sensitive personal 

attributes; among them, personality traits (Michal Kosinski et al., 2013). This data could 

allow insurers to catalogue the risk based on information of the policyholder and offer 

premiums focus on individuals, not only of on risk groups. Big Five Personality Traits’ 

model, summarize in only five representative traits human behavior and Computational 

Social Scientists have managed to make it possible to extract these personal patterns from 

social networks.  

 

The application of these variables is immense in the industry, because all activities subject 

to risks are performed by a specific person. Let us imagine a bus transportation company, 

is it the same risk level when one or another bus driver drives a certain bus, even if it is 

on the same route? The inevitable answer is no; however, the transport company must 

pay an equal premium for each bus. Or home insurance segment, would be riskier a 

policyholder with lack of consciousness, rather than a very conscious one? 

 

It is at least interesting to think about how these variables can customize the insurance 

premium. But at the same time, doubts arise about the fulfillment of the principle of 

solidarity in the insurance industry or on the legality and ownership of the information of 

the social networks. These reflections should be considered when thinking on the 

possibility of introducing personality traits or other new variables in insurance pricing a 

priori and a posteriori.  

                                                             
1 Big Data is the term that describes a rich and complicated set of characteristics, practices and techniques, ethical issues and outcomes 

all associated with data (Japec et al., 2015). It is associate with large sets of information (personal, industrial, market, etc.) that are 

constantly increasing thanks to online connections. 
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As telematics devises analytics, personality traits information from social networks, are 

called to be the future of the industry. So, the hypothesis I would like to validate is that 

the probability of having a claim, also depends on personal constructs2. In this sense, the 

aim of this study are (1) to develop a theoretical framework to incorporate nontraditional 

variables to the actuarial analysis of claim counts, based on the idea that some personality 

traits are more prone to have claims; (2) try to find empirical evidence of the relation 

among personality traits and claim; and (3) get an understanding of the market’s feeling 

when asked to provide access to their social networks account.  

 

My objective is not to dismiss of the analysis traditional variables, systems or procedures; 

even better, the main idea is to add more information to the models, to create a more 

accurate risk profile ergo an appropriate premium for that level of risk. To develop this 

idea, I will first introduce the actuarial models in which, this new information coming 

from the social networks, can be used. Then, present studies related to computational 

social science and psychological assessment. 

 

2. BACKGROUND  

 

 An actuary can be defined as “one who determines the current financial impact of 

future contingent events3”. To determine this impact the actuary uses, among other 

technics, Generalized Linear Models (GLM), through which the mean response can be 

expressed as a function of linear combination of explanatory variables. In a simple way 

to express; when an actuary models the probability of having a claim, people most likely 

to have it, surely must pay a higher premium and vice versa. 

 

In these models that estimate the probability of occurrence of a claim, considering 

quantitative variables that measure qualitative traits, it would be desirable for them to be 

mutually exclusive factors, so that they could represent different information (otherwise 

it would be modeling with variables that describe the same). Somehow, personality traits 

can be considered mutually exclusive quantitative variables. “Personality is also 

considered as an important piece of knowledge useful to build effective persuasive 

systems: people, in fact, may react differently to persuasive stimuli according to their 

personality” (Lepri et al., 2016). 

 

2.1. GLM Models for claim counts  

 

A non-life insurance contract, among an insurance company and a policyholder, is an 

agreement where the second one transfers an economic risk to the first, in exchange for a 

premium. The premium (or appropriately called pure premium) is the product of the 

potential claim frequency and the potential claim severity. In this section I will provide 

the basics in GLM Models to understand the “claim frequency” from an actuarial point 

of view; to do so, I basically use the material prepared by Professor Ramon Alemany 

(Alemany, 2015). 

 

Giving a price to a certain risk, from a very basic appreciation, means to understand it 

and to understand the variables that affect it (Parodi, 2015). In non-life insurance, the aim 

of a priori tariff analysis is to determine how one or more variables, like the number of 

                                                             
2 In psychology, any hypothetical entity difficult to define within a scientific theory. A construct is something that is known to exist, 

but whose definition is difficult or controversial. They are constructs intelligence, personality and creativity, for example. 
3 Attributed to Frederick W. Kilbourne. 
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claims, or the costs of claims, vary with respect to a set of risk factors. In other words, 

how a dependent variable Y varies with respect to an explanatory variable X in a multiple 

linear regression.  

 

Nevertheless, in these cases the classic Linear Regression Model (LRM) is not the most 

appropriate, as for pricing purposes. There are two main reason, first LRM assume 

normality and homoscedasticity in the perturbation term, while other variable like the 

number of claims follows a discrete distribution, the cost of the claims is a non-negative 

variable and asymmetric to the right, and the renewal of a policy is a qualitative  

dichotomic variable, among others. Second, the mean of the LRM is a linear function of 

the explanatory variables while in other contexts, another functional relationship is 

needed. 

 

Generalized Linear Model, GLM, are an extension of this LRM in two ways (Ohlsson & 

Johansson, 2010): 

- Probability distribution: Instead of assuming the normal distribution of the 

perturbation term, GLMs work with a general class of distributions (the 

exponential family) which contains a set of discrete and continuous distributions 

in particular the Normal, Poisson and Gamma distributions. 

- The model for the mean. In the LRM the mean is a linear function of the 

explanatory variables. In GLMs some monotonous transformation of the mean is 

a linear function of the explanatory variables. 

 

GLMs components 

 

a. Random component: Given 𝑦𝑖  , 𝑖 = 1,… , 𝑛, independent random variables with 

density of the exponential family, that is: 

 

𝑓(𝑦
𝑖
, 𝜃𝑖, ∅) = 𝑒𝑥𝑝 {

𝑦
𝑖
𝜃𝑖 − 𝑏(𝜃𝑖)

∅/𝜔𝑖 
+ 𝑐(𝑦, ∅)}. 

 

 In its canonical form, where: 

• ∅ is a dispersion parameter. 

• 𝜔𝑖 is a weighting. 

• 𝜃𝑖 is the canonical parameter. 

• The functions b(∙) and c (∙) are known. 

 

b. Systemic component: the linear predictor is: 

 

𝜂𝑖 = ∑𝑥𝑖𝑗𝛽𝑗

𝑘

𝑗=1

= 𝛽1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 +⋯+ 𝛽𝑘𝑥𝑖𝑘,    Ɐi = 1, … , 𝑛, 

 

where 𝛽 is the vector k x 1 of parameters to estimate and 𝑥𝑖𝑗 the explanatory 

variables. 

 

c. Link component: the link function relates the expected value of the dependent 

variable with the linear predictor (Frees, 2010): 

 



 

~ 4 ~ 
 

𝜂𝑖 = ℎ−1(𝜇𝑖) =  𝑥𝑖
′𝛽,   Ɐi = 1,… , 𝑛. 

 

A canonical link exists if: 

 

𝜃𝑖 = 𝜂𝑖 = 𝑥𝑖
′𝛽    Ɐ𝑖 = 1,… , 𝑛. 

 

Moments 

 
For these distributions of the exponential family, the first raw moment (mean) and the 

second central moment (variance) are: 

 

𝐸[𝑦𝑖] =  𝑏
′(𝜃𝑖) =

𝑑𝑏(𝜃𝑖)

𝑑𝜃
=  𝜇𝑖  

and 

𝑉[𝑦𝑖] =
𝜙

𝜔𝑖
𝑏"(𝜃𝑖) =

𝜙

𝜔𝑖

𝑑2𝑏(𝜃𝑖)

𝑑𝜃𝑖
2 =

𝜙

𝜔𝑖
𝑉(𝜇). 

 

Distributions and links 

 

Table 1 shows a set of probability distributions and their link function. 

 

Distribution Link 𝜼𝒊 = 𝒈(𝝁𝒊) 𝝁𝒊 = 𝒈
−𝟏(𝜼𝒊) Range for 𝒀𝒊 𝑽(𝒀𝒊|𝜼𝒊) 

Normal  Identity 𝜇𝑖 𝜂𝑖 (−∞,+∞) ∅ 

Binomial Logit ln
𝜇𝑖

1 − 𝜇𝑖
 

𝑒𝑥𝑝(𝜂𝑖)

1 + 𝑒𝑥𝑝(𝜂𝑖)
 

0,1, … , 𝑛𝑖
𝑛𝑖

 
𝜇𝑖(1 − 𝜇𝑖)

𝑛𝑖
 

Poisson Log ln 𝜇𝑖 𝑒𝑥𝑝(𝜂𝑖) 0, 1, 2, . . .   𝜇𝑖 

Gamma Inverse 𝜇𝑖
−1 𝜂𝑖

−1 (0,∞) ∅𝜇𝑖
2 

Table 1. Distributions and links of the Exponential Family. 
Source: (Alemany, 2015) 

 

Maximum Likelihood Estimation 

 

The logarithm of the likelihood function for an individual observation 𝑦𝑖 considering the 

density of the exponential family, would be: 

 

ln ℒ(𝑦𝑖; 𝜃𝑖 , 𝜙) =
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝜙/𝜔𝑖
+ 𝑐(𝑦𝑖 , 𝜙/𝜔𝑖), 

 

and for n independent observations, would be: 

 

ln ℒ(𝑦1, … , 𝑦𝑛; 𝜃, 𝜙) = ∑[
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝜙/𝜔𝑖
+ 𝑐(𝑦𝑖 , 𝜙/𝜔𝑖)]

𝑛

𝑖=1

, 
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Besides, if the link function 𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑥𝑖
′𝛽 is canonical, it will happen 𝑔(𝜇𝑖) = 𝜂𝑖 =

 𝑥𝑖
′𝛽 and the logarithm of the likelihood function would be: 

 

lnℒ(𝛽, 𝜙, |𝑦1, … , 𝑦𝑛) =∑[
𝑦𝑖𝑥𝑖

′ − 𝑏(𝑥𝑖
′𝛽)

𝜙/𝜔𝑖
+ 𝑐(𝑦𝑖 ,

𝜙

𝜔𝑖
)]

𝑛

𝑖=1

. 

 

The derivate of 𝑙𝑛 ℒ(𝛽,𝜙) of with respect to 𝛽 is: 

 

𝜕

𝜕𝛽
𝑙𝑛 ℒ(𝛽, 𝜙) =

1

∅
∑(𝑦𝑖 − 𝑏′(𝑥𝑖

′𝛽))𝑤𝑖𝑥𝑖

𝑛

𝑖=1

.  

 

Considering that 𝑢𝑖 = 𝑏′(𝜃𝑖
 ) = 𝑏′(𝑥𝑖

′𝛽), the Maximum Likelihood Estimators (MLE) of 

the parameters �̂�𝑀𝐿𝐸
  can be obtained through the equations: 

 

0 =∑𝑤𝑖(𝑦𝑖 − 𝑢𝑖)𝑥𝑖

𝑛

𝑖=1

. 

 

The solution of these equations can be approximated by iterative procedures, such as the 

Newton-Raphson Algorithm or the Fishing Scoring Method. 

 

Models selection 

 

There are different criteria to measure the goodness of fit considering the number of 

parameters included in the model. The best known are the Akaike's Information Criterion, 

AIC, and the Bayesian Information Criterion, BIC, i.e.: 

 

𝐴𝐼𝐶 =  −2 ln ℒ + 2𝑝  
and 

𝐵𝐼𝐶 = −2ln ℒ + p ln 𝑛. 
 

When we are estimating models with the same data set, the selected model should be the 

one with the lowest AIC or BIC. When we have a large number of observations, AIC is 

preferable to BIC. 

 

Residuals 

 

In GLM models, Pearson Residuals, 𝑟𝑖, are used, instead of the traditional ones. These 

Pearson residuals are expressed as: 

 

𝑟𝑖 =
�̂�1/2(𝑦𝑖 − �̂�𝑖)

√𝑉𝑎�̂�(𝑌𝑖)
, 

 

these residuals allow the construction of the Pearson Statistic, which under the null 

hypothesis of a good fit is distributed according to a Chi-square. The Pearson statistic is: 
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∑𝑟𝑖
2 ~ 𝑋𝑛−𝑘

2 .

𝑛

𝑖=1

 

 

Other option with GLMs is to estimate the Deviance residuals: 

𝑑𝑟𝑖 = 𝑠𝑖𝑔𝑛𝑜 (𝑦𝑖 − �̂�𝑖)√2(lnℒ(�̂�𝑅)𝑖 − lnℒ𝑖(�̂�)𝑖) , 

where lnℒ(�̂�𝑅)𝑖 is the logarithm of the likelihood of the model, estimated with r lineal 

restrictions over the parameters. 

 

2.1.1. Logit model 

 

The Logistic Regression Model, LOGIT, is applied when the dependent variable is a 

discrete and dichotomic one, for example: the occurrence of a claim, the renewal of a 

policy, a fraudulent claim, etc., and the explanatory variables are either continuous and / 

or discrete. The LRM is not suitable for this type of situation because the basic hypothesis 

of normality and homoscedasticity of the term of random perturbation are not fulfilled. 

Also, because the LRM predictions are beyond the range [0,1], which are meaningless in 

terms of probability; the relation between the explanatory variables and the probability of 

occurrence of the event is not linear. The adjustment of the model and the interpretation 

of the parameters is not the same. 

 

Let Y be a random variable (r.v.) that takes values 1 if an event occurs and 0 otherwise, X 

is a matrix of variables explaining the occurrence of the event and β is a vector of 

parameters (Guillén, 2014). Then, with a set of n independent individual observations, Y 

follows a Binomial distribution, ℬ(n, π), which is of the exponential family, the canonical 

link function of the Logit model is:  

𝜃 = ln
𝜋

1 − 𝜋
= 𝜂 = 𝑥𝑖

′𝛽, 

 

 then, 

𝜋 = 𝑃(𝑌 = 1) =
𝑒𝜃

1 + 𝑒𝜃
=

𝑒𝑥𝑖
′𝛽

1 + 𝑒𝑥𝑖
′𝛽
= Λ(𝑥𝑖

′𝛽) 

and 

1 − 𝜋 = 𝑃(𝑌 = 0) = 1 −
𝑒𝑥𝑖
′𝛽

1+𝑒𝑥𝑖
′𝛽
=

1

1+𝑒𝑥𝑖
′𝛽
= 1 − Λ(𝑥𝑖

′𝛽). 

The vector of estimated parameters �̂� is obtained by the criterion of maximum likelihood. 

Let us suppose observations 𝑌𝑖, independent and equally distributed, like a Bernoulli. The 

likelihood function is the joint probability: 

 

𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑛 = 𝑦𝑛|𝑋) = ∏[1 −∧ (𝑥𝑖
′𝛽)]

𝑦𝑖=0

∏∧ (𝑥𝑖
′𝛽)

𝑦𝑖=1

 

or 
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𝐿(𝛽) =∏[∧ (𝑥𝑖
′𝛽)]𝑦𝑖

𝑛

𝑖=1

[1 −∧ (𝑥𝑖
′𝛽)]1−𝑦𝑖 . 

 

Which in logarithms is: 

 

ln{𝐿(𝛽)} =∑[𝑦𝑖 ln{∧ (𝑥𝑖
′𝛽)} + (1 − 𝑦𝑖) ln{1 −∧ (𝑥𝑖

′𝛽)}].

𝑛

𝑖=1

 

 

As said before, the maximization of the logarithm of the likelihood function should be 

performed using numerical optimization methods such as Newton's Method. This the 

maximum-likelihood estimators will be: unbiased, consistent, asymptotically efficient 

and distributed asymptotically according to a normal. 

 

2.1.2. Poisson Model 

 

A r.v. Y can take on a set of values from the sample space Ω. When Ω is a finite set of 

real numbers specifically non-negative integers {0,1,2…} associated with the r.v., f(y) is 

a probability function indicating for each variable y in Ω, the probability that the Y takes 

value y (de Jong & Heller, 2013). In this case we are describing a discrete r.v. 

 

Count data models are those in which the dependent variable is a count of the number of 

times that an event occurs. These are discrete models, so the variable to explain takes on 

discrete values 0,1,2… These models are widely used in the actuarial profession because 

the claims number meets these properties. The Poisson Model is a particular GLM for 

claims count. However, for the Poisson distribution the mean is equal to the variance, 

which is an important restriction that will open the door to more general models, such as 

the Negative Binomial Model that will be analyzed ahead. 

 

The probability function of the Poisson distribution is: 

 

𝑃(𝑌 = 𝑗) =
𝑢𝑗

𝑗!
𝑒−𝑢 ,      𝑗 = 0,1,2… , 

 

where u is the mean number of times that the event occurs in a time interval. Furthermore, 

the probability generating function is: 

 

𝑃(𝑧) = 𝑒𝑢(𝑧−1) ,      𝑢 > 0. 
 

The mean and variance can be computed from the probability generating function, and 

their value are: 

𝐸(𝑌) =𝑢 

and 

𝑉(𝑌) =𝑢. 
 

The idea is that the mean could vary according to the values of some explanatory variables 

representing various risk factors, like this, 

 

𝐸(𝑦𝑖) =  𝑢𝑖 = 𝑒
𝑥𝑖
′𝛽. 
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Even more, the could vary according to the risk exposure, ti, which the proportional part 

of the year the policyholder has been covered, 

 

𝐸(𝑦𝑖) =  𝑢𝑖 = 𝑡𝑖𝑒
𝑥𝑖
′𝛽. 

 

So, let  

𝑌𝑖  ~ 𝑃𝑜𝑖 (𝑡𝑖𝑒
𝑥𝑖
′𝛽) ,      𝑖 = 1,2… , 𝑛    𝑖. 𝑖. 𝑑.,  

 

then 

𝑃(𝑌𝑖 = 𝑦𝑖) =
(𝑡𝑖𝑒

𝑥𝑖
′𝛽)𝑦𝑖

𝑦𝑖!
𝑒−𝑡𝑖𝑥𝑖

′𝛽 ,  

 

which can be expressed like 

𝑃(𝑌𝑖 = 𝑦𝑖) = 𝑒
𝑦𝑖 ln(𝑡𝑖𝑒

𝑥𝑖
′𝛽) −  𝑡𝑖𝑒

𝑥𝑖
′𝛽  −  𝑙𝑛 𝑦𝑖!  .  

 

So, it would be of the exponential family, with: 

 

𝜃𝑖 = ln (𝑡𝑖𝑒
𝑥𝑖
′𝛽) , 

 

𝑏(𝜃𝑖) = −𝑡𝑖𝑒
𝑥𝑖
′𝛽 = 𝑒𝜃𝑖  , 

 

𝑐(𝑦;𝜙) = −ln(𝑦𝑖) , 
 

𝜙 = 1  
 

and link function equal to: 

𝑔(𝑢𝑖) = ln(𝑢𝑖) = ln 𝑡𝑖 + 𝑥𝑖
′𝛽 

 

The logarithm of the likelihood function is, 

 

lnℒ(𝛽|𝑦1, … , 𝑦𝑛) =∑[− 𝑡𝑖𝑒
𝑥𝑖
′𝛽 +  𝑦𝑖 (ln 𝑡𝑖 +𝑒

𝑥𝑖
′𝛽) − 𝑙𝑛 𝑦𝑖!]

𝑛

𝑖=1

 . 

 

That when the first derivatives are equal to zero with respect to the parameters,  

 

𝜕

𝜕𝛽
lnℒ((𝛽|𝑦1, … , 𝑦𝑛)) = ∑( 𝑦𝑖 − 𝑡𝑖𝑒

𝑥𝑖
′�̂�)

𝑛

𝑖=1

 𝑥𝑖 = 0 , 

 

where �̂� is the maximum likelihood estimator. 
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2.1.3. Negative Binomial Model 

 

Let Y be a count data r.v., Poisson with mean λ. If λ is not constant, then λ is a r.v., and 

we assume it is a Gamma distribution with parameters a and b, i.e.: 

 

𝜆 ~𝐺𝑎𝑚𝑚𝑎 (𝑎, 𝑏), 
 

with density function: 

𝑔(𝜆) =
𝑏𝑎𝜆𝑎−1𝑒−𝑏𝜆

Γ(𝑎)
 

 

then, the Negative Binomial is obtained as a mixture of the Poisson and the Gamma 

distribution. The final result is: 

𝑓(𝑦|𝑎, 𝑏)  =
Γ(𝑦 + 𝑎)

Γ(𝑦 + 1)Γ(𝑎)
(
𝑏

1 + 𝑏
)
𝑎

(
1

1 + 𝑏
)
𝑦

, 

 

with mean  

𝐸(𝑦) =
𝑎

𝑏
 

and variance 

𝑉(𝑦) =
𝑎

𝑏
(1 +

1

𝑏
) = �̅� (1 +

�̅�

𝑎
) . 

 

As for the Poisson model, the idea is that the expected number of claims, per time unit, 

could change according to some risk factors. However, a heterogeneity factor is 

introduced, because explanatory variables do not capture it among individuals. 

 

𝐸(𝑦𝑖) = 𝜇𝑖 = 𝑒
𝑥𝑖
′𝛽+𝜖𝑖 . 

So, the probability would be calculated as: 

𝑓(𝑦|𝑎) =
Γ(𝑦 + 𝑎)

Γ(𝑦 + 1)Γ(𝑎)
(
𝑒𝑥𝑖

′𝛽

𝑎
)

𝑦

(1 +
𝑒𝑥𝑖

′𝛽

𝑎
)

−(𝑦+𝑎)

. 

The logarithm of the likelihood function is, 

 

ln ℒ(𝛽, 𝑎|𝑦1, … , 𝑦𝑛) =∑{(∑ln(𝑗 + 𝑎)

𝑦−1

𝑗=0

) − ln 𝑦𝑖 ! − (𝑦𝑖 + 𝑎) ln (1 +
𝑒𝑥𝑖

′𝛽

𝑎
) + 𝑦𝑖 ln (

𝑒𝑥𝑖
′𝛽

𝑎
)}

𝑛

𝑖=1

. 

�̂� and �̂� are estimated solving: 
 

𝜕

𝜕�̂� 
ln ℒ(�̂� , �̂�) =∑

𝑦𝑖 − 𝑒
𝑥𝑖
′�̂�

1 +
𝑒𝑥𝑖

′�̂�

�̂�

𝑥𝑖 = 0

𝑛

𝑖=1

  

and 
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𝜕

𝜕�̂�
ln ℒ(�̂� , �̂�) =∑{�̂�2 [ln (1 +

𝑒𝑥𝑖
′𝛽

�̂�
) −∑

1

𝑗 + �̂�

𝑦−1

𝑗=0

] +
�̂�(𝑦𝑖 − 𝑒

𝑥𝑖
′�̂�)

1 +
𝑒𝑥𝑖

′�̂�

�̂�

}

𝑛

𝑖=1

= 0 , 

where �̂� and �̂� are the estimators of maximum likelihood. 

 

2.1.4. Zero Inflated Models 

 

Frequently, when analyzing claims insurance databases, there is an excess of zeros in the 

number of claims (which is desirable). A model can be zero inflated, if it can be written 

as a mixture with 𝜋𝑖 probability, of a Dirac distribution in zero and a count model like 

Poisson or Negative Binomial (Charpentier, 2015), i.e.: 

 

𝑃𝑟(𝑦𝑖 = 𝑗) = {
𝜋𝑖 + (1 − 𝜋𝑖)𝑔𝑖(0)        𝑗 = 0

                   
(1 − 𝜋𝑖)𝑔𝑖(𝑗)                           𝑗 = 1,2,…

. 

The ZIP model is explained as follows: 

𝑔(𝑦𝑖|𝜆𝑖) =
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
  , 

𝜆𝑖 = 𝑒
𝑥𝑖
′𝛽, 

  𝜋𝑖 =
𝑒𝑧𝑖

′𝛾

1 + 𝑒𝑧𝑖
′𝛾
 , 

𝑃𝑟(𝑦𝑖) =

{
 
 

 
 𝜋𝑖 + (1 − 𝜋𝑖)𝑒

−𝜆𝑖             𝑦𝑖 = 0
                   

(1 − 𝜋𝑖)
𝑒−𝜆𝑖  𝜆𝑖

𝑦𝑖

𝑦𝑖 !
                     𝑦𝑖 = 1,2,…

, 

with mean  

𝐸(𝑦𝑖) = 𝜇𝑖 = (1 − 𝜋𝑖)𝜆𝑖  

and variance 

𝑉𝑎𝑟(𝑦𝑖) = 𝜇𝑖 +
𝜋𝑖

1 − 𝜋𝑖
𝜇𝑖
2 = (1 − 𝜋𝑖)𝜆𝑖 + 𝜋𝑖(1 − 𝜋𝑖)𝜆𝑖

2. 

On the other hand, the ZINB model is specified as: 

𝑔(𝑦𝑖|𝜆𝑖) =
Γ(𝑎 + 𝑦)

Γ(𝑦 + 1)Γ(𝑎)
(

𝑎

𝑎 + 𝜆𝑖
)
𝑎

(
𝜆𝑖

𝑎 + 𝜆𝑖
)
𝑦

, 

𝜆𝑖 = 𝑒
𝑥𝑖
′𝛽, 

𝜋𝑖 =
𝑒𝑧𝑖

′𝜆

1 + 𝑒𝑧𝑖
′𝜆
 , 
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𝑃𝑟(𝑦𝑖) =

{
 
 

 
 𝜋𝑖 + (1 − 𝜋𝑖) (

𝑎

𝑎 + 𝜆𝑖
)
𝑎

                                  𝑦𝑖 = 0
                   

(1 − 𝜋𝑖) 
Γ(𝑎 + 𝑦)

Γ(𝑦 + 1)Γ(𝑎)
(

𝑎

𝑎 + 𝜆𝑖
)
𝑎

(
𝜆𝑖

𝑎 + 𝜆𝑖
)
𝑦

       𝑦𝑖 = 1,2,…

, 

with mean  

𝐸(𝑦𝑖) = 𝜇𝑖 = (1 − 𝜋𝑖)𝜆𝑖  

and variance 

𝑉𝑎𝑟(𝑦𝑖) = 𝜇𝑖 + (
𝜋𝑖

1 − 𝜋𝑖
+ 

1
𝑎⁄

1 − 𝜋𝑖
)𝜇𝑖

2 = (1 − 𝜋𝑖)𝜆𝑖 + (𝜋𝑖 +
1
𝑎⁄ )(1 − 𝜋𝑖)𝜆𝑖

2. 

2.2. Trait theory  

 

Trait theory is the branch of psychology that studies human personality. It is also called 

dispositional theory. A trait can be defined as a habitual pattern of behavior, thought, and 

emotion (Matthews et al., 2009). The first step of psychologist of personality consist of 

developing a science of traits by measurement and classification of traits. Traits are 

relatively stable over time and differ across individuals, so a basic technic to measure 

personality is to ask a person to rate how well traits adjectives, like quiet, sincere, mean, 

liar, etc., apply to himself or herself.  

 

2.2.1. The lexical hypothesis  

 

Each person has its own characteristics; and this diversity difficult researchers to 

understand personality (Ashton & Lee, 2005). However, one way to obtain a set of 

variables that is representative of an individual, is by considering the lexical hypothesis 

in personality analysis. This concept has been around since the 1800s and, basically, this 

hypothesis states that the most important personality characteristics of a person will 

eventually become a part of his or her language and more likely, encoded as a single word 

(John et al., 1988). It means that everything we write or talk leaves a trace of our 

personality; with language as a resource and a sample, a full spectrum and taxonomy of 

personality traits can be assembled.  

 

This hypothesis lead to the development of the Big Five Personality Traits (Goldberg, 

1993), a prominent widely accepted multi factorial model that embraces in five traits the 

human behavior. Is a model based on common language descriptors of personality 

summarizes characteristic behaviors that distinguish a person throughout different 

contexts of their daily life. 

 

2.2.2. The Big Five personality traits 

 

The Big Five personality traits subject of this study are: 

• Openness 

• Conscientiousness  

• Extroversion  

• Agreeableness  

• Neuroticism  
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These traits can be scored in several ways, depending on the methodology; but are 

typically expressed in a range that goes from zero to one (0,1). So, a high score on 

Openness, for example, would be a value of 0,8 to 1; an average score would be 0,4 to 

0,6 and a low score would be 0 to 0,2. 

 

Johnson (2016), based on an extensive reading of the scientific literature on personality 

measurement, summarized this five personality traits, as it is shown in Table 2: (Johnson, 

2016) 

Openness 

(OPE) 

Is defined as "openness to experience". It distinguishes imaginative 

and creative people, from down to earth or conventional people. 

People who are Open to Experience are intellectually curious, 

appreciate art and beauty. Are closed people, because they are more 

aware of their feelings. Characteristics of these people include 

individualistic thinking or acting and nonconforming ways. Intellect 

is probably best regarded as one aspect of openness to experience.  

Facets 
Imagination. Artistic Interests. Emotionality. 

Adventurousness. Intellect. Liberalism. 

(-)  

Low 

score 

Down to earth, practical, conservative, think in simple 

terms. 

Average 

score 

These people enjoy tradition but do not close their mind 

to try new experiences, even though their thinking is 

neither simple nor complex. Usually well-educated people 

but not intellectuals. 

(+) 

High 

score 

Intellectuals typically score high on Openness to 

Experience. They enjoy variety and change. Usually are 

curious, imaginative and creative people. 
 

Conscientiousness 

(CON) 

It concerns to the way in which people control, regulate and direct 

their impulses. To be impulsive is not necessarily bad, sometimes 

restrictions require a snap decision and acting with impulse can be 

effective. Impulsive individuals can be seen by others as colorful or 

fun to be with. But also, acting on impulse can lead to troubles. Some 

impulses are antisocial and uncontrolled antisocial acts harm other 

members of society and also can result in retribution toward the 

perpetrator of such impulsive acts. Another problem with impulsive 

acts is that they often produce immediate rewards but undesirable, 

long term consequences. Impulsive behavior reduces a person's 

efficiency, because it disallows contemplating alternative courses of 

action, some of which would have been wiser than the impulsive 

choice. On the other hand, a cautiousness person describes the 

disposition to think through possibilities before acting. 

Facets 
Self-Efficacy. Orderliness. Dutifulness. Achievement-

Striving. Self-Discipline. Cautiousness. Responsibility. 

(-)  

Low 

score 

This people like to live for the moment and do what feels 

good now. Normally, their work tends to be careless and 

disorganized. 
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Average 

score 

This means he/she is a reasonably reliable, organized and 

self-controlled person. 

(+) 

High 

score 

Is a person seen by others as reliable and hard working. 

 

Extroversion 

(EXT) 

Its main characteristic is the engagement with the external world. 

Extraverts appreciate company, talking to people, tend to be full of 

energy and enthusiastic. Usually experience positive emotions and 

are more likely to say "Yes!" to opportunities. On the other hand, 

introverts lack this energy and activity levels; they are quiet, 

thoughtful and disengaged from the social world. It does not mean 

they are depressed and should not be necessarily associated with 

shyness. 

Facets 
Friendliness. Gregariousness. Assertiveness. Activity 

Level. Excitement-Seeking. Cheerfulness.  

(-)  

Low 

score 

Indicates an introverted, reserved and quiet person. 

Someone who enjoys solitude and solitary activities. 

He/She has a few close friends. 

Average 

score 

Indicates neither a subdued loner nor a jovial chatterbox 

person, that enjoys time with others but also time alone. 

(+) 

High 

score 

Indicates a sociable, outgoing and lively individual, that 

prefers to be around people much of the time. 
 

Agreeableness 

(AGR) 

Agreeable people value getting along with others; they are 

respectful, tolerant, considerate, generous and helpful. They also 

have an optimistic view of human nature, so believe people are 

basically honest or decent or trustworthy. Disagreeable people place 

self-interest above getting along with others. They do not care others' 

well-being and are skeptic of others, so they tend to be unfriendly 

and uncooperative. 

Facets 
Trust. Morality. Altruism. Cooperation. Modesty. 

Sympathy.  

(-)  

Low 

score 

Indicates less concern with others' needs. This people are 

tough, critical, and uncompromising. 

Average 

score 

Indicates some concern with others' needs; but not to 

sacrificing yourself for others. 

(+) 

High 

score 

Indicates that this person is interested in other ones' needs 

and wellbeing. This people are sympathetic and 

cooperative. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

~ 14 ~ 
 

Neuroticism 

(NEU) 

To explain neuroticism, I will refer to people with high scores of 

neuroticism. Measures a reaction to complicated situations. It refers 

to the tendency to experience negative feelings like anxiety, anger 

or depression, these people are emotionally reactive to events that 

would not affect most people. Their reactions tend to be more intense 

than normal because they interpret current situations as threatening. 

This people are often in a bad mood and cannot think clearly, make 

decisions or deal with stress. 

Facets 
Anxiety. Anger. Depression. Self-Consciousness. 

Immoderation. Vulnerability. 

(-)  

Low 

score 

It refers to a calm and composed persona that do not react 

with intense emotions. 

Average 

score 

Indicates that the level of emotional reactivity is typical of 

the general population. Stressful and frustrating situations 

upset this people, but can get over these feelings. 

(+) 

High 

score 

These persons are easily upset with the normal demands 

of living; sensitive and emotional. 

Table 2. Big Five personality traits model. 
Source: Own elaboration based on (Johnson, 2016). 

 

3. RELATED WORK 

 

The objective of traditional/empirical social science has been make inferences about a 

population from available sources of data (Foster et al., 2017). Today, Computational 

Social Science can achieve this goal but with more precise sources, tools and technics 

such as scraping, machine learning, relational database management systems, etc. 

 

Michal Kosinski, David Stillwell, and Thore Graepel carried out one of the firsts and most 

important studies about predicting personal traits and attributes from digital records 

(Michal Kosinski et al., 2013). They show that a wide variety of people’s personal 

attributes can be inferred using their Facebook Likes. Users and their Likes were 

represented as a sparse user–Like matrix and its dimensionality was reduced using 

singular value decomposition. Numeric variables (age, intelligence) were predicted using 

a linear regression model; and dichotomous variables (gender, sexual orientation) were 

predicted using a logistic regression. 

 

Through a machine learning process, they could determine men’s sexual orientation with 

an accuracy of 88%, ethnicity 95%, religion 82% and political views 85%. They also 

predicted numeric attributes and individualities like personality traits, intelligence, 

happiness, use of addictive substances, etc. For that, these researchers used a significant 

sample of volunteers from the myPersonality project, which was a Facebook application 

that allowed users to take real psychometric tests, and record their psychological and 

Facebook profiles. Similar studies have been done with other social networks like Twitter 

(Preot et al., 2017) or Youtube (Biel & Gatica-perez, 2013). 
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According to (Michal Kosinski, 2017b) we are leaving thousands of Digital Footprints4 

behind while using Internet and other digital services and products, like a smartphone, 

which is constantly recording our location, conversations, pictures, emails and, now, even 

our heart beat. We are generating an incredible amount of information through digital 

devices, sometimes, even without knowing it. Our credit card number and name, for 

instance, are associated with our consuming preferences, so the credit card companies 

and the groceries stores are exchanging this information with the objective of 

understanding us, the clients. 

 

Psychologists have determine our behavior is not random (Kennedy, 2012). We do not 

buy a pair of jeans, or watch certain shows, or listen to music randomly. When we buy 

something, normally, we are revealing we belong to a determinate group an advertiser 

fixed. Or when we watch a show is maybe because a friend of us recommended to do so; 

and again, that is not random, because we make friends with people with whom we share 

interests, education, political views, etc. Now, if everything we do is not random, there is 

a connection among every aspect of our behavior. This connection is to slight for human 

beings to perceive that an algorithm is needed. The algorithm can look at millions of 

people and find little correlations, to combine these thousands of pieces of information to 

give an accurate profile (Michal Kosinski, 2017a). 

 

This revolution of knowing the individual in an unprecedent way, has lead in recent years 

to the development of a diversity of companies selling algorithms information, among 

witch personality traits are pursued. Some of the webpages that offer this service include: 

Personality Insights or Tone Analyzer powered by IBM Watson. And also academically, 

there has been a boom of publications describing techniques to build predictive models 

that can infer the scores users would receive on the Big Five Personality Traits, using 

their social networks data; for example (Michal Kosinski, 2013), (Farnadi et al., 2016) or 

(Whitty et al., 2014). The basic idea is to use the dimensions or clusters extracted to build 

predictive models in a cross-validated way, using R code and a data set from 

myPersonality project. This database currently has more than six million test results, 

together with more than four million individual Facebook profiles; and a wide variety of 

data. 

 

Big Data from Social Networks offers the opportunity to study everyday behavior at a 

scale never before possible (Kulkarni et al., 2017). This technology is being used in 

several fields; Human Resources Departments, for example, have used psychological test 

for decades to hire the correct person, but now they are able to identify employees’ talent 

to develop and engage their potential to increase organizational effectiveness (Chamorro-

Premuzic et al., n.d.). Or in Health industry, also, where Facebook information can be 

used to construct a reasonable index of population-scale schizophrenia consciousness 

(Saha et al., 2017), or monitoring Twitter to find at-risk for depression users (Jamil, 2017). 

 

Having this knowledge of the people, could be also useful for further applications in the 

insurance industry like developing specific products, services or marketing strategies; for 

example, insurance advertisements might emphasize security when facing a neurotic user; 

but if he/she is emotionally stable, then potential threats should be emphasized (Lambiotte 

& Kosinski, 2014). 

 

                                                             
4 For one individual, it is a unique and traceable set of digital activities, actions and communications on the Internet or on a computer 
or other digital device. An example of Digital Footprint can be our online browsing habits.  
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4. DATA ANALYSIS 

 

4.1. Insurance and Facebook databases 

 

 As social networks information is private (in a certain way); first it is very important 

to ask the policyholders consent to use their information and data. Then a database with 

the scores of the Big Five Personality Traits from the policyholders, needs to be created; 

for example, using the techniques described in (Michal Kosinski, 2013). 

 

The development of an algorithm to extract/predict personality traits would not be part of 

this study, because there is a vast offer of this services, as seem before. To be able to 

proof the hypothesis, it would be needed a traditional claims database, which should 

include the number of claims, from an insurance company; along with a database 

containing social networks information, from the same policyholders included in the first 

database. As it is not available, I will use two databases and combine them to create a 

database like the one is needed to obtain empirical evidence. These databases are 

described, respectively, in Table 3 and 4.   

 

First database (A) (claims): policyholder claims information 

 

Variable Detail Type 

client_id policyholder identity number Numeric 

nclaims_md number of claims for material damage Numeric 

nclaims_bi number of claims for body injuries Numeric 

nclaims_auto total number of claims Numeric 

exposi_auto time of the policyholder in the company Numeric 

client_sex policyholder gender as categorical variable Text 

client_gender 
policyholder gender as numerical variable: 0 for male, 1 for 

female 
Numeric 

client_age policyholder age Numeric 

client_age2 policyholder age squared Numeric 

client_genage product: gender * age Numeric 

zone1 Barcelona and Madrid  Numeric 

zone2 north zone of Spain Numeric 

Table 3. Claims dataset of 162.019 policyholders. 

Source: Private insurance company. 

Second database (B) (users): psychodemographic profiles of 110.728 Facebook users 

and their Facebook Likes. 

 

Variable Detail Type 

userid anonimized user ID Alphanumeric 

gender user gender as numerical variable: 0 for male, 1 for female Numeric 

age2 user age squared Numeric 

genage product: gender * age Numeric 

age user age Numeric 
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ope scores measuring openness Numeric 

con scores measuring conscientiousness Numeric 

ext scores measuring extroversion Numeric 

agr scores measuring agreeableness  Numeric 

neu scores measuring neuroticism Numeric 

Table 4. Psychodemographic profiles of 110.728 Facebook users and their Facebook Likes. 
Source: myPersonality project (M. Kosinski et al., 2015). 

In both databases the variables age squared and gender*age were generated. The reason 

to incorporate the age squared is to generate a quadratic curve. Thereby, a (+) effect of 

variable age and a (–) effect of the variable age squared, means that as the individual gets 

older, the effect of age is modest. On the other hand, (+) effect of the variable age and a 

(+) effect of the variable age squared means that as the individual gets older the effect of 

age is stronger. And, when introducing the variable gender*age, the pursued objective 

was to capture the effect of being female, rather than male. 

 

4.2. Modelling claims frequency with nontraditional variables 

 

To model the claims frequency it was used the R software and its Integrated Development 

Environment, R-Studio; following the procedures and techniques explained by 

Charpentier (2015). As a previous step for modelling, preparing the datasets cleaning 

missing values, eliminating wrong ages or correcting misspellings, was first done. 

Besides, as far as I am concern, this is the first academic trial to model claims frequency 

with personality traits as explanatory variable; thus, there is no a unique dataset 

containing traditional variables and these other nontraditional variables, as explained in 

the last section. (Charpentier, 2015) 

 

Therefore, a two steps idea has been developed to make it possible to have an insurance 

company database along with personality traits for each policyholder, to be able to proof 

any relation among claims frequency and personality traits. The fists step consists in 

explaining each empirical personality trait (e.g.openness), in the database B, as a 

function of the traditional variables age, gender, age squared and gender*age, to obtain 

these variables coefficients. The second step implies the estimation of all the personality 

traits (e.g. openness̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) with the same variables, age, gender, age squared and gender*age, 

but from the database A. Thereby it would be possible to use personality traits, even 

though they are not empirical, but estimated. Ahead the details. 

 

To explain the personality traits of the database B as a function of the variables age, 

gender, age squared and gender*age, a LRM was used, as a mean to associate these 

variables. The formulas in R are: 

 
users$ope ~ users$gender + users$age + users$age2 + users$genage 
users$con ~ users$gender + users$age + users$age2 + users$genage 
users$ext ~ users$gender + users$age + users$age2 + users$genage 
users$agr ~ users$gender + users$age + users$age2 + users$genage 
users$neu ~ users$gender + users$age + users$age2 + users$genage 

 

This procedure allowed to obtain the coefficients of the traditional variables, explaining 

each personality trait. Most of the coefficients were significant at levels of 1%, 5% and 

10%, although the adjusted R-squared was low in all the cases. Regression’s results are 

summarized in Table 5.  
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 coef_ope  coef_con  coef_ext  coef_agr  coef_neu 

intercept -0,897631 -1,688531 0,006890 -0,086594 -0,014723 

users$gender 0,374897 -0,010762 -0,064126 -0,187603 0,693029 

users$age 0,047236 0,081632 -0,002615 -0,003354 -0,010451 

users$age2 -0,000505 -0,000818 0,000033 0,000098 0,000101 

users$genage -0,012398 0,002208 0,003781 0,011784 -0,008900 

Table 5. Traditional variables coefficients for personality traits. 
Source: own elaboration. 

 

Once the coefficients are obtained, the following step consists in estimating personality 

traits for the insurance company database (claims), using its analog traditional variables 

age, gender, age squared and gender*age. Personality traits for every policyholder were 

estimated as a matrix product of the variables and the previously calculated coefficients. 

For example, to Neuroticism it is obtained: 

 
x_neu   <- cbind(claims$client_gender, claims$client_age, 

           claims$client_age2, claims$client_genage) 
x_neu   <- as.matrix(x_neu) 
n       <- nrow(x_neu) 
ones    <- matrix(1,n,1) 
x_neu   <- cbind(ones,x_neu) 
hat_neu <- matrix(0,n,1) 
for(i in 1:n){ 
  hat_neu[i]<-(x_neu[i,]%*%coef_neu) 
} 

 

To make easier to compare scores of the estimated personality traits, it was decided to 

work with standardized values. 

 
hat_opes <- (hat_ope - mean(hat_ope)) / sd(hat_ope) 
hat_cons <- (hat_con - mean(hat_con)) / sd(hat_con) 
hat_exts <- (hat_ext - mean(hat_ext)) / sd(hat_ext) 
hat_agrs <- (hat_agr - mean(hat_agr)) / sd(hat_agr) 
hat_neus <- (hat_neu - mean(hat_neu)) / sd(hat_neu) 

 

In Figure 1 it is described the distribution of these variables. 
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Figure 1. Standardized estimated personality traits. 
Source: Own elaboration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, the insurance company database B (claims), includes the claims frequency and the 

estimated personality traits for each policyholder; making it possible to study their 

relationship. To understand this relation of the number of claims as a dependent variable 

of the personality traits, it had been used GLM models for claims count: Poisson, 

Negative Binomial, Zero Inflated Poisson and Zero Inflated Negative Binomial. 

 

But when doing the modeling, it was evident that existed multicollinearity among the 

estimated personality traits, it is a strong correlation between the explanatory variables of 

the model. So, it was decided to carry out a Principal Components Analysis (PCA), to 
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Figure 2. Principal Components values. 
Source: Own elaboration. 

work with synthetic variables that represent the estimated personality traits and reduce 

the dimensions of these dataset.  

 

The PCA shows an evident concentration of the variance in the three first principal 

components, as it can be seen in Figure 2, together they represented the 99,71% of the 

information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To assig which principal component goes with each estimated personality trait, a Varimax 

Orthogonal Rotation of the Principal Components is applied, to simplify the structure of 

the columns of the eigenvectors matrix; it means that it increases the higher values and 

diminishes the lower ones. The loadings5 obtained to select the principal component that 

represents the estimated personality traits, is presented in Figure 3: 

 

 
Columns represent the principal components and rows represent the estimated  
personality traits in the following order: 1. Openness, 2. Conscientiousness,  

3. Extroversion, 4. Agreeableness and 5. Neuroticism. 

Figure 3. Loadings of the PCA and the Varimax Orthogonal Rotation. 
Source: Own elaboration. 

 

The relationship between the main components and the estimated personality traits is 

described in Table 6. 

 

Principal Component Describes 

Component 1 (CPr 1) 

- negatively openness (-0.861) 

- positively extraversion (0.939) 

- positively agreeableness (0.972) 

Component 2 (CPr 2) - negatively consciousness (-0.995) 

Component 3 (CPr 3) - positively neuroticism (0.963) 

Table 6. Relationship between Principal Components and Estimates Personality Traits. 
Source: Own elaboration. 

                                                             
5 Loadings are the covariances/correlations between the original variables and the unit-scaled components in PCA or factor analysis. 
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Resuming the modeling, the explanatory variables will be the three Principal Components 

(representing the estimated personality traits), zone 1 and zone 2 and the response variable 

will be the number of claims. 

 

Thereby, the models used to calculate the claims frequency with estimated personality 

traits as explanatory variables are Poisson, Negative Binomial, Zero Inflated Poisson and 

Zero Inflated Negative Binomial. Their respectively R formula is detailed above and the 

estimated coefficients (outputs) of the first three models can be seen in the appendix A1, 

A2 and A3; Zero Inflated Negative Binomial is explained in the next section. The 

complete R code formulation can be found in appendix A5.  

 

Poisson 

 
glm(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]   
                          + claims$zone1 + claims$zone2  
                          + offset(log(claims$exposi_auto)),  
                            family=poisson) 
 

 

Negative Binomial 

 
glm.nb(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]  
                             + claims$zone1 + claims$zone2  
                             + offset(log(claims$exposi_auto))) 

 

Zero Poisson Inflated 

 
zeroinfl(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]  

                             + claims$zone1 + claims$zone2  
                             + offset(log(claims$exposi_auto))                 
                              |CPr[,1] +  CPr[,2] +  CPr[,3]  
                             + claims$zone1 + claims$zone2,  
                               dist="poisson") 

 

Zero Negative Binomial Inflated 

 
zeroinfl(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]  

                             + claims$zone1 + claims$zone2  
                             + offset(log(claims$exposi_auto))  
                              |CPr[,1] +  CPr[,2] +  CPr[,3]  
                             + claims$zone1 + claims$zone2,  
                               dist="negbin") 

 

5. RESULTS 

 

To choose one of the previous models, the Akaike Information Criteria and the Bayesian 

Information Criteria were considered, and they are shown in Table 7. As the Zero Inflated 

Negative Binomial has the lowest AIC and BIC, it is chosen as the best model to explain 

claims frequency with estimated personality traits as explanatory variables.  

 

 Poisson 
Negative 

Binomial 

Zero Inflated 

Poisson 

Zero Inflated 

Negative Binomial  

AIC 208.069 183.071 189.687 183.019 

BIC 208.129 183.141 189.806 183.138 
Table 7. AIC and BIC comparative models’ results. 

Source: Own elaboration. 
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Figure 4 shows the estimated coefficients for the Principal Components with the Zero 

Inflated Negative Binomial model. First, we analyze the count model coefficients. In it 

we can see that the parameter associated with variable CPr1 is negative (-0,06555) and 

significantly different from zero (small p-value). This results means that the bigger CPr1 

is, smaller OPE would be and, considering that parameter is negative, the lesser expected 

number of claims. The opposite for EXT and AGR. The bigger CPr1 is, higher EXT and 

AGR are, and the expected number of claims decreases. 

 

 
Figure 4. Zero Inflated Negative Binomial coefficients and p-value. 

Source: Own elaboration. 

 

When analyzing CPr2, we observe it is also negative and significant (-0,045249). This 

means that when CRr2 increases, the variable CON is smaller and the expected number 

of claims is also lesser. On the other hand, CPr3, is negative but not significantly different 

from zero. The associate estimated personality trait to this variable is NEU. So, according 

to this model, NEU has no influence over the claims frequency.  

 

The variable zone1 has an associated parameter significantly different from zero and 

positive sign (0,074858); and, variable zone2 also has a significant coefficient, but with 

negative sign (-0,061578). This means that the expected number of claims increases for 

people driving in zone1; and, decreases for drivers in zone2.  

 

Then, analyzing the Logit model, we observe that all the coefficients of the variables are 

significant. For every increase of CPr1, which is positive, grows the probability of 

declaring zero claims; but the effect on the variable is different: OPE is smaller while 

EXT and AGR are bigger. CPr2 is also positive, when it increases CON turns smaller and 

grows the probability of not declaring any claim. A positive CPr3 parameter, increases 

NEU when it is bigger, and with it, also increases the zero claims probability.  

 

As for the variables zone1 and zone2, they have an opposite effect. Those driving in zone1 

are not likely to report zero claims, while those who drive in zone2 are less likely to report 

claims zero claims. 
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In general terms, it could be inferred from the Zero Inflated Negative Binomial model, 

that: 

OPE – people open to new experiences and curious have a higher expected number 

of claims and are more likely to declare claims. 

EXT and AGR – introverted, reserved, quiet persons (EXT) and people less concern 

with others' needs, tough, critical, and uncompromising (AGR) have a bigger 

expected number of claims and are more likely to declare zero claims. 

CON – hard workers, responsible and self-discipline people have a greater expected 

number of claims and are more likely to declare claims. One of the characteristics of 

people with high scores in CON are cautiousness, so it may not be complete coherent 

with the results. 

NEU – emotional stability does not have influence over the claims frequency, because 

its parameter is not significant. But according to the logit model, people who easily 

get upset have more probabilities of declaring zero claims; which does not seem to be 

logical. 

Zone1 and Zone2 – the expected number of claims for policyholders in Madrid and 

Barcelona is bigger than for those who drive in the north zone of Spain. However, 

people in zone1 are more likely not to file a claim, contrary to what a person in the 

zone2 would do.  

 

5.1. Markets’ view 

 

Aside from the results obtained, it is quite logical to think that if the methodology of using 

personality traits to estimate claims probabilities is not accepted by the insured, it will 

have no place in the market. Based on this reasoning, I decided to make a survey, that can 

found in appendix A4, to know the interest that could be in the market to use this technic.   

 

Using a Google Forms, I reached a small sample of 170 volunteers, basically from 

Ecuador, Spain and United States; to whom I asked 5 questions: 

 

1. Gender. 

2. Age. 

3. What insurance contract(s) do you have?  

o None 

o Car insurance  

o Motorbike insurance 

o Home insurance 

o Tech/gadgets insurance 

o Other (non-life) insurance 

4. How many accidents have you declared in the last year (in total according 

to the previous insurance list)? 

5. Would you be willing to provide an insurer with a text of 300 to 500 words 

written by you in a natural way (an email, for example); or, alternatively, 

to allow the insurer to access to the information from your social networks, 

in a legal framework, in addition to the information traditionally provided, 

to estimate more accurately the price of its insurance premium? 
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The answers are very consistent despite of the gender, age or the number of claims. First 

to mention is that almost 60% of the answers belong to females and 40% to males. Age 

range goes from 17 to 69 years old with a clear concentration on people between 17 to 

35; basically millennials. Almost 80% of the sample has not report a claim in the past 

year and 15% has declared only 1 claims; Figure 5 summarizes this claims frequency. 

 

 
Figure 5. Histogram of declared claims in the survey. 

Source: Own elaboration. 

When answering the main question of the survey “Would you be willing to provide an 

insurer with a text of 300 to 500 words written by you in a natural way (an email, for 

example); or, alternatively, to allow the insurer to access to the information from your 

social networks, in a legal framework, in addition to the information traditionally 

provided, to estimate more accurately the price of its insurance premium?”; there was a 

consistent response around 65% who said NO and 35% who said YES. 

 

By categories, I received the following answers: 

 

- General answer. Figure 6 shows that in general terms, 34% of the sample would 

be willing to provide access to an insurance company to their social networks. 
 

 
 

 
 
Figure 6. General response from the market survey. 
Source: Own elaboration. 

 

- Millenials. We observe in Figure 7 that 63% of people from the sample, born 

between 1981 and 1995, approximately; who are described as technology and 

telecommunications lovers, won’t accept to provide access to their social 

networks to obtain a more accurate premium.  
 
 
 
 
 
 
Figure 7. Millenials response from the market survey. 
Source: Own elaboration. 
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- People older than 60 years. We can see on Figure 8, that 40% of the old people 

from the sample will accept providing a personal text to an insurer, in order to pay 

a more precise premium. 

 
 

 
 
 
 
Figure 8. People older than 60 years response from the market survey. 
Source: Own elaboration. 

 

- No claims. Figure 9 summarizes the answers of people who have not had any 

claim; and 67% of them does not agree on sharing personal information to an 

insurance company. 

 

 

 
 

Figure 9. No claims response from the market survey. 
Source: Own elaboration. 

 

- One claim. On the other hand, Figure 10 shows people with one declared claim in 

the past year; and 35% of this collective believes in providing access to personal 

information to receive a benefit/punishment on the premium they pay. 

 

 
 

 
 
 
Figure 10. One claim response from the market survey. 
Source: Own elaboration. 

 

- Two or more claims. Figure 11 shows, maybe, the most interesting fact: 50% of 

the people who have two or more claims, will accept to provide access to their 

social networks to receive an accurate premium. 

 
 

 
 
 
 
Figure 11. Two or more claims response from the market survey. 
Source: Own elaboration. 

 

As it is a small sample, I could not disaggregate more the answers, because more specific 

cases are represented only by a few individuals. Even though, some information can be 

inferred. Two thirds of the surveyed would not be willing to provide their Social Networks 

information to have a more accurate premium. I cannot tell the exact reasons, but I guess 

is basically for privacy issues. 
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6. CONCLUSIONS 

 

 The idea proposed in this thesis is based on recent researches that have proven that it 

is possible to categorize people’s personality into five general factors, from data collected 

on social networks. The intention is to show one of the applications that Big Data of social 

networks could have in the insurance industry, specifically in relation to the modeling of 

the number of claims.  

 

It is possible to offer to the policyholder a premium adjusted to a more real risk profile; 

based on their presence on the social networks, in addition to the information traditionally 

considered. The practical result of this hypothesis could lead to a fair trait for the 

customers and to an increase of the revenue of the companies. Incorporating the variable 

personality, could benefit both, policyholders and the insurance company. Clients could 

pay the premium that matches their real risk, instead of paying an extra premium for their 

age, type of car or even color of vehicle.  

 

Reviewing the best model estimates, Zero Inflated Negative Binomial, we can conclude, 

for the count model, that people scoring high in OPE, it is curious, creative and open to 

new experiences, have a higher expected number of claims is more, than for those who 

are practical and conservative. Individual with positives scores in AGR and EXT, that 

includes empathetic subjects and people seeking adventure, will have a greater expected 

number of claims. We can also conclude that high scores for CON are prone to a higher 

expected number of claims; this includes people discipline and hardworking people.  

 

Evidently, a deeper study is needed, because we cannot anticipate a reaction on the 

number of claims when the explanatory variable is a personality trait. These 

nontraditional variables need to be highly understood in their context and relation among 

them. I must mention that the resources, specially information, were limited, so it is not 

possible to accept or deny any hypothesis. An idea has been launched and further studies 

are needed in other to identify if there is a real correlation among certain personality traits 

and claims frequency. 

 

Finally, I center my attention on the portion of the sample who would provide their 

information. Today people has control over the market prices and insurance companies 

struggle with fidelity problems (retention ratio), because policyholders go to the cheapest 

offer (considering that the product is almost the same). A personalized premium can be 

used as a marketing strategy for new business. I believe that when people realize that they 

are paying for the risk they represent, they will stop floating from one company to another, 

and maybe, they will stay with that one company who let them know their real risk profile. 

35% of the surveyed are a lot of potential policyholders expecting to pay, more or less, 

but for a more accurate premium. 
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8. APPENDIX  

 

A1. Poisson Model R output. 

 

 
Figure 12. Poisson coefficients and p-value. 

Source: Own elaboration. 

 

A2. Negative Binomial Model R output. 

 

 
Figure 13. Negative Binomial coefficients and p-value. 

Source: Own elaboration. 

 

A3. Zero Inflated Poisson Model R output. 

 

 
Figure 14. Zero Inflated Poisson coefficients and p-value. 

Source: Own elaboration. 
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A4. Survey   

 

N 1. Gender 
2. How old 

are you?  
3. What insurance contract(s) do you have? 

4. How many 

accidents have 

you declared in 

the last year (in 

total according to 

the previous 

insurance list)?  

5. Would you be willing to provide an insurer 

with a text of 300 to 500 words written by you 

in a natural way (an email, for example); or, 

alternatively, to allow the insurer to access to 

the information from your social networks, in a 

legal framework, in addition to the information 

traditionally provided, to estimate more 

accurately the price of its insurance premium?  

1 Male 30 None 0 Yes 

2 Female 26 None 0 No 

3 Male 31 Car insurance 0 No 

4 Female 56 Car insurance 0 Yes 

5 Female 23 None 0 No 

6 Male 26 Car insurance 0 No 

7 Male 28 None 0 Yes 

8 Female 26 Car insurance 0 No 

9 Female 57 None 0 No 

10 Male 28 
Car insurance, Home insurance, Tech gadgets (cell phone, 

laptop, etc.) insurance 
0 No 

11 Male 56 Car insurance, Home insurance 0 No 

12 Male 27 Car insurance 0 No 

13 Female 54 Car insurance 0 No 

14 Male 28 Motorbike insurance 0 Yes 

15 Male 62 None 0 No 

16 Male 19 Car insurance, Home insurance 0 No 

17 Female 27 None 0 Yes 

18 Male 57 Car insurance 0 No 

19 Female 34 Car insurance 0 No 

20 Male 34 Car insurance, Home insurance 0 Yes 

21 Male 63 None 0 No 

22 Male 42 Car insurance 0 Yes 

23 Male 54 None 0 No 

24 Female 32 None 0 No 
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25 Female 39 Car insurance, Home insurance 0 Yes 

26 Male 61 None 0 No 

27 Female 69 
Car insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
0 No 

28 Male 43 None 0 Yes 

29 Female 56 Car insurance 0 No 

30 Male 50 Car insurance, Home insurance 0 Yes 

31 Female 58 Car insurance 0 Yes 

32 Female 46 None 0 Yes 

33 Male 46 None 0 Yes 

34 Female 38 Others (only insurance contracts for things not for people) 0 No 

35 Male 45 Car insurance 0 Yes 

36 Female 44 None 0 No 

37 Male 53 
Car insurance, Home insurance , Tech gadgets (cell phone, 

laptop, etc.) insurance, Others 
0 No 

38 Female 57 None 0 Yes 

39 Female 57 None 0 Yes 

40 Male 45 Home insurance 0 No 

41 Female 27 Others (only insurance contracts for things not for people) 0 No 

42 Male 54 Car insurance 0 No 

43 Female 27 Car insurance 0 No 

44 Male 32 Car insurance 0 No 

45 Male 50 Car insurance, Home insurance 0 No 

46 Male 64 Car insurance, Home insurance, Others 0 Yes 

47 Female 49 
Car insurance, Home insurance, Tech gadgets (cell phone, 

laptop, etc.) insurance 
0 No 

48 Female 27 None 0 No 

49 Female 49 Car insurance 0 Yes 

50 Female 21 Tech gadgets (cell phone, laptop, etc.) insurance 0 No 

51 Female 25 Car insurance 0 No 

52 Female 28 None 0 No 

53 Female 26 Car insurance 0 No 

54 Female 34 None 0 No 

55 Female 34 None 0 No 
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56 Male 47 Car insurance, Home insurance 0 No 

57 Female 59 Car insurance 0 No 

58 Female 57 None 0 No 

59 Female 27 None 0 No 

60 Female 59 Car insurance 0 No 

61 Male 23 None 0 No 

62 Female 27 None 0 Yes 

63 Female 26 Home insurance 0 Yes 

64 Female 22 None 0 No 

65 Female 23 None 0 No 

66 Female 22 None 0 No 

67 Male 27 None 0 No 

68 Female 22 None 0 No 

69 Female 23 None 0 No 

70 Male 21 None 0 No 

71 Female 24 None 0 Yes 

72 Female 22 Home insurance 0 No 

73 Female 54 None 0 Yes 

74 Female 22 None 0 No 

75 Male 25 None 0 No 

76 Female 22 None 0 Yes 

77 Female 59 Car insurance 0 No 

78 Female 24 None 0 Yes 

79 Female 59 Car insurance 0 No 

80 Female 59 Car insurance 0 No 

81 Female 20 None 0 Yes 

82 Male 22 None 0 Yes 

83 Female 59 Car insurance 0 No 

84 Female 26 Car insurance, Home insurance 0 No 

85 Female 59 Car insurance 0 No 

86 Female 29 Car insurance, Home insurance 0 No 

87 Male 40 
Home insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
0 No 

88 Female 19 Tech gadgets (cell phone, laptop, etc.) insurance 0 No 
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89 Female 55 Car insurance, Home insurance 0 No 

90 Female 20 
Car insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
0 No 

91 Female 20 
Car insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
0 No 

92 Male 20 None 0 No 

93 Male 49 Car insurance, Home insurance 0 No 

94 Female 59 None 0 No 

95 Male 24 None 0 No 

96 Female 55 
Car insurance, Motorbike insurance, Home insurance, 

Tech gadgets (cell phone, laptop, etc.) insurance, Others 
(only insurance contracts for things not for people) 

0 No 

97 Female 41 None 0 No 

98 Female 35 None 0 No 

99 Female 54 None 0 No 

100 Female 30 None 0 No 

101 Male 57 Car insurance 0 No 

102 Female 21 None 0 Yes 

103 Male 22 None 0 Yes 

104 Female 23 None 0 Yes 

105 Male 38 Car insurance, Home insurance 0 No 

106 Female 28 None 0 Yes 

107 Male 42 None 0 No 

108 Male 22 Car insurance 0 Yes 

109 Female 26 None 0 No 

110 Female 57 None 0 No 

111 Female 28 None 0 No 

112 Female 34 None 0 No 

113 Male 28 Others (only insurance contracts for things not for people) 0 No 

114 Female 49 None 0 No 

115 Male 50 Car insurance, Home insurance 0 Yes 

116 Male 29 None 0 No 

117 Female 51 Car insurance, Home insurance 0 No 

118 Male 18 None 0 No 

119 Female 63 None 0 Yes 
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120 Female 21 None 0 Yes 

121 Female 62 None 0 No 

122 Male 22 None 0 Yes 

123 Male 31 Car insurance 0 No 

124 Male 27 Car insurance, Home insurance 0 No 

125 Female 22 Others (only insurance contracts for things not for people) 0 No 

126 Male 30 None 0 No 

127 Male 19 Car insurance 0 Yes 

128 Female 55 Car insurance 0 Yes 

129 Female 32 None 0 Yes 

130 Female 17 None 0 Yes 

131 Female 29 None 0 Yes 

132 Female 47 None 0 Yes 

133 Male 44 Car insurance, Home insurance 0 Yes 

134 Male 27 None 0 Yes 

135 Female 27 Tech gadgets (cell phone, laptop, etc.) insurance 0 Yes 

136 Male 23 Car insurance 0 Yes 

137 Male 67 
Car insurance, Others (only insurance contracts for things 

not for people) 
1 Yes 

138 Male 65 
Car insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
1 Yes 

139 Male 53 
Car insurance, Home insurance , Tech gadgets (cell phone, 

laptop, etc.) insurance, Others 
1 Yes 

140 Male 53 
Car insurance, Home insurance , Tech gadgets (cell phone, 

laptop, etc.) insurance, Others 
1 Yes 

141 Female 30 Car insurance 1 Yes 

142 Female 22 
Car insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
1 Yes 

143 Male 41 
Car insurance, Home insurance, Tech gadgets (cell phone, 

laptop, etc.) insurance 
1 Yes 

144 Female 31 Car insurance 1 No 

145 Female 55 Car insurance 1 No 

146 Female 33 None 1 Yes 

147 Male 23 Car insurance, Home insurance 1 No 

148 Female 42 Tech gadgets (cell phone, laptop, etc.) insurance 1 No 
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149 Male 29 Car insurance 1 No 

150 Male 45 
Car insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
1 No 

151 Female 32 Home insurance 1 No 

152 Female 39 Car insurance, Home insurance 1 No 

153 Male 52 Car insurance, Home insurance, Others 1 No 

154 Female 55 None 1 No 

155 Female 26 Motorbike insurance 1 No 

156 Female 23 Motorbike insurance 1 No 

157 Female 23 Car insurance 1 No 

158 Female 43 Car insurance 1 No 

159 Male 35 Car insurance, Home insurance 1 No 

160 Male 61 Car insurance, Home insurance 1 No 

161 Male 37 Car insurance 1 No 

162 Male 23 
Motorbike insurance, Tech gadgets (cell phone, laptop, 

etc.) insurance 
1 Yes 

163 Female 23 Others (only insurance contracts for things not for people) 2 Yes 

164 Female 21 Tech gadgets (cell phone, laptop, etc.) insurance 2 Yes 

165 Female 21 Tech gadgets (cell phone, laptop, etc.) insurance 2 Yes 

166 Female 22 Tech gadgets (cell phone, laptop, etc.) insurance 2 No 

167 Male 23 None 2 No 

168 Male 25 Car insurance 2 No 

169 Male 23 
Car insurance, Tech gadgets (cell phone, laptop, etc.) 

insurance 
3 No 

170 Male 29 None 4 Yes 
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A5. R Code 

 
############################ 

#      MASTER THESIS       # 

#   Andrés Durán Proaño    # 

#       June / 2017        # 

#   Universy of Barcelona  # 

############################ 

 
setwd("C:/Users/Andres/Desktop/UB/IV. Feb.Jul2017/TFM/Soporte investigativo") 

 

######  Read-in files:  

# I. #  - mypersonality database  

######  - claims database 

 

# users DB 

users <- read.csv("users.csv") 

users[,10] <- users$age^2 

colnames(users)[10] <- "age2" 
users[,11] <- users$gender*users$age 

colnames(users)[11] <- "genage" 

 

summary(users$ope) 

summary(users$con) 

summary(users$ext) 

summary(users$agr) 

summary(users$neu) 

summary(users$age) 

summary(users$age) 
hist(users$ope) 

hist(users$con) 

hist(users$ext) 

hist(users$agr) 

hist(users$neu) 

hist(users$age) 

hist(users$age2,100) 

 

# claims DB 

claims <- read.table("claims_dat.csv", header = TRUE, sep = ";", dec = ",", 
row.names =   NULL) 

claims <- claims[(claims$client_age > 17 & claims$client_age <= 90),] 

nrow(claims) 

claims <- na.omit(claims) 

nrow(claims) 

 

claims[,22] <- claims$client_gender*claims$client_age 

colnames(claims)[22] <- "client_genage" 

 

#######   1. Estimate for each personality trait its coefficients in function of the age  
# II. #      and sex, through a Linear Regression Model. 

#######   2. Infer each personality trait for clients in claims_data database. 

 

# 1. Openness - Multiple 

reg_ope <-lm(users$ope~users$gender+users$age+users$age2+users$genage) 

coef_ope <-as.matrix(coef(reg_ope)) 

summary(reg_ope) 

 

x_ope <- cbind(claims$client_gender,claims$client_age,claims$client_age2, 

claims$client_genage) 
x_ope <-as.matrix(x_ope) 

n <-nrow(x_ope) 

ones <-matrix(1,n,1) 

x_ope <-cbind(ones,x_ope) 

 

hat_ope <- matrix(0,n,1) 

for(i in 1:n){ 

  hat_ope[i] <- (x_ope[i, ]%*%coef_ope) 

}                                                  
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summary(hat_ope) 

hist(hat_ope) 

 

hat_opes <- (hat_ope - mean(hat_ope))/sd(hat_ope) 

summary(hat_opes) 

hist(hat_opes) 

 
# 2. Conscientiousness - Multiple 

reg_con<-lm(users$con~users$gender+users$age+users$age2+users$genage) 

coef_con<-as.matrix(coef(reg_con)) 

summary(reg_con) 

 

x_con <- cbind(claims$client_gender,claims$client_age,claims$client_age2, 

claims$client_genage) 

x_con<-as.matrix(x_con) 

n<-nrow(x_con) 

ones<-matrix(1,n,1) 
x_con<-cbind(ones,x_con) 

 

hat_con<-matrix(0,n,1) 

for(i in 1:n){ 

  hat_con[i]<-(x_con[i,]%*%coef_con) 

}                                                  

summary(hat_con) 

hist(hat_con,100) 

 

hat_cons<- (hat_con-mean(hat_con))/sd(hat_con) 
summary(hat_cons) 

hist(hat_cons) 

 

# 3. Extroversion - Multiple 

reg_ext<-lm(users$ext~users$gender+users$age+users$age2+users$genage) 

coef_ext<-as.matrix(coef(reg_ext)) 

summary(reg_ext) 

 

x_ext <- cbind(claims$client_gender,claims$client_age,claims$client_age2, 

claims$client_genage) 
x_ext<-as.matrix(x_ext) 

n<-nrow(x_ext) 

ones<-matrix(1,n,1) 

x_ext<-cbind(ones,x_ext) 

 

hat_ext<-matrix(0,n,1) 

for(i in 1:n){ 

  hat_ext[i]<-(x_ext[i,]%*%coef_ext) 

}                                                  

summary(hat_ext) 
hist(hat_ext,100) 

 

hat_exts<- (hat_ext-mean(hat_ext))/sd(hat_ext) 

summary(hat_exts) 

hist(hat_exts) 

 

# 4. Agreeableness - Multiple 

reg_agr <-lm(users$agr~users$gender+users$age+users$age2+users$genage) 

coef_agr <-as.matrix(coef(reg_agr)) 

summary(reg_agr) 
 

x_agr <- cbind(claims$client_gender,claims$client_age,claims$client_age2, 

claims$client_genage) 

x_agr <-as.matrix(x_agr) 

n<-nrow(x_agr) 

ones <-matrix(1,n,1) 

x_agr <-cbind(ones,x_agr) 

 

hat_agr<-matrix(0,n,1) 

for(i in 1:n){ 
  hat_agr[i] <-(x_agr[i,]%*%coef_agr) 

}                                                  
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summary(hat_agr) 

hist(hat_agr,100) 

 

hat_agrs <- (hat_agr - mean(hat_agr))/sd(hat_agr) 

summary(hat_agrs) 

hist(hat_agrs) 

 
# 5. Neurosis - Multiple 

reg_neu <-lm(users$neu~users$gender+users$age+users$age2+users$genage) 

coef_neu <-as.matrix(coef(reg_neu)) 

summary(reg_neu) 

 

x_neu <- cbind(claims$client_gender,claims$client_age,claims$client_age2, 

claims$client_genage) 

x_neu <-as.matrix(x_neu) 

n <-nrow(x_neu) 

ones <-matrix(1,n,1) 
x_neu<-cbind(ones,x_neu) 

 

hat_neu<-matrix(0,n,1) 

for(i in 1:n){ 

  hat_neu[i]<-(x_neu[i,]%*%coef_neu) 

}                                                  

summary(hat_neu) 

hist(hat_neu,100) 

 

hat_neus<- (hat_neu-mean(hat_neu))/sd(hat_neu) 
summary(hat_neus) 

hist(hat_neus) 

 

# Coefficients summary 

betas_m <- cbind(coef_ope, coef_con, coef_ext, coef_agr, coef_neu) 

betas_m <- as.matrix(betas_m) 

colnames(betas_m)<- c("b_ope","b_con","b_ext","b_agr","b_neu") 

write(t(betas_m), file = "betas_m", ncolumns = 5, sep = "\t" ) 

 

######## 
# III. #    Hypothesis validation: GLM Models for claims count 

######## 

 

# Principal components analysis 

 

per<-as.matrix(cbind(hat_opes, hat_cons, hat_exts, hat_agrs, hat_neus)) 

colnames(per)<- c("hat_opes","hat_cons","hat_exts","hat_agrs","hat_neus") 

summary(per) 

 

SX<-cov(per) 
det(SX) 

valvec<-eigen(SX) 

valvec 

val<-valvec$values 

val 

PC<-c(1,2,3,4,5) 

plot(PC,val,"l") 

varexp<-(val/sum(val))*100 

varexp 

vec<-valvec$vectors 
B<-vec[,1:3] 

B 

omega<-diag(val[1:3]) 

omega 

BB<-B%*%sqrt(omega) 

BB 

varimax(BB, normalize = TRUE, eps = 1e-5) 

 

rot<-c(0.9053860989, 0.216325653,  0.365348086, 

       -0.0173513138, 0.878606492, -0.477231144, 
       -0.4242345386, 0.425739174,  0.799231638) 

rot<-matrix(rot, 3,3) 
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rot<-t(rot) 

 

BB 

 

BBr<-BB%*%rot 

BBr 

 
CP<-per%*%valvec$vectors[,1:3] 

CPr<-CP%*%rot 

 

claims_pts<-as.matrix(cbind(claims, CPr)) 

 

# CLAIMS MODELS 

 

# Poisson 

poisson_auto_m <- glm(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]  

                      + claims$zone1 + claims$zone2 + offset(log(claims$exposi_auto)), 
family=poisson) 

summary(poisson_auto_m) 

BIC(poisson_auto_m) 

   

# Negative Binomial 

library(MASS) 

 

nb_auto_m <- glm.nb(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]  

                    + claims$zone1 + claims$zone2 + offset(log(claims$exposi_auto))) 

summary(nb_auto_m) 
BIC(nb_auto_m) 

 

# Zero Inflated Poisson 

library(pscl) 

 

zip_auto_m <- zeroinfl(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]  

                       + claims$zone1 + claims$zone2 + offset(log(claims$exposi_auto))  

                       |CPr[,1] +  CPr[,2] +  CPr[,3]  

                       + claims$zone1 + claims$zone2, dist="poisson") 

summary(zip_auto_m) 
AIC(zip_auto_m) 

BIC_zip <- -2*zip_auto_m$loglik + 12*log(zip_auto_m$n) 

BIC_zip 

 

zinb_auto_m <- zeroinfl(claims$nclaims_auto ~ CPr[,1] +  CPr[,2] +  CPr[,3]  

                        + claims$zone1 + claims$zone2 + offset(log(claims$exposi_auto))  

                        |CPr[,1] +  CPr[,2] +  CPr[,3]  

                        + claims$zone1 + claims$zone2, dist="negbin") 

summary(zinb_auto_m) 

AIC(zinb_auto_m) 
BIC_zinb <- -2*zinb_auto_m$loglik + 12*log(zinb_auto_m$n) 

BIC_zinb 

 
 


